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Summary

Mammals possess multiple insulin-like growth factor

(IGF) binding proteins (IGFBPs), and related proteins,

that modulate the activity of insulin ⁄ IGF signalling (IIS),

a conserved neuroendocrine signalling pathway that

affects animal lifespan. Here, we examine if increased

levels of an IGFBP-like protein can extend lifespan, using

Drosophila as the model organism. We demonstrate

that Imaginal morphogenesis protein-Late 2 (IMP-L2), a

secreted protein and the fly homologue of the human

IGFBP7 tumour suppressor, is capable of binding at least

two of the seven Drosophila insulin-like peptides

(DILPs), namely native DILP2 and DILP5 as present in the

adult fly. Increased expression of Imp-L2 results in

phenotypic changes in the adult consistent with down-

regulation of IIS, including accumulation of eIF-4E

binding protein mRNA, increase in storage lipids,

reduced fecundity and enhanced oxidative stress resis-

tance. Increased Imp-L2 results in up-regulation of dilp2,

dilp3 and dilp5 mRNA, revealing a feedback circuit that

is mediated via the fly gut and ⁄ or fat body. Importantly,

over-expression of Imp-L2, ubiquitous or restricted to

DILP-producing cells or gut and fat body, extends life-

span. This enhanced longevity can also be observed

upon adult-onset induction of Imp-L2, indicating it is not

attributable to developmental changes. Our findings

point to the possibility that an IGFBP or a related pro-

tein, such as IGFBP7, plays a role in mammalian aging.

Key words: aging; Drosophila; IMP-L2; insulin ⁄ insulin-

like growth factor signalling; insulin-like growth factor-
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Introduction

The insulin ⁄ insulin-like growth factor (IGF) signalling (IIS) path-

way is an evolutionarily conserved neuroendocrine signalling

pathway that controls a variety of processes and traits in ani-

mals, including growth and development, energy metabolism,

reproduction and stress resistance. Genetic manipulations of

pathway components that result in dampened IIS extend life-

span in worms, flies and mice, and ameliorate age-dependent

functional decline (Tatar et al., 2003; Piper et al., 2008). Genetic

variation in several components of this pathway is strongly asso-

ciated with human longevity (Kuningas et al., 2007; Willcox

et al., 2008; Flachsbart et al., 2009; Pawlikowska et al., 2009),

confirming the relevance of IIS to human aging.

Central to the pathway are insulin-like ligands, which include

insulin, IGF-I and IGF-II in mammals (White, 2006); 38 insulin-like

peptides in worms (Pierce et al., 2001) and the seven Drosophila

insulin-like peptide (DILPs) in flies (Brogiolo et al., 2001). The

ligands mediate cell-to-cell signalling by activating an insulin

receptor-like receptor, leading to the activation of PI3-kinase –

Akt, TOR and ERK intracellular signalling pathways (Tatar et al.,

2003; White, 2006; Piper et al., 2008). Importantly, not all

manipulations of the pathway result in lifespan extension (Clan-

cy et al., 2001; Tatar et al., 2001; Hwangbo et al., 2004; Sel-

man et al., 2008; Ikeya et al., 2009), suggesting that the

pathway needs to be manipulated to a specific level of signal

reduction and in specific tissues to achieve enhanced longevity.

In mammals, a layer of complexity is added to IIS by the pres-

ence of IGF binding proteins (IGFBPs). Six classic IGFBPs bind

IGF-I and IGF-II with high affinity and act as modulators of IGF

activity. They can both enhance and dampen IIS by prolonging

the half-life of IGFs, altering their local and systemic availability

and preventing them from binding to the receptor (Hwa et al.,

1999). Furthermore, mammals possess IGFBP-related proteins,

such as IGFBP7, that bind IGFs with lower affinity (Hwa et al.,

1999). Notably, IGFBP7 has received attention as a potent

secreted tumour suppressor acting in an autocrine ⁄ paracrine

manner to block melanoma genesis (Wajapeyee et al., 2008).

Insects also possess IGFBP-like proteins, the first of which was

discovered serendipitously, allowing the subsequent identifica-

tion of the Drosophila Imaginal morphogenesis protein-Late 2

(Imp-L2) (Sloth Andersen et al., 2000; Alic & Partridge, 2008).

IMP-L2 resembles IGFBP7 in sequence and it appears to be

equivalent to an IGFBP in function, acting as a negative regulator

of IIS during development, regulating growth cell-non-autono-

mously and antagonising dilp2 in genetic assays (Honegger

et al., 2008). Interestingly, when the germline is ablated late in
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fly development, lifespan is increased with a concomitant

increase in the levels of Imp-L2 mRNA (Flatt et al., 2008), indi-

cating that one of the roles of Imp-L2 may be to mediate a life-

span-extending signal emanating from the gonad to IIS in the

soma. However, the role of this gene in IIS in the adult fly,

including its capacity to enhance longevity, has not been

examined.

While the complex and important effects of IGFBPs on IIS in

mammals and, in turn, the role of IIS in animal lifespan are both

well established, no study has examined if IGFBPs or related pro-

teins can alter animal physiology in such a way as to enhance

longevity. To determine if increased function of an IGFBP can

extend lifespan, we used Drosophila as a model; such an

approach has been fruitful in the past, when the finding that a

mutation in an insulin-receptor substrate extends lifespan in the

fly (Clancy et al., 2001) was subsequently confirmed in mam-

mals (Taguchi et al., 2007; Selman et al., 2008). Here, we show

that the fly IGFBP homologue, IMP-L2, binds native DILP2 and

DILP5, is involved in a feedback circuit with dilp2, dilp3 and

dilp5, affects IIS-regulated traits in the adult and extends life-

span, pointing to the possibility that an IGFBP or a related pro-

tein could modulate mammalian aging.

Results

Eighty percent increase in Imp-L2 activates

transcription of 4E-BP

We first determined if increasing the amount of Imp-L2 can

modulate IIS in adult flies at a molecular level. Imp-L2 is

expressed in multiple tissues during development and in the

adult (Osterbur et al., 1988; Garbe et al., 1993; Honegger

et al., 2008), and so we chose to initially over-express it ubiqui-

tously. Since a strong ubiquitous over-expression of Imp-L2 is

lethal (Honegger et al., 2008), we used the genetically weaker

UAS-Imp-L2 transgene created by Honegger et al. (2008) and

drove its expression with a heatshockGAL4 (hsGAL4) driver at

25�C. This manipulation resulted in viable flies and an 80%

increase in the levels of Imp-L2 mRNA in the adult female

(Fig. 1A), as detected by qPCR. To monitor protein levels, we

raised an antibody against recombinant IMP-L2 protein and

affinity purified the serum. On western blots, we confirmed the

previously observed apparent molecular weight of IMP-L2 as

�30 kDa (Garbe et al., 1993), and detected �80% increase in

IMP-L2 protein in hsGAL4 > UAS-Imp-L2 flies compared to the

pooled average of the two controls (Fig. 1B), an increase equiva-

lent to the mRNA increase. The details of mRNA and protein

quantification methods are given in Experimental procedures.

IMP-L2 is predicted to be a secreted protein (Honegger et al.,

2008). Indeed, tagged IMP-L2 was efficiently secreted from S2

cells (data not shown). To confirm this in vivo, we looked for the

native IMP-L2 in circulation. We could detect the protein in the

adult haemolymph, both using antibodies previously described

(data not shown) (Garbe et al., 1993) and the antibody we gen-

erated (Fig. 1C). hsGAL4 driven over-expression did not result in

substantial increases in circulating IMP-L2 (Fig. 1C), probably

because of low levels of induction at 25�C. To check that IMP-L2

protein could, in principle, be secreted from the transgene that

we used, we increased the level of induction of hsGAL4 by incu-

bating the flies at 37�C for 2 h. This process resulted in a �8-

fold increase in the mRNA over the hsGAL4 control (data not

shown) and a marked increase in the haemolymph IMP-L2

(Fig. 1C), indicating that IMP-L2 protein from the transgene

could be correctly processed in our flies.

To determine if this weak, ubiquitous over-expression of

Imp-L2 had an effect on molecular readouts of IIS status in the

adult, we looked at the activation of the transcription factor

thought to mediate the effects of IIS – dFOXO (Partridge &

Bruning, 2008). The overall phosphorylation status of dFOXO,

observed as slower migration on SDS-PAGE, reflects the activity
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Fig. 1 Over-expression of Imp-L2 with heatshockGAL4 driver. The flies were reared at 25�C and harvested on day 7. (A) The transcript levels of Imp-L2 were

determined by qPCR, normalised to Act mRNA and the ratio in hsGAL4 set to one. Means and standard errors are shown with n = 6 for hsGAL4 > UAS-Imp-L2

and n = 7 for the two controls. The measurements for hsGAL4 > UAS-Imp-L2 were compared to those for hsGAL4 by t-test: P = 0.02, to UAS-Imp-L2: P = 0.05.

(B) The levels of IMP-L2 protein were determined in whole flies by western blot, with actin as the loading control. The averages and standard errors of three

independent measurements of IMP-L2 protein normalised to actin are given below the images, with the average of pooled controls set to one. The levels in

hsGAL4 > UAS-Imp-L2 were significantly different from the pooled controls (P = 0.04) or UAS-Imp-L2 (P = 0.01) but not from hsGAL4, by t-test. (C) Levels of IMP-

L2 protein were determined in haemolymph by western blot. All flies carried the hsGAL4 driver with or without UAS-Imp-L2 and were either kept at 25�C or

placed at 37�C for 2 h prior to collection of haemolymph. Full genotypes of the flies tested were: w) ⁄ w); hsGAL4 ⁄ +; + ⁄ +, w) ⁄ w); + ⁄ +; UAS-Imp-L2 ⁄ +, w) ⁄ w);

hsGAL4 ⁄ +; UAS-Imp-L2 ⁄ +. Note that in A and B, the differences between the two controls were not statistically significant.
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of IIS in cell culture (Puig et al., 2003). In vivo in the adult female,

strong down-regulation of IIS also reduces levels of phosphory-

lated dFOXO in whole-fly extracts (Ikeya et al., 2009). Over-

expression of Imp-L2 did not result in an observable difference in

dFOXO phosphorylation (Fig. 2A), indicating that a strong

down-regulation of IIS did not occur in our flies. Indeed, ablation

of the median neurosecretory cells (mNSC) that produce DILP2,

DILP3 and DILP5, a model of IIS reduction that increases adult

lifespan (Broughton et al., 2005), is also not enough to detecta-

bly alter whole-fly dFOXO phosphorylation status (data not

shown). To detect more subtle changes in IIS, we examined the

mRNA levels of 4E-BP, a target of dFOXO (Junger et al., 2003),

which appears to mediate lifespan response to dietary restriction

(Zid et al., 2009), since low but prolonged activation of the tran-

scription factor could result in an observable accumulation of

the target message. Over-expression of Imp-L2 led to a signifi-

cant increase (�80%) in 4E-BP mRNA (Fig. 2B), consistent with

activation of dFOXO. The data indicated that a subtle down-

regulation of IIS occurs upon weak over-expression of Imp-L2 in

the adult.

Secreted IMP-L2 binds native DILP2 and DILP5

IMP-L2 has been shown to interact with Flag-tagged DILP2 in

insect cells (Arquier et al., 2008; Honegger et al., 2008). How-

ever, the increase in 4E-BP mRNA observed on over-expression

of Imp-L2 is not observed upon deletion of only dilp2, but

requires simultaneous deletion of dilp2, dilp3 and dilp5 (Gronke

et al., 2010). Therefore, it is likely that IMP-L2 can also bind DIL-

Ps other than DILP2, prompting us to seek evidence for a physi-

cal interaction. It was also important to establish whether IMP-

L2 interacts with the native version of DILP2, because modified

(Flag-tagged) DILP2 was used previously (Arquier et al., 2008;

Honegger et al., 2008).

We wanted to examine the ability of IMP-L2 to bind native i.e.

non-tagged and non-recombinant DILPs for two main reasons:

the physical structure, including C-chain excision, of DILPs has

not been characterised, precluding confirmation of the correct

structure for a synthetic or recombinant DILP; and the presence

of a tag may significantly alter the physical behaviour of DILPs

because of their small size. To achieve this, we used a far-

western blotting procedure, not requiring tagging or production

of synthetic or recombinant proteins. To focus on DILP2, DILP3

and DILP5, we used proteins extracted from fly heads, where

these DILPs are produced (Broughton et al., 2005). We

expressed myc epitope-tagged IMP-L2 in S2 cells and, to insure

correct folding of the protein, we only used the secreted IMP-

L2-myc6, in the form of conditioned medium, to probe female

head proteins separated by non-reducing Tris–Tricine PAGE and

transferred to a nitrocellulose membrane. IMP-L2-myc6 binding

was then localised with an anti-myc antibody.

The far-western blotting revealed IMP-L2 binding to two pro-

teins of �8 and �12 kDa, and this specific binding was not

observed in the mock control using conditioned medium from

cells not expressing IMP-L2-myc6 (Fig. 3A,B). To identify the pro-

teins bound by IMP-L2-myc6 we used head protein extracts from

mutants deleted for each one of the three dilps produced in the

mNSC (Fig. 3A,B), and also probed the blots for DILP2 (not

shown), and for tubulin as a loading control (Fig. 3C). The

12 kDa band co-migrated with the band recognised by the anti-

DILP2 antibody (data not shown) and was absent in dilp2D ⁄
dilp2D flies (Fig. 3A,B), confirming this is indeed DILP2. Hence,

secreted IMP-L2 can bind native DILP2. Note that a faint non-

specific band, migrating close to DILP2 and present in dilp2D ⁄
dilp2D extracts, appears on the mock far-western blot (Fig. 3A)

and is probably attributable to non-specific binding of the

anti-myc antibody. The other specific band was absent in

dilp5D ⁄ dilp5D (Fig. 3A,B), indicating that IMP-L2 can also inter-

act with DILP5. The binding to DILP5 was weaker, and could be

more easily observed on a higher exposure of the far-western

blot (Fig. 3B), possibly because of lower levels of expression of

dilp5 compared to dilp2 (Broughton et al., 2005). Furthermore,

there appeared to be more DILP5 in dilp2D ⁄ dilp2D fly heads

(Fig. 3A,B), and this finding is consistent with the compensatory

increase observed at the level of mRNA (Broughton et al., 2008;

Gronke et al., 2010).

Increased Imp-L2 feeds back onto dilp expression

As mentioned above, down-regulation or deletion of dilp2 res-

ults in up-regulation of dilp3 and dilp5 transcription (Broughton

et al., 2008; Gronke et al., 2010). Such feedback regulates in
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Fig. 2 Increase in Imp-L2 induces 4E-BP transcript. (A) The phosphorylation

of dFOXO in flies over-expressing Imp-L2. The phosphorylation was monitored

as retardation on SDS-PAGE and dFOXO bands revealed by western blotting
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intestinal phosphatase (data not shown). (B) The transcript levels of 4E-BP
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hsGAL4 > UAS-Imp-L2 and n = 7 for the two controls, P < 10)3 to either
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significant. Full genotypes of the flies tested were: w) ⁄ w); hsGAL4 ⁄ +; + ⁄ +,
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part the transcription of dilp2, dilp3 and dilp5, and also encom-

passes Imp-L2 (Broughton et al., 2008; Gronke et al., 2010):

simultaneous deletion of dilp2, dilp3 and dilp5 results in a drop

in Imp-L2 transcript levels (Gronke et al., 2010), suggesting a

compensatory down-regulation of Imp-L2 in response to IIS

reduction. We wanted to examine if the inverse can also occur

i.e. if increased levels of Imp-L2 led to an elevation of dilp

expression levels. Indeed, driving Imp-L2 over-expression with

the hsGAL4 resulted in significant increases (�2-fold) in the

mRNA for dilp2, dilp3 and dilp5 (Fig. 4). Hence, dilp2, dilp3 and

dilp5, on one hand, and Imp-L2 on the other, reciprocally regu-

late each other’s expression, forming a circuit in which changes

in one are compensated by changes in the other.

Up-regulation of Imp-L2 increases lifespan

We next determined if weak, ubiquitous over-expression of

Imp-L2 was sufficient to cause an observable phenotype. IIS

phenotypes tend to be more pronounced in female flies (Clan-

cy et al., 2001; Giannakou et al., 2004; Hwangbo et al., 2004;

Broughton et al., 2005), so we used female flies in our tests.

IIS regulates metabolism in the adult, and down-regulation of

IIS increases levels of stored lipids, whole body trehalose con-

tent and circulating sugars (Broughton et al., 2005, 2008).

Over-expression of Imp-L2 caused a significant increase (21%)

in the levels of stored lipids, as measured by determining

whole-fly triacylglycerol content (Fig. 5A). On the other hand,

while there was a trend towards an increase in the whole-fly

trehalose content and the levels of circulating trehalose, glu-

cose or the combined sugars, these were not significantly

altered (Fig. S1A,B). Furthermore, an increase in starvation

resistance was observed in only one of two trials performed

(Fig. S1C). Therefore, apart from an increase in stored lipids,

the effect of increasing Imp-L2 on metabolic traits was not

robust.

On the other hand, increasing Imp-L2 did clearly affects other

IIS-regulated traits. Over-expression of Imp-L2 resulted in slight,

but significant, reduction (17%) in cumulative eggs laid by an

average female fly per day over the first 25 days of adult life

(Fig. 5B), showing that Imp-L2 could reduce fecundity. To exam-

ine their resistance to oxidative stress, we fed the flies 5%

H2O2 ⁄ sucrose food. The flies over-expressing Imp-L2 survived

for significantly longer (Fig. 5C), with a 23% increase in median

survival time, indicating that increasing Imp-L2 increases oxida-

tive stress resistance. Most importantly, over-expression of Imp-

L2 using the hsGAL4 driver significantly extended the lifespan of

female flies at 25�C (Fig. 5D), with median lifespan extended by

15%, while the maximum lifespan remained unchanged with

this driver. Note that, similar to over-expression of dfoxo

(Giannakou et al., 2004), hsGAL4 > UAS-Imp-L2 had no effect

on male lifespan (Fig. S2).
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Adult-onset over-expression of Imp-L2 can extend

lifespan

The hsGAL4 driver is expressed in both the pre-adult and adult

periods, and the lifespan-extension upon over-expression of

Imp-L2 achieved with this driver could thus be attributed to a

developmental effect. To examine adult-onset over-expression,

we used the inducible Actin GeneSwitch (ActGS) driver. ActGS

drives ubiquitous transgene expression but only in the presence

of the RU486 steroid drug (Ford et al., 2007). Addition of

RU486 to food had no effect on lifespan of ActGS or UAS-Imp-

L2 controls (Fig. S3), while in ActGS > UAS-Imp-L2 adult female

flies it almost doubled the period where no deaths were

observed and resulted in a 20% increase in median lifespan, as

well as a smaller increase in maximal lifespan (Fig. 6A), demon-

strating that effect of Imp-L2 on lifespan can be separated from

its developmental effects.

Interestingly, while ActGS > UAS-Imp-L2 female flies showed

an almost 3-fold increase in Imp-L2 mRNA upon RU486 feeding

(Fig. 6B), the levels of IMP-L2 protein were only 80% increased

(Fig. 6C). This apparent block to translation is indicative of trans-

lational control that appears exerted on both the native Imp-L2

and the transgene we used (Honegger et al., 2008). The reason

why the ActGS driver had a more substantial effect on lifespan

than hsGAL4 may be because, in the case of the latter, the levels

of IMP-L2 were increased in circulation (Fig. 6C). Adult-specific

ubiquitous induction of Imp-L2 also resulted in significantly

increased levels of dilp2 and 4E-BP mRNA (Fig. 6B), as well as a

decrease in fecundity (Fig. S4A) and an increase in H2O2 resis-

tance (Fig. S4B). However, the increase in 4E-BP observed here

(�30%, Fig. 6B) was lower than with hsGAL4 (�80%, Fig. 2B),

indicating that prolonged IIS down-regulation or down-regula-

tion during development may be required for a pronounced

effect on 4E-BP expression, and that the magnitude of lifespan

extension is not proportional to the levels of 4E-BP mRNA.

Tissue-specific over-expression of Imp-L2 can extend

lifespan

Since IMP-L2 is a secreted protein, we were interested in deter-

mining if tissue-restricted over-expression can extend lifespan.

In both the larvae and the adult, IMP-L2 is produced in distinct

cells of both brain hemispheres (Honegger et al., 2008). How-

ever, driving UAS-Imp-L2 expression with the pan-neuronal elav-

GAL4 driver (Luo et al., 1994) did not extend lifespan (Fig. S5).

IMP-L2 is also produced in the corpora cardiaca, part of the ring

gland (Honegger et al., 2008), but driving UAS-Imp-L2 with the

corpora cardiaca-specific akhGAL4 driver (Kim & Rulifson, 2004)

also failed to extend lifespan (Fig. S5). IMP-L2 is also expressed

in the mNSCs, together with DILP2, DILP3 and DILP5 (Honegger

et al., 2008). Driving UAS-Imp-L2 expression with the dilp2-

GAL4 driver, expressed only in the mNSCs starting from the
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third-instar larval stage (Broughton et al., 2005), significantly

extended lifespan of female flies (Fig. 7A), prolonging the med-

ian survival time by �10%. The magnitude of the extension was

similar to the one observed with hsGAL4, suggesting that the

majority of the effect on lifespan of ubiquitous over-expression

can be recapitulated by increased expression at the site of DILP2,

DILP3 and DILP5 production.

IMP-L2 is also expressed in the fly gut and fat body (Honegger

et al., 2008). The S1106 driver activates expression in these tis-

sues upon addition of RU486 steroid drug to food (Poirier et al.,

2008). Adult-onset induction of S1106 > UAS-Imp-L2 also sig-

nificantly extended female fly lifespan (Fig. 7A), while addition

of RU486 to food of S1106 or UAS-Imp-L2 controls had no effect

(Fig. S3). Hence, IMP-L2 production in the gut ⁄ fat body can also
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each case )RU486 was significantly different to +RU486 by t-test (Imp-L2: P < 10)4, dilp2: P = 5 · 10)4, 4E-BP: P = 0.04). (C) The levels of IMP-L2 protein were
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give the mean and standard error of relative fluorescence intensity per unit area of gut as quantified, after background subtraction, from at least three animals

(P = 0.01 by t-test). (D) IMP-L2 was visualised with immunofluorescence in the mNSC of wandering third-instar dilp2GAL4 > UAS-Imp-L2 larvae or the two

genetic controls. mNSC were identified with an anti-DILP5 antibody (green), IMP-L2 is indicated in red, DAPI in blue. The numbers next to the images give the

mean and standard error of relative fluorescence intensity per mNSC quantified, after background subtraction, and averaged over at least three cells from four

animals (n = 4, t-test dilp2GAL4 > UAS-Imp-L2 to dilp2GAL4 P = 0.04, to UAS-Imp-L2 P = 0.001). (E) Levels of dilp2 mRNA relative to Act mRNA were

determined in the flies of the indicated genotypes ⁄ treatments, with n = 6 and the levels set to 1 in relevant controls. The levels in S1106 > UAS-Imp-L2 were

significantly altered by addition of RU486 (t-test: P = 0.05). Full genotypes of the flies used: w) ⁄ w); + ⁄ +; dilp2GAL4 ⁄ +, w) ⁄ w); + ⁄ +; UAS-Imp-L2 ⁄ +, w) ⁄ w);

+ ⁄ +; dilp2GAL4 ⁄ UAS-Imp-L2, w) ⁄ w); S1106 ⁄ +; UAS-Imp-L2 ⁄ k. Note that in all cases the differences between dilp2GAL4 and UAS-Imp-L2 controls were not

statistically significant.
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contribute to longevity. With both the dilp2GAL4 and S1106

drivers, the maximum lifespan was also extended (Fig. 7A), con-

firming that Imp-L2 over-expression can extend maximum life-

span. In both cases, the enhanced longevity was observed in

two different fly strains, the outbred Wdah and the inbred w1118

(Fig. 7A), indicating that it is robust to genetic background.

Similar to the situation in hsGAL4 > UAS-Imp-L2, the level

of circulating IMP-L2 was not substantially increased in

S1106 > UAS-Imp-L2 flies fed RU486-containing food, or in

dilp2GAL4 > UAS-ImpL2 compared to controls (Fig. 7B). On the

other hand, there were detectable increases in IMP-L2 protein in

the gut of S1106 > UAS-Imp-L2 flies in presence of RU486
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(Fig. 7C; no significant increase was detectable in the fat body,

Fig. S6), or in the mNSC of the third-instar dilp2GAL4 > UAS-

Imp-L2 larvae compared to controls (Fig. 7D), confirming the

induction of the transgene. Note that certain other cells in the

brain normally express much higher levels of IMP-L2 than those

attained in the mNSC with dilp2GAL4 (Fig. S7), so that the con-

tribution from mNSC to the total pool of IMP-L2, even in the

dilp2GAL4 > UAS-Imp-L2 flies, is likely to be negligible, and not

proportionate to its effect on lifespan. Hence, the site of expres-

sion, rather than the levels of IMP-L2, is relevant.

Tissue-specific induction of Imp-L2 appeared to selectively tar-

get lifespan and not other IIS regulated traits since, with both

dilp2GAL4 and S1106 drivers, there was no effect on fecundity,

stress resistance or 4E-BP expression (Fig. S8). Intriguingly, the

levels of dilp2 mRNA were only increased when Imp-L2 was

induced in the gut ⁄ fat body, and not when it was induced in the

mNSC (Fig. 7E), indicating that the feedback to dilp expression

may occur via the former tissue(s).

Discussion

In this study we determined the function of Imp-L2 in adult-

hood, and found that its over-expression caused phenotypic

changes consistent with negative regulation of IIS. Importantly,

we found that this genetic manipulation of IIS could extend life-

span, which is not the case for all IIS-targeted interventions

(Clancy et al., 2001; Tatar et al., 2001; Hwangbo et al., 2004;

Selman et al., 2008; Ikeya et al., 2009). It will be interesting to

determine if this longevity-enhancing role of Imp-L2 can be per-

formed by an IGFBP or an IGFBP-rP, such as IGFBP7, in mam-

mals. IGFBP7 has been characterised as a tumour suppressor,

acting as a secreted senescence ⁄ apoptosis factor (Wajapeyee

et al., 2008). Establishing and examining the role of IGFBP7 in

lifespan may shed light on the relationship between cellular

senescence, cancer and whole organism aging in mammals, an

important emerging field of study (Campisi & Yaswen, 2009).

Our data are consistent with IMP-L2 regulating IIS by seques-

tering the DILP ligands. In this respect, it is important that our

binding assay was performed with native DILP proteins, reveal-

ing for the first time that IMP-L2 can bind native DILP5 as well as

native DILP2. Interestingly, we did not observe binding to any

other fly head proteins, despite the expression of DILP3 and

DILP4 in the head (Ikeya et al., 2002; Broughton et al., 2005;

Gronke et al., 2010), implying that IMP-L2 can discriminate

amongst different DILPs. However, this lack of observable bind-

ing may have also resulted from differential levels of expression

of native DILPs e.g. from the very low levels of expression of

dilp3 in the mNSC (Broughton et al., 2005). IMP-L2 can proba-

bly also bind DILPs other than DILP2 and DILP5, because strong

over-expression of the protein is lethal (Honegger et al., 2008),

but simultaneous deletion of dilp2, dilp3 and dilp5 is not

(Gronke et al., 2010). The dilp2D ⁄ dilp2D dilp3D ⁄ dilp3D

dilp5D ⁄ dilp5D dilp6D ⁄ dilp6D quadruple mutant is lethal (Gro-

nke et al., 2010), indicating that IMP-L2 may bind DILP6. Alter-

natively, IMP-L2 may also have DILP-independent effects, in a

similar way that some IGFBPs appear to have IGF-independent

functions (Mohan & Baylink, 2002).

Interestingly, sequence analysis indicates that DILPs are

cleaved and processed like insulin (Gronke et al., 2010), how-

ever, no study to date has physically observed these processed

forms of DILPs. While we have previously observed DILP2 on a

western blot (Broughton et al., 2008), this is the first time that

the native DILP5 has been observed on an SDS-PAGE. For both

of these DILPs, the apparent molecular weight is too large for

the processed DILPs (predicted molecular weight of DILP2 and

DILP5 processed like insulin is �6 kDa) and is closer to the

predicted molecular weight of the pro-peptide or an uncleaved

IGF-like peptide (�13 and �10 kDa for DILP2 and DILP5 respec-

tively). IMP-L2¢s ability to bind these uncleaved forms is consis-

tent with its binding to human pro-insulin, IGF-I and IGF-II, as

well as insulin (Sloth Andersen et al., 2000), also indicating that

these uncleaved forms of DILPs may be functional in the fly.

Removal of dilp2, dilp3 and dilp5 results in down-regulation

of Imp-L2 transcription (Gronke et al., 2010), and we show here

that, reciprocally, up-regulation of Imp-L2 results in up-regula-

tion of the mRNAs for all three dilps. This compensatory feed-

back loop is, in both cases, not sufficient to completely correct

the disturbance of the fly IIS status since both genetic manipula-

tions result in phenotypes consistent with down-regulation of IIS

including lifespan extension. Interestingly we find that over-

expression of Imp-L2 in the mNSC does not result in increased

dilp2 mRNA, indicating that this feedback does not occur via

an ⁄ a autocrine ⁄ paracrine mechanism. Rather, the feedback

occurs via effector(s) produced in the gut ⁄ fat body, since up-

regulation of Imp-L2 in these tissues resulted in increased dilp2

transcript levels. Hence, peripheral tissues, such as the fat body,

are not only in charge of regulating DILP release from the mNSC

in response to nutritional changes, as has been observed in

larvae (Geminard et al., 2009), but are also main regulators of

dilp synthesis in response to changes to adult IIS status.

Our study indicates that an agent present in circulation has an

effect on lifespan; a finding that may have important therapeu-

tic applications. Indeed, the genetic manipulation that led to

increased IMP-L2 levels in the haemolymph (ActGS > UAS-Imp-

L2 + RU486) was the one that resulted in the most substantial

increase to longevity. Interestingly, in other cases where we

could observe an extension of lifespan, we did not observe a

substantial increase in the levels of circulating IMP-L2. It is possi-

ble that IMP-L2 was secreted but then retained in a target tissue,

so that no net increase was observed in circulation. Alterna-

tively, IMP-L2 may have predominantly acted in an ⁄ a auto-

crine ⁄ paracrine manner. In either case, IMP-L2 could have been

retained in specific tissue(s) based on its interactions with com-

ponents of extracellular matrix or cell surface proteins, as is

known for IGFPBs (Hwa et al., 1999; Mohan & Baylink, 2002). In

the case of dilp2GAL4 > UAS-Imp-L2, the over-expression of

IMP-L2 might have been very efficient in sequestering DILPs at

the site of their production. In the case of S1106 driven over-

expression, the gut may be the most relevant tissue since it is

here that we could observe a substantial increase in IMP-L2.
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Increased activity of dFOXO using the same S1106 driver is suffi-

cient to extend lifespan (Giannakou et al., 2004), and the gut

may be the relevant tissue in this case as well. Interestingly, out

of all the IIS-regulated adult traits, lifespan was most sensitive to

increased Imp-L2, since no other phenotypes examined were

responsive to tissue-specific Imp-L2 induction.

Experimental procedures

Fly stocks and husbandry, phenotypic tests

UAS-Imp-L2 this is the genetically weaker transgene generated

by Honegger et al. (2008), heatshockGAL4 (Bloomington Stock

Center), dilp2GAL4 (Broughton et al., 2005), S1106 (Giannakou

et al., 2004), ActGS (Ford et al., 2007), dilp2D ⁄ dilp2D, dilp3D ⁄
dilp3D and dilp5D ⁄ dilp5D (Gronke et al., 2010) were back-

crossed at least six times into the outbred Dahomey background

carrying the w1118 mutation (Wdah) (Giannakou et al., 2004),

which had been cured of the Wolbachia infection; or the inbred

w1118 background, which is Wolbachia free. Note that the ActGS

line used (255B) is thought to have multiple insertions of the dri-

ver (Ford et al., 2007), however, after more than six backcrosses

we did not observe any segregation of different dye colours. All

experiments were performed at 25�C, 12-hour light ⁄ dark cycle,

and controlled humidity, on female flies in Wdah background,

unless otherwise noted. Flies were reared at standard density on

SYA food (5% sucrose, 10% yeast, 1.5% agar), female flies

sorted on day 3 and kept ten per vial. Where required, induction

by RU486 was performed as described previously (Giannakou

et al., 2004). For starvation, flies were kept on 1% agar, and for

H2O2 treatment on food containing 1% agar, 5% sucrose, 5%

H2O2, starting on day 5. For RNA or protein extraction the flies

were frozen in liquid nitrogen on day 7. Lifespan experiments,

whole-fly trehalose, circulating sugar (Parrou & Francois, 1997;

Broughton et al., 2008) or whole-fly lipid (Gronke et al., 2005)

quantifications were performed as described.

Antibody production, western blots and

immunofluorescence

cDNA coding for IMP-L2 without the signal peptide was ampli-

fied from Wdah cDNA using the primers: CACCAGAGCCGTG-

GACCTGGTAGACG and TTAGTCTTCCTCATTAAGTACGGGA-

TAC, cloned into pENTR ⁄ D-TOPO vector (Invitrogen, Paisley,

UK), sequenced and transferred into pDEST17 vector (Invitro-

gen) adding a His6 tag. The protein was expressed in BL21(DES3)

E. coli, recovered in the insoluble fraction and purified under

denaturing conditions on Ni-NTA agarose (Quagen, Crawley,

UK), followed by preparative SDS-PAGE. Anti-IMP-L2 antibody

was raised in rabbits by Eurogentec (Eurogentec, Fawley, UK),

and affinity purified against rIMP-L2. Fly protein extractions and

western blots were performed as described (Giannakou et al.,

2007; Broughton et al., 2008). Affinity purified anti-Imp-L2 was

used at 1:2000 dilution. For quantification, the blots were devel-

oped with ECL, images captured with LAS-1000 cooled CCD

(Fujifilm; Fujifilm UK Ltd, Bedfordshire, UK) and band intensities

determined with ImageJ (freeware from Research Services

Branch, National Institute of Mental Health, Bethesda, Mary-

land, USA). The quantity of IMP-L2 was expressed relative to

ACT, with this ratio set to one in the control geno-

types ⁄ untreated flies. Haemolymph was extracted from 7-day

old female flies as described (Broughton et al., 2008) and 1 lL

used for western blots. Images presented were taken on film.

For immunofluorescence, flies were dissected in ice-cold PBS

and stained as described (Broughton et al., 2010) with the affin-

ity purified anti-IMP-L2 antibody at 1:1000 dillution and Texas-

Red conjugated secondary antibody, and co-stained where

required with rat anti-DILP5 and AlexaFluor488 conjugated sec-

ondary antibody as described (Broughton et al., 2010). Images

were captured on Zeiss LSM 700 (Carl Zeiss Ltd, Hertfordshire,

UK), and quantified using ImageJ.

Far-western blotting

The last two exons of Imp-L2, which include the signal peptide,

were amplified from Wdah genomic DNA with the primers: CAC-

CATGAATTTACATGTGTGCGCCTTAG and GTCTTCCTCATT-

AAGTACGGGATAC, cloned in to pENTR ⁄ D-TOPO vector,

sequenced and transferred into pTWM (giving UASt-Imp-L2-

myc6). S2 cells were cultured in serum-free medium (Invitrogen)

and co-transfected using Cellfectin (Invitrogen) with plasmids

encoding either Act5C-GAL4, UASp-GFP and UASt-Imp-L2-myc6

(producing IMP-L2-myc6) or Act5C-GAL4 and UASp-GFP (mock

control), and the conditioned media harvested after 3 days.

Hundred micrograms of fly-head proteins were separated on

non-reducing Tris–Tricine PAGE and transferred to nitrocellulose

membranes as described (Broughton et al., 2008). The mem-

branes were blocked in PBST (PBS + 0.2% Tween-20) with 5%

BSA, probed over-night with a 1 in 10 dilution of the conditioned

media in the same buffer at 4�C and IMP-L2-myc6 binding visual-

ised with an anti-myc (Sigma, Dorset, UK) western blot.

qPCR

RNA extraction, cDNA synthesis and qPCR were performed as

described (Broughton et al., 2008), except for dilp qPCR which

was performed on 7900HT Fast Real-Time PCR System using

Fast Syber Green Master Mix (Applied Biosystems). The Act,

dilp2, dilp3 and dilp5 primers have been described (Broughton

et al., 2008). The following primers were used for Imp-L2:

CCTCATTAAGTACGGGATAC and CTTCTGATCTCCGAGATCA-

AG; for 4E-BP: CACTCCTGGAGGCACCA and GAGTTCCCCT-

CAGCAAGCAA. The amount of the relevant mRNA was

expressed relative to Act mRNA and this ratio set to one in the

control genotypes ⁄ untreated flies.

Statistical analysis

Statistical analysis was performed either in JMP (SAS, Cary, NC,

USA) or Excel. Details are given in figure legends.
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