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Abstract 

 
As we learn more about the world and reflect on its meaning, an 
overwhelming sense of inadequacy in our ability to both 
understand and change it has developed. In many disciplines, 
the idea of ‘complexity’ as a coherent perspective for organising 
our knowledge has come to the fore. These ‘complexity sciences’ 
first evolved from ideas associated with dynamic systems 
through ideas about chaos, nonlinearity, disruptive technologies, 
emergence and surprise. Recently they have begun to infuse 
areas as diverse as postmodernism and management. Cities and 
planning have not escaped this force, indeed in some respects 
they are in the vanguard of these developments.  
 
In this essay, we will sketch how this movement has evolved. 
Throughout we make a key distinction between the evolution of 
cities and the processes used in their planning and design, first 
fashioning complexity around the notion of the city as a system 
but then moving to examining how problems of their design and 
planning reveal a rather different type of complexity. We 
conclude with speculations about fostering change in cities in the 
light of this complexity. We propose a somewhat less invasive, 
more sensitive bottom-up style of physical planning that is in 
stark contrast to the institionalisation of planning and its 
practice which still dominates most developed societies.  
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“ … there is a fundamental law about the creation of complexity … 
(which) states simply this: all the well-ordered systems that we know in the 
world, all those anyway that we view as highly successful, are generated 
structures, not fabricated structures.” 

 
Christopher Alexander (2002) The Nature of 
Order, Book 2: The Process of Creating Life, Center 
for Environmental Structure, Berkeley, CA, page 
80. 

 
 
 
 

1 The Argument, A Message 

 

A very simple definition of a complex system is ‘a system that is composed 

of complex systems’. This recursion makes considerable sense when we 

ponder systems such as economies and cities for their elements – 

individuals – clearly have the same order of complexity as any aggregation 

into groups or institutions while any disaggregation into constituent parts 

moves quickly into physiology and psychology. Artefacts that we build to 

give physical representation to cities can also be so partitioned into their 

component parts blurring into the material world which has its own logic 

and structure. In the past, we have tended to see these different levels as 

being systems in their own right which can be partitioned easily and 

conveniently from the rest of the world. But it is increasingly clear that 

although such an assumption might have been useful in making initial 

progress, as soon as this science came to be applied to human affairs, such 

assumptions of independence between levels are no longer tenable. 

 

In the last thirty or so years, the complexity sciences have developed to 

make sense of such systems, and in doing so, have begun to fashion a 

theory and method which is rapidly gaining credence in the social sciences 

and beyond. In the mid-20th century, the prevailing view of society was one 
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which treated social structure akin to the way machines functioned. This 

was not very surprising given the advances in science and technology of 

the previous two centuries but the metaphor of the city as a machine 

ignored self-determination and was only barely applicable in the most 

cursory ways to social problems. In the early 21st century, it is clear that a 

radical shift in metaphor is taking place to thinking of cities and societies 

as organisms, as biological rather than physical systems, echoing the 

quote from Alexander (2002) which introduces this chapter. This is also a 

switch from thinking of cities as being artefacts to be designed to thinking 

of them as systems that evolve, that grow and change in ways that might 

be steered and managed but rarely designed from the top down. This also 

reveals a shift from an emphasis on structure and form to one of behaviour 

and process and it mirrors the slow march from the physicalism which 

dominated city planning a generation or more ago to a serious concern for 

social process. 

 

At the same time, these changes in perspective have been paralleled and 

sustained by a profound move in western societies from top-down, 

centralised structures of government and management to much more 

decentralised organisations which suppose that effective action comes 

from the grass roots, from the bottom up. This accords closely with the 

notion that cities grow from the bottom up, the concerted action of millions 

of individuals and agencies that generate structures of complexity that are 

virtually impossible to manage, control or redesign from the top down. At 

the same time, the development of technologies that enable much larger 

fractions of the population to gain access to information than hitherto, has 

given added impetus to the notion that systems evolve and grow from the 

bottom up, the world wide web being the seminal example. We continually 

need to be reminded of course that Adam Smith’s (1776) view of the 

emergent modern economy in his Wealth of Nations published over two 

hundred years ago was in similar vein. The ‘hidden hand’ of coordination 
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which he argued enabled the economy to grow and function without falling 

apart, became the cornerstone of general equilibrium theory which is the 

classical edifice on which contemporary economics is constructed.  

 

No one would pretend that cities and societies only grow in competitive 

and uncoordinated fashion from the bottom up for individuals act in 

groups, they form institutions with governments of various kinds acting in 

top-down fashion but at different levels. The complexity paradigm simply 

changes the focus from top down to bottom up, emphasising that actions 

are as much local as global but with structure and order emerging as 

much, if not more, from the bottom up. In fact the leitmotiv of the 

complexity sciences is that the order we observe ‘emerges’ from actions 

and decisions where individuals and agents respond to their environment 

and each other, competitively and collaboratively from the bottom up. 

Here we will sketch this logic for cities and their planning. We will begin 

by describing the development of a systems perspective fifty years ago, 

indicating how it was found wanting in important ways. The systems 

approach espoused the notion of the city as a machine and planning as its 

controller but it took the move from thinking of systems as physical 

entities to biological to generate the kind of insights that complexity 

theory is now bringing to our world.  

 

After a sketch of this history, we will define the rudiments of complex 

systems and complexity theory, following this with some pertinent 

examples relating to urban structure at micro and macro levels. Our 

argument then veers towards the design of better cities, to planning and 

the problems that it attempts to alleviate. We then show how planning 

needs to respond to the ways in which cities evolve and change such that 

new styles need to be fashioned from the bottom up. This leads to the 

notion that in the solution of urban problems, far fewer interventions at 

much more appropriate entry or ‘leverage’ points are required, echoing 
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many clichés from the past which as Anderson (1972) has argued, are 

widely applicable to the complexity sciences: ‘less is more’ and ‘more is 

different’. 

 

 

2 The Systems Approach 

 

The notion that there might be a general theory applicable to the 

structure and behaviour of phenomena forming the subject matter of 

many different disciplinary perspectives is an old idea. But apart from 

some philosophic speculation, little was done in articulating such a theory 

until the early 20th century when enough momentum had been reached in 

the biological and engineering sciences to make such a quest feasible. 

Various physical processes in engineering and biological processes in the 

life sciences involved the transmission of ‘information’ rather than 

‘materials’ and the fact that such diverse systems seemed to manifest a 

common structure arranged as an ordered hierarchy of parts and their 

interactions, quickly led to the notion that it was only the material 

composition of such systems that marked their difference. In fact, the idea 

that such systems had more commonalities than differences suggested 

that they were simply different realisations of some more general system 

based on the transmission of information, an idea that has developed very 

rapidly in the last half century with the convergence of computers and 

communications. 

 

By the mid 20th century, ‘general system theory’ fashioned using biological 

analogies by von Bertalanffy (1968) and ‘cybernetics’ based on 

communication and control as articulated in engineering, principally by 

Weiner (1948), marked the beginnings of a perspective on science that 

came to be called the ‘systems approach’ (Churchman, 1968). This theory 

was attractive to the softer sciences, particularly those where their subject 



 6 

matter had developed in more ad hoc ways. Consequently through the 

1950s and 1960s, the social sciences (with perhaps the exception of 

economics) and various professional fields from management science to 

urban planning each developed their own variety of systems approach as a 

basis for underpinning their structure and practice. Systems were 

conceived of as having subsystems tied together by interactions, thus 

invoking the idea of a network, but recursively ordered invoking the idea 

of hierarchy. Processes acting through subsystem interactions kept such 

systems in balance, in equilibrium, with the controller a special subsystem 

responsible for coordinating all the others. The behaviour of such a system 

was largely considered to be ordered with the controller acting to restore 

balance if the system should move away from its implicit goals or targets. 

 

Cities were extremely suggestive artefacts for such a theory. Its 

components were individuals or groups tied together spatially and 

economically through transportation and socially through various 

friendship networks. Some of the key problems of the 1950s and 1960s 

manifested themselves in terms of congestion and the need to ensure 

effective transport, and the first steps towards rudimentary simulation 

models based on land use-transportation linked to the way populations 

created demand and supply for such uses were built with this image of the 

city as an interacting system in mind (Lowry, 1968). The idea that 

systems could be controlled or ‘planned’ to meet certain goals or targets 

was a natural extension of such logic. The goal of minimising interactions 

between home and work, for example, linked these transportation based 

models to optimisation procedures being developed in operations research 

and some rather neat solutions were revealed to exist if cities were 

conceived in this way. 

 

The problem of course was that casting most urban problems into such 

narrowly defined domains was simply not sensible or feasible and much of 
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our understanding of cities and their planning remained beyond the 

systems approach. In Britain, for example, the approach sustained by 

developments in planning theory and method, was popularised in various 

texts such as McLoughlin’s (1969) Urban and Regional Planning: A 

Systems Approach, Chadwick’s (1971) A Systems View of Planning, 

Faludi’s (1972) Planning Theory and so on. Intellectually too, it was clear 

that what had emerged was a rather narrow view of the way systems 

behaved: most systems were not in quiet and passive equilibrium but in 

turmoil much of the time while the idea of evolution to new conditions 

implying different structures and behaviours simply lay beyond this kind 

of thinking. 

 

Yet there were the seeds of a more sophisticated view right from the 

beginning and this was bound up with the working cliché of the systems 

approach contained in the mantra ‘the whole is greater than the sum of 

the parts’. The argument implied by this gestalt was that system structure 

‘emerged’ from the parts but that this was not simply a process of adding 

up the bits to get the whole. The processes themselves generated 

emergence and in this sense, general systems theory alluded to a 

dynamics that was well beyond anything that it actually specified. Simon 

(1962) anticipated this in an early statement of complexity which 

Alexander (1964, 2002) drew on his discussion of systems that grow from 

the bottom up. His focus was on design as evolution culminating in his 

recent magnum opus The Nature of Order but it was Jane Jacobs (1961) 

who really broached the question head on in her Death and Life of Great 

American Cities. She argued that the mechanistic way in which cities were 

conceived and planned was entirely counter to the diversity that made up 

vibrant and living cities, with the result that post-war urban planning 

(and modern architecture) were killing the heterogeneity and diversity 

that characterised urban life.  
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Following Weaver’s (1948) threefold characterisation of science as dealing 

with problems of simplicity, problems of disorganised complexity, and 

problems of organised complexity, she argued that urban problems could 

not be treated like the first two. These in fact were the methods of 

classical and contemporary science respectively but she argued that the 

problems of cities needed to be treated as ones of organised complexity, the 

subject of the life sciences. In a way, this was a profound and insightful 

critique of the then emergent systems approach. It implied that cities 

should not be treated like machines but like living systems with the 

implication that life, hence city form, emerges from the bottom up 

following the Darwinian paradigm. Indeed, almost as soon as the systems 

approach was articulated, its limits became evident in that thinking of 

cities as systems in equilibrium with planning aimed at restoring this 

equilibrium, clearly conflicted with innovation, competition, conflict, 

diversity and heterogeneity, all hallmarks of successful city life. This led 

to the new paradigm that we will now elaborate. 

 

 

3 The Complexity Sciences 

 

Our preliminary definition of a complex system as being composed of 

complex systems certainly illustrates a recursion to an infinite regress or 

infinite expansion but it still ducks the question of what a complex system 

actually is. We first need to be clear about the fact that complex systems 

can never be precisely defined which lies at the basis of any attempt to 

understand such complexity. We can demonstrate this through the notion 

of variety, defining a system in terms of a number of components, say n , 

and the number of states, say m , which each component can take on 

(Ashby, 1956). The simplest demonstration is to compute the number of 

combinations of states when a state can exist or not )2( =m  given by the 

combinatorial ( )∑ −= =
n
k knknC 1 )!(!! . In Greater London for example, 
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there are something in the order of 4.9 million building blocks and this 

formula counts the total number of different urban forms – arrangements 

of these blocks – when they are switched on or off. This varies through all 

combinations from the city composed as one block at one extreme to all 4.9 

million as one at the other. This number is enormous, many orders of 

magnitude greater than the 1069 atoms in the universe. This might seem 

fanciful but all we are envisaging is all realisations of a city composed of 

any combinations of blocks up to this total number of buildings. 

 

This number of combinations could be elaborated in countless ways and 

although it can be reduced simply by introducing constraints on what is 

feasible and what is behaviourally acceptable, it is still huge and to all 

intents and purposes infinite. This is one of the key challenges of 

complexity theory: understanding, grappling, and managing this sort of 

combinatorial explosion. Ashby (1956) calls this number of combinations 

variety and he makes the essential point that to control such a system, one 

needs as much variety in the controller as in the system. In theory, this 

means that to control such a system, we need as many elements in the 

control as there are states the system can take on. In fact, we can 

sometimes design good controllers that take account of the structure of 

such a system for it is most unlikely that the system can exist in all of 

these combinations with equal probability. The structures of the systems 

we deal with are hardly random and the trick for designing good 

controllers (or good plans) is to exploit this structure. Ashby refers to this 

as the law of requisite variety (Chadwick, 1977).  

 

Coping with infinite variety is only one aspect of complex systems. Given 

such orders of magnitude, it is impossible to imagine that this kind of 

variety could be generated in any top-down fashion. In Alexander’s 

introductory quote, it is impossible to envisage that such variety can be 

created by anything other than a bottom-up generative system. Life itself 
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is the best example of such variety and most of us would now agree that 

the kind of diversity we see around us could only be generated by genetic 

variations that are consistent with neo-Darwinism. The corollary to this is 

that there is no way one might ‘fabricate’, in Alexander’s terms, such 

complexity. Thus evolution from the bottom up is a hallmark of complexity 

and this too is consistent with the idea that order and structure emerge 

from actions and interactions in such systems. Generative systems are in 

fact central to simulating complexity and recent developments of agent-

based models in cellular environments which have been quite widely 

developed in urban science of late are good examples of how complexity 

science is beginning to influence empirical work. Indeed Epstein (2007) 

argues that generative approaches are becoming central to social science 

with good theory being demonstrable by growing social structures from 

the ground up. Page (2005) captures this in the cliché that: “if you didn’t 

grow it, you didn’t show it”. 

 

If magnitude and bottom-up evolution are crucial to complex systems, so 

too is dynamics. All that we have said about complexity implies that 

dynamics is central to their development, hence their form and structure. 

In fact in the development of urban simulation models from the 1960s, 

temporal dynamics was always in mind in that static structures in 

equilibrium although appearing as reasonable approximations to urban 

structure, were widely regarded as first approximations. Equilibrium was 

in some senses regarded as a convenience. The development of dynamic 

urban models began with Forrester (1969) who simply used ideas from 

systems dynamics where feedback – positive and negative were central – 

to model inner cities and although his models were criticised for being 

non-spatial, he demonstrated the power of exponential and logistic growth. 

After that there was fascination with the notion that dynamic systems 

need not progress smoothly but could generate discontinuities such as 

catastrophes and chaos while notions about how systems admitted novelty 
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and surprise from the bottom up began to develop using ideas from 

bifurcation theory (Wilson, 1981). Much of this kind of theorising did not 

lead to operational urban models while the development of cellular 

automata and agent-based models came from rather a different source as 

we will sketch below (Batty, 2005). Nevertheless the idea that cities could 

and should not be treated as being in equilibrium, began to penetrate the 

field pushing it towards the burgeoning sciences of complexity. 

The context then is that complex systems have too many variables and too 

many interactions to be handled by traditional methods that seek to 

simplify and progress through parsimonious models. Phase spaces in 

which their realisations or solutions exist are effectively infinite and 

cannot be traversed. Such systems are thus unpredictable in the sense of 

classical science, but despite this, such systems are intrinsically temporal 

in that their dynamics is what makes them complex. As might be expected 

with such uncertainty, there is no widespread agreement as to precise 

definitions but there is a general consensus that there are quite well 

defined characteristics that such systems necessarily display. Durlauf 

(2005), himself a mild sceptic of complexity theory, identifies four key 

features which such systems must portray to be seriously considered as 

complex. He states these as non-ergodicity, phase transition, emergence, 

and universality and these provide a brief but useful primer on what a 

complex system is as we will now explain. 

 

Systems which are ergodic are those whose dynamics are predictable in 

that they are well behaved and often converge to some stable equilibrium. 

In fact this criterion was stated by Harris (1970) as a key requirement for 

good urban models despite the fact that real cities only appear to be stable 

at spatial scales where micro-change is averaged away. Durlauf in fact has 

a much more precise definition of non-ergodicity which he defines as 

systems that lack any kind of probable behaviour over the long term. This 

means that such systems can be characterised by exogenous shocks that 
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affect long term behaviour. Such shocks are often said to generate path 

dependent behaviour where historical accidents in the form of initial 

conditions or unpredictable shocks determine the long term behaviour and 

structure of the system. Endogenous change through positive feedback can 

also generate such unpredictability in that feedbacks can trigger surprise 

or novelty as new varieties of behaviour emerge. Such systems can also 

‘lock in’ on end states which are generated through such feedbacks. In 

economic terms, path dependence through positive feedback is sometimes 

called increasing returns. In social systems, this is often captured in the 

cliché that ‘the rich get richer and the poor get poorer’.  

 

This kind of dynamics can also lead to turbulence which characterises 

qualitative change in the form of phase transitions. Such transitions occur 

often abruptly implying some form of threshold which if a system reaches 

or breaches, leads to qualitatively different structures and behaviours. A 

classic example in the physical sciences is water turning to ice or to steam 

which involves dramatic changes in structure at very specific 

temperatures, freezing and boiling points respectively; or in spatial 

systems, percolation through porous media which occurs once a certain 

level of network penetration becomes possible as threshold densities are 

reached. Novel change is thus triggered by small events. Another way of 

saying this is that complex systems have ‘tipping points’ where unusual 

sets of conditions come together and fire the system in one way or another. 

Gladwell’s (2000) popular exposition of these phenomena are suggestive of 

such complexity in the social world. Furthermore, the rates of change and 

their turbulence imply intrinsic nonlinearity in temporal behaviour which 

again limits predictability. Finally phase transitions are also associated 

with qualitative changes such as that generated often endogenously 

within the system such as the development of disruptive technologies or 

dramatic switches in human behaviour and preferences. 
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In one sense, both non-ergodicity and phase transitions are consistent 

with the notion of emergence. Usually emergence comes from the action 

and interaction of system components at lower levels in the absence of any 

higher level coordination functions but it can in fact happen at any level. 

In another sense, emergence is also akin to self-organisation, the 

generation of spontaneous order from the parts for which the mantra – the 

whole is greater than the sum of the parts – is central and essential. Such 

organisation depends not only on evolution but on co-evolution which 

reflects competition and conflict between system entities with such 

processes essential to the kind of positive feedbacks that lead to 

innovation, novelty, and surprise. In a way, the kinds of mutation that 

characterise genetic processes in human and animal populations reflect 

such spontaneity with the emergence of ever higher orders. Recent 

developments in fact suggest that the survival of the fittest, the term 

associated with Darwinian theory, must be dramatically qualified when 

dealing with human and social systems. 

 

The last feature is universality. This is a characteristic defining the degree 

of order in a complex system and as such it is measured by a number of 

different signatures that show how the order in such system is manifest at 

different spatial and temporal scales. According to Durlauf (2005), a 

property of universality exists “… if its presence is robust to alterative 

specifications of the microstructure of the system.” This means that if the 

system exists under different realisations of its components, either in the 

past, present or future, then the system is universal in that there is no 

doubt that we are dealing with the same system. This is a rather weak 

condition which is probably more applicable to models of the systems than 

systems themselves but the way we recognise systems in fact is through 

this property. A much more specific definition is that the system has 

invariant properties in time and space. If it is quite clear when we 

examine the system at different times and spatial scales that the system is 
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the ‘same’, then it is universal. In fact complex systems in very different 

fields might show the same structure and it is this that makes such 

complexity universal. This is no more or less than saying that analogies 

between systems that differ radically in material terms, can be very 

similar in more fundamental, informational terms. 

 

A good but narrow example of universality relates to self-similarity of 

spatial structure. Cities exist in space in that they are structured around 

points of economic exchange, traditionally markets which form a hierarchy 

of types and sizes. This hierarchy although differentiated by size shows 

similarities at different scales in terms of the way cities of different sizes 

depend on each other. Central place theory suggests as much and this 

hierarchical order is also consistent with scaling of the city size 

distribution. In terms of spatial structure, cities distribute their resources 

in space in such a way that their networks of distribution fill space 

efficiently, moving goods and people along dendritic networks which fill 

space the most economically. These networks exist in the same form with 

the same space filling properties at different scales and through different 

times in terms of city growth. The whole idea of the fractal city which has 

a structure that manifests itself in the same morphology at different 

scales is entirely consistent with this kind of universality. In fact one of 

the key signatures of universality is the self similarity that is contained in 

scaling associated with fractals with measures of density and fractal 

dimension providing some meaning to this kind of theory (Batty and 

Longley, 1994). 

 

 

4 Exemplars of Complex Systems 

 

There are many signatures of complexity revealed in the space-time 

patterning of cities (Batty, 2005) and here we will indicate three rather 
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different but nevertheless linked exemplars. Our first deals with 

generative systems which build order and pattern from the bottom up 

which necessarily involves generation in space but also through time. 

Were we to order the size of the components that are used in constructing 

cities physically, this would follow a rank-size rule with most components 

being very small in size with the least number of components being the 

largest in size. One could argue that most of the action –the decisions – 

would be associated with the smallest components and that this is 

indicative of the fact that most decisions are made from the bottom up. 

Imagine a large number of individuals who fall into two groups based on 

those who wish to live in a red house and those who wish to live in a green 

house, and let us assume that the initial distributions of houses are 

randomly coloured as either red or green. Now each individual is quite 

tolerant and would gladly live in an area where the number of houses 

which were painted in a colour different from their preference was the 

same as their personal preference. But if the number of their neighbours 

with a personal preference for a different coloured house began to 

dominate, they would be uncomfortable and would think about moving to 

a neighbourhood that had a more preferable balance.  

 

Of course in real life, they would probably not move but repaint their 

houses and the situation would be a lot more messy. But it is easy to 

imagine that it is not the colour of their house but the political or social 

attitudes of their neighbours that is the issue (despite the fact that the 

colour of one’s house is not as unimportant as one might think!). Now let 

us see what happens when we set up a simple rule for making decisions 

about such a situation and let us imagine that if a person in a green house 

finds themselves living in a neighbourhood with a majority of red houses, 

they will conform – not move – by painting their own house red. A 

symmetric situation exists for a person living in a red house in a 

neighbourhood dominated by green houses. In fact we could complicate 
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this situation by some sort of tit-for-tat iteration in house painting but 

eventually we imagine that some sort of balance would take place through 

a combination of house painting and moving. If we implement this model 

on a fine lattice of cells in which we start with a random distribution of 

reds and greens as houses at points on the lattice, then using the rule that 

if a person in a house whose colour is not in the majority in the cells 

around their house repaints their house to the majority colour, then the 

situation moves rapidly to extreme segregation as we show in Figure 1. 

 
 
This is Schelling’s (1969, 1978) model, first demonstrated nearly forty 

years ago, which contributed to his winning the Nobel Prize for Economics 

in 2005. Essentially it is a perfect demonstration first, of how order 

emerges from randomness using simple but plausible rules of behaviour 

and second, of how an undesirable state implying extreme segregation and 

thus extreme preference emerges from rules that show only mild 

preferences for segregation. It is perhaps the classic model of ghetto 

formation and how individual actions can lead to unusual and perhaps 

surprising outcomes. It is also a very good example of cellular automata in 

that it reveals that specific actions in highly localised neighbourhoods 

generate global order of a kind that is surprising and cannot be 

anticipated from the basic rules. The models described by Elisabete Silva 

(this volume, 2007) follow these ideas where spatial pattern and order 

emerge from the bottom up. In fact, this style of modelling also forms the 

basis of the field of artificial life (Langton, 1989) which builds on John 

Conway’s early demonstration that such automata could sustain a great 

magnitude of patterns, some of which emerge spontaneously from a 

random soup, like life itself (Gardner, 1971). 
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Figure 1: Order from Randomness 
 

Emergence of Extreme Segregation from Local Cellular Automata Rules Implying a Mild 
Preference for Living Amongst One’s Own Kind 

 
 

Schelling’s model demonstrates many features of complex systems and 

that is why it is so powerful. First there is the idea that fragile equilibria 

exists which, when perturbed, moves rapidly to a stable equilibrium – the 

random starting pattern of red and green cells is not an equilibrium but 

imagine a checker board distribution of alternative red and green cells 

with a single dual cell perturbation of this pattern. The whole system 

would then unravel into the kind of clusters shown in Figure 1. Moreover 

such a fragile equilibrium is a tipping point in Gladwell’s (2000) terms, 

ready to flip the system into a new state: very little change in two cells, in 

this example, leads to massive change in a much larger proportion of cells, 

a phase transition reminiscent of percolation. Changes are clearly 

emergent, generated from the bottom up, and in this sense are 

unexpected. Such change is also based on positive feedback in which local 

changes in pattern, one cell at a time, build up to the tipping point in any 

local neighbourhood. 

 

Our second example deals not with locations but with networks which link 

locations and thus introduce notions of movement or transportation. Just 

as a lattice represents an idealised representation of locations, a graph 

built from arcs connecting nodes is an idealised form of network. These 
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simple models enable us to study the properties of networks in analogy to 

the properties of graphs which focus on their connectivity. Imagine a world 

where people are linked into tightly organised clusters, reminiscent of the 

sorts of links one might find in small villages which can then be 

generalised to a landscape of small villages, essentially a landscape of 

clusters. The clusters have dense connectivity but because transportation 

in such a world is limited by how far one can walk to work in a day, 

villages are spaced at something like 6 miles from one another. The 

linkages between people in different villages are much less than within a 

village and this world thus resembles something akin to the settlement 

landscape of Western Europe in medieval times. If we measure these 

properties of connectivity, we see that the connectivity of each cluster is 

much higher than the whole network. In short this is an inward looking 

world where travel between the clusters is difficult, thus representing 

some limit on its economic development. We show such a world in Figure 

2(a) where we measure the average path length of each cluster separately, 

and then we compare this to the total average path length of the whole 

network. Each cluster has an average path length of 1, much greater than 

the overall connectivity which has a path length of about 3. 

a) b) 

 
 
 

Figure 2: Evolution of a Small World Due to Technological Change 
 

Here the network in (a) has low connectivity despite the presence of several clusters with 
high connectivity. In (b) because of the addition of only three long distance links, the 
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network connectivity dramatically improves with the local clusters remaining largely 
unchanged. This is the best of both worlds and is referred to as a ‘small world’.   

 
 
Imagine a change in technology such as that introduced by steam power as 

in the Industrial Revolution. Fast links are established between some of 

the villages and we show three such links in Figure 2(b). When we 

recompute the average path length, the clusters still remain about the 

same but the overall network connectivity increases dramatically with the 

average path length falling from about 3 to about 2. This is what Milgram 

(1967) first defined as a small world: a network which has the benefits of 

high local density but also relatively short overall paths where people can 

connect up to one another. In cities, technical change is necessary to build 

networks which connect people and goods at different levels and bypass 

(at high speeds) lower level links. Indeed the very fact that cities still build 

bypasses and beltways is tantamount to saying that they are attempting 

to increase their efficiency by reinforcing their small world properties. In 

fact, a useful way of looking at cities is by measuring the connectivity of 

their transport networks at different scales and using such measures to 

assess their efficiency. 

 

Small world properties of networks also indicate how such systems evolve 

from the bottom up. In a sense, this can be seen as an optimal process for 

generating structure. Like patterns generated from cellular automata, it is 

a process of efficient space filling without connecting everything in sight. 

Indeed, there are some who argue that many systems evolve in this way to 

an efficient threshold and that everything from brains, to nervous 

systems, to arterial transport in the body and the city are small worlds 

(Watts, 2003). Friendship networks too are small worlds with such nets 

bound together by critical links – weak ties in one sense but strong in 

another. We do not have time here to demonstrate in detail how a small 

world emerges from one which is highly clustered and then loses its 

qualities as more and more network links are built. But in essence, there 
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is a threshold of connectivity where the benefits of high local cluster 

density/connectivity are retained in the presence of low overall average 

paths through the graph. As more links are built, the local cluster density 

and the overall connectivity of the network converge. If one were to argue 

that the cost of links is fixed, then a clear trade-off can be measured 

between connectivity and cost and it becomes clear that there is a point 

where adding more links leads to less and less improvements in 

connectivity. In short, thresholds can be defined which indicate optimal 

points of investment in the network, and there are strong links to 

percolation theory (Batty, 2005). There is a good example in London at 

present which suggests that adding some key links which have not evolved 

spontaneously, could make very dramatic improvements in travel: so 

called Cross-Rail, a high speed link from the west of the CBD to the east, 

is a case in point. 

 

There have been some dramatic advances in this kind of network thinking 

in the last decade. Although the temporal dynamics of network evolution 

is still in its infancy, it is now quite clear that the structural properties of 

networks are important properties of complexity. Barabasi (2003) for 

example has demonstrated that many naturally evolving networks such as 

the internet have scale free properties which imply that the most 

connected nodes get richer as networks evolve and the poor get poorer. 

This is also consistent with the small world properties and these have 

important implications for how robust networks are to breakdown or 

attack and how strategies to leverage networks can be built. There are 

links to spatial epidemiology and thus to public health vaccination 

strategies in the preventing the diffusion of disease. Many of these ideas 

in cellular automata and network science tie together in the spatial 

domain through ideas that have been developed for several years in fractal 

geometry (Batty and Longley, 1994). 
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Our third example involves ideas about how systems evolve in time. There 

are many growth models which encompass the idea of positive feedback, 

the simplest being Malthus’s model (Banks, 1994) where population 

change is proportional to population itself, leading to exponential growth 

(or decline). Many variants exist in which such growth models might be 

capacitated in some way, reaching limits posed by crowding where the 

growth rate embodying positive feedback is countered by a crowding 

constraint involving negative feedback. Let us begin by stating this model 

for the change in population dttPtPtPtdP )](ˆ/)(1)[()( −= λ  where )(tP  is 

the population and )(ˆ tP  is the maximum population permissible at time 

t . If we assume that tZtP ∀= ,)(ˆ , then the change equation can be 

integrated from 0=t  to ∞  and it produces the classic logistic form given 

as )]exp()1/[()( tZtP λη −−=  where ZtP /)(=η . When there is no effective 

bound, that is, when ∞→Z , then the equation generates exponential 

growth )exp()0()( tPtP λ=  which is Malthus’s equation. All these are 

standard results. 

 

The logistic appears to be relevant to population growth in human 

populations in capacitated spaces such as individual cities or countries but 

over longer periods, there is little doubt that the capacity limit Z  varies, 

usually upwards. In fact capacity measured in population terms belies a 

variety of other influences that although incorporated by this measure, 

involve technological change. As building technology has developed, the 

capacity (which reflects density), increases. The socio-economic types of 

population occupying cities also change while employment as well as 

resident population is an important measure of size. This too relates to 

how much time people spend in cities living or working at high densities. 

If population capacity is thought of as a generic measure of resource, then 

basic technological change – agricultural, industrial and post-industrial 

and in disaggregate terms, mechanical, energetic, electronic, biophysical, 
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medical and so on – is easy to reconcile with this model where growth 

through new technologies can occur in spurts. The simplest way to build 

this in is simply to add a baseline capacity over different periods. Once 

population reaches a certain level, let us say Zψ , this marks the start of a 

new growth process where the clock t  is reset to 0. This resetting of the 

process occurs when ),1()( −+= TPZTP ψ  where T  is the current time 

when this condition is met and 1−T , the time when it happened 

previously. The logistic model can now be written as 

)]}exp()1/[()}{1({)( λτψτ −−−+= mZTPZP . This simply displaces the 

logistic in time rather than resetting the capacity per se although there 

are many variants of the function that can achieve this effect. 

 

We show such an effect in Figure 3(a) where the logistic is displaced when 

)1(2)( 1 −+= − TPZTP . In 3(b), we show the overall envelope produced by 

this process which implies that the growth process receives a number of 

shocks or kick starts. With =ψ 1/2, this means that when the growth 

process reaches the inflection point – that is, when growth just begins to 

increase as a decreasing rate, an innovation occurs that resets the process 

that projects it back to the point where positive feedback with increasing 

returns, dominates. The process here has all the elements of complexity: 

phase transitions or thresholds at which innovation occurs and pushes the 

system into a new regime, novelty and surprise in a process that is in 

reality likely to be fairly random in time (for we never know when such a 

shock might occur), and a sense that the usual state of the system is far-

from-equilibrium. 
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Figure 3: Population Growth with Changing Resources Due to Innovation 

 
 
One of the features that this process implies is that growth is dominated 

by continual discontinuities or innovations, ‘perpetual novelty’ as Arthur 

(2005) refers to it. Growth is only ‘locked in’ to an equilibrium between the 

discontinuities. Over time, these changes might be considered to be a 

perpetual series of ‘avalanches’ in the sense used by Bak (1999) in his 

discussion of self-organised criticality or punctuations in the sense used by 

Eldredge and Gould (1972). A much more complete and powerful model 

which mirrors similar growth profiles has been developed by West, Brown 

and Enquist (2001) for biological populations. This has been generalised to 

human populations by Bettencourt et al. (2006) who show that this kind of 

growth behaviour characterises some cities such as New York where there 

appear to be spurts in growth due to new land being released which in 

turn are influenced by changes in technology, attitudes towards high 

buildings, transportation innovations, and perhaps even changes in 

preferences to live at ever higher densities. The West-Brown-Enquist 

model differs from our simple model here in that pure population change 

is articulated as a scaling function of population; in its non-capacitated 

form, change in population is a scaling function where βPdttdP ~/)(  and 

it is this scaling that enables the model to generate many other effects 

from hyper-exponential growth leading to singularities and to exponential 

decline. It also maps this kind of growth model onto many other 
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relationships that we observe for urban systems which are scaling, 

implying different economies of scale.  

 

5 Evolution, Planning, and Design 

 

So far we have considered cities as complex systems where the idea of a 

city is as a comprehensive entity. When we act in making plans about 

cities, or consider any other forms of decision-making which take place 

either in cities or with city development in mind, then perspectives change 

and with this so does the way we construe complexity. Our perspective 

here will be that of planning the city in expert-professional terms, more 

akin to designers but we will also broach complexity in other ways – from 

top-down controllers which imply a management perspective, from the 

perspective of the citizen, and from a more general, somewhat detached 

social science perspective. We do not have time to elaborate how each of 

these approaches manifests its own complexity but we will provide some 

simple signposts which let us put the complexity of physical planning and 

design in context. 

 

From our perspective of cities as complex systems, a key consideration 

already raised is the notion that cities manifest a variety that has to be 

met by a controller requisite to the task in hand. This ‘requisite variety’ 

implies that any system of control, which here largely means keeping the 

system within certain targets, predicates some sort of system that has the 

same variety or diversity of the city itself. From all that has been said, the 

notion of a top-down controller is simply impossible given the degree of 

complexity that modern cities manifest and thus any successful control 

must probably operate from the bottom up. In fact, as cities in large part 

develop this way, bottom-up control makes logical sense; the way 

development takes place by successive and often incremental adjustments, 

even in terms of grand plans, implies control of some sort at the most basic 
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level. This is not to say that higher level controls do not have some 

function for there is a hierarchy of control as Simon (1962) implies. As we 

learn more, we intervene less and the notion of finding critical leverage 

points in complex systems – tipping points as Gladwell (2000) refers to 

them – is quite consistent with this kind of bottom-up design. This implies 

that as well learn more, we intervene less because ‘less means more’ and 

‘more means different’ (Anderson, 1972). An excellent example of this is 

based on identifying critical points within a network – weak links that in 

fact act in strong ways to cement the system together for relatively little 

cost but provide great added value.  

 

From the perspective of the planner who identifies with the planning 

system, then the system itself is complex in terms of its bureaucracy. 

Getting things done is usually the focus of this complexity in that 

planning is seen as being centric, or top down. Over the last fifty years 

such systems have been gradually hollowed out to the point where 

planning as a bureaucracy is often said to be part of the problem rather 

than the solution. Thirty or more years ago, Rittel and Webber (1973) 

articulated this in their definition of ‘wicked problems’, problems that 

were so interconnected that any thing one might do to alleviate or try to 

solve them, usually made them worse. It is in this sense then that 

planning is seen to be part of the problem. Wicked problems fight back 

and they resist solution. Wicked problems are unique and have no 

definitive formulation. Often the problem and the solution are the same 

thing, they have no stopping rule, it is hard to tell when a solution has 

been reached, there is no agreement about a solution, and no ultimate test 

that establishes whether a solution is optimal or has actually ever been 

reached. Such problems generate ‘waves of consequences’ such that there 

is never any end to these chains and thus problem-solving goes on forever 

until the problem changes out of all recognition or is deemed no longer 

relevant. In essence, every solution to a wicked problem is another wicked 
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problem. These characteristics in fact are those that imply complexity both 

in the methods of problem solution as well as the object of problem solving 

itself. 

 

From the perspective of social science in general, identifying the city as 

the object of complexity or in terms of the process of changing it through 

planning and control, are equally narrow in conception. Cities are 

regarded as organisational, social structures that are changed through 

decision-making of various kinds and it is this nexus of decisions across all 

scales and through all times that forms the web of complexity that is basic 

to the social sciences. There are many similarities to features of the 

complexity sciences that pervade the social sciences and to an extent this 

is reflected in both the substance of its inquiry as well as its methods. In 

these terms, there is some convergence of terminology and ideas. These 

are key themes that echo throughout these many perspectives such as 

those based on ideas about networks in particular and agents and agency 

in general (Bryne, 1998; Cilliers, 1998). 

 

What all these approaches suggest is that planning, design, control, 

management – whatever constellation of interventionist perspectives are 

adopted – are difficult and potentially dangerous. If we assume that social 

systems and cities like biological systems are generated through a process 

of tinkering, through trail and error mutation which increase fitness and 

reduce error in the phylogeny, then interventions are potentially 

destructive unless we have a deep understanding of their causal effects. 

As we have learned more, we become more wary of the effects of such 

concerted action. In sense, if the development of cities is really like the 

evolutionary process in biological populations, then we are inevitably wary 

of fine tuning such evolutionary processes. We are scared of evolution, we 

find it complex, and we are reluctant to disturb something we do not 

understand at all well. 
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We do not have a good answer to any of this although there is rapid 

progress in the notion of evolutionary design, particularly in inanimate 

systems where there are an increasing number of analogies between the 

evolution of animals, plants and machines. In one sense, social evolution 

has been characterised in similar ways in the past but it is only recently 

that formal design has begun to draw on this tradition. In terms of 

physical planning Alexander (1964, 2002) was one of the first to exploit 

the evolutionist paradigm but more recently his work on generative design 

using pattern languages has been paralleled by other generative 

approaches in the social sciences based on individual and agent-based 

modelling (Epstein, 2007). In fact in design, there are many new 

approaches revolving around generative systems, for example those based 

on shape grammars (Stiny, 2006), on cellular automata (Batty, 2005), and 

on evolutionary geometry (Watanabe, 2002). 

 

A concept that emerges quite naturally from such purposive bottom-up 

actions is the idea that to explore good planning and design in cities, 

computer models should be set up in a laboratory-like context in which the 

focus is on exploration of different patterns which attempt to reach 

different goals, laboratories in which models are available in wide area 

mode, across the web in a form that many people can experiment with. 

The notion that many people collaborating is likely to produce better 

design than the few is based on recent thinking about collective action 

through the ‘wisdom of crowds’, to coin a popular phrase (Surowiecki, 

2005). To illustrate these notions, we can use a cellular automata model as 

a laboratory in which the user works with a model of urban development 

where there are default rules relating to how one type of development 

relates to another. These are rules that are based on the type and density 

of different land use activities in different locations/cells which in turn 

influence what development takes place or is removed in adjacent cells as 
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the city changes. The model also has rules that govern the life cycle of 

different land use activities which in turn influence their effect on other 

land uses at different points in their life cycles.  

 

If one begins with a pattern of development – the ‘physical’ initial 

conditions – the user can change the default rules to those that might 

pertain to different goals – plausible or not – which in turn might reflect 

different ideals. As the simulation proceeds, development rules do not 

change but they can be altered by the user to imply a sense of learning. 

The model we will illustrate DUEM – the Dynamic Urban Evolutionary 

Model – was developed by Xie (1994) and set up in laboratory context for 

such exploration by Batty, Xie and Sun (1999). What we show in Figure 4 

is a branching tree of possibilities from four initial sets of conditions. The 

uppermost branch simply represents the development of the city in its 

default state with the rules set to reflect existing development process. 

But at each branch the rules are changed and a different path is taken. 

These bifurcations illustrate the incredible variety of solutions that such a 

model can generate with literally millions of possibilities: in fact an 

uncountable number and it is this style of theorising and thinking that 

generative social science strives for which is the hallmark of dealing with 

complexity. Although we have had little time to develop this here, we 

speculate that this is the style of simulation that living with complexity 

requires and that such laboratories for exploration, for growing cities in 

this way to meet planning ideals, must become the norm in post-industrial 

societies driven from the bottom up. 
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Figure 4: Generative Predictions and Designs in a Cellular Automata Lab 
 

Each row represents a different configuration and set of land use states in a 10 x 10 
cellular space. The CA rules are then applied and each simulation is run for 500 
steps giving the final cellular spaces in the last column of each row. However in the 
first case, after 5 steps, some of the rules are changed and the model is run for 
another 500 steps. The rules are then changed for the original initial conditions 
after 10 steps, 20 steps, 100 steps and 200 steps and in each case the model is run 
up to 500 steps. This gives a crude picture of the kind of variety that can be 
generated combinatorially as the user explores the enormous phase space of 
possible solutions in true generative fashion. 
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6 Conclusions and Next Steps 

 

Our focus on complexity has many echoes in the other contributions to this 

book in terms of concepts, the focus on bottom-up as opposed to top-down 

action and problem-solving, and the idea that planning and design are not 

really so very different from evolution and prediction. In fact in the last 

section, we argued that prediction, design and understanding are all of 

one piece. If we take the essential message of modern Darwinism that 

design is evolution, that the evolutionary process is the only process that 

leads to optimality in systems that grow from the bottom up, then 

planning must be subsumed in our theories and models. The fact that it 

has remained separate from the way we have tried to understand cities 

and make predictions in the past is part of the problem. Complexity 

science forces us to a more holistic view. 

 

Several other features that we have introduced support the need for 

holistic theory and practice. There is little doubt that time and dynamics 

has come firmly onto the agenda and that we no longer think of cities as 

being in equilibrium. In hindsight, it is somewhat remarkable that we 

ever thought we could get away with the idea that we could encapsulate 

all our knowledge into equilibrium models because the whole point of 

planning is to generate change. Yet the notion that such equilibrium was 

non-optimal was a simplification in itself that gave planning a starting 

point for action. If the city is never in equilibrium as we now accept, if it is 

far-from-equilibrium as its social physics reveals, then this in itself casts 

doubt on the idea of intervention as the system may still be on course for 

some kind of optimality. Once again, we are drawn to the notion that 

intervention in complex systems must be treated with extreme caution.  
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The complexity sciences communicate a message to all functions and 

agencies that exercise control, management, planning, policy-making and 

perhaps design, and that is that the most effective intervention is based on 

small scale change which enables a system to meet its own goals. Slight 

changes in direction are thus preferred to radical top-down restructuring 

whose implications might be far reaching and completely unpredictable. 

This suggests broadening the remit of physical planning but there is only 

so far one can go. Better to set up mechanisms like the simulation 

laboratory sketched out above which enables stakeholders to participate in 

ways that are tempered by dialog and discussion and to let those affected 

see the consequences of their actions. Intervention is a serious matter that 

requires serious tools for tracing its potentially far-reaching and 

unanticipated implications. 

 

What we have sought to do in this chapter is to sketch how complexity 

theory is beginning to inform our understanding of the physical 

development of cities. The growth of complexity theory as a major 

paradigm for science admits unpredictability and uncertainty, ambiguity 

and pluralism, and without being entirely relativist, it does throw doubt 

on the certainty of theory and science that has dominated our thinking 

about cities and about planning hitherto. The generic use of complexity 

language in articulating social affairs, policy, management and decision- 

making is beginning to infuse our thinking. We are now much more 

comfortable with using the language of science with its physical 

metaphors involving diffusion, mobility, liquidity, fluidity and so on as 

useful characterisations of the complexity of the social world we have to 

deal with. We have had little time here to deal with the way these 

currents are beginning to mesh with globalisation and the modern 

information economy but these are being dealt with elsewhere in this 

book. There is now a very positive sense in which each of these 
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perspectives is contributing to a new paradigm which is based on its own 

rhetoric in which ‘the whole is greater than the sum of its parts’. 
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