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ABSTRACT 
 
This paper develops a comprehensive framework for analysing and calculating user equilibrium, 
system optimum, and externalities in time-dependent road networks. Under dynamic user 
equilibrium, traffic is assigned such that for each origin-destination pair in the network, the 
individual travel costs experienced by each traveller, no matter which combination of travel route 
and departure time he/she chooses, are equal and minimal. The system optimal flow is 
determined by solving a state-dependent optimal control problem, which assigns traffic such that 
the total system cost of the network system is minimized. The externalities are derived by using a 
novel sensitivity analysis. The analyses developed in this paper can work with general travel cost 
functions. Numerical examples are provided for illustration and discussion. Finally, some 
concluding remarks are given.  
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1. INTRODUCTION  
 
Time-dependent network models have several advantages over the conventional time-
independent ones. On representing the characteristics of the transport system, the time-dependent 
models consider traffic flows and travel times to be time-varying. On the travel demand side, the 
time-dependent traffic models capture the temporal variation in travel demand over time. Such 
network models provide important insight into the dynamics of peak periods and sensitivity of 
travellers’ behaviour in response to different transport policy measures. In the network model, 
the travellers’ behaviour is represented by a dynamic traffic assignment. The dynamic traffic 
assignment follows two principles: dynamic user equilibrium and dynamic system optimum. 
Dynamic user equilibrium assignment has been the focus in the past two decades. As a result of 
previous research (see for example 1, 2, 3), we have gained substantial knowledge on the 
formulations, properties, and solution methods of dynamic user equilibrium assignment. 
Dynamic system optimal assignment is an important yet relatively underdeveloped area. 
Dynamic system optimal assignment process suggests that there is a central “system manager” to 
distribute network traffic over time in a fixed study period. Consequently, the total, rather than 
individual, travel cost of all travellers through the network is minimised. Although system 
optimal assignment is not a realistic representation of network traffic, it provides a bound on how 
we can make the best use of the road system, and as such it is a useful benchmark for evaluating 
various transport policy measures.  

It is also noted that each additional traveller entering the system at a certain time imposes 
an additional travel cost on the others who enter the system at that time and thereafter. We regard 
this additional cost as dynamic externality. Understanding the nature of this dynamic externality 
is important in managing time-dependent networks. Carey and Srinvasan (4) and many others 
performed comprehensive analyses on system optimizing flow and dynamic externality. Most of 
these previous studies adopted an outflow traffic model which was later found to violate causality 
and unable to capture the flow propagation behaviour properly (see 5, 6). This paper revisits the 
dynamic externality in a more general and plausible way. We further develop a novel sensitivity 
analysis and apply it to derive and analyse the externality from the dynamic network 
optimization formulation.  

This paper is organized as follows. In Section 2, we introduce the travel cost functions 
adopted in this study and the formulation of dynamic user equilibrium assignment. In Section 3, 
we present the formulation and optimality conditions of dynamic system optimal assignment. 
Dynamic system optimal assignment problem is formulated as a state-dependent optimal control 
problem. To understand and solve the dynamic system optimality conditions, Section 4 provides 
a detailed interpretation of various cost components appear at system optimality. We further 
develop a novel sensitivity analysis to derive and compute the dynamic externality. Section 5 
presents the solution algorithms for solving the sensitivity analysis and the dynamic traffic 
assignments. The solution algorithms are developed using a dynamic programming approach. 
Following this, we show some numerical calculations and discuss the characteristics of the 
results in Section 6. Finally, some concluding remarks are given in Section 7.  
 
 
2. TRAVEL COST AND DYNAMIC USER EQUILIBRIUM ASSIGNMENT 
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2.1 Travel cost functions    
 We consider the total travel cost ( )sC p  encountered by each traveller departs at time s 

and travels along route p between an origin-destination pair in the network has three distinct 
components. The first component is the time spent on travelling along the route, which is 
determined by the travel time model that is adopted. In addition to the travel time, we add a time-
specific cost )]([ sf pτ  associated with arrival time ( )spτ  through route p at the destination. We 

consider this arrival time-specific cost to be a non-decreasing function of the associated arrival 
time. Finally, we add a time-specific cost )(sh  associated with departure from the origin at time 
s. This cost explicitly considers the value of time to travellers at the origin of a journey. We 
consider that travellers would gain continuing benefit from remaining at their origin but are drawn 
to their destination by a need to attend and hence to travel. Following this, ( )sh  is considered to be 
a monotonic non-increasing function of departure time s. Consequently, the total travel cost 

( )sC p  associated with entry time to route p at time s  is determined as a linear combination of 

these costs as  
 

( ) ( ) ( ) ( )][][ sfssshsC ppp ττ +−+= ,                                                                           (1) 

 
 in which the term ( ) ][ ssp −τ  represents the travel time along the route which can be 

calculated from the cost of using each link on the route at the time it will be reached by 
following the vehicle trajectory (see 7, 8). In addition, following (5) and (6), we consider the 
travel time )(~ sca  at the time of entry s to each link a on a route to be a linear non-decreasing 

function of link traffic volume )(sxa  as  
 

a

a
aa Q

sx
sc

)(
)(~ += φ ,                                                                                                           (2) 

 
where aφ  and aQ  denote the free flow travel time and the capacity of the travel link respectively. 

The reason of adopting )(~ sca  as a linear function is that the first-in-first-out (FIFO) queue 

discipline, which is a crucial property for analytical dynamic traffic models (9, 10), cannot be 
guaranteed for non-linear version of it (10, 11). 
 
2.2 Dynamic user equilibrium assignment  

In this study, travellers’ responses are represented by their choices of routes of travel and 
times of departure. It is assumed that all travellers make their travel decisions according to a 
common criterion that their individual costs associated with the travel are minimized. Under such 
mechanism, the system will reach a stable state which is called dynamic user equilibrium. This 
dynamic user equilibrium condition is used as a representation of existing network traffic, where 
each individual traveller is acting only in their own interests, but not the interest of the whole 
system. Following (12), for an assignment to be in dynamic user equilibrium of simultaneous 
choice of travel route and departure time, the total travel cost should be the same for all travellers 
between each origin-destination pair in the network, no matter what combinations of departure-
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time and route that the travellers have chosen. The dynamic user equilibrium assignment is stated 
as a complementary inequality for the inflow ( )se p  to each route p at the entry time s as:  

 

( ) ( )
( ) sPp

CsC

CsC
se od

odp

odp
p ∀∈∀ ≥⇒=

=⇒>
,

0

0
*

*

,                                                         (3) 

 
where odP  is the set of all routes between origin-destination pair od, *

odC  is the total travel cost 

with which travel will take place between origin-destination pair od. All travel between each 
origin-destination pair is achieved at the same cost *

odC  throughout the study period. 

   
 
3. DYNAMIC SYSTEM OPTIMAL ASSIGNMENT  
 
In contrast with dynamic user equilibrium, dynamic system optimal assignment assumes that 
travellers will cooperate in making their travel choices for the overall benefit of the whole 
system instead of their own individual benefits. The system optimal assignment with departure 
time choice for fixed travel demand can be formulated as the following optimal control problem, 
which seeks an optimal inflow profile )(sea  that minimizes the total system travel cost within 

the study period, T. The total travel demand with in the study period is fixed and given by odJ . 

The optimal control problem is formulated as:  
 ∑∫

∀
=

a

T

aa
se

dssesCZ
a 0

)(
)()(min                                                                                            (4) 

 
subject to: 
 

[ ]
asse

ds

sdG
a

aa ∀∀= ,,     )(
)(τ

                                                                                      (5) 

assgse
ds

sdx
aa

a ∀∀−= ,,     )()(
)(

                                                                                (6) 

asse
ds

sdE
a

a ∀∀= ,,      )(
)(

                                                                                           (7) 

       )( od
a

a JTE =∑
∀

                                                                                                     (8) 

assea ∀∀≥ ,,     0)(                                                                                                       (9) 
 

Equation (5) ensures the proper flow propagation along each route, in which )(sGa  

denotes the cumulative outflow by the link time )(saτ , where )(~)( scss aa +=τ  for each link a. 

Equation (6) is the state equations that govern the evolution of link traffic, )(sxa . The variables 

)(sga  represents the link outflow rate at time s. Equation (7) defines the cumulative inflow 
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)(sEa . Equation (8) specifies the amount of total throughput Jod generated in the system within 

the time horizon T. Condition (9) ensures the non-negativity of the control variable. Given a 
positive inflow )(sea , the corresponding outflow )(sga  and link traffic volume )(sxa  is 

guaranteed to be positive (see for example, 9). Hence, we do not add explicit constraints to 
ensure the non-negativity of )(sga  and )(sxa . The traffic models considered in this paper satisfy 

FIFO structurally, hence we do not need to add any explicit constraint for this. In the present 
study, the formulation and analysis for the dynamic system optimal assignment are restricted to 
networks in which origin-destination pairs are connected with mutually distinct travel routes 
consisting of one single link. 

One technical difficulty is that with the traffic models above, the time lag between 
changes to the control variable, )(sea , and the corresponding responses, )(sga , is state-

dependent. This state-dependent control theoretic formulation is unorthodox. Its properties and 
application to dynamic user equilibrium were studied by (2). The necessary conditions for 
dynamic system optimal assignment are given by the following the proposition.  
 

Proposition 1: The necessary conditions for the optimization problem (4) – (9) can be 
derived as  
  ∈∀∀

=≥−+Ψ+⇒=
==−+Ψ+⇒>

],0[,,   
)()()()()(0

)()()()()(0
)( Tsa

sssssC

sssssC
se

odaaaaa

odaaaaa
a νµγλ

νµγλ
,          (10) 

 
Proof: 
See Appendix A in (13).  � 

 
In condition (10), the notation )(saγ , )(saλ , )(saµ , and odν  are the multipliers, or called 

the costate variables in optimal control terminology, associated with constraints (5), (6), (7), and 
(8) respectively. From the other stationarity conditions at optimality, we determine that 

[ ])()( ss aaa τλγ =  and oda s νµ =)( , where odν  is constant with respect to time. Hence, condition 

(10) can be rewritten as 
 

[ ]
[ ] ∈∀∀

≥−+Ψ+⇒=
=−+Ψ+⇒>

],0[,,   
)()()()(0

)()()()(0
)( Tsa

ssssC

ssssC
se

odaaaaa

odaaaaa
a ντλλ

ντλλ
,                        (11) 

 
The magnitude of odν  is dependent on the total travel demand, odJ . The detail of this can 

be referred to (13).  
Similar to the static counterpart (see 14), proposition 1 shows that the system optimal 

assignment in dynamic setting can be reduced to an equivalent new dynamic user equilibrium 
assignment formulation in which additional components of the cost [ ][ ])()()( sss aaaa τλλ −+Ψ . 

This quantity is interpreted as the total cost or total toll that each traveller would have to pay in 
addition to the individual travel cost that they encounter in order to make the optimal use of the 
transport system at this modified equilibrium. The additional components are further interpreted 
in Section 4.  
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4. COSTATE VARIABLES, EXTERNALITY, AND SENSITIVITY ANALYSIS OF 
TRAVEL COST 
 
4.1 Costate variables    

The costate variables )(saλ  and )(saγ  in the optimal control formulation represents the 

sensitivity of the value of the objective function with respect to the changes in the state variables 
)(sxa  and )(sga  in the corresponding constraints at the associated time (see 15). In other words, 

the value of the costate variables in the system optimal control formulation equals to the total 
change in the value of the total system travel cost Z  with respect to slight changes in the state 
variables (i.e. link traffic volume )(sxa  and outflow profile )(sga ) at time s. The costate 

variables )(saλ  and [ ])()( ss aaa τλγ =  can be calculated by the following costate equation which 

is derived from the optimality conditions (see 13) as 
 

[ ]( ) dttetf
Q

s
T

st

aa
a

a ∫
=

+= )()('1
1

)( τλ .                                                                                 (12) 

 
The difference between costate variables )(saλ  and )(saγ  can be calculated as  

 

[ ] [ ]( ) sadttetf
Q

ssss
t

st

aa
a

aaaaa

a

∀∀+=−=− ∫
=

,,          )()('1
1

 )()()()(
)(τ

ττλλγλ ,               (13) 

 
which can be interpreted as the change in the value of the total system cost Z  related to 

the change in link traffic volume during the stay of a traveller who enters the system at time s 
and leaves the system at )(saτ . 

 
4.2 Dynamic externality     

The notation )(saΨ  in the cost components in condition (11), where 

dtte
u

C
s

T

a

ts

a
a ∫ ∂

∂
=Ψ

0

)()( , refers to the additional travel cost imposed by an additional amount of 

traffic, us, at time s to existing travellers in the system. This additional cost is termed as 
“dynamic externality”. In the notation, we define the parameters us to represent a perturbation in 
inflow profile for which 
  +∈

=
otherwise                     0

),[ if           1)( dssst

du

tde

s

a ,                                                                                (14) 

 
in which ds represents the incremental time step. Mathematically, the value of )(saΨ  equals to 

the total change in the value of the total system travel cost Z  with respect to this change in the 
inflow profile during a particular time interval ),[ dsss + . 
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4.3 Determining dynamic externality     
 Differentiating both sides of Equation (1) with respect to us gives  
 

[ ]( )
ts

a
a

ts

a

u
tf

u

C

∂
∂

+=
∂
∂ ττ )('1 .                                                                                           (15) 

 

 As a result, calculating the externality )(saΨ  requires the sensitivity 
ts

a

u∂
∂τ

 of travel time 

with respect to perturbations in link traffic inflow. The derivation of this derivative is given in 
the following proposition.  
 

Proposition 2: Suppose there is a change of us in the link inflow rate at a particular time 
s, the sensitivity of the time of exit aτ  at a time t with respect to this perturbation can be 

calculated as 
  ∂

∂
+=

∂
∂ ∫

= )()(

)(
)(1

ts

a
a

t

t s

a

ats

a

aa
u

tgd
du

de

Qu σσκ

τκκτ
,          (16) 

 
in which )(taσ  is the time of entry to the link that leads to exit at time t. Indeed, )(⋅aσ  is 

defined as the inverse function of )(⋅aτ . 

 
Proof:  
See Appendix B in (13).  � 
 
The derivative of exit time with respect to the perturbation us in inflow can then be 

expressed in terms of the dependence of the inflow profile )(sea  in which s lies between s and 

)(saσ , the current outflow )(sga , and the derivative of exit time at the time of entry, )(saσ . 

 
Discussion: In the dynamic system optimal condition (11), the cost components )(sCa  

and )(saΨ  are generated within the system, while last two cost components (i.e. the costate 

variables, )(saλ  and )(saγ ) are external to the system. The quantity in (13) is interpreted as the 

external cost to be imposed on a traveller who enters the link at time s and leaves at time )(saτ  

in addition to the individual travel cost )(sCa  that he/she encounters himself/herself and the 

externality )(saΨ  that he/she generates to the system.  

 
 
5. SOLUTION ALGORITHMS 
 
In this section, we first present the algorithm to solve dynamic user equilibrium assignment in 
Section 5.1. Solving dynamic system optimal assignment requires calculating the dynamic 



Andy H. F. Chow                                                                                                                                                         9 

externality as noted in Section 4. Hence, we present the algorithmic procedure in Section 5.2. 
Finally, the solution algorithm for dynamic system optimal assignment is presented in Section 
5.3 by exploiting the externality.  
 
5.1 Solving dynamic user equilibrium assignment  
 
Step 0: Initialisation 
0.1 Choose an initial equilibrium cost *odC ;  

0.2 Set the overall iteration counter 1:=n ; 
0.3 Set 0:)( =kea   for all links a and all times k, ],0[ Kk ∈ . The notation )(kea  represents the 

assigned inflow to link a between times sk∆  and sk ∆+ )1( . The total number of simulated 
time steps is denoted as sTK ∆= /  and the total number of parallel links is denoted by A;  
set time index 0:=k ; 

0.4 Set the link index 1:=a ; 
0.5 Set the time index 0:=k ;  
0.6 Set the overall iteration counter 1:=in .  
 
Step 1: Network loading 
Find )1( +kaτ  by loading the travel link using the inflow )(kea  at the current iteration. The 
network loading algorithm “Algorithm D2” described in (10) was adopted for this purpose.  
 
Step 2: Updating the inflow 
2.1 Calculate [ ] [ ])1()1()1()1()1( +++−+++=+ kfkkkhkC aaa ττ ; 

2.2 Calculate 
s

kCkC aa

∆
−+

=Ω
)()1(

 and [ ]( )
a

a
a Q

kf
ke

1
)1('1

)(
' ++=

∂
Ω∂=Ω τ ,  

 in which  [ ] [ ] [ ]
)()1(

)()1(
)('

kk

kfkf
kf

aa

aa
a ττ

τττ
−+
−+

≈  using a finite difference approximation.  

 We note the equilibrium is achieved if and only if 0=Ω  for all positive inflow )(kea ;  

2.3 Update the inflow as ]0),)(max[(:)( dkeke aa π+=  using Newton’s method. The second-order 

searching direction is denoted by 'Ω
Ω−=d   and the step size π , which is interpolated 

linearly as  
  

 
)1()1(

)1(-
 

01

0*

+−+
+

=
kCkC

kCC

aa

aodπ ,  

  
 where )1(1 +kCa  and )1(0 +kCa  represent the corresponding values of )1( +kCa  when )(* kea  

is being updated with π  is taken as 1 and 0 respectively. To determine π , two network 
loadings are required to calculate the values of )1(1 +kCa  and )1(0 +kCa  respectively.  

 
Step 3: Stopping criteria 
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3.1. Check if  ε≤−+ *)1( oda CkC  or in  is greater than the predefined maximum number of   

inner iterations, then go to step 3.2; otherwise, set 1: += ii nn  and go to step 1;   
3.2.   If Kk = , then go to step 3.3; otherwise k:= k + 1 and go to step 1;  
3.3.   If Aa = , then go to step 3.4; otherwise a:= a + 1 and go to step 0.5;  

3.4  Define 
*

*

)(

)1()(

od
Kk Aa

a

oda
Kk Aa

a

Cke

CkCke∑∑∑∑
∈ ∈

∈ ∈
−+

=ξ  as a measure of disequilibrium, which is equal to 

zero at user equilibrium. If n  is greater than the predefined maximum number of overall 
iterations or ξ  is sufficiently small, i.e. εξ ≤  where ε  is a test value, then go to step 3.5; 
otherwise set n:=n+1 and go to step 1.2; 

3.5. check if the total throughput ∑∑
∀ ∀

=
a k

aod keE )(  from the system is equal to the predefined 

total demand Jod for the o-d pair. If yes, then terminate the algorithm; otherwise update  −
+=

*

** :

dC

dE
EJ

CC
od

odod
odod , and go back to step 0.3. The derivative 

*
od

od

dC

dE
 is given by (16).  

 
 
5.2 Calculating externality )(saΨ  
 
Step 1: Initialisation for calculating the derivatives of link exit time  
1.1 Set the link index 1:=a ; 
1.2 Set the time index 0:=k , which represents the time when the inflow is perturbed;  
1.3 Set the time index 0:=ω  to index the change in exit time due to the perturbation in inflow at 

time k;  
1.4: Calculating the derivatives of link exit time:  

If k<ω , then 0:=
ω

τ
k

a

du

d
;  

else if  )(kk aτω ≤≤ , then 
ak

a

Qdu

d 1
:=

ω

τ
;   

else 
)(

)(
:

ωσω

τωτ

a
k

a

a

a

k

a

uQ

g

u ∂
∂

=
∂
∂

;  

1.5  If K=ω , then go to step 1.6; otherwise 1: += ωω  and go to step 1.4;   
1.6  If Kk = , then go to step 1.7; otherwise k:= k + 1 and go to step 1.3;   
1.7  If Aa = , then go to step 2; otherwise a:= a + 1 and go to step 1.2.   
 
Step 2: Calculating the derivatives of total travel cost function  
2.1 Set the link index 1:=a ;  
2.2 Set the time index 0:=k ;   
2.3 Set the time index 0:=ω ; 
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2.4 Calculate [ ]( )
ωω

τωτ
k

a
a

k

a

du

d
f

du

dC
)('1+= ;   

2.5  If K=ω , then go to step 2.6; otherwise 1: += ωω  and go to step 2.4;   
2.6  If Kk = , then go to step 2.7; otherwise k:= k + 1 and go to step 2.3;   
2.7  If Aa = , then go to step 3; otherwise a:= a + 1 and go to step 2.2.  
 
Step 3: Calculating the externality  
3.1 Set the link index 1:=a ;  
3.2 Set the time index 0:=k ;   
3.3 Initialise 0:)( =Ψ ka ;  

3.4 Set the time index 0:=ω ;  

3.5 Calculate 
ω

ω
k

a
aaa du

dC
ekk )()()( +Ψ=Ψ ;  

3.6  If K=ω , then go to step 3.7; otherwise 1: += ωω  and go to step 3.5;   
3.7  If Kk = , then go to step 3.8; otherwise k:= k + 1 and go to step 3.3;   
3.8  If Aa = , then stop; otherwise a:= a + 1 and go to step 3.2.   
 

Note: In Algorithm 2, step 1.4, we note that the function )(ωσ a  does not necessarily give 

an integral value. To implement the sensitivity analysis into computer, a interpolation is needed 

to determine the value of 
)(ωσ

τ

a
k

a

du

d
. This study adopts a linear interpolation which approximates 

the value of 
)(ωσ

τ

a
k

a

du

d
 as  

        ))()((
)()()()(

ωσωσττττ

ωσωσωσωσ
aa

k

a

k

a

k

a

k

a

aaaa
du

d

du

d

du

d

du

d
− −+≈ ,                         (17) 

 
where the notation  )(ωσ a  represent the smallest integer not smaller than )(ωσ a , and  )(ωσ a  

is the greatest integer not larger than )(ωσ a . 

 
5.3 Solving dynamic system optimal assignment   
 
Step 0: Initialisation  
0.1 Choose an initial equilibrium cost *odC ;   

0.2 Set the overall iteration counter 1:=n ;  
0.3 Set 0:)( =kea   for all links a and all times k, ],0[ Kk ∈ . The notation )(kea  represents the 

assigned inflow to link a between times sk∆  and sk ∆+ )1( . The total number of simulated time 
steps is denoted as sTK ∆= /  and the total number of parallel links is denoted by A;  set time 
index 0:=k ; 
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0.4 Set costates 0:)( =kaλ  for all times ],0[ Kk ∈ ; 

0.5 Set the link index 1:=a ; 
0.6 Set the time index 0:=k ; 
0.7 Set the overall iteration counter 1:=in . 
 
Step 1: Network loading 
Find )1( +kaτ  by loading the travel link using the inflow )(kea  at the current iteration. The 
network loading algorithm “Algorithm D2” described in (10) was adopted for this purpose.  
 
Step 2: Calculating externality 
Use Algorithm 2 to calculate the externality )(kaΨ  associated with each )(kea .  
 
Step 3: Determining the auxiliary inflow 
3.1 Calculate  
      [ ] [ ] [ ])()()1()1()1()1()1()1( kkkkfkkkhkC aaaaaaa τλλττ −++Ψ++++−+++=+ ;  

3.2 Calculate 
s

kCkC
k aa

∆
−+

=Ω
)()1(

)(  and [ ]( )
a

a
a Q

kf
ke

k
k

1
)1('1

)(

)(
)(' ++=

∂
Ω∂=Ω τ ; 

3.3 Calculate the auxiliary inflow 
)(

)()( ' k
kkd

a

a
a Ω

Ω−= ; 

3.4. If Aa = , then go to step 3.5; otherwise a:= a + 1 and go to step 0.7; 
3.5. If Kk = , then go to step 4; otherwise k:= k + 1 and go to step 0.6.  
 
Step 4: Determining step size 
Search for an optimal step size θ  by using golden section method and update the inflow as 

]0 ,)(max[:)( dkeke aa θ+=  for all times s such that the total system cost is minimized. 

 
Step 5: Calculating costate variables 
5.1 Set the link index 1:=a ; 
5.2 Set 0)( =Kaλ ; 

5.3 Set the time index 1: −= Kk ; 

5.4 Compute [ ]( ) s
Q

ke
kfkk

a

a
aaa ∆+++=

)(
)('1)1()( τλλ ; 

5.5 Calculate [ ])(kaa τλ  from )(kaλ  and )(kaτ  using linear interpolation as  

[ ]      ( )  ( ))()()(
)()()(

kkk aakakakaaa
aaa

ττλλλτλ τττ −−+≈ ;             

5.6. If 0=k , then go to step 6.7; otherwise k:= k - 1 and go to step 5.2;  
5.7. If Aa = , then go to step 7; otherwise a:= a + 1 and go to step 5.1.  
 
Step 6: Stopping criteria 
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6.1 Define 
*

*

)(

)1()(

od
a k

a

oda
a k

a

Cke

CkCke∑∑∑∑
∀ ∀

∀ ∀
−+

=ξ  as a measure of disequilibrium, which is equal to 

zero at system optimum. If n  is greater than the predefined maximum number of overall 
iterations or ξ  is sufficiently small, i.e. εξ ≤  where ε  is a test value, then go to Step 6.2; 
otherwise set n:=n+1 and go to step 0.5; 
6.2. Check if the total throughput ∑∑

∀ ∀

=
a k

aod keE )(  from the system is equal to the predefined 

total demand Jod for the o-d pair. If yes, then terminate the algorithm; otherwise update  −
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*

** :
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dE
EJ

CC
od

odod
odod , and go back to step 0.2. 

 
6. NUMERICAL EXAMPLES 
 
6.1 Sensitivity analysis of link exit time  

The critical step of determining the externality )(saΨ  is calculating the derivative of link 

exit time 
ts

a

u∂
∂τ

 with respect to perturbation in inflow. Hence, this section tests the accuracy of 

this derivative which is derived in proposition 2. We consider a single link, which has a free flow 
time 3 mins and a capacity 20 vehs/min, connecting a single origin-destination pair. The size of 
discretized time interval s∆  is taken as 1 min. A parabolic inflow as specified in (18) is loaded 
into the travel link. 
 

  ≤≤−
=

otherwise                          0

400 if       )40(
8

1

)(
sss

sea .                                                                            (18) 

 
This profile has a peak inflow rate of 50 vehs/min, which equals to 2.5 times of the link 

capacity. To investigate the accuracy of the sensitivity analysis, we consider this parabolic 
inflow is increased by a unit of flow during time interval 1, and the associated derivative of link 
exit time are plotted in Figure 3. Each value of “derivatives” on the vertical axis over time 
represents the change in link exit time at that time due to the perturbation in inflow at time 1. The 
“analytical” derivatives are calculated according to Equation (16). The “numerical” derivatives 
are determined by using direct numerical finite difference method, and they are plotted in the 
same figure for comparison. To calculate the finite difference, one extra unit of inflow is added 
at time 1, while the inflow profile remains unchanged at other times. The “numerical” variations 
in travel times are then calculated by subtracting the link travel time loaded by the original 
inflow profile from that loaded by the perturbed inflow profile. The result shows that the 
analytical variations given by Equation (16) can represent the true numerical variations in travel 
time reasonably well. The value of the derivatives at each time represents the change in the link 
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travel time at that time due to the perturbation in inflow at time 1. Both numerical and analytical 
variations drop to zero at time 83 when all traffic is cleared from the link.  
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FIGURE 1 Sensitivity of travel time with respect to a perturbation in inflow 
 
 

6.2 Dynamic traffic assignments   
This section calculates the dynamic traffic assignments. Figure 2 shows a network with a 

single origin-destination pair connected with two parallel travel routes consisting of one single 
link. Link 1 has free flow time 3 mins and capacity 20 vehs/min, and link 2 has free flow time 4 
mins and capacity 30 vehs/min. Furthermore, the origin-specific cost is specified to be a 
monotone linear function of time with a slope -0.4. The destination cost function is piecewise 
linear, with no penalty for arrivals before the preferred arrival time 50* =t , and increases with a 
rate 2 afterwards. The length of the planning horizon ],0[ T , where T=100, is set such that that all 

traffic can be cleared by time T. The total amount of traffic odJ  is taken as 800 vehs.  
 
 
 
 
 
 
 
 
 

FIGURE 2 Example network 
 
Figure 3 shows the corresponding profiles of link inflows and the total travel cost at 

dynamic user equilibrium. The assignment period to route 1 is from time 18 to time 49, and to 
route 2 is from time 21 to 49 which is shorter due to its higher capacity and hence traffic can be 

1 2

Link 1

Link 2

1 2

Link 1

Link 2
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cleared more efficiently. The link flow volumes using route 1 and route 2 are 380.25 (vehs) and 
419.75 (vehs) respectively. Figure 3 also shows good equilibration of travel cost in which the 
measure of disequilibrium ξ  is less than 10-17.  
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FIGURE 3 Dynamic user equilibrium assignment     
             

As mentioned in Section 2.1, the total travel cost indeed consists of the travel time and 
the sum of time-specific costs. For further illustration, Figure 4 plots the cost components and 
the associated inflow and outflow profiles on route 1. The cost components on route 2 follows 
similar pattern and hence they are not included here for brevity. Figure 4 shows that the time-
specific costs are decreasing over time until departure time 39. It is because travellers depart 
after time 39 will arrive at the destination at time 50.1 which is after the preferred arrival time 
50. As a result, those travellers will be added a positive arrival specific cost. In addition, the 
figure shows that the link travel time increases with time when the inflow is higher than the 
outflow and vice versa after time 39. Overall, the sum of all these travel cost components is 
constant over time.   

The total system travel cost Z  is 12,465.2 veh-min at dynamic user equilibrium and it is 
understood that it is not the minimum yet. Figure 5 shows dynamic system optimal assignment. 
With the same total demand Jod, the period of assignment to link 1 expands from times [18, 49] 
to times [4, 56], while that to link 2 expands from times [21, 49] to times [6, 50]. In general, the 
inflow profiles are more spread at system optimum in order to reduce the intensity of congestion. 
In the figure, the legend “total travel cost” refers to values of )(sCa  and the legend “total travel 

cost + toll” refers to the value of [ ])()()()( ssssC aaaaa τλλ −+Ψ+  on each route. The associated 

total system travel cost Z  at system optimum is decreased from 12,465.2 veh-min in user 
equilibrium to 11,447.3 veh-min. Contrast with dynamic user equilibrium, it is seen that the total 
travel cost )(sCa  is not equal for all departure time s which implies some travellers can be better 

off while some of them have to be worse off for the good of the whole system.  
Finally, as shown in the figure, the “total travel cost + toll” is not in good equilibration at 

system optimum in which the measure of disequilibrium can only reach 0.04. Indeed, solving the 
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dynamic system optimal assignment is difficult, since the solution procedure involves solving 
two dynamic programmes simultaneously and consistently: solving the network loading forward 
in time for the state variables and solving the costate equations backward in time for the costate 
variables. Although the dynamic system optimal solution that we achieved shows a reduction of 
more than 8% over the dynamic user equilibrium assignment, we are still exploring a better 
algorithmic procedure for better quality solution.  
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FIGURE 4 Inflow and travel cost components on route 1 
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FIGURE 5 Dynamic system optimal assignment 

 
To illustrate the cause of the decrease in total system travel cost, Figure 6 shows the link 

traffic volumes, which are directly related to congestion, at dynamic user equilibrium and 
dynamic system optimum. Interestingly, yet importantly, the results show that, with the link 
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travel time function in Equation (2), the system optimal assignment has to allow congestion, 
which can only be managed and minimized, even at system optimum. This implies that the 
previous analyses on dynamic system optimum using bottleneck model (see for example 17, 18) 
in which congestion can be completely eliminated do not generally apply.  
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FIGURE 6 Link traffic volumes                                  
 
Finally, to decentralize the system optimizing flow, a total amount of time-varying toll of  

[ ][ ])()()( sss aaaa τλλ −+Ψ  has to impose on each traveller in the system according to the 

departure time s of each traveller. The time-varying tolls on each route are calculated and plotted 
in Figure 7. In general, the tolls increase for travellers whose departure time would lead to an 
early arrival at the destination; decreases for travellers who would arrive late. 
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FIGURE 7 Tolls 
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7. CONCLUDING REMARKS 
 
This paper developed a comprehensive framework for dynamic user equilibrium, system 
optimum, and dynamic externalities. In particular, we revisited the dynamic system optimal 
assignment and externality in a more general and plausible way. We also developed a novel 
sensitivity analysis of link exit time with respect to perturbations in inflow. The knowledge 
generated in this paper provides important insight into the management of peak traffic dynamics 
and travellers’ behaviour. We also presented solution algorithms for implementing the sensitivity 
analysis and solving the dynamic traffic assignments. The solution algorithms were developed 
using a dynamic programming approach. We applied the algorithms to numerical calculations. 
The characteristics of the results were discussed. We showed that the system optimal assignment 
has to allow congestion which can only be managed but not eliminated even at system optimum. 
This implies that the previous analyses on dynamic system optimum using the bottleneck model 
do not apply generally. Nevertheless, further study is still required to improve the performance of 
the solution algorithm for calculating system optimal assignment.  

In the present study, the formulation and analysis presented were restricted to networks 
with multiple origin-destination pairs connected with mutually distinct routes consisting of single 
links. In case of networks with multiple origin-destination pairs with overlapping routes, traffic 
entering the network during the journey time of a traveller from other origins downstream can 
influence the travel time of travellers from its upstream. As a result, some special computational 
technique, for example Guass-Seidel relaxation (see 14, 19), is required. The basic idea of such 
relaxation scheme is to decompose the assignment problem for networks with overlapping routes 
connecting multiple origin-destination pairs into several sub-problems. In each sub-problem, we 
calculate the assignments for one origin-destination pair, and temporarily neglect the influences 
from the flows between other origin-destination pairs. When equilibrium or system optimum is 
reached for the current origin-destination pair, we proceed with calculations for another pair. The 
procedure is repeated until equilibrium or system optimum is reached in the whole network. The 
relaxation scheme is not guaranteed to converge, but if it does, the solution will be the final 
assignment pattern (see 14, p217). In case of travel route with multiple links, difficulties brought 
in when we have to calculate the derivatives of route exit time (see for example 20). As shown 
earlier in proposition 2, changing the inflow to a link on the route during one time interval will 
induce perturbations in the link travel time, the link outflow, and hence the inflow to subsequent 
link(s) in several succeeding time intervals. Hence, the dimension of time intervals to be 
considered in calculating the derivatives will expand exponentially along the route. We are 
currently investigating the strategies to cope with this “curse of dimensionality”. Efficient 
computing methods for system optimal assignments in general networks are still under 
investigation, however, the work reported in the present paper provide a solid and necessary 
foundation for future research on this.  
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