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Abstract 

A new associative memory neural network which can be constructed using optical matched 

filters is described. It has three layers, the centre one being iterative with its weights set prior 

to training. The other two layers are feedforward nets and the weights are set during training. 

The best choice of central layer weights, or in optical terms, of pairs of images associated in a 

hologram is considered. The stored images or codes are selected carefully form an orthogonal 

set using a novel algorithm. This enables the net to have a high memory capacity equal to half 

the umber of neurons with a low probability of error. 
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1. Introduction 

Associative memory neural nets are useful for pattern recognition and for associating the 

recognized patterns with corresponding output patterns. In many applications, such as robotic 

vision, very fast recognition of complicated images is required. In particular, highly distorted 

images must be distinguished accurately. In these respects, optical systems offer two main 

advantages over their electronic counterparts. Firstly, the speed of the signal ( the speed of 

light) increases the system operating speed provided fast, non-linear optical thresholding 

devices, such as MQW based opto-electronic logic devices [1], are used. Secondly, the high 

degree of connectivity or fan out possible using volume holograms, in photorefractive 

crystals means that totally connected networks with high number of neurons, 10
4
-10

6
, are 

within the rang of optics but not electronics (10
3
 at present). However, one of the most 

serious challenges facing optics is the limited dynamic range offered by current components, 

typically 30 dB. This becomes most troublesome in the most interesting case when the input 

images are almost obscured by large amounts of noise. We, therefore, designed a novel three 

layer version [3, 4] of the well known Hopfield [5] net storing orthogonal codes in the 

intermediate layer to minimise the number of errors incurred by input noise. In this paper we 

show how the memory capacity, M, can be maximized (i.e. the error rate minimized) by a 

careful choice of the codes actually stored in the intermediate layer. We derive an expression 

for the dependence the memory capacity on the number of neurons. Section 2 reviews the 

original three layer Hopfield net. Section 3 looks in detail at the threshold behaviour. In 

section 4 the algorithm for selecting the codes to be stored is given and the memory capacity 

is derived. Conclusions are given in section 5.  

 

2. Three Layer Hopfield Net 

The three layer version of the Hopfield net is shown in Fig. 1 and is fully described in detail 

in the literature [3, 4]. The net is drawn using the matched filter formalism [3] in the time 

domain to aid clarity. This formalism has been found to be most useful for analysing [3] and 

designing [4] neural networks. Direct conversion to the space domain can be obtained by 

replacing time with space as the dependent variable. The small boxes in figure 1 are matched 

filters with their impulse responses indicated by their labels. The overall net consists of three 

subnets or layers. The first is a pattern association feedforward net and consists of an array of 

correlating matched filters. These give correlation speaks having magnitudes dependent on 

the agreement of the input unknown code and the impulse response of the filter. The noise 
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gates simply gate out correlation time sidelobes (or space sidelobes in the case of an optical 

implementation) to give an ideal Dirac δ-function, scaled by the correlation peak. The last 

bank of filters in the first subnet generate, therefore, their impulse responses scaled by the 

correlation peak magnitude. These are summed bit by bit before being passed to the second 

subnet or layer. In this way the first layer associates or labels a set of arbitrary known binary, 

bipolar codes, si, i=1,…,M (whose presence is to be recognised in the input) by a set of 

orthogonal codes, oi. The second layer has weights pre-programmed before training an 

simply associates the orthogonal codes with themselves. This layer has feedback via a non-

linear threshold. In fact, this layer is simply a Hopfield net [5] operated in a synchronous 

manner, storing orthogonal codes and having diagonal elements equal to M. So it, ideally, 

converges onto the strongest orthogonal code in the sum which corresponds wit the strongest 

of the stored codes, si. This constitutes recognition. The final layer associates an arbitrary 

output code, pi, with the orthogonal code label, oi, that has been selected by  the second layer. 

In this way a code, pattern or image can be recognise and a corresponding associated code, 

pattern or image can be output. 

 

Unfortunately, Hopfield nets suffer from two forms of incorrect convergence behaviour 

which increase the error rate (i.e. for a fixed error rate these reduce the memory capacity). 

One is convergence to an incorrect memorised code, which is most serious, since this cannot 

be detected. The other is convergence to a "spurious" code which is none of those memorised. 

The first type of error can be eliminated by storing only orthogonal codes since the cross 

correlations are zero. This increases the memory capacity for a given error rate [6] and 

enables codes to be distinguished using the limited dynamic range of optics in the greatest 

amount of .input noise. The second type of error occurs when the input is so distorted by 

noise that its correlation with several of the known codes are very similar in magnitude. This 

is considered below. 

 

3. Threshold Behaviour 

Consider the central subnet which has thresholding iterative feedback. The threshold is an 

odd function (figure 2) and so can be expanded in odd powers of the input.  

 For example, a soft hyperbolic tangent function with a low signal level gain of α is given by 
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where Ain is the input amplitude and 2πα <inA  for equation (1) to be valid. The input to the 

threshold consists only of the sum of codes memorised in the Hopfield net, each having a 

different amplitude, ai 

 

( )244332211 Λ++++= oaoaoaoaAin  

 

In our case these are orthogonal codes. From equation (1) the output from the threshold has 

only terms which are products of an odd number of input stored codes. Since we are 

restricting the stored codes to be bipolar 

 

( )3Eoo ii =  
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where E is a vector whose bits are all +1. This can be used to reduce the number of terms. Let 

us assume that the amplitudes, iaα , are much less than one, at least initially. Then we can 

neglect terms in ( )5iaα and higher to give 
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If we had included all terms explicitly there would be ones in products of 5 and higher odd 

multiples of different stored codes. 

 

Equation (4) shows that the threshold passes the stored input codes with a change in their 

relative amplitudes and also generates new output codes which are products of odd numbers 

of stored codes. These can all add in such a way at the output to give a spurious binary, 

bipolar code. If o1 and o2 have very similar magnitudes (a1 and a2; a1>a2) before the threshold 

they experience different gains, gl and g2, where the differential gain is given approximately 

by 

 ( ) ( )5
3

2 2

2

2

1

3

21 aagg −=− α  

 

Similar differential gains occur between all pairs of codes in the input sum. This is also the 

fractional difference in the code magnitudes after the threshold. So on repeated passes 

through the threshold the fractional difference grows until only one binary code remains. 

Note that this effect is dependent on the third order non-linearity. Fifth and higher odd order 

non-linear terms have been neglected. We note, in passing, that a similar differential gain 

could be achieved by placing square law non-linearities in the correlation plane at the same 

place as the gates. The threshold could then have linear gain, 32 3α . 

 

Let us assume for the remainder of this section that all of the higher odd product codes also 

have been stored in the network. Products of orthogonal codes are also orthogonal codes so 

the output of the threshold passes unaltered through the network to return to the input of the 

threshold. If the threshold gain is too high the third and higher order code terms will be so 

strong that they will mix with the first order terms on this second pass through the threshold, 

so perturbing their magnitudes in an undesirable manner. By reducing the threshold gain, α , 

for fixed input code amplitudes, the operating region moves into the linear part of the curve 

and the higher order non-linearities decay so that the higher odd product codes are reduced 

with respect to the first order ones. However, the differential gain which depends at least on 

the third order non-linearity also drops. In fact, both the third order product term and the 

differential gain vary as 3α , so reducing α affects both at the same rate. 
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With a reduced threshold gain more iterations are required before convergence. On each 

iteration a new weak third order product code is generated from the input first order terms 

and this adds to the same code generated on previous threshold passes which also passes 

around the loop and through the threshold. In this way the accumulated effect of multiple 

iterations builds up strong third and higher order product codes which can cause convergence 

to a spurious code. 

 

4. Novel Storage Algorithm and Memory Capacity 

For N bit orthogonal codes it is possible to find a set of codes, none of which can be formed 

by multiplying any number of the other codes in the set. These are multiplicatively 

independent codes and by multiplying them together in various combinations one can form a 

complete set of orthogonal codes. If there are n independent codes, combining different 

numbers of them gives 
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where typical code products are given under each term as examples, N is the number of bits 

in each code and the number of codes in a complete set of orthogonal codes. From this 

equation we can calculate n 

 

( )7log 2 Nn =  

 

If we store all of the independent codes and all of their products we run into the problem that 

the odd order product codes generated in the threshold pass straight through the 

interconnection net to the threshold where they are increased by the new odd order product 

codes generated on subsequent iterations. However, if the odd multiples of the independent 

codes are not stored the odd order product codes generated by the threshold are filtered out 

by the interconnection net on each iteration and so cannot build up to any appreciable value. 

Even multiples of the independent codes can be stored. The filtering action of the net on the 

odd product codes has no effect on the stored codes whose magnitudes separate more and 

more on each.iteration due to the differential gain. This gives a memory capacity of 
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Using equation (7) this becomes 

 

 ( ) ( )9log22 2 NNM +−=  

 

Figure 3 plots equation (9) as memory capacity, M, versus number of neurons, N, in this 

novel net. The memory capacity is 0.75N for 4 neurons and asymptotes to 0.5N for large 

values of N. This is several times larger than the 0.15N memory capacity quoted by Hopfield 

[5]. Moreover, it is in agreement with simulations performed on a similar net [6]. 

 

Perfect recall will only be achieved, for highly distorted input codes to the full net (Fig. 1), 

when the threshold gain is sufficiently low that higher order terms above the third can be 
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neglected at least for the first few iterations. Later, once the fractional separation of the 

magnitudes of the strongest codes is sufficiently large this will not be a problem. 

 

5. Conclusions 

A novel three layer Hopfield net was described which stores a special selection of orthogonal 

codes in the central layer. The selection of these codes (and, hence, the weights) is described. 

The memory capacity of the full net was found to be 0.5N for accurate recognition and 

association of arbitrary patterns. 
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Figure 1  Three layer associative memory Hopfield net 
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Figure 2  Non-linear threshold response 

 

Figure 3  Memory capacity as a function of number of neurons in the novel net 
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