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ABSTRACT

This paper develops a comprehensive framework for analgsidgalculating user equilibrium,
system optimum, and externalities in time-dependent noetworks. Under dynamic user
equilibrium, traffic is assigned such that for eacigiordestination pair in the network, the
individual travel costs experienced by each travellematier which combination of travel route
and departure time he/she chooses, are equal and minfimal.system optimal flow is
determined by solving a state-dependent optimal control probkamnh assigns traffic such that
the total system cost of the network system is migech The externalities are derived by using a
novel sensitivity analysis. The analyses developdHisnpaper can work with general travel cost
functions. Numerical examples are provided for illugtratand discussion. Finally, some
concluding remarks are given.
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1. INTRODUCTION

Time-dependent network models have several advantages thee conventional time-
independent ones. On representing the characteristihe tfansport system, the time-dependent
models consider traffic flows and travel times to ibeetvarying. On the travel demand side, the
time-dependent traffic models capture the temporal vaniatidravel demand over time. Such
network models provide important insight into the dynanu€ peak periods and sensitivity of
travellers’ behaviour in response to different transpolicp measures. In the network model,
the travellers’ behaviour is represented by a dynamitictrassignment. The dynamic traffic
assignment follows two principles: dynamic user equiioriand dynamic system optimum.
Dynamic user equilibrium assignment has been the foctlweipast two decades. As a result of
previous research (see for examgle2, 3), we have gained substantial knowledge on the
formulations, properties, and solution methods of dynaoser equilibrium assignment.
Dynamic system optimal assignment is an important rgddtively underdeveloped area.
Dynamic system optimal assignment process suggestthénatis a central “system manager” to
distribute network traffic over time in a fixed study iper Consequently, the total, rather than
individual, travel cost of all travellers through thetvmark is minimised. Although system
optimal assignment is not a realistic representatiaretfork traffic, it provides a bound on how
we can make the best use of the road system, and a& sualuseful benchmark for evaluating
various transport policy measures.

It is also noted that each additional traveller entethe system at a certain time imposes
an additional travel cost on the others who entesyiseem at that time and thereafter. We regard
this additional cost as dynamic externality. Understanthe nature of this dynamic externality
is important in managing time-dependent networks. CareySaimasan 4) and many others
performed comprehensive analyses on system optimildagand dynamic externality. Most of
these previous studies adopted an outflow traffic motdeahwvas later found to violate causality
and unable to capture the flow propagation behaviour pro(sssb, 6). This paper revisits the
dynamic externality in a more general and plausible. Wég further develop a novel sensitivity
analysis and apply it to derive and analyse the exiigrntom the dynamic network
optimization formulation.

This paper is organized as follows. In Section 2, we dhice the travel cost functions
adopted in this study and the formulation of dynamic eseilibrium assignment. In Section 3,
we present the formulation and optimality conditioisdgnamic system optimal assignment.
Dynamic system optimal assignment problem is formulated state-dependent optimal control
problem. To understand and solve the dynamic system dpyirtanditions, Section 4 provides
a detailed interpretation of various cost components apgteaystem optimality. We further
develop a novel sensitivity analysis to derive and comthgedynamic externality. Section 5
presents the solution algorithms for solving the senitimhalysis and the dynamic traffic
assignments. The solution algorithms are developed using a gtypasgramming approach.
Following this, we show some numerical calculationd aiscuss the characteristics of the
results in Section 6. Finally, some concluding remar&gyaren in Section 7.

2. TRAVEL COST AND DYNAMIC USER EQUILIBRIUM ASSIGNMENT
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2.1 Travel cost functions
We consider the total travel co&t, (s) encountered by each traveller departs at 8me
and travels along routg between an origin-destination pair in the network hasetfistinct

components. The first component is the time spentravelling along the route, which is
determined by the travel time model that is adopted. Iitiaddo the travel time, we add a time-

specific costf[r(s)] associated with arrival timep(s) through route at the destination. We
consider this arrival time-specific cost to be a noresing function of the associated arrival
time. Finally, we add a time-specific casfs) associated with departure from the origin at time

s. This cost explicitly considers the value of titeetravellers at the origin of a journey. We
consider that travellers would gain continuing Biefieom remaining at their origin but are drawn

to their destination by a need to attend and hentravel. Following thish(s) is considered to be
a monotonic non-increasing function of departureets. Consequently, the total travel cost
Cp(s) associated with entry time to roytet time s is determined as a linear combination of

these costs as
C,(s) = h(s)+[z,(s)— sl + flz,(s]], (1)

in which the term[rp(s)—s] represents the travel time along the route whih ke

calculated from the cost of using each link on tbate at the time it will be reached by
following the vehicle trajectory (seg 8). In addition, following §) and @), we consider the
travel time C, (s ) at the time of entrg to each linka on a route to be a linear non-decreasing

function of link traffic volumex, (s )as

c(9=g -+ 2)

Q.

where ¢, andQ, denote the free flow travel time and the capasitthe travel link respectively.
The reason of adopting,(s as a linear function is that the first-in-firstto(FIFO) queue

discipline, which is a crucial property for anatgi dynamic traffic models9( 10), cannot be
guaranteed for non-linear version ofio(11).

2.2 Dynamic user equilibrium assignment

In this study, travellers’ responses are repredeyetheir choices of routes of travel and
times of departure. It is assumed that all travelimake their travel decisions according to a
common criterion that their individual costs asaten with the travel are minimized. Under such
mechanism, the system will reach a stable statehwisicalled dynamic user equilibrium. This
dynamic user equilibrium condition is used as aesgntation of existing network traffic, where
each individual traveller is acting only in thewwo interests, but not the interest of the whole
system. Following 12), for an assignment to be in dynamic user equuiiorof simultaneous
choice of travel route and departure time, the todael cost should be the same for all travellers
between each origin-destination pair in the netyardk matter what combinations of departure-
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time and route that the travellers have chosen.difhamic user equilibrium assignment is stated
as a complementary inequality for the inflca{y(s) to each rout@ at the entry tims as:

. OpUP,, Us, 3
-0 = Cp(s)zcod} PP ©)

>0 = C,(s)=C,

) | )=c.

where P,, is the set of all routes between origin-destinapairod, C_, is the total travel cost

with which travel will take place between originstieation pairod. All travel between each
origin-destination pair is achieved at the same €)s throughout the study period.

3. DYNAMIC SYSTEM OPTIMAL ASSIGNMENT

In contrast with dynamic user equilibrium, dynarsigstem optimal assignment assumes that
travellers will cooperate in making their traveloaes for the overall benefit of the whole
system instead of their own individual benefitseystem optimal assignment with departure
time choice for fixed travel demand can be fornmedaas the following optimal control problem,

which seeks an optimal inflow profile,(s) that minimizes the total system travel cost within
the study period]. The total travel demand with in the study per®dixed and given byd , .
The optimal control problem is formulated as:

E?(isr; Z= ;jCa (s)e,(s)ds (4)
subject to:

—dGanTSa(S)] =e,(s) .OsDa ()

%O - (9-0.9 O ©)

—dE(;‘S(S) =e,(s) ,OsDa (7)

> E.(T)=J, 8) (

e ()20 ,OsOa 9)

Equation (5) ensures the proper flow propagati@mgleach route, in whiclG, (s)
denotes the cumulative outflow by the link timg(s), wherer,(s) =s+c, (s) for each linka.
Equation (6) is the state equations that goverretindution of link traffic, x, (s). The variables
g.(s) represents the link outflow rate at timeEquation (7) defines the cumulative inflow
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E, (s) . Equation (8) specifies the amount of total througldgugenerated in the system within
the time horizonl. Condition (9) ensures the non-negativity of the comtaniable. Given a
positive inflow e,(s), the corresponding outflong,(s) and link traffic volume x,(s) is
guaranteed to be positive (see for exampje,Hence, we do not add explicit constraints to
ensure the non-negativity @f, (s) and x,(s). The traffic models considered in this paper satisfy
FIFO structurally, hence we do not need to add any exglicistraint for this. In the present
study, the formulation and analysis for the dynamg&tesy optimal assignment are restricted to
networks in which origin-destination pairs are connectéitt mutually distinct travel routes

consisting of one single link.
One technical difficulty is that with the traffic modeabove, the time lag between

changes to the control variable,(s), and the corresponding responseg,(s), is state-
dependent. This state-dependent control theoretic fotiomlegs unorthodox. Its properties and

application to dynamic user equilibrium were studied By TThe necessary conditions for
dynamic system optimal assignment are given by thewalg the proposition.

Proposition 1. The necessary conditions for the optimization prob{gin— (9) can be
derived as

>0=C,(8)+W_(5) + A, (S) — V. () = 1, () =V,
€, (S){: 0= C(9) + W, (9 +A(5) - 1. (9) = p(s) = v, ,0a,0s0[0,T], (10)

Proof:
See Appendix A inX3). O

In condition (10), the notatiop, (s , N, (s), 1.(s), andv,, are themultipliers, or called
the costate variables in optimal control terminology, associated with consti(5), (6), (7), and
(8) respectively. From the other stationarity cooaisi at optimality, we determine that
Va(9) = /la[ra (s)] and u,(s) =v,,, wherev,, is constant with respect to time. Hence, condition
(10) can be rewritten as

e (9 {> 0= Co(9+ W9+ A4S ~Aln®l=ves 1 ooy, 1)

=02 C9 W9 + A (9 - A (9] 2 v,

The magnitude o, is dependent on the total travel demadg,. The detail of this can

be referred to13).

Similar to the static counterpart (s&4), proposition 1 shows that the system optimal
assignment in dynamic setting can be reduced to an equiveerdynamic user equilibrium
assignment formulation in which additional componexftthe cost[LIJa(s) +A,(9) —/la[ra(s)]].

This quantity is interpreted as the total cost or tmialthat each traveller would have to pay in
addition to the individual travel cost that they endeuim order to make the optimal use of the
transport system at thisodified equilibrium. The additional components are further prieted

in Section 4.
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4. COSTATE VARIABLES, EXTERNALITY, AND SENSITIVITY ANALYSIS OF
TRAVEL COST

4.1 Costate variables

The costate variabled, (s gnd y,(s) in the optimal control formulation represents the
sensitivity of the value of the objective functiorthiviespect to the changes in the state variables
X,(s) and g,(s) in the corresponding constraints at the associated(8g€L5). In other words,
the value of the costate variables in the system optiowrol formulation equals to the total
change in the value of the total system travel @gswith respect to slight changes in the state
variables (i.e. link traffic volumex,(s )and outflow profile g,(s ) at times. The costate

variablesA, (s )and y,(s) = /la[ra (s)] can be calculated by the following costate equation which
is derived from the optimality conditions (sE® as

() = Qi [+ £r, 0t (12)

a t=s
The difference between costate variablgés andl y, (s) can be calculated as

75 (t)

IRORIACEVRORYRINCIE Qi [@+ t[r.@)e.dt . DaOs, (13)

a t=s

which can be interpreted as the change in the valugedbtal system cost related to
the change in link traffic volume during the stay of avétker who enters the system at time
and leaves the systemaf(s . )

4.2 Dynamic externality
The notation W,(s) in the cost components in condition (11), where
©oC
Y (s)=
() ! ou, |,
traffic, us, at times to existing travellers in the system. This adadisib cost is termed as
“dynamic externality”. In the notation, we defingetparameterss to represent a perturbation in
inflow profile for which

a

e, (t)dt, refers to the additional travel cost imposed byadditional amount of

de, (t) :{1 if tO[s,s+ds) (14)

du 0 otherwise

S

in which ds represents the incremental time step. Mathembtidake value ofW, (s )equals to

the total change in the value of the total systexwel costZ with respect to this change in the
inflow profile during a particular time intervés, s+ ds) .
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4.3 Determining dynamic externality
Differentiating both sides of Equation (1) with respeatdgives

oCc,| _ , o7,
o (L+f [Ta(t)])a_ust . (15)

S

. . .. . 0T .
As a result, calculating the externaliy, (s requires the sen5|t|V|tya—a of travel time
u

St
with respect to perturbations in link traffic ifflo The derivation of this derivative is given in
the following proposition.

Proposition 2: Suppose there is a changeugin the link inflow rate at a particular time
s, the sensitivity of the time of exit, at a timet with respect to this perturbation can be

calculated as

or
ou

a

¢ Q

T
drx +qg. (1)—2
ga()au

S K=0,(t) s s

_ 1{ j o 9 } 6
g, (1)

in which o, (t) is the time of entry to the link that leads totetitimet. Indeed,o, [)is
defined as the inverse function of [.()

Proof:
See Appendix B in13). O

The derivative of exit time with respect to the tpdrationus in infow can then be
expressed in terms of the dependence of the inflafile e, (s) in whichs lies betweers and

o,(s), the current outflong, (s )and the derivative of exit time at the time ofrgno, (s).

Discussion: In the dynamic system optimal condition (11), tlestccomponentsC, (s )
and W, (s) are generated within the system, while last twa cosnponents (i.e. the costate
variables,A_(s )and y,(s)) are external to the system. The quantity in (3hterpreted as the
external cost to be imposed on a traveller whorerttee link at times and leaves at timeé, (s )
in addition to the individual travel cost,(s that he/she encounters himself/herself and the
externality W, (s ) that he/she generates to the system.

5. SOLUTION ALGORITHMS

In this section, we first present the algorithmstdve dynamic user equilibrium assignment in
Section 5.1. Solving dynamic system optimal assgmnrequires calculating the dynamic
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externality as noted in Section 4. Hence, we presentldorithmic procedure in Section 5.2.
Finally, the solution algorithm for dynamic system oplirmssignment is presented in Section
5.3 by exploiting the externality.

5.1 Solving dynamic user equilibrium assignment

Sep O: Initialisation

0.1 Choose an initial equilibrium co€X; ;

0.2 Set the overall iteration counter=1;

0.3 Sete, (k) :=0 for all linksa and all timesk, k[J[0,K]. The notatione, (k) represents the
assigned inflow to linka between timesAs and (k +1)As. The total number of simulated

time steps is denoted & =T /As and the total number of parallel links is denobgdA,
set time indexk :=0;

0.4 Set the link indexa:=1,;

0.5 Set the time indek ;= 0;

0.6 Set the overall iteration counter:= . 1

Sep 1. Network loading
Find 7,(k+ 1) by loading the travel link using the inflow, (k) at the current iteration. The
network loading algorithm “Algorithm D2” describéal (10) was adopted for this purpose.

Sep 2: Updating the inflow

2.1 CalculateC, (k +1) = h(k +1) +[r, (k +1) - (k + )] + f[r, (k +D)];

Cuk+)-Co(K) 4 99

As de, (k)

inwhich fr, (] = Fak* 1= flz. (]
r,(k+1)-7,(k)

We note the equilibrium is achieved if and onl\df= 0 for all positive inflowe, (k);

2.2 CalculateQ = = (1+ f'[ra(k +1)])Qi,

a

using a finite difference approximation.

2.3 Update the inflow as, (k) := max[(e, (k) + 7d),0] using Newton’s method. The second-order
searching direction is denoted laoy= —%. and the step size&, which is interpolated
linearly as

p Co ~Ca(k+1)
Cl(k+1)-Co(k+1)’

whereC}(k +1) andC?(k +1) represent the corresponding valuesgtk +1) whene, (k)
is being updated withr is taken as 1 and O respectively. To deterninetwo network
loadings are required to calculate the value€k +1) andC?(k +1) respectively.

Sep 3: Sopping criteria
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3.1. Check if |C,(k+1)-C,

inner iterations, then go to step 3.2; otherwisens:=n' +1 and go to step 1;
3.2. Ifk=K, then go to step 3.3; otherwise k + 1 and go to step 1;
3.3. Ifa= A, then go to step 3.4; otherwige= a+ 1 and go to step 0.5;

.Y & (k)C,(k+1)-C,
3.4 Define = ¥xaA as a measure of disequilibrium, which is equal to

Z Z ea (k)C:)d

kOK alJA
zero at user equilibrium. Ifi is greater than the predefined maximum numbervefail
iterations oré is sufficiently small, i.e < & where ¢ is a test value, then go to step 3.5;

otherwise seh:=n+1 and go to step 1.2;
3.5. check if the total throughpu,; => > e, (k) from the system is equal to the predefined

Oa Ok
total demandl.q for the o-d pair. If yes, therterminate the algorithm; otherwise update

<& or n' is greater than the predefined maximum number of

C,,=C,+ J"“dE;E"“ , and go back to step 0.3. The derivat%CEe:‘ji is given by 16).
od od

dc’

5.2 Calculating externality W, (s)

Sep 1: Initialisation for calculating the derivatives of link exit time

1.1 Set the link indexa:=1;

1.2 Set the time indek := 0, which represents the time when the inflow is ypdxed;

1.3 Set the time index := 0 to index the change in exit time due to the pégtion in inflow at

timek;
1.4: Calculating the derivatives of link exit time:
If «w<k, thendr"’1 =0;
du, |
else itk < ws[7,(0)], then&e] = 1,
o, Qa
olse 7| = 9a(@) 07,

ou, ‘w Q, adu, (@)

1.5 If w = K, then go to step 1.6; otherwige= « +1 and go to step 1.4;
1.6 If k=K, then go to step 1.7; otherwise k + 1 and go to step 1.3;
1.7 Ifa= A, then go to step 2; otherwiae= a + 1 and go to step 1.2.

Sep 2: Calculating the derivatives of total travel cost function
2.1 Set the link indexa:=1;

2.2 Set the time indek :=0;

2.3 Set the time index =0;
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dc,| _ , dr,| .
2.4 Calculateaw =(1+f [ra(a))]) au, w,

2.5 If w =K, then go to step 2.6; otherwise:= «. +1 and go to step 2.4;
2.6 If k=K, then go to step 2.7; otherwike k + 1 and go to step 2.3;
2.7 Ifa= A, then go to step 3; otherwiae= a + 1 and go to step 2.2.

Sep 3: Calculating the externality
3.1 Set the link indexa:=1;

3.2 Set the time indek :=0;

3.3 Initialise W, (k) := Q

3.4 Set the time index =0;

3.5 Calculate, (k) = W_(K) +e, () ‘;Ca

k
3.6 If w =K, then go to step 3.7; otherwise:= «. +1 and go to step 3.5;
3.7 If k =K, then go to step 3.8; otherwike k + 1 and go to step 3.3;
3.8 If a= A, then stop; otherwisg=a+ 1 and go to step 3.2.

w

Note: In Algorithm 2, step 1.4, we note that the functigp(w) does not necessarily give
an integral value. To implement the sensitivity lgsia into computer, a interpolation is needed

to determine the value qui . This study adopts a linear interpolation whicpragimates

UK Ua(w)
dr
the value of—% as
du, o @
dr, dr, dr, dr,
U Y +{ U "4 J(Ua(w) ~lo. (W), (17)
klo, () EAGY ki[g,(w)] kilo,(@)]

where the notatioho, (w) | represent the smallest integer not smaller iafw , andl| o, (w) |
is the greatest integer not larger than(w . )

5.3 Solving dynamic system optimal assignment

Sep O: Initialisation

0.1 Choose an initial equilibrium co€X, ;

0.2 Set the overall iteration counter=1;

0.3 Sete, (k) :=0 for all linksa and all timesk, k[J[0,K]. The notatione, (k) represents the
assigned inflow to linlka between timeskAs and (k +1)As. The total number of simulated time

steps is denoted as =T /As and the total number of parallel links is denobgdd; set time
index k:=0;
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0.4 Set costated, (k) := 0 for all timesk [0, K];

0.5 Set the link indexa:=1;
0.6 Set the time indek :=0;

0.7 Set the overall iteration counter:= . 1

Sep 1: Network loading
Find 7,(k+ 1) by loading the travel link using the inflow, (k) at the current iteration. The
network loading algorithm “Algorithm D2” describéal (10) was adopted for this purpose.

Sep 2: Calculating externality
UseAlgorithm 2 to calculate the externality, (k) associated with eaaf) (k).

Step 3: Determining the auxiliary inflow
3.1 Calculate

C,(k+1) =h(k+1) +[r,(k +1) - (k + D] + f[r, (K + D]+ W, (k +1) + A, (k) - A, [r, (K)];

_C.(k+D)-C,(k) 1y = 0Q(K) _ , 1

3.2 CalculateQ(k) = X and Q' == 5 L+ f[r,(k +1)])—Qa :
e __Q.(k) _
3.3 Calculate the auxiliary inflowd, (k) = QLK)

3.4. If a= A, then go to step 3.5; otherwige-a + 1 and go to step 0.7;
3.5. If k =K, then go to step 4; otherwike= k + 1 and go to step 0.6.

Sep 4: Determining step size
Search for an optimal step siZe by using golden section method and update thevints
e, (k) := max[e, (k) + &,0] for all timess such that the total system cost is minimized.

Sep 5: Calculating costate variables
5.1Set the link indexa:=1;
5.2 Setd,(K)=0Q

5.3 Set the time indek .= K -1;
5.4 Computed (k) = A (k+1) + {1+ '[r, (K)]) efék) As:

a

5.5 Calculatela[ra(k)] from A, (k) and 7, (k ) using linear interpolation as

DIAGCIERNEEL ALY ) ACRIEACHE
5.6. If k =0, then go to step 6.7; otherwise k - 1 and go to step 5.2;
5.7. 1f a= A, then go to step 7; otherwiae= a + 1 and go to step 5.1.

Sep 6: Sopping criteria
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2.2 (K)Ca(k+D - Cy
6.1 Define & = 22tk as a measure of disequilibrium, which is equal to

Z Z ea (k)C:)d

Oa
zero at system optimum. Ih is greater than the predefined maximum number of overall
iterations or¢ is sufficiently small, i.e.{ <& where ¢ is a test value, then go to Step 6.2;

otherwise seh:=n+1 and go to step 0.5;
6.2. Check if the total throughpiit,; => > e, (k) from the system is equal to the predefined

Oa Ok
total demandl.y for the o-d pair. If yes, therterminate the algorithm; otherwise update

C,,=C,,+ J"“dE;E"“ , and go back to step 0.2.
od

dc’
6. NUMERICAL EXAMPLES

6.1 Senditivity analysis of link exit time
The critical step of determining the externalfty (s) is calculating the derivative of link

... 0T . . L
exit time —2| with respect to perturbation in inflow. Hence stection tests the accuracy of
s lt
this derivative which is derived in propositionVZe consider a single link, which has a free flow
time 3 mins and a capacity 20 vehs/min, connedisgngle origin-destination pair. The size of
discretized time interval\s is taken as 1 min. A parabolic inflow as specified18) is loaded
into the travel link.

Lliao-ss ifo<s<40
e (9)=+°2 . (18)

0 otherwise

This profile has a peak inflow rate of 50 vehs/nwich equals to 2.5 times of the link
capacity. To investigate the accuracy of the smitgitanalysis, we consider this parabolic
inflow is increased by a unit of flow during timeteérval 1, and the associated derivative of link
exit time are plotted in Figure 3. Each value oéridatives” on the vertical axis over time
represents the change in link exit time at thaetdue to the perturbation in inflow at time 1. The
“analytical” derivatives are calculated accordingEquation (16). The “numerical” derivatives
are determined by using direct numerical finitefedtégnce method, and they are plotted in the
same figure for comparison. To calculate the fidiffference, one extra unit of inflow is added
at time 1, while the inflow profile remains unchadgat other times. The “numerical” variations
in travel times are then calculated by subtractimg link travel time loaded by the original
inflow profile from that loaded by the perturbedlanv profile. The result shows that the
analytical variations given by Equation (16) capresent the true numerical variations in travel
time reasonably well. The value of the derivatise®ach time represents the change in the link
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travel time at that time due to the perturbation in inflat time 1. Both numerical and analytical
variations drop to zero at time 83 when all trafficlesaced from the link.

0.06

0.05
., 0.04 — - - Analytical
()
= .
.g 0.03 Numerical
= h

0.02
‘ m ValiS L
0.01 i “:,,//-/J\ = "M
< k
0 | | | |

0 20 40 60 80
Time

FIGURE 1 Sensitivity of travel time with respect to a perturbation in inflow

6.2 Dynamic traffic assignments

This section calculates the dynamic traffic assignsidfigure 2 shows a network with a
single origin-destination pair connected with two paralaVel routes consisting of one single
link. Link 1 has free flow time 3 mins and capacity 20 vehs/mmd link 2 has free flow time 4
mins and capacity 30 vehs/min. Furthermore, the originfpemost is specified to be a
monotone linear function of time with a slope -0.4. Hastination cost function is piecewise

linear, with no penalty for arrivals before the prefdragrival timet” =50, and increases with a
rate 2 afterwards. The length of the planning toorif0, T ], whereT=100, is set such that that all

traffic can be cleared by tinle The total amount of traffid , is taken as 800 vehs.

FIGURE 2 Example network

Figure 3 shows the corresponding profiles of linkows and the total travel cost at
dynamic user equilibrium. The assignment periodotte 1 is from time 18 to time 49, and to
route 2 is from time 21 to 49 which is shorter dués higher capacity and hence traffic can be
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cleared more efficiently. The link flow volumes usirggte 1 and route 2 are 380.25 (vehs) and
419.75 (vehs) respectively. Figure 3 also shows good equilibrafioravel cost in which the
measure of disequilibriurd is less than 1.

40 30

35
30
i

Departure time (min)

——Route 1 Inflow —s— Route 2 Inflow

——Route 1 Total travel cost ~ —<— Route 2 Total travel cost

FIGURE 3 Dynamic user equilibrium assignment

As mentioned in Section 2.1, the total travel cost indesdists of the travel time and
the sum of time-specific costs. For further illustrafi Figure 4 plots the cost components and
the associated inflow and outflow profiles on route 1. ¢bst components on route 2 follows
similar pattern and hence they are not included heréréonty. Figure 4 shows that the time-
specific costs are decreasing over time until depattome 39. It is because travellers depart
after time 39 will arrive at the destination at timel5@hich is after the preferred arrival time
50. As a result, those travellers will be added a pestivival specific cost. In addition, the
figure shows that the link travel time increases withetiwhen the inflow is higher than the
outflow and vice versa after time 39. Overall, the sunalbthese travel cost components is
constant over time.

The total system travel co& is 12,465.2 veh-min at dynamic user equilibrium and it is
understood that it is not the minimum yet. Figure 5 shdyyamic system optimal assignment.
With the same total demaidgy, the period of assignment to link 1 expands from times [18, 49]
to times [4, 56], while that to link 2 expands from tini@s, 49] to times [6, 50]. In general, the
inflow profiles are more spread at system optimum inmt@eeduce the intensity of congestion.
In the figure, the legend “total travel cost” refersvtdues ofC, (s )and the legend “total travel
cost + toll” refers to the value &, (s) + W, (s) + A, (s) - A,[r,(5)] on each route. The associated
total system travel cosZ at system optimum is decreased from 12,465.2 veh-min in use
equilibrium to 11,447.3 veh-min. Contrast with dynamic usgiildrium, it is seen that the total
travel costC, (s )is not equal for all departure tinsavhich implies some travellers can be better
off while some of them have to be worse off for thedyobthe whole system.

Finally, as shown in the figure, the “total travel cegoll” is not in good equilibration at
system optimum in which the measure of disequilibriumaay reach 0.04. Indeed, solving the
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dynamic system optimal assignment is difficult, sitice solution procedure involves solving
two dynamic programmes simultaneously and consistentlyingothe network loading forward
in time for the state variables and solving the costatateons backward in time for the costate
variables. Although the dynamic system optimal soluti@t tve achieved shows a reduction of
more than 8% over the dynamic user equilibrium assighmee are still exploring a better
algorithmic procedure for better quality solution.
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FIGURE 5 Dynamic system optimal assignment

To illustrate the cause of the decrease in total syst@ral cost, Figure 6 shows the link
traffic volumes, which are directly related to congast at dynamic user equilibrium and
dynamic system optimum. Interestingly, yet impoitignthe results show that, with the link
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travel time function in Equation (2), the system opti@ssignment has to allow congestion,
which can only be managed and minimized, even at sysgmuwm. This implies that the
previous analyses on dynamic system optimum using bottlenedkl (see for examplE7, 18)

in which congestion can be completely eliminated do notrgdig apply.
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Finally, to decentralize the system optimizing flowptal amount of time-varying toll of
[LIJa(s)+Aa(s)—Aa[ra(s)]] has to impose on each traveller in the system acapriinthe
departure times of each traveller. The time-varying tolls on eactitecare calculated and plotted
in Figure 7. In general, the tolls increase for traveNen®se departure time would lead to an
early arrival at the destination; decreases for tkengelvho would arrive late.
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7. CONCLUDING REMARKS

This paper developed a comprehensive framework for dynamic ggelibeum, system
optimum, and dynamic externalities. In particular, meeisited the dynamic system optimal
assignment and externality in a more general and plausiéye We also developed a novel
sensitivity analysis of link exit time with respect perturbations in inflow. The knowledge
generated in this paper provides important insight intartheagement of peak traffic dynamics
and travellers’ behaviour. We also presented solutiorritiigts for implementing the sensitivity
analysis and solving the dynamic traffic assignmentg Jdiution algorithms were developed
using a dynamic programming approach. We applied the algortthmamerical calculations.
The characteristics of the results were discussed.Ndeexl that the system optimal assignment
has to allow congestion which can only be managed bulinoinated even at system optimum.
This implies that the previous analyses on dynamic sysigimum using the bottleneck model
do not apply generally. Nevertheless, further study isretjuired to improve the performance of
the solution algorithm for calculating system optimaligisment.

In the present study, the formulation and analysiseptesl were restricted to networks
with multiple origin-destination pairs connected with oally distinct routes consisting of single
links. In case of networks with multiple origin-destioatipairs with overlapping routes, traffic
entering the network during the journey time of a tdaveffom other origins downstream can
influence the travel time of travellers from its tream. As a result, some special computational
technique, for example Guass-Seidel relaxation {de&9), is required. The basic idea of such
relaxation scheme is to decompose the assignment prddrematworks with overlapping routes
connecting multiple origin-destination pairs into sevesub-problems. In each sub-problem, we
calculate the assignments for one origin-destination pad temporarily neglect the influences
from the flows between other origin-destination paikhen equilibrium or system optimum is
reached for the current origin-destination pair, we progetdcalculations for another pair. The
procedure is repeated until equilibrium or system optinsireached in the whole network. The
relaxation scheme is not guaranteed to converge, bttddds, the solution will be the final
assignment pattern (sé&é, p217). In case of travel route with multiple linkdfidulties brought
in when we have to calculate the derivativesante exit time (see for examp0). As shown
earlier in proposition 2, changing the inflow to a linktbe route during one time interval will
induce perturbations in the link travel time, the link [mwtf and hence the inflow to subsequent
link(s) in several succeeding time intervals. Hence, dmension of time intervals to be
considered in calculating the derivatives will expand egptially along the route. We are
currently investigating the strategies to cope with tluarse of dimensionality”. Efficient
computing methods for system optimal assignments in genetworks are still under
investigation, however, the work reported in the pregamter provide a solid and necessary
foundation for future research on this.
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