THE DYNAMICS OF INVESTMENT UNDER
UNCERTAINTY

Nicholas Bloom
Stephen Bond
John Van Reenen

THE INSTITUTE FOR FISCAL STUDIES
WPO01/05




The Dynamics of Investment under Uncertainty

Nicholas Bloom* Stephen Bond'and John Van Reenen?
February 2001

Abstract

We derive robust predictions on the effects of uncertainty on short run
investment dynamics in a broad class of models with (partial) irreversibil-
ity. When their environment becomes more uncertain firms become more
cautious and less responsive to demand shocks. This result contrasts with
the long run analysis, in which the effect of real options on the level of the
capital stock is ambiguous. An investment model is estimated to test these
theoretical predictions using a panel of UK firms and a stock returns-based
measure of uncertainty. As predicted we find that uncertainty reduces firms’
responsiveness to demand shocks.
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1. Introduction

The standard approach to modelling investment under uncertainty considers a
firm operating a single production process and using a homogeneous capital good!.
Investment decisions are assumed to be (partially) irreversible and market demand
uncertain. This generates real options on the investment decision and a separation
of the thresholds for investment and disinvestment, with no investment undertaken
in between these thresholds. Even low levels of uncertainty and irreversibility
can lead these thresholds to be significantly spaced apart in relation to their
positions under complete certainty and costless reversibility, changing the optimal
investment behaviour of firms from being smooth and continuous to one that is
lumpy and frequently zero.

At first sight firm-level investment series appear too smooth to be consistent
with these models of investment under uncertainty. But in micro establishment-
level data, like the US Longitudinal Research Database (LRD) and the UK An-
nual Respondents’ Database (ARD), such lumpy investment with frequent zeros
is observed, particularly for smaller plants?. This suggests that observations with
zero investment at the firm level occur infrequently simply because of aggrega-
tion across multiple investment decisions. This is not surprising - firms are often
observed to operate multiple production lines, plants and subsidiaries, each em-
ploying many types of capital goods. If these processes are not perfectly correlated
due to idiosyncratic shocks and heterogeneous technologies then aggregation will

smooth away much of the lumpiness from a firm-level series for total investment.

1See Bertola (1988), Pindyck(1988) and Dixit and Pindyck (1994), for example.
2See Doms and Dunne (1998) for the US, Attanasio et al (2000) for the UK, and Anti Nilsen
and Schiantarelli (1998) for Norway.



Nevertheless uncertainty will still play an important role in determining firm-level
investment through its effects on the investment decisions for the individual types
of capital. This has been shown in a number of papers on macro investment and
consumption which demonstrate that aggregation does not diminish the effects of
lumpy micro level behaviour?.

We develop a theoretical approach which identifies some robust predictions on
firm-level investment dynamics which can be recovered after aggregation across
multiple capital inputs, and we test these predictions empirically using firm-level
panel data. Our main prediction is that uncertainty does play an important
role in determining the short run response of investment to changes in market
demand, whether or not uncertainty has any effect on the level of the capital stock
in the longer term. Higher levels of uncertainty increase the real option values
associated with investment and disinvestment and so make firms more cautious
in responding to changes in their market environment. The presence of (partial)
irreversibility and uncertainty also leads to non-linear investment dynamics with
an increasing marginal investment response to larger demand shocks. This is
potentially important because the dynamic response of firms to tax incentives
and interest rates will depend on the uncertainty in their environment and the
size of the stimulus. Since uncertainty and demand shocks have important cross
sectional and time series variability, this also provides a possible explanation for
the parameter instability within and across samples that has often been reported
in the context of empirical investment equations.

Since the modelling strategy of this paper is to derive robust predictions on

3See, for example, Caballero (1993) and Eberly (1994) on aggregation across consumer
durables, and Bertola and Caballero (1994), Caballero and Engel (1999), Cooper et al. (2000)
and Attanasio et al. (2000) on aggregation across plant level investment



firm-level investment behaviour, we avoid making strong assumptions about the
nature of production functions or the firm’s demand environment. Our underlying
model encompasses a wide class of production functions and stochastic processes,
and nests the standard Cobb-Douglas and Brownian motion assumptions found in
the investment literature. This generality does not lead to a closed form analytical
result but does provide a broad characterisation of investment behaviour. Using
this framework we also demonstrate an important result for our empirical investi-
gation - that a temporary increase in uncertainty increases the distance between
the investment and disinvestment thresholds.

We test these predictions empirically using firm-level panel data and GMM
estimates of dynamic investment equations. The firm level is attractive relative
to the plant level in that we observe useful measures of uncertainty, and relative
to the macro level in that we observe significant variation across firms in the
level of uncertainty. Our theory suggests that higher uncertainty will reduce
the response of firms to demand shocks. We add an additional interaction term
between uncertainty and sales growth to our firm-level investment equations to
test for this ‘caution effect’ of uncertainty and its role in generating time and
firm varying investment parameters. We find this interaction term to be highly
significant in our empirical analysis. In addition, we also include a quadratic
term in sales growth to test for the predicted non-linear response of investment
to demand shocks, and again find this to be highly significant. We also generate
an artificial panel by simulating our theoretical model, and confirm that these
theoretical predictions are detected by our estimation strategy applied to the

simulated data.



The plan of the paper is as follows. Section 2 introduces the standard single
line of capital model of investment under uncertainty and discusses the threshold
behaviour this implies. In section 2.2 this is generalised to a multiple capital goods
model with more general demand shocks. Section 2.3 introduces a new result on
the impact of a temporary increase in the level of uncertainty, which temporarily
increases the gap between the investment and disinvestment thresholds. Section
2.4 discusses aggregation over production plants to the level of total firm invest-
ment, and develops a second order approximation to the resulting investment
behaviour. Our empirical strategy is outlined in section 3 and our investigation
of the properties of this strategy using simulated data is discussed. Section 4
discusses the uncertainty measure and firm-level data, while section 5 reports our
main empirical results and evaluates the quantitative impact of uncertainty on
investment dynamics. Some concluding remarks are made in section 6. Technical

and data appendices then follow.
2. Modelling Investment Under Uncertainty

The literature on investment under uncertainty predicts threshold investment be-
haviour!. Abel and Eberly (1996) examine a model of partial irreversibility and
demonstrate that the solution to this can be fully characterized in terms of the
firm’s concentrated marginal revenue product of capital®, P1=¢K*~! - where P is

a demand term, K is capital and 0 < a < 1 - and its lower disinvestment and

4See, for example, Pindyck (1988) for fully irreversible continuous investment, Dixit (1989)
for partially irreversible discrete investment, Bertola and Caballero (1994) for investment with
stochastic demand and capital prices and Dixit and Pindyck (1994) for a general survey of the
literature.

5Labour and other inputs, which are assumed to be fully flexible in this model, have been
optimised out of the concentrated marginal revenue product of capital.



upper investment thresholds. These investment thresholds can be represented by
the standard Jorgensonian user cost of capital for buying and selling capital, b and
s respectively’, an investment real options term ¢; > 1, and a disinvestment real
options term ¢p > 1. Investment only takes place when the marginal revenue
product of capital hits the upper threshold and disinvestment only takes place
when it hits the lower threshold. This investment policy is summarized in Table

1 below:

Table 1: The threshold behaviour of investment
Invest if: PIeK1 > b x ¢

Do nothing if: | s/¢p < PIT*K*' < b x ¢;

Disinvest if: PlmeK=1 < 5/¢p

Firms will undertake sporadic bursts of investment to ensure their capital stock
stays between corresponding disinvestment and investment thresholds, with these
thresholds being functions of model parameters, such as the degree of uncertainty,
irreversibility, and also the current state of demand. Threshold investment and
consumption models of this type have already been successfully estimated on
a variety of data sets. For example, Caballero, Engel and Haltiwanger (1995),
Cooper, Haltiwanger and Power (1999) and Attanasio and Pacelli (2000) estimate
threshold investment models on US and UK plant level data, while Eberly (1994)
and Attanasio (2000) have estimated threshold models of durable consumption

using US car purchasing data’.

SEven under certainty the user cost for buying capital will be above the user cost for selling
capital in a partial irreversibility framework where the sale price of capital is assumed to be
below the purchase price.

"The non-convexities in these papers driving lumpy behaviour and zeros are generally fixed
costs rather than partial irreversibilities, which also lead to threshold investment behaviour.



2.1. A Multi Plant Model of Investment Under Uncertainty

Investment series for firms and large plants, however, appear to be too smooth
and lacking in zero investment observations to be directly consistent with the
basic form of the threshold model. Table 2a reports the frequency of zero in-
vestment episodes for annual firm-level data (our sample of quoted UK firms),
establishment-level data (a plant or multi-plant production facility from the UK
Census of Production), single plant establishment data, and small single plant
establishment data (less than 250 employees). There is a clear picture of more
frequent zero investment episodes for individual types of capital goods and less ag-
gregated production units. This suggests that aggregation across types of capital
goods, production units and production sites obscures the zero investment obser-
vations at the firm level, with this aggregation also present in the establishment-
level data. This is supported by Table 2b which displays the frequency of si-
multaneous investment and disinvestment (capital resale) activities at the firm,
establishment and plant level, which again is consistent with aggregation across

multiple types of capital even in individual production plants.

Table 2a: Zero Investment Episodes: Frequency ( %)

Buildings & Land | Plant, Machinery | Vehicles | Total
Firms 5.9 0.1 n.a. 0.1
Establishments (all plants) | 46.8 3.2 21.2 1.8
Single Plants 53.0 4.3 23.6 2.4
Small Single Plants 57.6 5.6 24.4 3.2

Table 2b: Simultaneous Investment & Disinvestment: Frequency (%)

Firms | Establishments (all plants)

Single Plants

Small Single Plants

99 48.0

28.2

23.3

Notes: Firm-level data (11,098 obs.) from Extel UK and Datastream. Establishment-
level data (46,089 obs.) from UK ARD Census of Production data (see Reduto dos Reis,
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1999). Single plants (20,907 obs.) are single plant establishments. Small single plants
(15,277 obs.) are those with less than 250 employees.

Given that firms invest in many kinds of capital goods and may have multiple
plants, we need to develop an approach which can deal with this aggregation.
This allows us to test for the predicted effects of uncertainty on investment using
firm-level panel data, which has a number of advantages, including the provision
of a wealth of financial variables, which are not available in establishment or
industry-level data. These allow us to control for financial factors such as cash
flow and debt. Firm-level data also provide a convenient proxy for uncertainty, in
the form of the volatility of the firm’s daily share returns, which can be measured
on a firm-year basis. The firm level is also often the focus of economic and
policy interest in investment, which provides another motivation for using firm-
level data. The empirical procedure we develop, however, could also be applied
to other aggregated data sets at the industry or macro level.

To deal with this aggregation we generalise the firm-level production function
to allow for N separate lines of capital. These lines of capital could be considered
as single production projects in separate locations, operating independently and
each employing a single capital input as, for example, in the standard model
discussed above. Alternatively these lines of capital might be part of a broader
production process employing multiple capital inputs, with operating decisions
taken at the more aggregated process level. To deal with this potential ambiguity
we define the ‘plant’ level to be “a production unit for which the solution of the

optimisation problem can be identically undertaken at the level of that unit or at



the level of the firm”®. For lines of capital which operate independently the plant
level will be equal to the line of capital level, whilst for lines of capital in multi-
line production processes the plant will be a larger more aggregated concept. This
definition simply allows us to separate the firm’s overall production and investment
decisions between its individual plants and then aggregate across these.
Production plants are assumed to be subject to productivity and demand
shocks which are (at least partly) idiosyncratic, whilst firm-level demand shocks
affect all plants within the firm. It will be seen that this results in two distinct

types of aggregation taking place:

1. Aggregation across related lines of capital within each production plant, and

2. Aggregation across separate production plants within the firm.

Modelling firm-level investment behaviour then involves a two stage process.
In the first step, undertaken in section (2.2), we characterise the nature of optimal
investment at the plant level. In the second step, undertaken in section (2.4),
we derive the implications for firm-level investment from our characterisation of

plant-level investment.
2.2. Optimal Plant-Level Investment Behaviour

The general class of plant-level models to which our predictions apply is defined

by assumptions (1) to (3) below:

8 An equivalent definition of plants could be made in terms of marginal separability. Plants are
defined so that their marginal revenue products of every line of capital employed are separable
from lines of capital in other plants. Firms may have between 1 and N plants. This definition
is not really restrictive, since all real-world plants can be considered as one model plant if this
separability is not satisfied. Allowing for multiple plants allows us to rationalise firms that
simultaneously invest and disinvest in our model.



1. The sales revenue function is continuously differentiable, jointly concave and
homogeneous of degree A in all lines of capital, where A < 1. Whilst A is
fixed for plants within the same firm it may vary between firms. Individual

lines of capital within each plant are supermodular in production®.

2. Adjustment costs are weakly convex and kinked at zero investment due to

partial irreversibilities.

3. The firm-level demand shock and the plant-level shocks have a multiplicative
impact on sales revenue and are generated by a stationary first order Markov
process'’.

These conditions encompass a general class of production functions and stochas-
tic processes, for example nesting the standard Cobb-Douglas and Brownian mo-
tion approach found in the investment and uncertainty literature and outlined
above. Since plants may operate using several types of capital we have to gen-
eralise our threshold investment rule from one type of capital to multiple capital
inputs. Eberly and Van Mieghem (1997) show that the investment policy of a
production plant with IV lines of capital satisfying conditions (1) to (3) will be of

a multi-dimensional threshold form as characterised in Table 3.

9Supermodularity is defined such that for a plant-level production function F (K1, Ko...K )
the marginal product of any individual line of capital is increasing in the other lines of capital
- that is 0F (K4, K...Kn) /0K, is increasing in Kj; j # 4. See also Dixit (1997).

W Gtationarity implies that this process does not depend on time whilst the first order Markov
property implies that only current information is needed for forecasting future demand.



Table 3: N dimensional threshold investment behaviour

For Lines of Capital i = 1,2,...N
Invest if: K, < K!

Do nothing if: | K; < K; < K”

Disinvest if: K; > KP

In the absence of depreciation, the most flexible line of capital with the lowest
adjustment cost would adjust first to a demand shock, so that its adjustment
cost will determine the width of the no-investment threshold for the plant as a
whole. Thus infrequently observed investment zeros at the plant level could be
consistent with some lines of capital being fully irreversible as long as other lines of
capital in the plant are relatively costless to adjust. In the presence of differential
depreciation rates this probability of observing zero investment may be even lower
since some lines of capital may be near their investment boundaries due to natural
depreciation drift.

Hence plant-level investment is smoothed by the aggregation over different
lines of capital even though investment in each line of capital may be lumpy and
frequently zero. This may explain the relatively smooth nature of investment
series with few zeros in establishment-level data such as the US LRD and UK
ARD. This aggregation provides one route for firm-level investment dynamics to
be smoothed relative to the familiar single project model, even for single plant
firms. Before considering aggregation over multiple plants to characterise total
firm investment in section (2.4), we first consider the effects of a temporary change

in uncertainty on these plant-level investment thresholds.
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2.3. Effects of Uncertainty and Changes in Uncertainty

In the case of a single capital input, Abel and Eberly (1996) show that a higher
level of uncertainty will be associated with a wider gap between the investment
and disinvestment thresholds. This comparative static result extends straight-
forwardly to the context of a plant with multiple capital inputs discussed above.
However to identify the effects of uncertainty on investment empirically we will
typically rely on measures of uncertainty that vary over time for the same firm.
Policy interest also centres on the effects of changes in the level of uncertainty. It
would therefore be useful to obtain a theoretical characterisation of the effect on
a firm’s investment policy of a change in the level of uncertainty that it faces. We
develop a new result, Proposition 1 below, which takes a step in this direction by
analysing the case of a temporary change in the level of uncertainty. In particular,
we consider the effects of a change in the distribution of demand shocks in the
current period, holding constant the distribution of demand shocks in all future
periods.

For the multiple lines of capital model outlined above in section (2.2), Propo-
sition 1 demonstrates that such a temporary increase in uncertainty leads to a
similarly temporary increase in the gap between the investment and disinvest-
ment thresholds. To do this we use a broader concept of uncertainty, second
order stochastic dominance, which can be defined by: “If the distribution Fa(P)
stochastically dominates Fg(P) then for any outcome Py from the dominating
distribution the outcome from the dominated distribution is equal to that plus a
mean preserving spread, so that Pg = P4 + ¢, where the random variable € has

mean zero and positive variance”. For the standard class of Brownian motion

11



models the definitions of second order dominance and variance are equivalent,
while for more general distributions second order dominance always implies lower

variance whilst the converse is often true although there can be exceptions'!.

Proposition 1: An increase in demand uncertainty, defined in terms of sec-
ond order stochastic dominance, in the current period, holding constant demand
uncertainty in all future periods, will weakly increase the gap between the disin-

vestment and investment thresholds for all lines of capital in the current period.

Proof: See Appendix A.

This is the caution effect whereby increases in uncertainty increase the proba-
bility of making expensive mistakes and lead the plant to pursue a more cautious

investment policy.
2.4. Firm-Level Investment Behaviour

Investment at the firm level will be the aggregate of investment in individual
lines of capital within each plant. Hence firm-level investment will depend on
the distribution of all lines of capital between their investment thresholds. To
analyse this further we first consider the firm’s positive investment expenditures.
First, we define F'(z) to be the cumulative density of capital within each firm'?
that would respond to a positive demand shock of size x > 0. This implies, for
example, that F'(0) = 0 because all lines of capital will be either on or below
their investment demand threshold and so will not respond to a size zero demand

shock. In contrast, F(Ap) = 1, for example, would imply that all lines of capital

UFor further results and details of stochastic dominance, see Rothschild and Stiglitz (1970).
12This can equivalently be defined at the proportion of all capital within each firm which
would respond to a positive demand shock of size z.

12



(and hence all capital) would start investing after a (presumably large) demand
shock of size Ap.

Second, we can define, dlog x(x, Ap) = «(x, Ap), the positive investment func-
tion for lines of capital at each point x of this cumulative density F'(z) in response

to a positive demand shock of size Ap > 0, as follows'

vz, Ap) > 0 if Ap>=x

vz, Ap) = 0 if Ap<zx

That is, ¢(x, Ap) is the change in the log of the capital stock for the lines of capital

that would just start to invest in response to a shock of size x, if they actually

face a shock of size Ap. The right hand side conditions follow from the definition

of x as the smallest demand shock required to move capital at that position up to

the investment threshold. This investment function will be increasing in the size
Ou(z,Ap)

of the demand shock so that “orp 2 0. For firms with multiple lines of capital

this investment function will also be convex (increasing at an increasing rate) due

to the assumed supermodularity of capital in production, so that azg(g’p?f ) > .

Combining these two definitions, and using the approximation that dlog K =

% where [ is total firm investment and K is the total capital stock, we can

characterize the firm’s investment rate given a demand shock of size Ap as'*

é: /0 sz, Ap)dF(x) 2.1)

13This investment function also depends on the whole distribution of capital F(.). So it could
be written out fully for a position « and shock Ap as ¢(z, Ap, F(.)). However, since this reliance
on the whole distribution F(.) does not affect the discussion of our main results, we use the
abbreviated form ¢(z, Ap) to simplify our notation.

14This can be justified by defining the firm level investment rate % to be the capital weighted
average (using F'(x)) of the investment rate of each individual line of capital.

13



Without imposing additional restrictions on the production function and the
stochastic demand and productivity processes this investment function has no
closed form analytic solution. But for the general class of investment problems
defined by conditions (1) to (3) in section (2.2) we can derive predictions about
firm-level investment dynamics from a second order Taylor expansion of invest-

ment around uncertainty and the demand shock.
2.4.1. Short Run Dynamics

We first consider the short run response of firm-level investment to demand shocks
and changes in the level of uncertainty. In particular we can characterise the
sign of these responses. To derive these empirical implications we take a Taylor
expansion of investment defined in (2.1) in terms of firm-level demand shocks and
uncertainty.

The first derivative of positive investment with respect to a demand shock is

positive reflecting the impact on lines of capital already at the investment margin

8%/8Ap - /0 prTﬁmdF(m) (2.2)

> 0

The second derivative of positive investment with respect to a demand shock is

also positive,

du(zx, Ap)

—onp le=apdF'(Ap)  (2.3)

o 1 2 A 8%(9@, AP)
0=/ (0Ap) = /0 e ar (@) +

> 0

because the first term is non-negative by the assumed supermodularity of different

lines of capital in production and the second term is non-negative by the non-

14



decreasing nature of cumulative distribution functions. Thus the firm’s investment
rate is an increasing and convex function of the demand shock.

The first derivative of positive investment with respect to a temporary increase
in uncertainty will be negative. This is because, as Proposition 1 notes, higher
uncertainty increases the real option value associated with investment and raises
the investment threshold. So with higher uncertainty the new investment function,
! (z, Ap), defined according to the old distribution of capital F'(z), will be less than
the old investment function, so that ¢/(z, Ap) < «(z, Ap). Hence we can write,

Ap 7 _
aé/aa _ lim Uz, Ap) — u(x, Ap)

do—0 0 do

dF (zx) (2.4)

< 0

where the second line follows because limits preserve weak inequalities!®.

Finally, considering the cross product term in the Taylor expansion we see
that the cross effect of a positive demand shock and a temporary increase in
uncertainty on positive investment is negative. This is because higher levels of
uncertainty raise the investment threshold leading to less lines of capital investing.
This reduces the investment response for all lines of capital that are investing
due to the supermodularity of capital in production, so that 9i/(x, Ap)/0Ap <
Ou(z, Ap)/OAp. Combining this relationship and (2.4) we can state that

AP 9 (xz, Ap) JOAp — Oulx, Ap)/OAp
e dF(z) (2.5)

82é /O0ocOAp = lim

do—0 0
< 0

15 Proposition 1 refers to the increase in the gap between the investment and disinvestment
thresholds in terms of a stochastic dominance relationship between two distributions, rather than
in terms of a continuous function of uncertainty. So this derivative should be interpreted as a
Radon-Nikodym functional derivative on the probability space of demand distributions, rather
than the usual calculus concept. However, to avoid unnecessary notation and complexity, and
because this does not affect the empirical interpretation of this derivative, we will not elaborate
any further on this point but refer the interested reader instead to Bartle (1966).

15



where the second line again follows by the preservation of weak inequalities in the
limit.

Thus far we have only considered the effects on positive investment expen-
ditures. Deriving the corresponding results from the equivalent expansion for
disinvestment uses a similar approach and a summary of both sets of results is

presented in Table 4 below.

Table 4: The Short Run Sign of Demand Shocks (Ap) and

Uncertainty (o) on Investment

Taylor Expansion Terms Ap Ap? oAp o
8%/8Ap 02%/8Ap2 82%/000Ap 8%/80

Positive Investment + + - _

Disinvestment + - - T

As we saw in Table 2b, almost all observations on total firm-level investment in
our data cover firms that are simultaneously investing and disinvesting. The total
investment series we model measures gross investment expenditures net of sales
of capital goods. Thus only the direct demand shock term and the uncertainty-
demand shock interaction term have an unambiguous prediction on measured
investment dynamics. A positive demand shock should result in more investment
(or less disinvestment), and a higher level of uncertainty should reduce the re-
sponse of investment (or disinvestment) to a given demand shock. For this reason
we focus on testing these predictions in our empirical investigation. In princi-
ple, the short run signs of accelerating demand and the level of uncertainty on
measured investment dynamics are ambiguous. However, because of the effects

of positive sales growth and capital depreciation, the vast majority of the total

16



investment observations are positive in our firm-level data set (about 96% of ob-
servations). We would thus expect the short run effects of accelerating demand
and higher uncertainty to be positive and negative respectively, consistent with

the predictions for firms engaging in positive investment.
2.4.2. Long Run Effects

To investigate these predictions about the short run investment dynamics empir-
ically, we need to control for longer run influences on the firm’s capital stock. To
do this we exploit the results of Bloom (2000a) which demonstrate that the long
run growth rates of the firm’s actual capital stock, K3, and its hypothetical level
under costless reversibility, K/, will be equal, so that their levels will be cointe-
grated. Thus, the long run behaviour of the actual capital stock under partial
wrreversibility can be modelled using its much simpler hypothetical value under

complete reversibility plus a stationary deviation
log K; =log K} + e, (2.6)

where e; is a stationary, autocorrelated error term bounded by the distance be-
tween the disinvestment and investment thresholds.

Notice that this does not imply that the actual capital stock and its hypo-
thetical reversible level will be equal on average - there is no requirement for the
deviation e; to be mean zero. Similarly this result does not rule out any particular
long run relationship between uncertainty and the level of the capital stock. As
has been stressed by Abel and Eberly (1995) and Caballero (1999), among others,
the impact of higher uncertainty on the average capital stock level in the long

run is theoretically ambiguous in models with partial irreversibility, since higher

17



uncertainty retards downward as well as upward adjustments. For this reason
we allow for the possibility of long run effects of uncertainty on the level of the
capital stock, as well as the predicted effects on short run investment dynamics,

in our empirical specification.
3. Empirical Specification

Since the distribution of projects between their disinvestment and investment
thresholds is dependent on the past history of demand shocks, the empirical dy-
namics of investment will be rich and persistent. A convenient starting point for
our empirical specification is an error correction model, which separates parame-
ters describing the short run investment dynamics from those describing the long
run evolution of the capital stock!®. Linear error correction models have been
used in the aggregate investment literature by, for example, Bean (1981), and in
the micro investment literature by Bond et al (1999).

The basic error correction model has the form

Iy
Kia

~ Alog K; = ap+ai(L)Alog Ky_1+as(L)Alog K} +as (log K, ,—log Kt_s)—H)t
(3.1)

where a; (L) and ay(L) are polynomials in the lag operator (L). This is consistent,

for example, with an ARMA approximation to the stationary error term in (2.6).

Since the consistency of the Generalised Method of Moments (GMM) estimator

16Tt should be noted that a Q investment model, by assuming perfect competition and con-
stant returns, assumes away any role for real options from the outset. Hence, while Abel and
Eberly’s (1994) generalisation of the QQ model can be used to test for the presence of non-convex
adjustment costs, because it assumes perfect competition and constant returns to scale, it rules
out any real options effects by construction. In a similar manner the standard investment Euler
equation, which does not permit the type of kinked adjustment costs that arises from partial
irreversibility, also assumes away any role for real options from the outset.

18



we use depends on orthogonality between the residual error term (v;) and a set of
suitably lagged instruments, our empirical dynamic specification is selected with
this criterion in mind.

Our specification for firm i’s hypothetical capital stock under complete re-

versibility has the simple log-linear form

Ci
log K, = log Yy +v0u + 7 (K ! ) + A; + By (3.2)
i1

where Yj; is firm i’s sales in period t, oy is a measure of uncertainty,(%) is
cash flow scaled by the previous period’s capital stock, A; is an (unobserved)
firm-specific effect and B; is a time-specific effect, common to all firms.

For the baseline case in which v; = v, = 0, Proposition 2 below shows that

this expression for the desired capital stock is consistent with our general model

with multiple capital goods.

Proposition 2: The log of the capital stock under complete reversibility is

equal to the log of sales plus a bounded term Z;;, so that we can write

log K7, = log Yy + Zy (3.3)

Proof: See Appendix A

Allowing for time effects in (3.2) controls for variation in costs of capital to
the extent that these are common to all firms. Firm effects allow for variation
across firms in the elasticity of demand, and for some firm variation in relative
prices. The uncertainty term allows for a possible long-run effect of uncertainty on

the firm’s capital-sales ratio. The cash flow term allows for possible effects from
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liquidity constraints (cf. Fazzari, Hubbard and Petersen (1988)) or managers
over-investing free cash flow (cf. Jensen (1986)). Whilst this is not our main
interest in this analysis, many previous studies have found cash flow terms to be
significant in reduced form investment equations. We therefore follow Guiso and
Parigi (1999) in including such terms so as not to mistake uncertainty effects for
omitted cash flow effects. We also found that the inclusion of cash flow terms was
important for the validity of the orthogonality conditions we use in estimation.
Combining equations (3.1) and (3.2) gives a linear error correction model re-
lating the current investment rate to lagged investment rates, current and lagged
changes in sales, uncertainty and cash flow, and a lagged error correction term.
We include additional interaction terms between uncertainty and sales growth,
and powers of sales growth, in order to test for the heterogeneous and non-linear
investment dynamics predicted by our theoretical model. Starting from a more

general specification, exclusion of insignificant terms led to our basic model

I; C;
= 1Ay + 5o (Ayz't)2 + O3 (0itAyi) + Baloy + BsA !
K K

Cit—l
Kito

+06(y — k)ir—1 + Broii—1 + Bs + b+ a; + ug (3.4)

where k;; = log Kz and y; = logYj;;. The first four terms correspond to the
influences on short run investment dynamics analysed in section (2.4.1). Our
theoretical analysis predicts that 4; > 0 and (33 < 0, whilst it is likely that G, > 0
and 3, < 0 given that our sample is dominated by firms with positive investment.
We require G > 0 for the estimated model to be consistent with ‘error correcting’
behaviour (i.e. a capital stock below its desired level to be followed eventually by
upward adjustment), whilst the long run effect of uncertainty on the level of the

capital-sales ratio (/3;) is theoretically ambiguous.
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Whilst the inclusion of squared sales growth and the uncertainty interaction
term in this model tests the null hypothesis of a common, linear error correc-
tion specification against the non-linear and heterogeneous investment dynamics
predicted by our theoretical analysis, it is nevertheless likely that the actual in-
vestment dynamics under the alternative would be more heterogeneous across
both firms and time than this common parameters specification permits. Unfor-
tunately, it is not possible to allow for arbitrary heterogeneity in slope coefficients
in models with predetermined and endogenous covariates. At one level we can
consider the included dynamics in (3.4) to be removing a common component
of the deviation term (e;) from the long run specification (2.6). Provided the
residual component (u;;) is orthogonal to our instruments, this would in principle
allow us to identify common long run parameters of the specification for log K}.
However it should be noted that the status of the estimated short run dynamics
under the alternative is less clear.

To confirm that our empirical test does have power to detect the short run
dynamics implied by our theoretical model, Appendix C reports the results of ap-
plying this test using simulated data generated by a partial irreversibility model
of the type analysed in section 2. These simulations indicate that the short run
dynamics predicted in section (2.4) would be detected by this empirical analysis if
the data were indeed generated by a model of this type. In particular, estimating
a non-linear error correction model on the generated data, we find that the coef-
ficient on the squared sales growth term (Ay;)? is significantly positive, and the
coefficient on an uncertainty interaction term (o;Ay;) is significantly negative.

Moreover, the inclusion of a linear error correction term (y — k);,—; appears to be
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sufficient to control for the serial correlation found in static specifications, so that
the estimated equation does not fail the serial correlation test or Sargan-Hansen
test of overidentifying restrictions in samples of this size.

Estimation uses the system GMM estimator for dynamic panel data (see Blun-
dell and Bond, 1998) which extends the standard moment conditions in the first-
differenced GMM estimator subject to additional (testable) initial condition re-
strictions. The system estimator combines equations in first-differences, from
which the firm-specific effects are eliminated by the transformation; and equations
in levels, for which the instruments used must be orthogonal to the unobserved
firm-specific effects. The overidentifying restrictions are tested using a Sargan-
Hansen statistic, and residual serial correlation tests are reported. A goodness
of fit measure for our models is also provided, which is the squared correlation
between the predicted level of the investment rate and the actual investment rate.
This squared correlation between the actual and predicted variables is equivalent
to the standard R? for OLS regressions and has been suggested as a goodness of

fit measure for IV regressions (see for example Windmeijer (1995)).

4. Data

4.1. The Measurement of Uncertainty

Although the model developed above discusses the response of investment to de-
mand and productivity shocks, the notion of uncertainty we have in mind is much
broader in scope. In reality firms will be uncertain about future prices, wages
rates, exchange rates, technologies, consumer tastes and government policies. In
an attempt to capture all factors in one scalar proxy for firm-level uncertainty,

we follow Leahy and Whited (1998) in using the standard deviation of the firm’s
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daily stock returns, adjusted for gearing, denoted o;;. This measure includes on a
daily returns basis the capital gain on the stock, dividend payments, rights issues,
and stock dilutions. Such a returns measure provides a forward looking proxy for
the volatility of the firm’s environment which is implicitly weighted in accordance
with the impact of these variables on profits'”.

A stock returns-based measure of uncertainty is also advantageous because the
data is accurately reported at a sufficiently high frequency to use an annual mea-
sure. When using homoskedastic diffusion processes the variance of the sample
variance is inversely related to the sampling frequency. Our sampling frequency
of about 265 recordings a year therefore suggests low sample variance'®. A disad-
vantage of using this measure is that the variability in stock market returns may
not truly reflect fundamentals. Guiso and Parigi (1999), for example, use the vari-
ance implied by mangers’ expected distributions of future variables, which they
construct from a special survey. The results which we find below are qualitatively
similar to theirs, even though we use different measures of uncertainty and, unlike
them, we have panel data rather than a single cross section.

In the time series dimension (see Figure 1) there is a spike in uncertainty in
1975 around the time of the first OPEC oil shock. There is as another peak
in 1988 when annual measures are affected by the October 1987 stock market

crash. In common with Davis and Haltiwanger (1992) we also find that these

1"To allow for possible effects of market-wide bubbles and fads we also calculated a second
measure of uncertainty, using the standard deviation of the firm’s daily share returns normalized
by the return on the FTSE All-Share index. Results using this normalized measure were very
similar to those reported below, and are available on request from the authors. We also obtained
qualitatively similar results whether we used the standard deviation or the variance as our
measure of uncertainty

18For example, Andersen and Bollerslev (1998) use high frequency exchange rate data with
288 recordings per period and calculate that the implied measurement errors are less than 2.5%
of the true volatility.
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macro sources of uncertainty are less important than firm-specific idiosyncratic
shocks. For example, in our data only 17% of the variance of our uncertainty
measure is accounted for by macro shocks. Of the residual about half is permanent

idiosyncratic differences between firms and half is transitory idiosyncratic shocks.

[FIGURE 1 ABOUT HERE]

4.2. Investment and Other Accounting Data

The company data is taken from Datastream and consists of 672 manufacturing
companies quoted on the UK stock market from 1972 to 1991. Investment in fixed
capital assets is measured net of revenue from asset sales, which may nevertheless
under record the value of disinvestment. Our capital stock measure is derived
from the book value of the firm’s stock of net fixed assets, using the investment
data in a standard perpetual inventory formula. Real sales are deflated using the
aggregate GDP deflator. Cash flow is reported post-tax earnings plus deprecia-

tion deductions. Appendix B provides further details and Table 5 reports some

summary statistics for the sample.

Table 5: Descriptive Statistics of 672 firms, 6019 observations

mean | median | standard deviation min. | max.
total | within | betwn

(I;/K;—1) (investment rate) | 0.128 | 0.093 | 0.13 | 0.11 0.10 |-0.11|1.21
Ay, (log real sales growth) | 0.031 | 0.026 | 0.16 0.14 0.09 |-0.79 | 1.22
oy (s.d. of share returns) 1.56 | 1.41 0.68 0.53 0.47 | 0.01 |5.00
(Cy/ K1) (cash flow term) | 0.18 | 0.140 0.16 0.09 0.17 -0.09 | 1.96
Employment 8,400 | 1,481 24,492 | 8,461 | 19,450 | 26 21,200
Observations per firm 11.3 |11 4.7 0 4.7 3 20
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As a preliminary step we present some basic descriptive regressions in Table 6.
There is a strong negative correlation between investment rates and our measure
of uncertainty which is illustrated in column (1). Column (2) then includes the
growth of sales and its interaction with uncertainty. It is the latter variable which
is key for our theoretical results. There is a standard accelerator effect of sales but,
more importantly, the coefficient on sales growth is significantly lower for firms
with more volatile share returns. In the final column we condition on cash flow as
an additional regressor, which is highly significant. The interaction of sales growth
with uncertainty remains negative and significant. The linear effect of uncertainty
now reverses sign and is insignificant at conventional levels. Although these results
do not control for endogeneity and firm-specific effects, it is interesting that our

key theoretical prediction is consistent with the raw data.

Table 6: Descriptive Investment Regressions

L/ K1) (1) (2) (3)

Uncertainty (o) -0.015 | -0.005 | 0.003
(0.003) | (0.002) | (0.002)

Sales Growth (Ay,) 0.453 | 0.338
(0.025) | (0.023)

Uncert. xSales Growth (o, * Ay;) -0.033 | -0.035
(0.013) | (0.012)

Cash Flow (C,/K;_1) 0.381
(0.011)

NOTES:- Estimation by OLS levels, 6019 observations.
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5. Econometric Results

Table 7 contains our main econometric results estimated by GMM!. The first
column contains a basic linear error correction model augmented to include cash
flow variables. The error correction term is correctly signed and of a similar mag-
nitude to others in the literature (e.g. Bond, Harhoff and Van Reenen, 1999).
Current sales growth and both the level and the change in the cash flow variable
are also significant determinants of investment. The second column adds in a
non-linear term in squared sales growth which is positive and highly significant,
consistent with our theoretical prediction, and noticeably improves the fit of the
model. The third column includes our uncertainty variables - the change in un-
certainty, the lagged level of uncertainty, and the interaction between uncertainty
and sales growth. The level of uncertainty is negative but insignificant, which
is consistent with the ambiguous effect of uncertainty on the level of the capital
stock in the long run, discussed in section (2.4.2). The change in uncertainty is
negative and weakly significant at the 10% level, which is consistent with the pre-
dicted short run effect of higher uncertainty on investment for positive investment
firms. More importantly the interaction term is negative and significant at the
5% level, which is again consistent with the prediction of our analysis in section
(2.4.1). In Column (4) we drop the level uncertainty term and find that while the
interaction term remains strongly significant, the change in uncertainty becomes
insignificant. Column (5) reports our final preferred specification which includes

our key term, the interaction between uncertainty and sales growth? . This vari-

9The instrument set used is detailed in the Notes to the Table. Our main results are highly
robust to a range of alternative instrument sets

20A joint test on the exclusion of the level and change in uncertianty terms from the specifi-
cation in column (3) does not reject this restriction (p-value = 0.17).
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able is negative and significant at the 5% level, consistent with our prediction that
uncertainty reduces the firm’s responsiveness to demand shocks.

Table 8 probes the results further to investigate where we are achieving iden-
tification of the uncertainty interaction term. We decompose the uncertainty
measure into three components - a common macroeconomic factor (7;), a time-
invariant firm specific factor (7;) and a within-firm within-year residual compo-
nent (;; = 05y —0; —0¢). Interestingly, it is the interactions with the firm specific
components (especially 7;;) which are most informative. The aggregate uncer-
tainty interaction is the least informative, being perversely signed in the first
column and always insignificantly different from zero. This may explain why it
has proved hard to identify significant effects of uncertainty using macroeconomic
data. It is only by exploiting the micro data that we observe sufficient variation
in our measure of uncertainty to be able to identify the effect of uncertainty in

retarding the firm’s responsiveness to shocks.
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Table 7: Uncertainty and Investment

Dependent Variable (I;/K; 1) (1) (2) (3) (4) (5)
Sales Growth (Ay) 0.255 | 0.151 | 0.382 | 0.400 | 0.413
(0.018) | (0.059) | (0.136) | (0.139) | (0.139)
Change in Cash Flow (AC;/K;—1) 0.160 0.263 0.260 0.255 0.272
(0.038) | (0.132) | (0.124) | (0.126) | (0.125)
Lagged Cash Flow (Ci_1/K;_2) 0.482 | 0.532 | 0.533 | 0.543 | 0.544
(0.029) | (0.109) | (0.103) | (0.103) | (0.102)
Error Correction Term (y — k);—1 0.049 | 0.056 | 0.054 | 0.054 | 0.053
(0.010) | (0.029) | (0.026) | (0.026) | (0.026)
Sales Growth Sqrd. (Ay, * Ay) 0.481 | 0.512 | 0.494 | 0.500
(0.175) | (0.152) | (0.150) | (0.151)
Change in Uncertainty (Aoy) -0.023 | -0.012
(0.012) | (0.008)
Lagged Uncertainty (o; 1) -0.015
(0.011)
Uncert. xSales Growth (o * Ayy) -0.162 | -0.165 | -0.167
(0.067) | (0.068) | (0.068)
Goodness of Fit - Corr.(I/K,I/K)? | 0.259 | 0.287 | 0.285 | 0285 0.307
2nd order serial correlation (p) 0.048 | 0.102 | 0.069 | 0.078 | 0.091
Sargan (p) 0.510 0.709 0.699 0.629 0.560

NOTES:- The total number of observations (for all columns) is 5347, on a sample

period of 1973 to 1991, with 672 firms.

A full set of time dummies is included in

every specification. Estimation uses a GMM System estimator (see Blundell and Bond,
1998) calculated with DPD98 for Gauss (see Arellano and Bond, 1998). We report
one step coefficient estimates with heteroskedasticity-consistent standard errors. The
instruments used for columns (3) to (5) in the first-differenced equations are lags two

and three of the variables: (%)t_Q and (%)t_g, Ay;_o and Ay;_3, (y— k)¢9 and (y —

k)i s, (%ﬁi) and <§Z:i), and 0;_9, 0y_3 and 0;_4; the instruments used in the levels
o AAY 1, A (%:;) ,AA(y — k)1 and Acy_1. Columns (1)
and (2) use this instrument set but with the uncertainty variables excluded. Instrument
validity is tested using a Sargan-Hansen test of the overidentifying restrictions for the
two step GMM estimator. The test for no second order serial correlation in the first-
differenced residuals is also reported.

equations are A (%)
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Table 8: Separating Time, Firm and Residual Variation in

Uncertainty

Dependent Variable (I;/K; 1) (1) (2) (3) (4)
Sales Growth (Ay) 0.127 0.141 0.474 0.499
(0.052) | (0.053) | (0.182) | (0.184)

Change in Cash Flow (AC;/K;_1) 0.270 | 0.263 | 0.287 | 0.280
(0.124) | (0.127) | (0.122) | (0.124)

Lagged Cash Flow (C; 1/ K; ») 0.531 0.533 0.551 0.553
(0.101) | (0.103) | (0.100) | (0.101)

Error Correction Term (y — k); 4 0.054 0.056 0.047 0.049
(0.027) | (0.027) | (0.026) | (0.026)
Sales Growth Squared (Ay; * Ay,) 0.497 | 0.507 | 0.534 | 0.537
(0.170) | (0.157) | (0.148) | (0.162)
Time Uncert.x Sales Growth (7;)*(Ay;) 0.016 -0.051
(0.150) (0.135)
Firm Uncert. xSales Growth (7;)*(Ay,) -0.130 -0.136
(0.105) (0.107)
Resid. Uncert.xSales Growth (o;; — 7; — 7 )*(Ay) -0.225 | -0.230
(0.102) | (0.103)

Goodness of Fit - Corr.(I/K,I/K)? 0.307 | 0.298 0.311 | 0.288

2nd order serial correlation (p) 0.096 | 0.094 0.132 | 0.106

Sargan (p) 0.399 | 0.490 0.383 | 0.452

NOTES:- The total number of observations (for all columns) is 5347, on a sample
period of 1973 to 1991, with 672 firms. A full set of time dummies is included in
every specification. Estimation uses a GMM System estimator (see Blundell and Bond,
1998) calculated with DPD98 for Gauss (see Arellano and Bond, 1998). We report
one step coefficient estimates with heteroskedasticity-consistent standard errors. The
instruments used in the first-differenced equations are lags two and three of the variables:

Cy_ Cy_
(%)t—z and (%)1%3’ Ay o and Ay, 3, (Y—k)¢ o and (y—k);_s, (Ki_i) and (Ki_i)’
and 0y_9, 0;_3 and 0;_4; the instruments used in the levels equations are A (%)t—l’
AAy_1, A (C"l) JAA(y — k)i—o and Aoy_;. Instrument validity is tested using a

K o
Sargan-Hansen test of the overidentifying restrictions for the two step GMM estimator.
The test for no second order serial correlation in the first-differenced residuals is also
reported.
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We have conducted many robustness tests on these results, some of which we
now report. First, cash flow has no strong theoretical justification for being in-
cluded in these models. Unfortunately, omitting the cash flow terms resulted in
evidence of empirical mis-specification. Dropping both cash flow terms from the
specification in column (5) of Table 7 caused the Sargan test to reject the overi-
dentifying restrictions (p-value = 0.010) and produced significant second order
serial correlation in the first-differenced residuals (p-value 0.049). Nevertheless,
the interaction of uncertainty and sales growth was still found to be negative and
significant in this specification, with a point estimate of -0.142 and a standard
error of 0.065.

Secondly, we experimented with a range of additional non-linear and interac-
tion terms, none of which were found to be statistically significant in our sample?!.

Thirdly, an implication of real options theory stressed by Guiso and Parigi
(1999) is that the effect of uncertainty should be stronger for firms with more
market power. We investigated whether the interaction term was stronger for
firms in industries where market power is likely to be stronger (as proxied by
concentration, trade barriers, etc.). We found no evidence that this was the case,
although it could be that our industry-level proxies are not good measures of the
firm’s market power.

Finally, we constructed an alternative measure of uncertainty after normalising
the firm’s stock returns by the return on the FTSE All Share index for the same
day. This measure gave somewhat more precise coefficient estimates than our

basic results, presumably because some of the general stock market noise has been

21 For example, we included interactions of uncertainty with squared sales growth, cash flow
and the error correction term. The joint Wald test gave a x?(3)= 4.42 with a p-value of 0.219.
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removed from the measure of uncertainty. For example, in the specification which
corresponds to column (5) of Table 7, the coefficient on the uncertainty interaction
term rises to -0.196 with a standard error of 0.074. All these additional results

are available from the authors on request.

5.1. Evaluation of the Quantitative Impact of Uncertainty on Invest-
ment Dynamics

The results suggest an important role for uncertainty in retarding the respon-
siveness of investment to demand shocks. We conducted some simple simulations
where we increased sales in the firm permanently by 2.5%, 5% and 10%. We
then tracked the path of investment and capital predicted by our preferred em-
pirical specification as the firm responds to this shock. Our model suggests that
firms with high uncertainty will respond more slowly to this shock than firms
with low uncertainty. Consequently we examined the half life of the capital stock
adjustment (how many years it takes the firm to get half-way towards its new
long-run capital stock level) at different percentiles of the empirical uncertainty

distribution (10th, 25th, 50th, 75th and 90th). Table 9 contains the results.

Table 9: Investment Half Lives in response to a 2.5%, 5% and 10%

shock to demand, by uncertainty percentiles

107 (0 = 0.84) | 25" (o = 1.08) | 50™ (0 = 1.41) | 75" (o = 1.89) | 90" (o = 2.46)
2.5% | 8 9 10 11 13
5% |8 9 10 11 12
10% | 7 8 9 11 12

The exact size of the shock makes relatively little difference to the results. For

the smallest shock, moving from the 25th to the 75th percentile of the uncertainty
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distribution increases the half life by two years. This is the order of magnitude
by which our measure of aggregate uncertainty increased between 1973 and 1975,
a very large change by historical standards. This is illustrated in more detail in
Figures 2 and 3, which track the paths of investment and the capital stock over a

ten year period in response to a 2.5% demand shock.

[FIGURES 2 & 3 ABOUT HERE]

The largest effects of different levels of uncertainty are manifest in the first
year. So uncertainty is quantitatively important in retarding the investment re-
sponse, but these effects are not large.

A second gauge of the importance of uncertainty and irreversibility is provided
by comparing the gain in the goodness of fit of our preferred investment model
in column (5) of Table 7, which includes the uncertainty interaction term and the
squared sales growth term, in comparison to the more standard linear specification
in column (1) of Table 7. To do this we calculate a year-by-year correlation
between actual and predicted investment rates for both our preferred specification
and the standard model. We take these two annual goodness of fit series and
plot their annual difference in Figure 4 (left axis), as a time varying indicator of
the improvement in fit from accounting for the effects of uncertainty and partial
irreversibility on short run investment dynamics. In Figure 4 (right axis) we
also plot the yearly average rate of change of sales growth as an indicator of the
turning points in the business cycle. Turning points in the business cycle should
be highlighted by rapid changes in the rate of sales growth as growth rates slow

down going into recession or speed up heading into a boom.
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[FIGURES 4 ABOUT HERE]

It can be seen from Figure 4 that the improvement in fit tracks the positive
turning points of the business cycles (correlation of 0.564), with large improve-
ments evident in the late 1970s as the UK was recovering from the first oil shock,
and again in the early 1980s when the UK was recovering from the monetarist
experiment and the second oil shock. Interestingly this parallels the results of
Caballero et al. (1995) and Cooper et al. (1999) who report that taking into
account the non-linearities induced by fixed costs of investment leads to an im-
provement in investment fit most notably around turning points in the investment
cycle??. This suggests that accounting for the non-linearities induced by partial

irreversibility will be most important in periods of large investment fluctuations.
6. Conclusions

In this paper we have presented a theoretical framework for analysing firm-level
investment under uncertainty. We characterise the problem as one where a firm
has multiple projects (‘plants’ or ‘lines of capital’). Under fairly general conditions
over the production function and the distribution of the demand shocks facing the
firm we approximate the aggregate firm-level investment dynamics to a second
order. We emphasise a neglected theoretical implication of real options theory.
Firms facing increased uncertainty should be more cautious - they should exhibit

a lower responsiveness of investment to demand shocks than firms subject to less

22The estimation approach of both papers differs from ours in that they estimate investment
models at the plant level and track the cross sectional distribution of plant level investment to
model aggregate investment.
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uncertainty. This approach also predicts a non-linear response of firm investment
to demand shocks.

We test these predictions using a panel of 672 UK manufacturing firms between
1973 and 1991. Using a measure of uncertainty based on the daily stock market
returns of our firms, we estimate non-linear error correction models of investment.
The key implication of the theory is supported by the data, with a significantly
lower response of investment to sales growth when uncertainty is high. This
is robust to a number of experiments and primarily related to the firm-specific
components of uncertainty rather than to general macroeconomic uncertainty.
This may explain why it is difficult to detect these important effects in the macro
data. We also find significant non-linearity in the investment dynamics, with a
convex relationship between investment rates and sales growth, as predicted by
our theoretical analysis. As a secondary result, we find no significant evidence of
any effect of our uncertainty measures on the level of the capital stock in the long
run. This finding is also quite consistent with our theoretical framework.

This work is of course only a first step. The implications for short run in-
vestment dynamics also apply to more broadly defined investment goods, such as
R&D and the development of information technology, which are clearly subject to
considerable irreversibilities and uncertainty. More broadly, the hiring and train-
ing of labour could also be regarded as an investment process and would naturally
be included as another type of ‘capital’ good in our general class of production
functions. Investigating the importance of uncertainty for employment adjust-
ment and the interrelationship between threshold behaviour for different inputs

should be high on the agenda of future research.

34



Appendix A

Proof of Proposition 1

Consider a firm which is thinking about undertaking a marginal investment.
One way of formulating its decision is in terms of its choice over investing a unit of
capital today versus waiting until next period. Let the firm’s one period marginal
revenue of capital be denoted by Ry (K, P)At where At is the length of the period,
K is the current capital stock, P is the current level of market demand, and B is
the price of a unit of capital. Let the firm’s value function be denoted V (K, P),
and its one period discount rate be denoted v = exp(—rAt). We examine the
impact of a change in the distribution of demand shocks in the current period
on its investment thresholds in the current period?®. Since all future demand
distributions are held constant the functional form of next period’s continuation
value function will be unaffected. This allows us to use the Bellman equation to
examine the impact of temporary changes in demand distributions on the current
investment thresholds while holding the future investment policy constant.

If the firm’s optimisation problem satisfies assumptions (1) to (3) in section
(2.2), then from Eberly and Van Mieghem (1997) the optimal investment strategy
for each line of capital can be characterised by the investment and disinvestment
demand triggers U and L. For a level of demand just below the current investment
threshold U*, which is a function of the distribution of current demand shocks,
we can model the return from a marginal investment for each line of capital in

terms of investing this period versus investing next period:

23The timing assumptions are that the firm invests then experiences a demand shock each
period.
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Investment This Period: Rk (K, P)At — B + ”y/ Vk(K,P)dF(P)  (6.1)

—00

[e.°]

Investment Next Period: 7/ (Vk (K, P)— B)dF(P) (6.2)
U

where the integral is taken with respect to F/(P), the cumulative probability distri-
bution of current demand shocks. At the investment margin U* these two returns
will be equal and we can combine them to write:
U
Ric(K,U") At — B(1 — ) — 7/ (B—Vi(K, P))dF(P) =0 (63)
This first two terms can be interpreted as the marginal returns to investment
in the current period, Ry (K, U*)At, less the cost of capital B(1 — ) on paying
for investment this period rather than next period. The last term, ~ ffjoo(B —
Vi (K, P))dF(P), is equal to the value of a put option on a marginal investment
next period with a strike price of B. Since the value of this put option must be
positive, and the marginal revenue product is concave, the investment threshold
this period will be above its reversible level.
Similarly we can also frame the marginal disinvestment decision at the current
lower trigger L* in terms of disinvesting this period versus for a capital resale

price of S versus waiting until next period

Disinvestment This Period: S (6.4)

o

L

Disinvestment Next Period: Rk (K, P)At+7/ SdF(P)—l—V/ Vk(K, P)dF(P)
—o0 L

(6.5)
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At this period’s disinvestment margin L* these two returns will be equal and we

can write

Ric(K, L)AL — S(1 — ) +4 / (Vie(K, P) — S)AF(P) =0 (6.6

L
This firm two terms can be interpreted as the one period marginal returns to delay-
ing the disinvestment decision one period, whilst the last term, 7 [ LOO (Vk(K, P) —
S)dF(P), is equal to the value of a call option on a marginal disinvestment next
period with a strike price of S. Since the value of this call option must be positive
the disinvestment threshold will be below its reversible level.
In proceeding we will use the following notation G(P) = [ foo (Fp(X)—Fa(X))dX

to simplify exposition. It can be shown that an equivalent definition of second

order stochastic dominance®* of Fy over Fj is that G(P) > 0V P. The following

Lemma will prove useful

Lemma 1:
[ vt Prars(P) ~araP) = [ Viers(K PYGPIIP
Proof:

/wmwfw%@%%&@D=[WMfWMH—&@MW

—0o0
o0

_ / T Viep(K, P)(Fy(P) — Fa(P))dP

— 00

_ _/°° Vier(K, P)(Fy(P) — Fa(P))dP

— 00

= —[Vkr(K, P)G(P)|Z,

—00

+/oo Vikpp(K, P)G(P)dP

— 00

24Gee, for example, Rothschild and Stiglitz (1970).
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_ / Viepr (K. P)G(P)dP

The first and third lines follow by Riemann-Stieltjes integration by parts, and the

second and fourth lines follow by the fact that?’

Vi(K,P) =B and Vip(K,P)=0 if P>U
S<Vi(K,P)<B and Vikp(K,P)>0 if L<P<U
Vi(K,P) =S and Vip(K,P)=0 if L<P

so that Vi p(K, P) and Vi pp(K, P) are zero outside the region of inaction.

At the investment threshold we take a total difference of (6.3) allowing the
distribution of this period’s demand shocks to change and this period’s investment
threshold to change but holding everything else from next period on constant.
This allows us to examine the impact of a short run change in uncertainty on the

current investment thresholds. This total difference can be written as,
U
Ricp (B, 000" = [ (B = Vie . P Fa(P) ~ dFA(P) =0

The second term is positive for a distribution Fz which is second order stochasti-

cally dominated by F4, but which has equal or lesser expected marginal value (i.e.
that is [~ Vi (K, P)(dFg(P) — dFa(P)) < 0). To see this expand this second
term using integration by parts

/_ (B — Vi (K, P))(dF5(P) — dFs(P)) = [(B — Vic(K, P))(Fs(P) — Fa(P))"

[o.o]

T / Vicr(K, P))(Fu(P) = Fz(P))

oo

oo

dP

-/ " Vier(K, P))(Fa(P) — Fa(P))dP

o

25Gee the characterisation of the optimal investment strategy in section (2.2) in the main body
of the paper or in Eberly and Van Mieghem (1997).
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= [Vip(K, P)G(P)Y

—00

—/U Vkpp(K, P)G(P)dP

oo

= Vikp(K,U)G(U)
- Vire(K. P)G(P)P

> 0if /°° Vic (K, P)(dFs(P) — dFA(P)) < 0

The first and third lines follow by Riemann-Stieltjes integration by parts; the
second line follows because Fy(—o0) = Fp(—o0) = 0 and Vk(K,U) = B; the
fourth line follows because f::(dFB(X) —dF4(X))dX =0 and Vkgpp(K,P) =0
if P < L; while the fifth line follows because G(U) > 0 by stochastic dominance
of F4 over Fg and by Lemma 1.

Hence, we can write that

. v (v
dU* = Ror (K07 (VKP(K,U))G(U) /L VKP(K,P)G(P)dP> (6.7)
> 0if / Vi (K, P)(dF5(P) — dF,(P)) <0

At the disinvestment threshold we take a total difference of (6.6) allowing the
distribution of future demand shocks and the disinvestment threshold to change,

and by similar arguments we can derive
U

dL* = 4(_VKP(K:L))G(L)+/

Ryp(K, L*) g Vicp(K, P))G(P)dp) (6.8)

< 0if /°° Vie(K, P)(dF5(P) — dFA(P)) > 0

So that for a change in distribution from F4 to Fzg whereby the latter is stochas-
tically dominated by the former but they both yield the same expected marginal
value of capital, so that f_oooo Vi (K, P)(dFp(P) — dF4(P)) = 0, the investment
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threshold will move up and the disinvestment threshold will move down. Combin-
ing these two conditions (6.7 ) and (6.8) and imposing condition (3) from section
(2.2), we find that Rgxp(K,U*) = Rip(K, L*) by the multiplicative nature of the

demand shock in the revenue function, so that

* * v
dU” —dL” = W(VKP(K?U)G(U)_VKP(K7L)G(L))

> 0

for any Fjz which is stochastic dominated by F4 regardless of whether [* Vi (K, P)(dFp(P)—
dF4(P)) is positive or negative. Since this holds without loss of generality for every
line of capital in a multi-line of capital revenue function we obtain the necessary

result.

Proof of Proposition 2
With costless reversibility the firm’s revenue R(K7, K»..Ky, P) is equal to

current sales, Y (K71, Ky, ...Kn, P), less capital costs Y .(r + 6); K;

R(K1, K. Ky, P) =Y (K1, Ky, .. Ky, P) = > (1 +6),K; (6.9)

The first order conditions for profit maximisation are

Using the property that Y (K7, Ks..Ky, P) is jointly homogeneous of degree one
in (K, Pﬁ), so that 0Y (K, Ky..Ky, P)/0K; is jointly homogeneous of degree

zero in (K, Pﬁ), these can be restated in matrix form as
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OY (Ky P~ T, Ky,P Tx,  KyP T%,1) /0K, = (r + 6),
OY (K, P~ 7, K, P~ T, .. KyP~75,1) /0K, = (r + §)s

(6.11)

OY (K, P~ 7=, K, P~ 1=, . . KyP 75,1) /0Ky = (r + 8

which represents N equations for 9Y/0K;,0Y/0Ks,..0Y/OKy in the N un-
knowns KlP_ﬁ, KQP_ﬁ,....KNP_ﬁ. Since Y (K, Ky..Ky, P) is continu-
ously differentiable it is a continuously differentiable mapping from RY — R!.
Furthermore, Y (K, Ks..Ky, P) is strictly concave so that the matrix of second

derivatives with respect to capital Yy i (K1, Ko.. Ky, P) : RY — RY will have full

rank. Hence, we can use the inverse function theorem to write

Ky P T% = hy((r + 8)1, (r + 8)1, ..(r + 8) )
KoP™ 75 = hy((r + 8)1, (r + )1, ...(r + 8) )

(6.12)
KxP™T% = hy((r+ 8)1, (1 + 8)1, ...(r + 6)n)
Defining A; = h;((r + 6)1, (r + 6)1, ...(r + 6)n) this can be re-written as
K, = A,PTx, i=12_..N someA; cR (6.13)
so that Y K; = PTx >~ A;, which can be stated in logs as,
1
log(z K;) = log(z A;) + Tx log P (6.14)

Using the result (6.13) in writing out the sales function we obtain

V(K Ks,..Kn,P) = Y(APTS, A PT>,  AyPT>,P)  (6.15)

= PTSY(Ay, A, ... Ay, 1) (6.16)
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where the second line follows by homogeneity. Hence, taking logs and using (6.14)

to substitute out log P delivers
22 A)
1 E K;) =1 logY (K4, Ky, ...Kn, P 1
Og OgYAl,AQ, AN71)+ 8 ( L5 N ) (6 7)

Appendix B: Data

The UK data is taken from the published accounts of manufacturing firms
listed on the UK stock market. We deleted firms with less than three consecutive
observations, broke the series for firms whose accounting period fell outside 300
to 400 days due to changes in year end timing, and excluded the observations for
firms where there are jumps of greater than 150% in any of the variables. This
data is obtained from the Datastream on-line service.

Investment (I). Total new fixed assets less fixed asset sales: DS435-DS423.

Capital Stock (K): Constructed by applying a perpetual inventory procedure
with a depreciation rate of 8%. The starting value was based on the net book
value of tangible fixed capital assets in the first observation within our sample
period, adjusted for previous years inflation. Subsequent values were obtained
using accounts data on investment and asset sales, and an aggregate series for
investment goods prices.

Sales (Y'): Total sales, DS104, deflated by the aggregate GDP deflator.

Cash Flow (C): Net profits (earned for ordinary), DS182, plus depreciation,
DS136.

Uncertainty (o). The computation of this variable is described in the text.
For a company we take the daily stock market return (Datastream Returns In-

dex, RI). This measure includes on a daily returns basis the capital gain on the
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stock, dividend payments, the value of rights issues, special dividends, and stock
dilutions. We then compute the standard deviation of these daily returns on a
year by year basis matched precisely to the accounting year, and adjust for the
firm’s debt-equity ratio as in Leahy and Whited (1998). We trim the variable so
that values above five are set equal to five. The results are robust to dropping

these ten observations.

Appendix C: Estimation with Simulated Invest-
ment Data

The simulated data is based on the canonical investment model outlined in
section (2). It is generalised to allow for partially irreversible labour as well as
capital. It incorporates aggregation by assuming that the firms operate a number
of production plants which experience both idiosyncratic plant level shocks and
common firm level shocks. This procedure generates lumpy plant-level investment
and employment data and smoother firm-level investment and employment data.
For the US Compustat data base, this simulated firm-level data appears to closely
parallel the main time series and cross sectional properties of actual firm-level data
(see Bloom 2000b). This simulation method is outlined below.

Plants are assumed to have a Cobb-Douglas revenue function, PK*L?, where
Pis a demand term, K is capital, L is labour and 0 < a+b < 1. Both factors are
assumed to be partially irreversible. Demand is stochastic with P evolving as a
Brownian motion process. This Brownian motion process can be broken down into
two Brownian sub-components. The first is an observable firm-level shock which

is common to all plants. The second is an idiosyncratic plant-level shock which
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is independent across plants and has a zero mean?®. These plant-level shocks are
assumed to be unobservable in our firm-level data set.

For this framework Eberly and Van Mieghem (1997) prove that the optimal
investment and employment thresholds for each plant can be modelled accord-
ing to the threshold rules laid out in Table Al. Investment only occurs when the
marginal revenue product of capital, aPK% 'L’ is equal to its investment user
cost of capital, b, times an investment real options term, ¢¥ > 1. And disinvest-
ment only occurs when the marginal revenue product falls to its disinvestment cost
of capital, s, divided by a disinvestment real options term, ¢ > 1. In between
these thresholds the plant will undertake no investment or disinvestment. We can
characterise the hiring and firing thresholds similarly in terms of the marginal
revenue product of labour, bAK®L*~!, the present discounted costs of hiring one
worker, h, the present discounted savings from firing one worker, f, and the hiring

and firing real options terms, ¢& > 1 and ¢k > 1 respectively®’.

Table AI: The Simulation Thresholds for Investment and Hiring

Invest if aAK* '[P > b x ¢f | Hire if PAKLP 1 > h x ¢%
Do Nothing s/¢% < aAK* 1L® <bx ¢ | Do Nothing f/¢% < bAKLY 1 < h x ¢,
Disinvest if aAKLY < s/¢K | Fire if bAKSLY1 < f/ok

These real options terms can be numerically calculated given our assumptions
on the parameters in the firm’s environment - the discount rate (10%), the rev-

enue function parameters (¢ = 0.25 and b = 0.5), the ratio of b/s = 0.5 and

26The plant level shock can always be defined to have a zero mean through the definition of
the firm level shock as the average plant level shock in each period. The assumption that the
plant level shocks are independent across plans can be weakened to imperfect correlation across
plants, and is made for the simplicity of the simulation exercise.

2"Where h > f > 0 because hiring and firing both involve costs which are not recouped.
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h/f = 0.9. These parameters are chosen to match survey evidence on produc-
tion functions, the cost of capital (see, for example, Summers (1987)) and the
low rates of disinvestment at the firm level. The labour hiring/firing prices were
chosen as economically reasonable values (see, for example, Nickell (1986)) which
also provide a good fit between actual and simulated data.

Finally, we proxy the firm specific degree of uncertainty by using the mean
standard deviation of the firm’s daily share returns, o;, over our sample period?®.
This measure of uncertainty is here defined so as to be time invariant in line with
Eberly and Van Mieghem’s (1997) modelling assumptions.

The firm-level demand shock is proxied for by the growth in real firm sales.
For each firm we also need to start with an initial distribution of projects between
these investment, disinvestment, hiring and firing thresholds. This is generated
by starting all projects as identical and running the simulation for twenty years to
obtain an empirical ergodic distribution, which is then assumed to be the initial
distribution we use to generate our simulated data?. Our simulated firm level
investment and hiring data is then calculated by adding up across all plants within
each firm. In these simulations we assumed all firms operate 20 plants®’.

In Table AII we present the results from GMM estimation of error correction

models using the simulated capital stock and investment data, K° and (II(—SS>

28 These values are divided by 5 here to re-scale them in line with the magnitudes of annual
sales and price variation.

29Not surprisingly, this assumption leads to violations of the initial conditions restrictions
required by the System GMM estimator we use in our main empirical analysis. For this reason
we present results for the simulated data using only equations in first differences, for which
lagged levels of the variables are used as instruments.

30Perhaps surprisingly, the number of plants we assume that operate within each firm appears
to make very little difference to our panel estimation results. The simulated results derived
assuming firms operate 2 or 200 plants look almost identical to those presented in Table AII
using 20 plants.
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respectively, and the actual sales data used to generate this. The sample is exactly

the same as that used to estimate our results in Tables 7 and & in the main text.

46



Table AIIl: GMM Estimates Using The Simulated Investment Data

Dependent Variable (I /K} ) (1) (2) (3) (4)
Sales Growth (Ay;) 0.501 | 0.412 | 0.317 | 0.461
(0.038) | (0.026) | (0.025) | (0.072)
Error Correction Term (y — k° )it—1 0.274 0.263 0.266
(0.024) | (0.021) | (0.011)
Sales Growth Sqrd. (Ay; * Ay;t) 0.453 0.446
(0.062) | (0.060)
Uncert. x Sales Growth (o; * Ay;) -0.085
(0.041)

2nd order serial correlation (p) 0.000 | 0.758 | 0.223 | 0.231
Sargan (p) 0.000 | 0.252 | 0.127 | 0.214

NOTES:- The total number of observations (for all columns) is 5347, on a sample period
of 1973 to 1991, with 672 firms. A full set of time dummies is included in every specification.
Estimation uses a first-differenced GMM estimator computed in DPD98 for Gauss (see Arel-
lano and Bond, 1998). One step coefficients and heteroskedasticity-consistent standard errors
are reported. The instruments used for all equations are lags two and three of the variables:

S S
(%) s and (%) ; Ayir—o and Ay, 3, (y — k)ir—2 and (y — k)43, and 0.

i, t—
Instrument validity is tested using a Sargan-Hansen test of the overidentifying restrictions

for the two step GMM estimator. The test for no second order serial correlation in the
first-differenced residuals is also reported.

The high degree of residual autocorrelation in the static accelerator specifica-
tion of column (1) and the failure of the Sargan test is testament to the strong
dynamics in this simulated data arising from the lagged effect of demand shocks
on investment though ‘pent up demand’. In column (2) we include a lagged er-
ror correction term which reflects the deviation of the firm’s capital /output ratio
from its long run level. This removes the finding of significant second order serial
correlation in the first-differenced residuals, and the Sargan test does not reject
this specification. In column (3) we add in the squared sales growth term, which
is found to be positive and highly significant. Our test thus correctly rejects the

null hypothesis of a linear relationship between investment rates and sales growth,
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and the convex relationship detected is that predicted in section (2.4.1).

Finally, in column (4) we also include the interaction term between sales
growth and uncertainty. This interaction term is found to be negative and signifi-
cant at the 5% level. Again our empirical test correctly rejects the null hypothesis
of a common response to demand shocks for high uncertainty and low uncertainty
firms, and we detect the predicted weaker response of investment to demand
shocks at higher levels of uncertainty.

We conclude that if the data were generated by a partial irreversibility model,
our empirical tests should be able to reject the linear error correction specification,
and the inclusion of quadratic and interaction terms should detect the correct signs

on these additional variables.
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Figure 1. Aggregate Uncertainty in UK Manufacturing, 1972-1991
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Notes: This is the uweighted mean of our measure of the standard deviation of daily returns over the year.



Figure 2. The Investment Response to a 2.5% demand shock for the 10",
25™ 50" 75" and 90" percentiles of uncertainty.
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Notes: This simulates the firm-level investment response to a 2.5% demand shock using the parameters estimated in
column (5) of Table 7 in the text. This response is plotted for the 10", 25™, 50", 75™ and 90™ percentiles of the
distribution of our measure of uncertainty.



Figure 3. The Capital Stock after a 2.5% demand shock for the 10™, 25",
50", 75" and 90™ percentiles of uncertainty.
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Notes: This simulates the firm-level capital stock after a 2.5% demand shock using the parameters estimated in
column (5) of Table 7 in the text. This response is plotted for the 10", 25™, 50", 75 and 90™ percentiles of the
distribution of our measure of uncertainty.



Figure 4. Improvement in Fit From Adding an Uncertainty Interaction and Demand
Squared Term (left axis), and Change of Growth Rate of Real Sales (right axis)
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Notes: This graph plots on the left axis the year by year difference in correlation of actual investment rates with predicted
investment rates using the uncertainty augmented model (column (5) of Table 7) and predicted investment rates using the
standard model (column (1) of Table 7). Positive values represent an improvement in fit from using the uncertainty
interaction term. Plotted on the right axis is the yearly average change of sales growth as an indicator of the business cycles
turning points.



