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Abstract

Recent theoretical work has shown the importance of measuring microeconomic un-
certainty for models of both general and partial equilibrium under imperfect insurance.
In this paper the assumption of i.i.d. income innovations used in previous empirical
studies is removed and the focus of the analysis placed on models for the conditional
variance of income shocks, which is related to the measure of risk emphasized by the
theory. We first discriminate amongst various models of earnings determination that
separate income shocks into idiosyncratic transitory and permanent components. We
allow for education- and time-specific differences in the stochastic process for earnings
and for measurement error. The conditional variance of the income shocks is modelled
as a parsimonious ARCH process with both observable and unobserved heterogeneity.
The empirical analysis is conducted on data drawn from the 1967-1992 Panel Study
of Income Dynamics. We find strong evidence of sizeable ARCH effects as well as
evidence of unobserved heterogeneity in the variances.
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1 Introduction

While a number of papers have focused on modelling the time series properties of the mean

of earnings the modelling of the variance has been neglected. Seminal papers in this area

have been Lillard and Willis (1978), MaCurdy (1982), and Abowd and Card (1989) who fit

ARMA type processes, using panel data. However, the properties of the variance of income

are also important for our understanding of behavior. For example results reported in Deaton

(1992) relating to consumption and savings, rely on the assumption that income shocks are

independently and identically distributed, while Caballero (1990) discusses the potential

importance of relaxing the i.i.d. assumption. Some recent studies allow for heterogeneity

when measuring the variance of income (Carroll and Samwick, 1997; Hubbard, Skinner and

Zeldes, 1994), while Alvarez, Browning and Ejrnaes (2001) emphasize heterogeneity in many

aspects of the income process including the mean and the variance.1

The assumption of i.i.d. income innovations has probably been used for its convenience

since it simplifies the analysis and search for the numerical solutions in simulations of say the

consumption plan. Nevertheless, it can lead to wrong conclusions about individual behavior.

In particular, the presence of ARCH effects or stochastic volatility has implications for the

study of life-cycle consumption and savings, for the welfare effects of uncertainty, as well

as for income mobility and poverty, among other issues. The importance of considering

the evolution of the variance of earnings over the business cycle, as well as acknowledging

differences across individuals (under imperfect insurance) has been emphasized recently by

Browning, Hansen and Heckman (2000).

In this paper we address some of these issues and model earnings as the sum of a mar-

tingale component and a (possibly persistent) transitory disturbance. Since the presence of

permanent shocks is central for a number of economic questions, we investigate the validity

of this representation by testing whether the variance of the permanent shock is zero and

consider the implications of some alternative specifications. Since part of the transitory fluc-

tuation is in reality measurement error, we tackle explicitly the issue of reporting errors in
1Other authors rely on subjective expectation data (Guiso, Jappelli and Pistaferri, 2002). See also Zeldes

(1992) for a discussion of these issues.
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earnings data. We allow for the possibility that individuals with different education levels

face different income processes, both at the mean and at the variance level, thus allowing

for the changing returns to observable skills (see Juhn, Murphy and Pierce, 1993 for the US

and Gosling, Machin and Meghir, 2000 for the UK).

In a second step, we model the conditional variance of the earnings shocks as an ARCH

process with observed and unobserved heterogeneity.2 Our task is complicated by the fact

that in the context of a model with permanent and transitory income shocks, these are not

separately observable. We show how moment conditions can be derived to estimate the dy-

namic properties of the conditional variance of income and to test for permanent unobserved

heterogeneity in the variance of both the transitory and the permanent innovation.3 Our

data draw from the Panel Study of Income Dynamics (PSID) for the years 1967-92.

We find that permanent and transitory shocks are important components of income

shocks. We also find strong evidence of state dependence in the variance of both permanent

and transitory components. Finally we find that earnings variances are heterogeneous across

individuals. Thus the i.i.d. nature of income innovations is rejected by our data which points

to both heteroskedasticity and stochastic earnings risk as important facts.

The paper has five more sections. In Section 2 we introduce the data used in the empirical

application. In sections 3 and 4 we discuss and motivate our approach for modelling the

conditional mean and the conditional variance of earnings, respectively, and present and

discuss our empirical findings. Section 5 analyzes some implications of the empirical results.

Section 6 concludes.
2See among others Engle (1982).
3Banks, Blundell and Brugiavini (2001) is the only attempt we know of to estimate the conditional

variance of income shocks according to an ARCH process. However, the authors do not allow for the
distinction between transitory and permanent disturbances and do not present ARCH estimates. Moreover,
their analysis is based on cohort data and misses truly idiosyncratic uncertainty. Meghir and Windemejier
(2000) recover orthogonality conditions for the estimation of an ARCH process but do not allow for a
distinction between transitory shocks and permanent shocks. Chamberlain and Hirano (1999) estimate
earnings dynamics allowing for volatility heterogeneity.
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2 The data

The data used in this study are drawn from the 1968-1993 family and individual-merged files

of the PSID (waves I through XXVI).4

The PSID started in 1968 collecting information on a sample of roughly 5,000 households.

Of these, about 3,000 were representative of the US population as a whole (the core sample),

and about 2,000 were low-income families (the Census Bureau’s SEO sample). Thereafter,

both the original families and their split-offs (children of the original family forming a family

of their own) have been followed. In the empirical analysis we use both the core sample

and the SEO sample. Some authors (Lillard and Willis, 1978) suggest dropping the SEO

low-income sample because of endogenous selection. In other words, an initial condition

problem arises. However, given linearity, the initial condition problem is taken care of by

the presence of the permanent component. To put it differently, we deal with the problem

by estimating models for the growth rate rather than specifications in levels. This is also

true for the model of the variance where we include fixed effects.

Questions referring to labor income are retrospective; thus, those asked in 1968, say, refer

to the 1967 calendar year. The earnings variable is the labor portion of money income from

all sources; the variable name in the PSID tapes is “head’s money income from labor” and

includes the labor part of farm income and business income, wages, bonuses, overtime, com-

missions, professional practice, labor part of income from roomers and boarders or business

income.5 We deflate the nominal measure of earnings by the GNP personal consumption

expenditure deflator (using 1992 as the base year). We use information on the highest grade

completed to allocate individuals in our sample to three education groups: High School

dropouts (those with less than 12 grades of schooling), High School graduates (those with

at least a High School diploma, but no College degree), and College graduates (those with

a College degree or more).

Step-by-step details on sample selection are reported in the Appendix. Briefly, we select
4See Hill (1992) for more details about the PSID.
5As noted by Gottshalk and Moffitt (1993), the measure of labour income available in the PSID has

sources that may reflect capital income, such as the labour part of farm income and roomers and boarders.
We do not account for this problem.
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Figure 1: The mean of log real earnings.

male heads aged 25 to 55 with at least nine years of usable earnings data. The selection

process leads to a sample of 2,069 individuals and 31,631 individual-year observations. Rel-

evant sample statistics are presented in Tables A1 to A3 (sample composition by year and

by education, and demographic characteristics). Figures 1 and 2 plot the mean and the

variance of log real earnings against time for each education group and for the whole sample.

These figures reproduce well know facts about the distribution of male earnings in the US

(see Levy and Murnane, 1992).

3 The conditional mean of earnings

As in previous empirical work, we posit the following model for the conditional mean of log

earnings:

yit = m
e
t + βe0t Zit + uit (1)

where yit is the logarithm of real annual measured earnings, the superscript “e” stands for

education, me
t is a calendar year effect, Zit a vector of observable characteristics, and uit the

stochastic component of earnings. Aggregate shocks specific to an education group are cap-

tured by me
t (aggregate risk). A distinguishing feature of this model is the assumption that
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Figure 2: The variance of log real earnings.

the return to education varies with calendar time while the returns to observable attributes

vary with time as well as by education in a very general way. This characterization is in line

with e.g. Card and Lemieux (2001), who model the last three decades’ shifts in the income

distribution with changes in the prices of skills.

We assume that the unexplained component of income can be decomposed into a mea-

surement error, a transitory innovation with low persistence and a martingale permanent

component. Therefore:

uit = rit + eit + pit (2)

with rit being a classical i.i.d. measurement error, eit the transitory shock and pit the

permanent component of income which follows the process:

pit = pit−1 + ζ it (3)

We assume that the transitory shock follows an MA(q) process (i.e. eit = Θe(L, q)εit =

εit−
Pq

j=1 θ
e
jεit−j), with the order q of the process to be determined empirically, and assume
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that the permanent and the transitory shocks are uncorrelated at all leads and lags.6

We define the unexplained component of the rate of growth of earnings as:

git = ∆uit = ∆rit +Θe(L, q)∆εit + ζ it (4)

This is a composite MA(q+1) process. Equation 4 implies that git will be orthogonal to

variables dated t− q − 2 or earlier.
We recover the order of the MA process for the transitory shock from the estimated

autocovariances of git. For instance, if transitory shocks are not serially correlated (i.e., if

q = 0) one should find E (gitgit−j) = 0 for j > 1.7

Since we use estimated residuals we need to assume that the underlying processes, in-

cluding the measurement error, have distributions such that the cross sectional moments of

git exist up to the fourth order. However, since we are dealing with finite lived individuals we

do not necessarily require that these moments exist as the time dimension goes to infinity.

In what follows we compute all the standard errors using the block bootstrap procedure

(see Hall and Horowitz, 1996 and Horowitz, 2002). In this way we account for serial corre-

lation of arbitrary form, heteroskedasticity, as well as for the fact that we use pre-estimated

residuals.8 We should point out that this procedure is conservative, since it allows for more

serial correlation than that implied by the moment conditions we use. Hence the bootstrap

standard deviations will be using only the N dimension of the sample and the precision of

our parameters is likely to be underestimated.
6Some examples of permanent innovations are associated to job mobility, long-term unemployment, health

shocks, promotions and even demotions. Transitory shocks to individual earnings include overtime labor
supply, piece-rate compensation, bonuses and premia, etc.; in general, such shocks are mean reverting and
their effect does not last long.

7The restriction can be tested computing the χ2 zero restrictions test described by Abowd and Card
(1989).

8Later on we will be using GMM to estimate processes for the mean and the variance of income. Wind-
meijer (2000) provides a small sample correction for the standard errors of two step GMM procedures, whose
asymptotic approximation is known to be heavily biased. However, in our case the bootstrap procedure of
Hall and Horowitz (1996) not only corrects for this but also accounts for pre-estimated residuals and hence
we have preferred it.
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3.1 The conditional mean and the structure of the error term

We first estimate the conditional mean process. We start by regressing, for each year and

each education group, log real earnings on a constant term, a quadratic in age, dummies for

race (white), region of residence and residence in a SMSA. This first stage allows the effects

of all characteristics to be education specific and to vary over time. Moreover the returns

to education also vary over time. For the remaining analysis of the stochastic properties of

income we use the residuals from these regressions, i.e. (bgit = ∆yit −∆bme
t −∆bβe0t Zit) in the

place of git, and replace theoretical moments with sample analogs.

The next step is to evaluate whether the data conform to our hypotheses concerning the

stochastic structure of the error term. We estimate the autocovariances of git using standard

methods (Abowd and Card, 1989).

Table 1
The autocovariances of the unexplained

growth of earnings

Order Pooled High High College
sample school school graduate

dropout graduate

0 0.109
(0.0051)

0.164
(0.014)

0.103
(0.0068)

0.065
(0.0058)

1 −0.0303
(0.0021)

−0.0535
(0.0055)

−0.028
(0.0027)

−0.0105
(0.0018)

2 −0.0079
(0.0014)

−0.0134
(0.0046)

−0.0077
(0.0015)

−0.0025
(0.0013)

3 −0.0024
(0.0011)

−0.0018
(0.0034)

−0.0026
(0.0014)

−0.0024
(0.0011)

4 0.0007
(0.0011)

0.0074
(0.0035)

−0.0015
(0.0013)

−0.0017
(0.0012)

Note: Asymptotic standard errors are reported under the coefficient estimate. Values are pooled
over all years and individuals.

The estimated unconditional autocovariances up to order four are presented in Table 1 for

the pooled sample and separately for the three education groups we focus on. For simplicity,

we report values pooled over time.9 In Table 2 we report the test of zero restrictions for the
9The estimated matrices of autocovariances and the associated standard errors are available on request

for the whole sample and separately for each education group. Each matrix contains 325 unique elements.
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null hypothesis that E (gitgit−j) = 0 (with 1 ≤ j ≤ 4) allowing the estimated autocovariances
to differ over time.

In the pooled sample, unexplained earnings growth rates appear correlated up to the

second order. Autocovariances at the third order and beyond are small and statistically

insignificant or of borderline significance. This is confirmed also by the analysis conducted

on different education groups (see Table 1). In the pooled sample the test that E (gitgit−3) =

0 has a p-value of 19 percent (see Table 2). The null is similarly not rejected when we

stratify the sample by schooling. The statistical implication is that q = 1.10 We impose

this restriction thereafter. The economic implication is that transitory shocks are somewhat

persistent: it takes at least one period for the full impact of the transitory shock to be felt.

Table 2
Tests of zero restrictions

Order of autocovariance
1 2 3 4

Pooled Sample
320

df 24 p-0
61.2

df 23 p-0
27.7

df 22 p-0.19
20.2

df 21 p-0.52

High School Dropout
159

df 24 p-0
38.0

df 23 p-0.03
31.7

df 22 p-0.09
23.9

df 21 p-0.30

High School Graduate
193

df 24 p-0
57.3

df 23 p-0.00
23.8

df 22 p-0.36
28.1

df 21 p-0.14

College
73.7

df 24 p-0
28.3

df 23 p-0.22
22.7

df 22 p-0.43
27.3

df 21 p-0.17

Note: In this table we present tests for zero autocovariance of order 1-4. We provide the test
statistic for the hypothesis that the respective autocovariance is zero in all time periods; the degrees
of freedom of the test (df), which is determined by the number of time periods for which we can
estimate the autocovariance and the p-value for the hypothesis that the autocovariances are zero.
We have also tested the hypothesis that all autocovariances of order 3 or higher are jointly zero as
in Abowd and Card (1989). The test statistic is 279.83 with 253 degrees of freedom and a p-value
of 12%.

3.2 Testing for the absence of permanent shocks

Whether permanent shocks are present and the magnitude of their variance is an issue

of great importance for an number of economic questions, such as consumption. This is
10For the college graduate q = 0 cannot be rejected; we estimate the ARCH parameters below for both

q = 0 and q = 1.
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established in number of papers in the literature. Thus we next estimate the variance of the

permanent shock and test the null hypothesis that it is zero.11 To do this we use the sample

autocovariances and impose the restriction that they are generated by (4). We use Equally

Weighted Minimum Distance (EWMD) for reasons explained in Altonji and Segal (1996).

The key moment condition that identifies the variance of the permanent shock is

E

git
 (1+q)X
j=−(1+q)

git+j

 = E ¡ζ2it¢ (5)

E
¡
ζ2it
¢
being the unconditional variance of the permanent shock. In the Appendix we present

EWMD estimates that allow for non-stationarity (see Table A4). We also present an estimate

ofE
¡
ζ2it
¢
in Table 3 (along with its standard error) under the assumption that this is constant

over time, which gives us a one degree of freedom test for the null of no permanent shock.

The test statistic, which is equal to the pooled estimate of the permanent shock divided by

it standard error, is asymptotically (for large N) distributed standard normal. The standard

error is computed using the block bootstrap, allowing for pre-estimated residuals as well as

for serial correlation and heteroskedasticity.

There are a number of advantages of the test we use. First, it does not hinge on the

assumption of covariance stationarity. Stationarity is in fact often rejected with PSID data

on earnings. Second, it can be generalized to any form of serial correlation (of the MA

type) in the transitory component. Finally, it is robust to the presence of measurement error

(either classical or with MA-type serial correlation).

3.2.1 Results

The pooled variances of the permanent shock are estimated to be 0.0313 (with a bootstrap

standard error of 0.0026) in the whole sample, 0.0331 (0.0067) for the High School dropouts,

0.0277 (0.0039) for the High School graduates, and 0.0437 (0.0068) for the College graduates

(the results are reported at the bottom of Table 3). The hypothesis of no permanent shock
11The null hypothesis encompasses two different assumptions concerning the structure of the error term:

either that a permanent component is absent altogether, or that it is time invariant (e.g. a random growth
model). The alternative hypothesis is that the permanent component follows a martingale process. We
ignore the problem associated with the fact that q is pre-estimated rather than known.
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Figure 3: The variance of the permanent shock to earnings.

is strongly rejected for all education groups with p-values well below 1 percent in all cases.

Henceforth we assume that log earnings for each education group follows the mean process

described in equations 1, 2 and 3 with the transitory shock following an MA(1) process.

Assuming this variance represents uninsurable risk, the high variance for the College

graduates is consistent with the idea that the higher returns emanating from increased

education come at the cost of higher earnings risk. Our estimates are close to those found

elsewhere in the empirical literature (see Carroll and Samwick, 1997), although our focus is

on earnings rather than family income. Given that family income may include some form of

implicit or explicit insurance, our estimates are likely to be larger.

Figure 3 plots the estimates of the unconditional variance of the permanent shock against

time, for the whole sample and by education (see Table A4 in the Appendix for the standard

errors of these estimates). Overall the variance increases throughout the 1970s and in the

early 1980s, it declines after 1984 with a slight tendency to increase at the end of the survey

period. This evidence is very similar to that reported by Moffitt and Gottshalk (1994), who

note that “the permanent variance grows, on average, through about 1982 or 1983, [while]
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it levels off or falls subsequently”.12 A similar pattern holds for the least educated and for

the High School graduates. Finally, for the College graduates there is not much evidence

of a monotonic increase in permanent income variance in the 1970s; on the other hand, the

decline in variance that occurs in the 1980s is much more pronounced than for the other two

groups.

3.3 The variance of the transitory shock, the variance of measure-
ment error and the MA coefficients

Although we can identify the variance of the permanent shock it is not possible to disentangle

the unconditional variance of the transitory shock, the variance of the measurement error

and the MA coefficients. Earlier studies have ignored this point. However, this may be

important to the extent that the transitory shock reflects uncertainty and induces economic

responses, while measurement error is noise due to imperfect data.

We follow two approaches to deal with this issue. The first strategy is to obtain bounds

for the unidentified measures. The second is to use an external estimate of the measurement

error in earnings.13 Both approaches rely on the assumption that measurement error is

classical − an assumption that is not universally accepted.14

For illustrative purposes take the case with an MA(1) transitory shock and assume in-

vertibility of the MA process. Thus eit = εit − θεit−1 with |θ| < 1. The autocovariances of
earnings growth of order one and two can be used to derive the following two equations in

three unknowns:

σ2ε =
E(gitgit−2)

θ
I

σ2r = −E (gitgit−1)− (1+θ)2

θ
E (gitgit−2) II

(6)

The sign of E (gitgit−2) defines the sign of θ. In our case we can conclude that θ < 0

12See Moffitt and Gottshalk (1994), page 12.
13A natural extension of our framework is a multiple indicator model that can be used to identify the

sources of permanent and transitory earnings variation (e.g., wage changes, unemployment, etc.), and to
distinguish between transitory shocks and measurement error. This strategy is pursued in Altonji, Martins
and Siow (2001).
14As we discuss below, other aspects of our approach, such as the identification of ARCH effects do not

depend on whether the measurement error is classical.
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(see Table 1). Taking the two variances as functions of the MA coefficient we note two

points. First, σ2r (θ) declines and σ2ε (θ) increases when θ declines in absolute value. Second,

for sufficiently low values of |θ| the estimated variance of the measurement error σ2r (θ) may
become negative. Given the sign of θ (defined by I in equation 6) this fact defines a bound

for the MA coefficient. In our case, where θ < 0, we have that θ ∈
h
−1,eθi where eθ is the

negative value of θ that sets σ2r in (6) to zero. If θ was found to be positive the bounds

would be in a positive range. The bounds on θ in turn define bounds on σ2ε and σ2r.

An alternative empirical strategy is to rely on an external estimate of the variance of the

measurement error, σ2r. Define the moments, adjusted for measurement error as:

E
h
g2it − 2σ2r

i
= σ2ζ + 2

¡
1 + θ + θ2

¢
σ2ε

E
³
gitgit−1 + σ2r

´
= − (1 + θ)2 σ2ε

E (gitgit−2) = θσ2ε

where σ2r is available externally. The three moments above depend only on θ, σ2ζ and σ2ε. We

can then estimate these parameters using EWMD.

3.3.1 Results

Table 3 reports the results of the two approaches we follow to bound or point estimate the

MA coefficient and the variances.

In the pooled sample we find that the lowest θ (in absolute value) that satisfies σ2r ≥
0 is −0.18. The variance of the transitory shock is in the range σ2ε ∈ [0.0079, 0.0439],

while σ2r ∈ [0, 0.0303]. For the High School dropouts we find σ2ε ∈ [0.0130, 0.0767]. The
corresponding MA parameter is θ ∈ [−1,−0.17]. For the High School graduates, we find
σ2ε ∈ [0.0077, 0.0407] corresponding to θ ∈ [−1,−0.19]. Finally, for the College graduates,
σ2ε ∈ [0.0027, 0.0160] with θ ∈ [−1,−0.17]. The upper bound of the variance of measurement
error is 0.0530 for the High School dropouts, 0.0278 for the High School graduate, and 0.0114

for the College graduate.

Bound and Krueger (1994) conduct a validation study of the CPS data on earnings and
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conclude that measurement error explains 28 percent of the overall variance of the rate of

growth of earnings in the CPS. Bound, Brown, Duncan and Rodgers (1994) find a value of 22

percent using the PSID-Validation Study.15 We assume an intermediate value of 25 percent.

Since in our data the earnings growth variances are 0.1651, 0.1033, and 0.0650, respectively

for the High School dropouts, the High School graduates, and the College graduates, we

calculate (separately for the three education groups): σ2r = 0.0206, 0.0129, and 0.0081.
16 We

use EWMD to estimate θ, σ2ε and σ2ζ (conditioning on σ2r) and find that θ ranges between

−0.25 (High School dropout) and −0.51 (College graduate). The variance of the transitory
shock is 0.0548 for the High School dropout, 0.0267 for the High School graduate, and 0.0049

for the College graduate.

Table 3
The unconditional variance of income shocks

Pooled High-school High-school College
sample dropout graduate graduate

Conditioning on the feasible range of θ
Transitory shock

(upper bound)
0.0439
(0.0070)

0.0767
(0.0221)

0.0407
(0.0079)

0.0160
(0.0070)

Transitory shock
(lower bound)

0.0079
(0.0012)

0.0130
(0.0038)

0.0077
(0.0015)

0.0027
(0.0012)

Measurement error
(upper bound)

0.0303
(0.0021)

0.0530
(0.0055)

0.0278
(0.0030)

0.0114
(0.0018)

θ
(upper bound)

−0.18 −0.17 −0.19 −0.17
Using an external estimate of σ2r

Measurement error 0.0138 0.0206 0.0129 0.0081
Transitory shock 0.0300

(0.0031)
0.0548
(0.0100)

0.0267
(0.0039)

0.0049
(0.0030)

θ −0.2566
(0.0339)

−0.2535
(0.0610)

−0.2674
(0.0400)

−0.5101
(0.2901)

Permanent shock 0.0313
(0.0026)

0.0331
(0.0067)

0.0277
(0.0039)

0.0437
(0.0068)

Note: Equally weighted minimum distance estimates. Standard errors reported in parenthesis.

The above can be viewed as unconditional averages of the underlying (changing) variances

and θ. It is however possible to allow for non-stationarity and still be able to identify the
15See Bound, Brown and Mathiowetz (2001) for a recent survey of the growing literature on measurement

error in micro data.
16In the absence of better information, we assume that the fraction of earnings growth variance due to

measurement error is the same across education groups (25 percent). Bound and Krueger (1994) provide
evidence that measurement error is not correlated with education.
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parameters of interest. These are reported, for the pooled sample only, in Table A5 in the

Appendix.

4 The conditional variance of earnings

We now specify the conditional variance of the transitory and the permanent shock, thus

allowing for non-i.i.d. income innovations. In both cases we specify an ARCH(1) structure

of the form

Et−1 (ε2it) = κet + γeε2it−1 + λi Transitory

Et−1
¡
ζ2it
¢
= φet + ϕeζ2it−1 + ηi Permanent

(7)

where Et−1 (.) denotes an expectation conditional on information available at time t − 1.
The parameters are all education specific. We test whether they vary across education. The

terms κet and φet are year effects which capture the way that the variance of the transitory

and permanent shocks change over time, respectively. In the empirical analysis we also allow

for life-cycle effects. In this specification we can interpret the lagged shocks (εit−1, ζ it−1) as

reflecting the way current information is used to form revisions in expected risk. Hence it

is a natural specification when thinking of consumption models which emphasize the role of

the conditional variance in determining savings and consumption decisions.

The terms λi and ηi are fixed effects that capture all those elements that are invariant

over time and reflect long term occupational choices, etc. The latter reflects permanent

variability of income due to factors unobserved by the econometrician. Such variability may

in part have to do with the particular occupation or job that the individual has chosen. This

variability will be known by the individuals when they make their occupational choices and

hence it also reflects preferences. Whether this variability reflects permanent risk or not is

of course another issue which cannot be answered here.17

17An interesting possibility allowed in ARCH models for time-series data is that of asymmetry of response
to shocks. In other words, the conditional variance function is allowed to respond asymmetrically to positive
and negative past shocks. This could be interesting here as well, for a considerable amount of asymmetry
in the distribution of earnings is related to unemployment. Caballero (1990) shows that asymmetric distri-
butions enhance the need for precautionary savings. In our case, however, models embedding the notion of
asymmetry are not identifiable. The reason is that we do not observe separately the transitory and perma-
nent shock. Finally, our results are consistent with the presence, in addition to ARCH effects, of a stochastic
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4.1 The conditional variance of the transitory shock

In the general MA(q) case the conditional autocovariance of the unexplained component of

earnings growth of order q + 1 identifies the conditional variance of the transitory shock up

to the constant MA(q) parameter θeq:

Et−1 (git+q+1git) = θeqEt−1
¡
ε2it
¢

(8)

Taking the first lag of the transitory variance function in (7), pre-multiplying by the MA

coefficient θeq, using (8), and then applying the law of iterated expectations, yields:

Et−2
¡
git+q+1git − θeqκ

e
t − γegit+qgit−1 − θeqλi

¢
= 0 (9)

Two important points can be made about this result. First, identification of the ARCH

coefficient requires only the knowledge of the order of the MA process not the value of the

parameters θeq. Second, the ARCH coefficients are identified in the presence of classical or

even serially correlated measurement error (so long as that has no ARCH component).

One way to eliminate unobserved heterogeneity is to use first differences. However, this

gives rise to weak instruments since it is hard to predict changes in the autocovariances

using lagged ones; weak instruments can lead to substantial small sample biases (see Bound,

Jaeger and Baker, 1995). We use within groups combined with instrumental variables, which

for moderate to a large time series dimension is likely to behave much better. Neglecting

time effects for simplicity, the ex-post equivalent of (9) is:

git+q+1git = γegit+qgit−1 + θeqλi + ωit

with Et−2 (ωit) = 0. Even if var (λi) = 0, an instrumental variable procedure is still required

for identification. We then remove individual specific means by

¡
git+q+1git − gi(+q+1)gi

¢
= γe

¡
git+qgit−1 − gi(+q)gi(−1)

¢
+ (ωit − ωi) (10)

volatility term. This would only be detectable if it is sufficiently serially correlated.
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where xi(+j) = (T − j)−1
PT

s=1+j xis and xi(−j) = (T − j)−1
PT−j

s=1 xis. This procedure elim-

inates the fixed effect but not the endogeneity of git+qgit−1, so we still need to use an IV

procedure, and more precisely we need instruments lagged t− 2, for instance git−2git−4. It is
well known (Nickell, 1981) that the within-group estimator for a dynamic panel data model is

biased for short T . However, the bias decreases when T gets large and disappears asymptot-

ically when T →∞. In our case, T is large enough to make the within group bias probably
negligible: T ranges between 9 and 26 for each individual. Moreover, as a sensitivity test

both for attrition bias and for this within groups issue, we also report estimates based on

individuals observed 16 years or more.

4.2 The conditional variance of the permanent shock

To identify the parameters of the variance function of the permanent shock in equation (7)

we make use of the fact that for an MA(q)-transitory shock:

Et−q−2

git
 (1+q)X
j=−(1+q)

git+j

 = Et−q−2 ¡ζ2it¢ (11)

It is then easy to prove that the relevant orthogonality condition for this problem is:

Et−q−3

git
 (1+q)X
j=−(1+q)

git+j

− φet − ϕegit−1

 (1+q)X
j=−(1+q)

git+j−1

− ηi

 = 0 (12)

Again we only require to know the order of the MA process, not the values of its parameters.

Moreover, as for the transitory shock case, the presence of measurement error (even if serially

correlated) is allowed for in this moment condition. Thus our estimated ARCH coefficients

are robust to the presence of measurement errors.

As before we apply the within groups transformation to eliminate unobserved hetero-

geneity. We use autocovariances lagged t− q − 3 or more as instruments.
Estimation requires the availability of a panel data set with a large enough time period of

observation for each individual. Data requirements become increasingly stringent as the order

of the moving average process for the transitory shock increases. For our case with q = 1,
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the estimation of (9) and (12) requires at least nine and eleven years of data respectively. In

this respect the PSID, which is our data source, is ideal for estimation purposes.

Obviously there is some attrition in the sample and by having to use individuals with at

least nine observations each we loose those who stay in the data for less. Thus, although we

do not need to assume that panel attrition is random, we do need to assume that attrition

only depends on fixed unobserved and observed characteristics (e.g. on the initial conditions

and on the heterogeneity in the variances) and not on the actual shocks. In the empirical

section we provide a test for this hypothesis by comparing our main results to those obtained

by limiting the sample to those who are observed for more than 16 periods.

4.3 Alternative specifications

The way that the mean process is specified affects the conditional variance estimates for the

shocks. A number of papers before us have found that earnings data are consistent with

a process comprising a martingale component and a transitory shock (MaCurdy, 1982 and

Abowd and Card, 1989 are two of the most prominent examples). However, this approach

is not uncontroversial.

A more general model that nests ours is one where the unobservables components of log

earnings have a time varying effect as in uit = det(ki+pit+eit)+rit. The analysis we carry out

on the conditional variances could also be carried out on the basis of this mean specification,

with a modification to the moment conditions. In other words, this richer specification does

not lead to identification problems. Under this model, the long term autocovariances of

the residual log earnings growth should not be zero. The results of Table 1 show not only

that the autocovariances become insignificant after the second lag but also that they decline

rapidly to zero. Both facts are consistent with our specification.

We can also test the null of our model against this one directly. By quasi-differencing we

obtain (see Holtz-Eakin, Newey and Rosen, 1988):

yit = m
e
t − aetme

t−1 + a
e
tyit−1 + βe0t Zit − aetβe0t Zit−1 + det(∆eit + ζ it) + rit − aetrit−1 (13)

where aet = d
e
t/d

e
t−1 and all parameters in (13) can be identified. Testing that the coefficient

on the lagged log earnings is constant over time and equal to one takes us back to the
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original specification. The joint test that this is true jointly for all three education groups

has a p-value of 13%, which confirms the adequacy of our specification.18

In the case discussed by Lillard and Reville (1999), uit = tki + eit + rit and the residuals

of log-income in first differences take the form

git = ∆rit +Θe(L, q)∆εit + ζ it + ki (14)

If the variance of ki, σ2k, is small, it may go statistically undetected in high-order earnings

growth autocovariances. However, even a small σ2k may have important implications for the

evolution of earnings (Baker, 1997). In this case the unconditional variance of the permanent

shock is overstated (and the unconditional variance of the transitory shock understated).

However, the orthogonality condition (9) still has the same form, with a modification for the

heterogeneity term:

Et−2
¡
git+q+1git − θeqκ

e
t − γegit+qgit−1 − Λi

¢
= 0

where Λi = (1− γe) k2i + θeqλi. Thus the ARCH parameters are still identified with the

conditions stated earlier, even if we ignore this linear trend.

Lillard and Reville (1999) also point out that the rate of return to experience as mea-

sured by age may be heterogeneous. The previous model allows for that through the linear

term, since, in the presence of fixed effects a linear time trend and a linear age term are

not distinguishable. However, if a quadratic term in age or experience were heterogeneous

residual growth will be

git = ∆rit +Θe(L, q)∆εit + ζ it + ki (α0 + α1Xit)

where Xit is a measure of experience. In this case (5) takes the form:

E

git
 (1+q)X
j=−(1+q)

git+j

 = E ¡ζ2it¢+ (3 + 2q) (α0 + α1Xit)
2 σ2k (15)

18This will also be a test of the special case where uit = detki + eit + rit.
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resulting in overestimation of the variance of the permanent shock that declines with labor

market experience if earnings profiles are concave. Again this model is not consistent with a

zero autocovariances of order three or over. In addition, the test of overidentifying restrictions

which we use when estimating the ARCH model should reject the ARCH specifications with

additive unobserved heterogeneity (equation 9 or 12). Note that in principle one could

generalize our approach to allow for this.

4.4 The estimation of the ARCH coefficients

4.4.1 Checking identification conditions

We now proceed to the estimation of the processes for the conditional variance of the perma-

nent and the transitory shocks. We start our analysis by examining whether the instruments

we use have sufficient explanatory power to estimate the ARCH model. This is particularly

important in our case since for identification we have to depend on information lagged sev-

eral periods. The recent literature on weak instruments has emphasized the importance

of such an exercise (see, Staiger and Stock (1994), Bound, Jaeger and Baker (1995)). To

examine this issue, we compute the bootstrap p-value of the χ2-test for the significance of

the excluded instruments in the reduced form. Results are reported in Table IV, based on

300 bootstrap replications.

In the first difference specification for the transitory shock, the reduced forms being

examined refer to a linear model predicting ∆git+1git−1 using as instruments git−3git−5 and

git−4git−6, which are dated t − 3 or earlier. For the within group specification we denote
by a bar over a variable its mean over time for individual i. Then the reduced forms refer

to a linear model predicting
¡
git+1git−1 − gi(+1)gi(−1)

¢
in equation 10 using as instruments

git−2git−4 and git−3git−5. For the permanent shock model in the first difference case we are

predicting ∆
h
git−1

³P2
j=−2 git+j−1

´i
using git−7

³P2
j=−2 git+j−7

´
and git−8

P2
j=−2 git+j−8. In

the within groups case we are predicting
·
git−1

³P2
j=−2 git+j−1

´
− gi(−1)

³P2
j=−2 gi(j−1)

´¸
using git−6

³P2
j=−2 git+j−6

´
and git−7

P2
j=−2 git+j−7. All reduced forms and instrument sets

include age and time dummies.

For the first difference model the only case that the instruments have some predictive
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power is for the transitory model when we pool across all education groups. In all other cases

the instruments have little predictive power. By contrast, in the reduced forms corresponding

to within groups we find very strong predictive power: a p-value well below 1 percent in all

cases.

It is very well known that in a dynamic equation, for sufficiently high autoregressive

parameters (γe or ϕe in equation 7), lags have little or no predictive power for current

changes (see Arellano and Bond (1991), Blundell and Bond (1999)). The lack of predictive

power we find could thus imply a high autoregressive coefficient (and even perhaps a unit

root) in the conditional variance. In principle one of the models could still be estimated

in first differences. However, Staiger and Stock (1994) show that even with significant F

statistics GMM could be biased considerably when the fit of the reduced form is bad. Our

assessment of the results leads us to use the within groups procedure. The latter is likely to

be less biased given the weakness of the instruments for the first differenced model and the

length of our panel.

Table 4
Pooled High High College
sample school school graduate

dropout graduate
Transitory shock

First Differences
χ2 statistic, 2 degrees of freedom 18.84 17.40 26.56 0.96
Bootstrap p-value reduced form 0.0000 0.1700 0.3633 0.6233

Within Groups
χ2 statistic, 2 degrees of freedom 245.52 42.83 267.88 66.75
Bootstrap p-value reduced form 0.0000 0.0033 0.0000 0.0000

Permanent shock
First Differences

χ2 statistic, 2 degrees of freedom 2.57 1.10 0.10 4.39
Bootstrap p-value reduced form 0.2367 0.8833 0.9333 0.2033

Within Groups
χ2 statistic, 2 degrees of freedom 360.73 65.31 289.26 86.45
Bootstrap p-value reduced form 0.0000 0.0000 0.0000 0.0000

We now proceed to the estimation of the processes for the conditional variance of the

permanent and the transitory shocks. We start our analysis by examining whether the in-

struments we use have sufficient explanatory power to estimate the ARCH model. This is
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particularly important in our case since for identification we have to depend on information

lagged several periods. The recent literature on weak instruments has emphasized the impor-

tance of such an exercise (see, Staiger and Stock (1994), Bound, Jaeger and Baker (1995)).

To examine this issue, we compute the bootstrap p-value of the χ2-test for the significance

of the excluded instruments in the reduced form. Results are reported in Table IV, based

on 300 bootstrap replications.

In the first difference specification for the transitory shock, the reduced forms being

examined refer to a linear model predicting ∆git+1git−1 using as instruments git−3git−5 and

git−4git−6, which are dated t − 3 or earlier. For the within group specification we denote
by a bar over a variable its mean over time for individual i. Then the reduced forms refer

to a linear model predicting
¡
git+1git−1 − gi(+1)gi(−1)

¢
in equation 10 using as instruments

git−2git−4 and git−3git−5. For the permanent shock model in the first difference case we are

predicting ∆
h
git−1

³P2
j=−2 git+j−1

´i
using git−7

³P2
j=−2 git+j−7

´
and git−8

P2
j=−2 git+j−8. In

the within groups case we are predicting
·
git−1

³P2
j=−2 git+j−1

´
− gi(−1)

³P2
j=−2 gi(j−1)

´¸
using git−6

³P2
j=−2 git+j−6

´
and git−7

P2
j=−2 git+j−7. All reduced forms and instrument sets

include age and time dummies.

For the first difference model the only case that the instruments have some predictive

power is for the transitory model when we pool across all education groups. In all other cases

the instruments have little predictive power. By contrast, in the reduced forms corresponding

to within groups we find very strong predictive power: a p-value well below 1 percent in all

cases.

It is very well known that in a dynamic equation, for sufficiently high autoregressive

parameters (γe or ϕe in equation 7), lags have little or no predictive power for current

changes (see Arellano and Bond (1991), Blundell and Bond (1999)). The lack of predictive

power we find could thus imply a high autoregressive coefficient (and even perhaps a unit

root) in the conditional variance. In principle one of the models could still be estimated

in first differences. However, Staiger and Stock (1994) show that even with significant F

statistics GMM could be biased considerably when the fit of the reduced form is bad. Our
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assessment of the results leads us to use the within groups procedure. The latter is likely to

be less biased given the weakness of the instruments for the first differenced model and the

length of our panel.

4.4.2 The conditional variance of the earnings shock

The estimates of the conditional variance function for the transitory shock are based on

the orthogonality condition (9) adapted to the within group case. The estimates in the

permanent shock case are based on the within group version of the orthogonality condition

(12). The within group-instrumental variable estimator we use is the GMM estimator of

Hansen (1982) adapted to our problem.

We take q = 1 from our earlier results and estimate separately for each education group

the following specification:

fψit = ξt + β1 gageit + β2
gage2it + γ gψit−1 + fωit (16)

where fxit = xit − xi, xi = T−1i PTi
s=1 xis. For the transitory variance ψit = bgit+2bgit and for

the permanent variance ψit = [ĝit(ĝit−2 + ĝit−1 + ĝit + ĝit+1 + ĝit+2)]; bgit is the residual from
the estimated mean log earnings process in first differences for individual i in period t..

The instruments are lags of ψit and are set up as in Arellano and Bond (1991). To

avoid overfitting in the reduced forms we do not exploit all the available linear orthogonality

conditions. In fact, we truncate the set of available instruments at the first two available

lags. Moreover, this should improve the power of the overidentifying restrictions test.19

4.4.3 The results

Table 6 reports the WG-GMM results for the coefficients in the conditional variance, as

well as a number of diagnostic tests. We report bootstrap standard errors based on 1000

replications as well as the level of significance of the ARCH coefficients based on the bootstrap

critical values. The results are presented by education group. We then consider pooling over

the whole sample and test whether the ARCH effects vary by education. All specifications
19This bias arises from inflating the degrees of freedom of the test with the inclusion of irrelevant instru-

ments.
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include time dummies and a quadratic in age. However neither time or age effects are

significant in this conditional specification.

Turning now to the ARCH coefficients themselves the highest persistence parameter for

both the permanent and the transitory shock is obtained for the High School graduates. For

this group, which is by far the largest, the coefficients are unambiguously significant and

high, with a 0.67 value for the transitory shock case and nearly 0.9 for the permanent shock.

For the High school dropouts the ARCH coefficient for the transitory shock is not significant

(p-value of 13%) but for the permanent shock the effect is quite large and has a p-value of

7%, for a sample that is about half that of the high school graduates.

For the College graduates the coefficient on the permanent shock is essentially zero, while

for the transitory shock the coefficient is not significant and imprecisely estimated, making it

difficult to draw a firm conclusion. We also impose the (acceptable) hypothesis that for this

group the transitory shocks follow an MA(0) process (q = 0). In this case the estimate of

γe is 0.2004 (bootstrap s.e. 0.2435) and that of ϕe 0.0221 (0.2045). Thus for the coefficient

of the permanent shock the estimation precision goes up substantially but both coefficients

remain insignificant.20

In Table 6 we also present tests of the overidentifying restrictions (OID). These are all

acceptable, except for the model of the variance of the permanent shock for the College

Graduates, where the p-value is 2%. This can occur if the variance includes a persistent

stochastic volatility component, which could be correlated with the instruments. To address

this issue we lagged the instruments one more period. The OID test now has a p-value of

14%. The coefficient ϕe became 0.17 with a standard error of 0.29. Hence, the results are

not significantly different to what we obtained before.
20The estimated age and age square effects in the transitory shock case are 0.0011 (0.0029) and -0.0008

(0.0034), while in the permanent shock case they are -0.0086 (0.0080) and 0.0107 (0.0093).
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Table 6
The conditional variance of earnings shocks

High school High school College
dropout graduate graduate

Transitory shock

γe 0.1918
(0.14)[13%]

0.6672
(0.152)[0.4%]

0.3878
(0.192)[10.3%]

Age −0.0030
(0.0065)

−0.0005
(0.0029)

−0.0006
(0.0027)

Age2/100 0.0028
(0.0082)

0.0010
(0.0036)

0.0007
(0.0036)

P-value OID test 19% 14% 15%
P-value for time effects 95% 99% 99%
P-value for time and age effects 98% 96% 98%
P-value for unobs. heterogeneity 34.4% 2% 4.3%

γe Pooled (all education groups) 0.404
(0.096)[0%]

Permanent shock

ϕe 0.3299
(0.21)[7.4%]

0.8912
(0.18)[0.0%]

0.0283
(0.33)[90.4%]

Age −0.0076
(0.0056)

0.0017
(0.0034)

−0.0065
(0.0055)

Age2/100 0.0090
(0.0063)

−0.0008
(0.0040)

0.0083
(0.0066)

P-value OID test 14% 40% 2%
P-value for time effects 93% 89% 95%
P-value for time and age effects 93% 93% 91%
P-value test for unobs. heterogeneity 0% 2.7% 37.2%

ϕe Pooled (all education groups) 0.56
(0.126)[0.3%]

Notes: Bootstrap standard errors based on 1000 replications reported in round brackets and
p-values in square brackets. The OID test is a Sargan test for the null of instruments validity. It
is distributed χ2 with degrees of freedom equal to the number of exclusion restrictions. The test
for the null of no unobserved heterogeneity is based on 500 replications.

We now consider a pooled model where the ARCH coefficients are restricted to be equal

across education groups. In fact the differences across education groups are not significant.

Based on the estimates of Table 6 the χ2 test that the coefficients are the same for the

transitory shock has a p-value of 15%; for the permanent shock the p-value is 6.6%.

When we restrict the three coefficients to be the same, while leaving all the other regres-

sors in the variance to have education specific coefficients, we obtain 0.404 persistence for
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the transitory shock (standard error 0.096) and 0.56 for the permanent one (standard error

0.128), with important improvements in the precision. Both the restricted coefficients are

highly significant and we take these as the most reliable estimates of the ARCH coefficients.

These estimates for persistence (vis-á-vis the 0.89 coefficient for the High School graduates)

imply lower fourth moments for the marginal distribution of the innovations to log earnings

for our finitely lived individuals.21

A key issue is whether unobserved heterogeneity in the variance is an important factor,

i.e., whether there are permanent differences in the volatility of income among individuals,

over and above what is accounted for by observables, such as education, time and age. To

carry out this test we estimated the model both in levels and within groups; we then used the

bootstrap to derive critical values for the χ2(1) statistic for the equality of the two coefficients.

For all groups there is evidence of unobserved heterogeneity, at least for one of the two

variances. For the High school graduates unobserved heterogeneity is evident in both the

variance of the permanent shock and the variance of the transitory shock. For the dropouts,

we find unobserved heterogeneity for the variance of the permanent shock only. Finally

for the College graduates heterogeneity seems to be important only for the variance of the

transitory shock.

A final issue is the extent to which attrition from the PSID has biased our results.

We have assumed that attrition is all accounted for by permanent characteristics that are

eliminated by our estimation procedure (first differencing for the mean and within groups

for the variances). To provide some evidence for this we compare our estimates to those

obtained by using only those individuals who are 16 or more years in the sample. This

kind of selection mimics attrition bias since it cuts out individuals observed for a shorter

time period. The estimates based on this restricted sample are reported in Table A6 of

the Appendix. There appears to be some differences, with the coefficients on this selected

sample being slightly lower. This is an indication that, if anything, attrition may have
21Engle (1982) has shown that if a random variable is conditionally normal with an ARCH process for the

variance, the fourth moment of the unconditional distribution is finite only if the ARCH coefficient is lower
than 3−0.5. In our case, with finitely lived individuals the implication of higher levels of variance persistence
is a growing fourth order moment of the cross sectional distribution of income innovations over the life-cycle.
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biased the ARCH coefficients up. However, when we compute a test statistic comparing the

ARCH coefficients in the two data sets we find that none of the differences are significant at

conventional levels as reported in the Table.22

5 Implications

Given the results above we now provide two examples which illustrate the effects that ARCH

can have in explaining a number of important phenomena.

5.1 Income mobility

Allowing for ARCH effects will have implications for earnings mobility since state dependence

becomes richer relative to allowing for dynamics in the mean only. As an illustration we focus

on the probability of being below the poverty line qL conditioning on being below qL in the

previous period, i.e. Pr (yit < qL |yit−1 < qL ).
We compute this measure of poverty persistence using a distribution of income that

allows for ARCH effects and a distribution of income that would have been fitted on the

same data, but ignoring ARCH effects. In the ARCH case log earnings are generated by the

sum of a random walk process where the innovations ζ it are normal and have conditional

variance Et−1(ζ2it) = (1− ϕ) σ2ζ + ϕζ2it−1 and a transitory component eit = εit − θεit−1 where

the innovations εit are also normal and have conditional variance Et−1(ε2it) = (1− γ)σ2ε +

γε2it−1. Alternatively we use i.i.d. innovations whose variances are equal to the unconditional

variances of the previous process, namely σ2ζ and σ2ε.

We focus on a single cohort of individuals, assume a life-cycle of 40 periods and set the

parameters σ2ζ , σ
2
ε, ϕ and γ to the values estimated in Table 3 and Table 6. To avoid an

initial conditions problem in the variance we draw initial shocks for both cases from the

unconditional distributions.

Figure 1 plots the difference between Pr (yit < qL |yit−1 < qL ) calculated under ARCH-
22Fitzgerald, Gottschalk and Moffitt (1998) examine the effect of attrition in the PSID and conclude that

attrition propensities are correlated with individual-specific levels of earnings instability, but that their effects
on attrition are not large, suggesting that “they are unlikely to induce significant bias in studies which have
[...] dynamic measures as outcome variables” (p. 296).
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Figure 4: Difference in the persistence of poverty between the ARCH and the i.i.d. case.

type shocks and the same probability calculated under i.i.d. income shocks over the life

cycle. We set the poverty line at qL = −0.16 corresponding to the bottom 25th percentile

of the income distribution,23 and ϕ = {0.89, 0.56} corresponding to the ARCH estimates for
the permanent shock in the High school graduate and Pooled sample case (see Table 6).

The difference in poverty persistence is negative throughout the life cycle. The intuition is

that in the lower and upper tails of the distribution individuals with large shocks in period t−
1 are over-represented. According to the ARCH specification, they have a higher conditional

variance (relative to the i.i.d. case) and thus a higher probability of a large shock which

will remove them from the tail and push them back to the centre. The reduced persistence

on the two extremes of the income distribution is compensated by greater persistence in the

central part of the distribution.

Two more facts are worth noting. First, the difference in poverty persistence is higher for

the young and tends to decline as time goes by. Second, it is accentuated by higher values

of the ARCH parameter ϕ. Similar results are obtained when setting the poverty line at the

10th percentile.
23Since there is no aggregate growth in this model, we set qL to a constant value.
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5.2 Precautionary savings

As Caballero (1990) has stated, the presence of stochastic higher order moments in income,

to the extent that they relate to uninsurable uncertainty, is capable of explaining a number

of important phenomena that have been observed in consumption data, including excess

smoothness, excess growth and excess sensitivity − one mechanism for doing this is the

impact of the stochastic process of income on the volatility of consumption growth and on

precautionary savings. His analytical results, although suggestive, are not well suited for our

income process, which is in logs.

To see the effect of introducing ARCH shocks we consider an approximation to con-

sumption growth. Preferences for consumption cit are CRRA (u (cit) = 1
ρ+1
cρ+1it , ρ < 0),

and income is log yit = log yit−1 + ζ it, where ζ it is conditionally normal with mean zero
24

and Et−1
¡
ζ2it
¢
= (1 − ϕ)σ2ζ + ϕζ2it−1. The interest rate is taken equal to the intertemporal

discount rate. Adapting the results of Banks, Blundell and Brugiavini (2001) we can write

consumption growth as25

∆ log cit =
(1− ρ)

2
π2it

½
Et−1

¡
ζ2it
¢
+
1

4
Et−1

h¡
ζ2it −Et−1

¡
ζ2it
¢¢2i¾

+∆ logwit (17)

where πit is the ratio of lagged income to consumption yit−1/cit−1 which for the purposes of

illustration we take to be 1 and ∆ logwit is the change in life-cycle wealth from one period

to the next.

Individual consumption growth due to precautionary savings is given by the first term on

the RHS of (17). For small realizations of ζ it−1 (in the [−σζ ,σζ ] range) consumption growth

in the ARCH case is lower than in the i.i.d. case. This is because people forecast a lower

variance than the unconditional one − on which precautionary behavior in the i.i.d. case
depends upon. This can help explain a high degree of heterogeneity in savings behavior.

In the aggregate there is no such ambiguity however and ARCH always predicts more

saving. To see this note that when ϕ < 3−0.5 the fourth moment of the ARCH process con-

verges to 3σ4ζ
³
1−ϕ2
1−3ϕ2

´
which is larger than the fourth moment of the long run cross-sectional

24We neglect the effect of transitory shocks given that they are smoothed away through savings.
25Detailed calculations are available from the authors on request.
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income distribution in the absence of ARCH effects (i.e. 3σ4ζ ). Thus under ARCH, aggregate

consumption growth due to precautionary savings increases by (1−ρ)
2

ϕ2

1−3ϕ2σ
4
ζ relative to the

i.i.d. case. Using our estimates of ϕ and σ2ζ , this is roughly 0.8% when ρ = −2 (Attanasio
and Weber, 1995) and 1.6% when ρ = −5 . With aggregate consumption growth averaging
3% in the last few decades, these are sizeable changes.

When the persistence coefficient ϕ ≥ 3−0.5 the fourth order moment does not converge.
With finite lived consumers, the moments never become infinite of course, but this means

that aggregate consumption growth within a cohort can be very high. In other words ARCH

effects can rationalize steep consumption growth over the life-cycle, even with moderate or

small levels of variance in the income shocks.

Both examples are just illustrative of the potential importance of understanding the form

of the income process and should not be taken as a full blown analysis, which would need to

take into account of a number of other important issues in the respective fields.

6 Conclusions

In this paper we have estimated an income process for individual annual earnings in the

US, allowing for differences across education groups and taking into account changes over

time. In line with earlier studies we have confirmed that earnings are best described as being

driven by a permanent income shock and a serially correlated transitory shock. We have

also emphasized the importance of measurement error. We test our specification against a

number of alternatives and find ours to be a good description of the data.

We then estimate conditional variance processes for both the transitory and the perma-

nent component, having shown that these processes are separately identified, even in the

presence of non-classical measurement error. We find that there is strong evidence of size-

able ARCH effects for both the variances of the transitory and permanent shocks. We also

find strong evidence for fixed differences across individuals in the variance of shocks. We

then illustrate some potential implications that ARCH effects may have in the field of in-

come mobility and savings. A more complete analysis of these issues, with our richer income

process is of course an important area for further work.
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Finally there are two issues (among others) that require further research: The extent to

which the income shocks we have been modelling represent uninsurable income uncertainty

(see Blundell and Preston, 1998); and distinguishing between employment and wage risk

separately.

30



A Appendix

A.1 Step-by-step details on sample selection

The 1968-1993 PSID individual file contains information on 53,013 individuals (all those ever present in the

sample). We drop members of the Latino sample added in 1990 (10,022 individuals), and those who are

never heads of their household (26,962 individuals). This reduces the sample to 16,029 individuals. We keep

only those who are continuously heads of their household, who are in the sample for nine years or more, and

are aged 25 to 55 over this period. This leaves us with a sample of 4,539 individuals.

We then drop female heads and remain with a sample of 3,663 male heads. We eliminate those with a

spell of self-employment over the sample period, missing earnings, and unusable (zero or top-coded) earnings

data. This leaves 2,340 individuals. We also drop those with missing education and race records, and those

with inconsistent education records. We are left with 2,153 individuals. Finally, we eliminate individuals

with outlying earnings records, defined as a change in log earnings greater than 5 or less than −1. The final
sample includes 2,069 individuals.

The composition of the sample by year and by education is reported in Tables A1 and A2, respectively.

Selected demographic and socio-economic characteristics are reported in Table A3 for selected sample years

(1967, 1979, and 1991).

Table A1
Distribution of observations, by year

Year Number of Year Number of
observations observations

1967 746 1980 1393
1968 787 1981 1425
1969 831 1982 1455
1970 878 1983 1501
1971 923 1984 1539
1972 1008 1985 1491
1973 1078 1986 1436
1974 1163 1987 1383
1975 1234 1988 1329
1976 1258 1989 1280
1977 1300 1990 1230
1978 1319 1991 1177
1979 1365 1992 1102
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Table A2
Distribution of observations, by education

Number of years Number of individuals
Pooled High-school High-school College
sample dropout graduate graduate

9 231 64 131 36
10 185 50 96 39
11 182 51 92 39
12 154 28 93 33
13 144 42 81 21
14 142 35 80 27
15 139 34 83 22
16 121 27 67 27
17 123 40 54 29
18 86 20 43 23
19 109 21 60 28
20 93 22 49 22
21 92 16 48 28
22 54 12 25 17
23 52 16 26 10
24 45 12 20 13
25 37 10 17 10
26 80 19 39 22

Table A3
Descriptive statistics: Demographic characteristics

1967 1979 1992
Age 36.91

(6.34)
37.24
(9.35)

41.21
(5.64)

High school dropout 0.46
(0.50)

0.25
(0.43)

0.12
(0.32)

High school graduate 0.38
(0.49)

0.53
(0.50)

0.61
(0.49)

Hours 2, 250
(558)

2, 134
(534)

2, 151
(540)

Married 0.96
(0.21)

0.88
(0.33)

0.87
(0.33)

White 0.66
(0.48)

0.67
(0.47)

0.70
(0.46)

Children 2.81
(2.11)

1.40
(1.31)

1.33
(1.23)

Family size 4.95
(2.06)

3.58
(1.58)

3.51
(1.44)

Family income 27, 146
(13,254)

36, 216
(17,542)

43, 181
(24,062)

North-East 0.20
(0.40)

0.17
(0.37)

0.16
(0.37)

North-Central 0.25
(0.43)

0.26
(0.44)

0.24
(0.43)

South 0.41
(0.49)

0.42
(0.49)

0.43
(0.50)

SMSA 0.70
(0.46)

0.67
(0.47)

0.53
(0.50)
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Table A4
Estimated variances of the permanent shock

Year Pooled High school High school College
sample dropout graduate graduate

1969 0.0280
(0.0125)

0.0221
(0.0155)

0.0244
(0.0241)

0.0576
(0.0321)

1970 0.0242
(0.0124)

0.0119
(0.0105)

0.0117
(0.0042)

0.0847
(0.0657)

1971 0.0136
(0.0077)

0.0144
(0.0163)

0.0067
(0.0043)

0.0296
(0.0189)

1972 0.0223
(0.0135)

−0.0175
(0.0251)

0.0222
(0.0107)

0.1155
(0.0413)

1973 0.0124
(0.0073)

0.0045
(0.0145)

0.0049
(0.0092)

0.0579
(0.0182)

1974 0.0165
(0.0061)

0.0154
(0.0147)

0.0127
(0.0082)

0.0321
(0.0123)

1975 0.0332
(0.0112)

0.0434
(0.0234)

0.0175
(0.0174)

0.0482
(0.0150)

1976 0.0155
(0.0089)

0.0105
(0.0158)

0.0189
(0.0149)

0.0186
(0.0091)

1977 0.0222
(0.0092)

−0.0165
(0.0153)

0.0259
(0.0112)

0.0662
(0.0282)

1978 0.0421
(0.0124)

0.0470
(0.0333)

0.0282
(0.0118)

0.0634
(0.0280)

1979 0.0199
(0.0079)

0.0191
(0.0198)

0.0061
(0.0069)

0.0489
(0.0224)

1980 0.0533
(0.0178)

0.0524
(0.0356)

0.0382
(0.0119)

0.0881
(0.0624)

1981 0.0660
(0.0204)

0.1355
(0.0763)

0.0567
(0.0191)

0.0150
(0.0097)

1982 0.0540
(0.0122)

0.0778
(0.0371)

0.0521
(0.0161)

0.0354
(0.0133)

1983 0.0495
(0.0101)

0.0645
(0.0301)

0.0443
(0.0132)

0.0445
(0.0129)

1984 0.0616
(0.0158)

0.0567
(0.0359)

0.0710
(0.0237)

0.0386
(0.0126)

1985 0.0413
(0.0101)

0.0824
(0.0467)

0.0412
(0.0106)

0.0142
(0.0081)

1986 0.0253
(0.0093)

0.0462
(0.0495)

0.0213
(0.0080)

0.0205
(0.0096)

1987 0.0289
(0.0077)

0.0251
(0.0182)

0.0304
(0.0100)

0.0260
(0.0159)

1988 0.0309
(0.0095)

0.0128
(0.0200)

0.0371
(0.0146)

0.0227
(0.0089)

1989 0.0340
(0.0087)

0.0865
(0.0428)

0.0283
(0.0101)

0.0173
(0.0054)

1990 0.0293
(0.0070)

0.0498
(0.0254)

0.0290
(0.0095)

0.0159
(0.0048)

1991 0.0438
(0.0209)

0.0516
(0.0248)

0.0550
(0.0335)

0.0123
(0.0083)

χ2
(d.o.f)

322.81
(275)

1648.65
(275)

354.89
(275)

1784.31
(275)

Note: In Table A4 and A5 we impose equality of the permanent shock variances in the first two and in the
last two years of the sample period. This is to avoid instability when few moments are used for identification.
The value reported at the bottom of each table is a goodness of fit statistic for the estimated model. It is
defined as (c− f (β))0R− (c− f (β)), where c is the vector of estimated moments, f (β) is the theoretical
counterpart we attempt to fit, and R− is a generalized inverse of R =WVW withW = I−G (G0G)−1G0

and V the matrix of empirical fourth moments. The test statistic is asymptotically distributed χ2 with
degrees of freedom equal to the difference between the number of elements in c and the rank of the gradient
matrix G. See Newey (1985) for more details.
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Table A5
Conditioning on an external estimate of σ2r

Year E
¡
ζ2it
¢

E
¡
ε2it
¢

1967 -.- 0.0119
(0.0212)

1968 -.- 0.0074
(0.0064)

1969 0.0298
(0.0134)

0.0132
(0.0069)

1970 0.0274
(0.0124)

0.0153
(0.0068)

1971 0.0173
(0.0081)

0.0352
(0.0126)

1972 0.0248
(0.0133)

0.0605
(0.0210)

1973 0.0136
(0.0071)

0.0242
(0.0067)

1974 0.0158
(0.0062)

0.0313
(0.0125)

1975 0.0334
(0.0112)

0.0819
(0.0219)

1976 0.0166
(0.0091)

0.0618
(0.0286)

1977 0.0218
(0.0098)

0.0136
(0.0064)

1978 0.0417
(0.0125)

0.0113
(0.0067)

1979 0.0213
(0.0079)

0.0267
(0.0094)

1980 0.0552
(0.0178)

0.0156
(0.0062)

1981 0.0652
(0.0200)

0.0168
(0.0106)

1982 0.0525
(0.0123)

0.0509
(0.0151)

1983 0.0500
(0.0100)

0.0430
(0.0153)

1984 0.0623
(0.0158)

0.0345
(0.0153)

1985 0.0429
(0.0099)

0.0230
(0.0074)

1986 0.0269
(0.0094)

0.0266
(0.0084)

1987 0.0312
(0.0077)

0.0090
(0.0057)

1988 0.0316
(0.0095)

0.0224
(0.0122)

1989 0.0368
(0.0087)

0.0005
(0.0063)

1990 0.0309
(0.0069)

0.0212
(0.0111)

1991 0.0483
(0.0210)

0.0058
(0.0057)

1992 -.- 0.0227
(0.0237)

θ −0.2030
(0.0308)

χ2
(d.o.f.)

325.06
(275)
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Table A6
ARCH estimates using individuals observed 16 years or more

HS dropout HS graduate College graduate
Transitory shock

γe 0.215
(0.119)

0.190
(0.102)

0.232
(0.156)

P-value attrition test 84.2% 5.4% 51%
Permanent shock

ϕe 0.289
(0.216)

0.584
(0.214)

−0.041
(0.417)

P-value attrition test 30.8% 19.2% 81.2%
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