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SUMMARY

In this paper we utilise the differences in average waiting times to identify the
determinants of demand for health services. We use the equilibrium waiting time
framework but relax the full equilibrium assumption by selecting areas with low
waiting times and estimating a (semi-)parametric selection model. Determinants
of supply are used as instruments for the endogeneity of waiting times. We esti-
mate a model for the demand for acute services at the ward level in the UK. We
contrast our model estimates, and their implications for health service allocations
in the UK, to more standard allocation models. Our results show that it is criti-
cally important to account for rationing by waiting times when identifying needs

from care utilisation data.
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1. Introduction

The aim of this paper is to consider the specification and estimation of a statis-
tical model for health care utilisation. Our model draws on the recent literature
that relates waiting times to the demand and supply of services (see Lindsay and
Feigenbaum (1984), Gravelle (1990) and Goddard et al. (1995), for example). In
this model waiting time acts as a hassle cost to treatment and in equilibrium the
waiting time costs will be just sufficient to reduce demand to equal the supply
of services. For example, suppose there is an increase in demand, waiting times
will increase. Some individuals already on the list will drop out and others who
had thought of joining will not join. Similarly for a change in supply. Waiting
time essentially plays the role of a price, with people looking for alternative care,
possibly private, or no care at all when the waiting time becomes too long. Pro-
vided waiting times adjust fairly rapidly then this equilibrium framework seems
reasonable. Martin and Smith (1999) use this model to estimate demand and
supply models for elective surgery in the UK and find that waiting time is indeed
negatively correlated with demand.

The standard equilibrium waiting time approach rests on two assumptions:
1. the observed data are in equilibrium; 2. waiting times accurately measure
waiting time costs. Both assumptions may be strong and are not necessary for
the central approach taken in this paper. If there is a higher than expected
demand then we still observe supply but demand and waiting times may not have
adjusted to equilibrium, this is equivalent to the min{demand, supply} condition
in standard disequilibrium models (see Gourieroux, Laffont and Monfort, 1980).
Our approach is to select areas in which the waiting times are reasonably low and
use these to estimate the determinants of demand. This approach is therefore

robust to disequilibrium in high waiting time areas and reduces the sensitivity to



systematic measurement error in the tails of the waiting time distribution. Our
aim is limited, simply to recover characteristics that influence demand for health
services at low waiting time costs. The objective is not to estimate a model of
both demand and supply but rather to examine the determinants of demands, or
needs, abstracting from distortions caused by supply side constraints in health
care provision. We use the determinants of supply as instruments for the waiting
time to correct for the potentially endogenous selection of low waiting times areas
in which services may be more likely to reflect demand. However, we do contrast
our results with those for the standard equilibrium specification for demand.

The model we use is based on a regression specification for normalised level
of health care utilisation. It is precisely this kind of model that is used in the
allocation of NHS funds in the UK (see Smith et al. (1994)), and our application
is to the demand for acute hospital care at the local (ward) level in the UK. We
introduce the idea that some wards may be supply constrained so that a regression
on needs variables alone on the whole sample will not correctly identify demand
parameters. Instead we suggest the use of average waiting time by ward as an
indicator of supply rationing. We use wards with relatively low waiting times
to capture demand when the time costs of waiting are low. Even within the
equilibrium waiting time framework of Lindsay and Feigenbaum (1984) this still
seems a good idea since at high waiting times, the waiting time variable will surely
interact in quite a complicated way with needs variables. For example, suppose
at low waiting times richer young people place a high demand on resources but
drop out if there are high time costs, then at high waiting times the income and
age effects will be different.

Our choice of areas with low waiting times implies that there will be few
people who came on the list from the past and who thus reflect demands from

earlier periods. Added to this we are worried about systematic reporting bias in



the waiting time variable, as there are obvious incentives for providers to under-
report high waiting times, and that this variable may not be a good measure of
waiting time costs. Also if individual demands are nonlinear in waiting time then
the aggregate demand in a ward will not depend only on the average waiting
time (as Martin and Smith (1999) point out there are many measures of waiting
time). However, we do also estimate a simple parametric model that includes the
waiting time variable as an endogenous determinant of demand and show that
when selecting wards with reasonable low levels of waiting times this variable does
not appear to influence demand. This contrasts dramatically with the results for
higher waiting time areas where waiting time is found to be a strongly significant
determinant of demand.

The central specification we estimate is a selection model that estimates needs
variables for wards that have an average waiting time below some specified cut off.
Since the model estimates are likely to be sensitive to parametric distributional
assumptions we check the robustness of our results using semiparametric selection
methods in estimation (see Newey, Powell and Walker ,1990). The fact that we
have a number of excluded supply side variables that strongly determine waiting
times and have a wide variation across the data makes this application well suited
to the use of semiparametric selection methods.

The rest of the paper is organised as follows. In section 2 we develop the
model and section 3 presents the data and estimation results. As the important
outcome of the demand model is the actual resource allocations over the regions,
we also look at the impact of the various estimation procedures on the estimated

regional need indices. Section 4 concludes.



2. Model and Estimation

2.1. An Empirical Specification of the Demand for Services

Let O; represent the outflow rate from a particular medical service in ward ¢ and
I; represent the corresponding inflow rate onto the service register for that ward.
In any given ward in a given time period the waiting time, W;, will be a function
of current and past net inflow rates. There may exist a waiting time W at which

the two rates are equilibrated

In this framework the waiting time acts like a price of services, reducing de-

mand as W; rises. Demand for services will depend on characteristics of the local

d

population x¢ (needs variables), the waiting time level 1; and unobservables u?

yl = f(x¢, W) +ul. (2.1)

The inflow rate will be directly related to y?. Therefore W; and y¢ will be simul-
taneously determined.
Two approaches are available for estimation. One could assume a parametric

form for (2.1), for example
yi = B'x{ + Wi +uf, (2:2)

and estimate directly. However, note that since W; is endogenous to demand a
suitable instrument will be required. An obvious choice of instrument would be
some determinant of supply. However, current fluctuations in supply could be
correlated with unobservables in demand. A safer instrument would be a lagged
supply variable, or lagged waiting times. We discuss particular choices in the
empirical application below. Martin and Smith (1999) estimate demand equation

(2.2) within a full equilibrium model.



A number of potential difficulties arise with this approach. First, it is likely
that reported waiting time levels W;, especially at the upper end of the distribu-
tion, are likely to be systematically biased. Secondly, it is likely that when waiting
times are long, the waiting time variable will interact in quite a complicated way
with the needs variables. Thirdly, at low waiting time levels, say below W™, it
is less likely that W; will influence demand. Given that the aim of this paper is
rather modest - to evaluate the importance of different needs variables, not to
estimate the impact of W; on demand directly - we take a slightly different, and
hopefully more robust, approach. We specify that demand for services takes the

form

yf = ﬁ'x‘j + u‘f for W; < W™, (2.3)

where W™ will be in the lower quantiles of the observed waiting time distribution.
To check whether W; does indeed not influence demand at low levels of waiting
times, we also estimate (2.3) with W; included in the model. We further check
the robustness of our results to different choices of cut-off point W™.

Even in this approach endogeneity arises in estimating (2.3). In particular
there is endogenous selection on W; which in turn depends on demand for ser-
vices through the net inflow rate. Therefore using this framework, the demand
parameters (3 can be identified from the wards with low average waiting time,
while taking care of the endogenous selection rule. If W™ is known, standard
(semi-)parametric techniques can be applied, utilising limited information on the
average waiting times in the sense that only the information whether W; is larger
or smaller than W™ is used. As we argued above, the waiting time information is
likely to be subject to systematic measurement error especially towards the upper
tail. Consequently the use of the limited information will reduce the impact of

this measurement problem.



2.2. An Approach to Estimation

The estimators we utilise in this paper for the standard selection model are a
parametric two-step estimator (Heckman (1979)), and a semi-parametric estima-
tor as proposed by Robinson (1988). The first step in estimation is to specify a

binary indicator for the average waiting time:

w; = 1 of Wy>W™
w, = 0 if W, < W™

This is assumed to follow some simple linear index probability model
Prlw; = 1] = Pr[n'z; + &; > 0]

Under normality, the parameters 7/o., where o is the standard deviation of €, can
be consistently estimated by the standard Probit maximum likelihood estimator.
The standard Heckman (1979) two-step estimator specifies the model of demand

for services in wards with low waiting times as

j= Bt B[l W, < W]

¢ (m'z:/0.) d
"B (nizjo)

B'x? + /\1

where A = —0,4. /0., and 0,4, is the covariance of u? and e , which are assumed
to be jointly normally distributed. The two-step procedure then amounts to
substituting the probit estimate w//;5 for /0., and estimating the parameters
(# and A by OLS.

Given the initial estimate for 7 /0., the semi-parametric estimator of Robinson
(1988) proceeds as follows. Let v; = 7'z;/o., then the conditional model can be

written as

yl = B'x¢ + g (v;) + ¢,
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where g (.) is some unknown function. Subtracting the conditional expectation of

y? given v; results in
yl — E [y;iyvz} =g <x§i —F [Xﬂvi]) + &4 (2.4)

which is no longer a function of g (v;), and OLS estimation of (2.4) gives consis-
tent and asymptotically normal estimates for 3 (excluding the constant). The
conditional means £ {yﬂm] and B [xﬂm} are estimated non-parametrically using
kernel regressions. The kernel estimator of E [z|v = ¢] is a weighted average of z

for v in the neighbourhood of ¢, given by (see e.g. Hirdle and Linton (1994))

~ 3N K (€ — vi) @

E, lzlv =] = ,
2] ] %Zf\;lKh(c—vi)
where
1 (e
Kh(C—'Ui):EK<C h”)?

K is a kernel function which is continuous, bounded and symmetric and which
integrates to one, and h is a bandwidth parameter decreasing with sample size
N. In estimating (2.4) using kernel regressions to estimate the conditional mean
terms, some trimming may be required to remove areas of the data where the

density of v is too sparse.

3. Data and Estimation Results

The data for the estimation of the models as described in section 2 are the same
data as have been used by Smith et al. (1994) for the construction of the allocation
formula of NHS revenues. In their work, the final needs regression results are based
on the hospital utilisation of all wards. The waiting times data are the same as
in Martin and Smith (1999).

The dependent utilisation variable is the standardised estimated costs of acute

care in 1991-92 (ACCOS91). The waiting time data are the average numbers of
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days waited for routine surgery in 1991-92 (WT91). Supply and demand variables
are measured in 1990-91. In the timing of the utilisation we differ from the
approach of Smith et al. (1994). In their study the utilisation variable was the
average utilisation per ward in the years 1990-91 and 1991-92, and the supply
variables had to be instrumented. We avoid the problem of endogeneity by using
lagged values of the supply measures.

Table 1 gives descriptions and summary statistics of the variables we use in
this study. For a further description and guide to the construction of these vari-
ables see Martin (1994), Carr-Hill et al. (1994) and Martin and Smith (1999).
As can be seen from the table, the average waiting time for routine surgery in
1991-92 is 117 days. There are four supply variables, namely NHS hospital acces-
sibility (ACCNHS), general practitioner accessibility (ACCGP), the proportion
of the 75 years and older not in nursing and residential homes (HOMES*), and
private hospital accessibility (ACCPRI). The needs variables considered are the
standardised mortality ratio-ages 0-74 (SMR074), a standardised illness ratio-ages
0-74 (HSIRO074), the proportion of persons in manual class (MANUAL), the pro-
portion of persons of pensionable age living alone (OLDALONE), the proportion
of dependants in single carer households (S CARER), the proportion of the eco-
nomically active that are unemployed (UNEMP), and the proportion of residents
in households with no car (NOCAR). Table 1 also reports summary statistics for
those wards that have waiting times less than 100 days, and that will be used
in our estimation of the demand equation (2.3) below. The average waiting time
in these wards is 86 days. The summary statistics of the other variables in the

selected sample are all very similar to those in the full sample.

‘ Table 1 here ‘

Table 2A presents the probit estimates of the waiting time model with a cut-off
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point of 100 days, utilising the same supply and needs variables as identified by
Smith et al. (1994) to determine utilisation. After consulting health experts at
the King’s Fund, we chose 100 days as the cut-off point, as we were advised that
this length of waiting time is seen by health care providers as a reasonable time
to go through the system. It is clear from the likelihood ratio test that the supply
variables are informative for waiting times. Better access to NHS and private
hospitals decreases the average waiting time for routine surgery, whereas more
GP’s in the area has the effect of increasing the average waiting time.

Table 2B presents four sets of results for the demand equation as specified in
(2.3). The first column presents OLS results based on the full sample. The second
column gives OLS results on the subsample of wards with an average waiting time
smaller than 100 days. In the third column the two-step estimation results are pre-
sented, and finally in the fourth column the semi-parametric estimates using the
Robinson method are presented. In the Robinson method, the kernel function is
specified as the standard normal and the bandwidth is set equal to N~2/°. For the
OLS estimators, the reported standard errors are robust to general heteroscedas-
ticity. For the two-step and semi-parametric estimators, the standard errors are
estimated using bootstrap resampling methods. The estimators, including the
probit, are calculated for 100 bootstrap samples, and the reported standard er-
rors are the standard deviations of these estimates. The results of the two-step
estimator indicates that the selection is indeed endogenous, as the coefficient on
the correction term is significant. It is further negative, indicating that the unob-
servables u? in the demand equation and the unobservables ¢ in the waiting times
model are positively correlated which is as expected. The coefficient estimates
from the two-step estimator are quite different from the OLS results based on
the full sample, especially the coefficient on HSIR074 is significantly smaller. The

results of the semi-parametric selection estimator are very similar to those of the



two-step estimator, indicating that the normality assumption is not violated.

‘ Tables 2A, 2B and 2C here ‘

Table 2C gives the impact of the four different results for the allocation of
resources to the regions. The first column gives the population weighted need
indices for a selected clustering of wards, based on the simple OLS regression
results of the demand equation using the full sample of wards. Deprived inner
city areas and wards in inner London have the highest need indices, whereas
rural areas have the lowest. The next columns in Table 2C give the percentage
change in need indices based on the other three estimation results and show some
marked differences. Using the two-step and semi-parametric estimation results,
the wards in greater London have a higher needs index than before, whereas
primarily the inner city and urban areas have a lower index. Note that the actual
allocation formula that is currently in use is based on multilevel model estimates
that take account of 186 District Health Authorities (DHA). As we believe that
these district effects are correlated with the explanatory variables, they should be
modelled as fixed effects dummy variables (see Blundell and Windmeijer (1997)).
This is complicated for the nonlinear probit model, and we don’t pursue it in
this paper. The allocation results as presented here are therefore not a direct
comparison with current practice.

The results presented above were based on the model specification of Smith et
al. (1994) that was selected without using multilevel modelling procedures. Our
results are different for various reasons. First of all we use a different dependent
variable, the utilisation in 1991-92, and not the average of the years 1990-91/1991-
92. Secondly we estimate the demand equation using only those wards with low
waiting times, correcting for the endogenous selection. As is clear from the re-

sults as presented in Table 2B, not all demand variables have a significant impact
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on utilisation using our modelling approach. We therefore performed a specifica-
tion search, selecting needs variables using the two-step selection method. The
need variables identified in this way are very similar as before, but the variables
S CARER and UNEMP are replaced by NOCAR and MANUAL. Tables 3A, 3B
and 3C present the set of results for this model. Again the sample selection term
in the two-step estimator is significant with the expected sign, and the parametric
and semi-parametric estimates are very similar. In comparison to the first model,
however, the needs indices for London are substantially lower whereas those for

the rural areas are higher.

‘ Tables 3A, 3B and 3C here ‘

As stated in the previous section, our modelling strategy assumes that waiting
times do not affect demand when they are smaller than W™. In Table 4 we present
instrumental variables estimation results for the demand equation that includes
the (log of) the waiting times linearly in the model, as specified in (2.2). The
endogenous waiting times are instrumented by the four lagged supply variables.
The first column presents results for the full sample, and the waiting time has
a significant negative effect on demand. The second column presents the results
for the selected sample including the Heckman sample selection correction. In
this case, the effect of waiting time is small and insignificant, supporting our
initial assumptions. The latter model is identified as there are four instrumental
variables that instrument both the selection correction term and the waiting times

variable.

‘ Table 4 here ‘

We have chosen the cut-off point of 100 days as that is seen by health care

providers as a reasonable time to go through the system. When we repeat the
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instrumental variables regression including waiting times, but for different selected
samples for different values of W™, we find that the waiting time variable is
significantly negative for values of W™ of 117 and higher, and insignificant for
values of W™ lower than 117. In the light of this it appears that the cut-off point
of 100 days is appropriate. However, to check robustness of the results, we present
in Table 5 estimation results for a selected sample with a cut-off point of 110 days
waiting. The sample size in this case is much larger. The results, however, are

very similar to those as presented in Table 3B.

‘ Table 5 here ‘

4. Conclusions

The aim of this paper has been to recover the determinants of demand for hospital
services in a framework that acknowledges the importance of supply constraints
in the public sector provision of health care. Waiting times are assumed to act as
a hassle cost that chokes off demand when resources are constrained. In the full
equilibrium model waiting times act like a price that maintains full equilibrium.
Because our interest has been in the determinants of demand we do not fully model
supply but simply use the determinants of supply as instruments for waiting time
in our specification of demand.

To measure the determinants of demand we chose, as our central specification,
a model that selects only those areas with low waiting times. Our results are then
corrected for this endogenous selection. We argue that the focus on demand at
low waiting times avoids systematic measurement error at high waiting times and
also avoids the specification of the interactions between needs variables at higher
waiting times. In estimation we compare our specification to alternative models.

We have applied our approach to a sample of ward level data from the UK
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and study the demand for acute care. We contrast our model estimates, and their
implications for health services resource allocations in the UK, to more standard
allocation models. We find that correcting for supply constraints through the
selection of low waiting time areas changes allocation formulae in important ways.

Allocation formulae that are based on models relating needs to use require
the explicit modelling of the process by which use is determined. In case of the
NHS, identifying needs from acute hospital care utilisation data should take into

account the method of rationing by waiting times.
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Table 1: Descriptive statistics

Variable

WT91

ACCOS91

ACCNHS
ACCGPS
HOMES*
ACCPRI
SMRO074

HSIR074

MANUAL
OLDALONE
S CARER
UNEMP

NOCAR

Description All Wards
N = 4955

Mean Std. Dev.
Average waiting time routine 117.08 26.18
surgery in days
standardised estimated costs 100.63 23.01
1991-92 acute care
NHS hospital accessibility 2.34 0.75
GP accessihility 0.53 0.13
1-proportion of 75+ in nursing 0.94 0.06
and residential homes
private hospital accessibility 0.17 0.13
standardised mortality ratio - 99.46 23.16
ages 0-74
standardised illness ratio - ages 99.01 30.59
0-74, for residents in households
only
proportion of persons with head 0.46 0.15
in manual class
proportion of those of 0.33 0.06
pensionable age living alone
proportion of dependantsin 0.19 0.06
single carer households
proportion of the economically 0.09 0.05
active that is unemployed
proportion of residentsin 0.24 0.14

households with no car

WT91<100
N = 1296
Mean Std. Dev.
85.74 11.10
102.07 23.09
2.34 0.76
0.53 0.12
0.95 0.05
0.18 0.18
101.52 23.16
104.15 31.99
0.49 0.14
0.33 0.05
0.20 0.06
0.10 0.05
0.25 0.14

Note: In the regressions, natural logarithms are taken of all variables
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Table 2A: Resultsfor Probit regression

Weighted regression N = 4955 R2=0.14
Dep. Var. WT91>100
Variable B SEB T
ACCNHS -0.1651 0.1027 -1.6074
ACCGPS 0.1901 0.1212  1.5687
ACCPRI -0.2361 0.0625 -3.7784
HOMES* -0.0130 0.3267 -0.0398
OLDALONE 0.3400 0.1784  1.9059
S CARER -0.2461 0.1466 -1.6784
UNEMP 0.2912 0.1070  2.7217
HSIR074 -0.3113 0.2078 -1.4979
SMRO074 -0.2106 0.1730 -1.2174
LR test for supply variables : 34.51, p-value 0.0000
Dummiesincluded for Regional Health Authorities
Observations weighted by ward popul ation
Table 2B: Resultsfor needsregressions
Weighted regression
Dep. Var. ACCOS91
OLSfull OLS selected two-step semi-parametric
sample sample estimator estimator
N 4955 1296 1296 1296
R? 0.50 0.57 0.57 0.53
Variable B SEB B SEB B SEB B SEB
OLDALONE | 0.1191 0.0190 | 0.1391 0.0369 | 0.1670 0.0426| 0.1532 0.0409
S CARER 0.0036 0.0180| 0.0755 0.0393 | 0.0468 0.0301| 0.0431 0.0306
UNEMP 0.0248 0.0114 | 0.0227 0.0202 | 0.0593 0.0391 | 0.0490 0.0425
HSIR074 0.2848 0.0241 | 0.2053 0.0399 | 0.1595 0.0411| 0.1734 0.0449
SMRO074 0.1342 0.0219 | 0.1135 0.0384 | 0.0831 0.0437 | 0.1097 0.0469
A -0.1865 0.0650

Du*mmi$ included for Regional Health Authorities
SE : Standard deviation of 100 bootstrap estimates

Observations weighted by ward popul ation
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Table 2C: Population weighted need indices

Cluster Summaries Full Selected Selected  Selected
sample sample two- step semi-
OLS OLS parametric
Inner London 112.3 1.10% 1.68% 1.28%
Mixed Status London 100.3 0.76% 1.66% 1.25%
Outer London 94.3 1.10% 2.01% 1.62%
Inner City Deprived 113.2 -0.80% -1.30% -1.11%
Urban Areas 107.9 -1.22% -2.10% -1.72%
Resort and Retirement Areas 96.0 1.07% 1.23% 0.96%
High-Status Suburban 93.5 0.62% 1.14% 0.97%
High-Status Rural 88.5 0.29% 1.29% 1.08%
High-Status Urban 98.0 -0.30% -0.37% -0.25%
Rura Areas 95.9 0.26% 0.09% 0.11%
Dormitory Towns 106.2 1.32% 1.55% 1.34%
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Table 3A: Resultsfor Probit regression

Weighted regression N = 4955 R2=0.14
Dep. Var. WT91>100
Variable B SEB T
ACCNHS -0.1530 0.1073 -1.4264
ACCGPS 0.1743 0.1288  1.3529
ACCPRI -0.2325 0.0626 -3.7137
HOMES* -0.1034 0.3370 -0.3066
OLDALONE 0.2274 0.2104  1.0810
NOCAR 0.1192 0.1055 1.1295
MANUAL -0.0222 0.1003 -0.2210
HSIR074 -0.2377 0.2032 -1.1699
SMRO074 -0.1581 0.1734 -0.9118
LR test for supply variables : 30.24, p-value 0.0000
Dummiesincluded for Regional Health Authorities
Observations weighted by ward popul ation
Table 3B: Resultsfor needsregressions
Weighted regression
Dep. Var. ACCOS91
OLSfull OLS selected two-step semi-parametric
sample sample estimator estimator
N 4955 1296 1296 1296
R? 0.51 0.57 0.58 0.49
Variable B SEB B SEB B SEB B SEB
OLDALONE | 0.0916 0.0235| 0.0979 0.0423 | 0.1258 0.0499 | 0.1224 0.0464
NOCAR 0.0475 0.0101 | 0.0629 0.0185| 0.0775 0.0232 | 0.0630 0.0214
MANUAL 0.0371 0.0106 | 0.0433 0.0227 | 0.0565 0.0237 | 0.0541 0.0219
HSIR074 0.2166 0.0226 | 0.1722 0.0390 | 0.1192 0.0518 | 0.1482 0.0504
SMRO074 0.1259 0.0216 | 0.1049 0.0379 | 0.0752 0.0456 | 0.0996 0.0435
A -0.2256  0.0621

Du*mmi$ included for Regional Health Authorities
SE : Standard deviation of 100 bootstrap estimates

Observations weighted by ward popul ation
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Table 3C: Population weighted need indices, as
compar ed to first model, Table 2C, columns 3 and 4

Cluster Summaries

Selected Selected

two- step semi-

parametric
Inner London -2.36% -2.18%
Mixed Status London -1.19% -1.18%
Outer London -0.65% -0.79%
Inner City Deprived -0.59% -0.40%
Urban Areas 0.42% 0.55%
Resort and Retirement Areas -0.11% -0.14%
High-Status Suburban -0.05% -0.13%
High-Status Rural 0.69% 0.47%
High-Status Urban 0.20% 0.19%
Rural Areas 0.93% 0.82%
Dormitory Towns -2.36% -2.33%
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Table4: Resultsfor IV estimator with WT91 included.

Instrumented by lagged supply variables.

Weighted regression Full Sample Selected Sample
Dep. Var. ACCOS91 N = 4955 N =1296
Variable B SEB B SE B
OLDALONE 0.2381 0.0846 0.1025 0.0701
NOCAR 0.0773 0.0356 0.0765 0.0271
MANUAL 0.0922 0.0355 0.0568 0.0282
HSIR074 -0.0017 0.0958 0.0736 0.0739
SMRO074 0.1350 0.0611 0.1225 0.0758
WT91 -2.4851 0.6750 -0.7449 0.8128
A -0.1863 0.0921

Du*mmies included for Regional Health Authorities
SE : Standard deviation of 100 bootstrap estimates
Observations weighted by ward popul ation

Table5: Resultsfor needsregressions. Selected sample, WT91<110

Weighted regression two-step semi-parametric
Dep. Var. ACCOS91 estimator estimator

N 2016 2016

R? 0.57 0.54

Variable B SE' B B SE B
OLDALONE 0.1056 0.0487 0.1094 0.0515
NOCAR 0.0868 0.0223 0.0859 0.0248
MANUAL 0.0574 0.0250 0.0616 0.0257
HSIR074 0.1296 0.0502 0.1288 0.0551
SMRO074 0.0740 0.0457 0.0766 0.0484
A -0.3505 0.1216

Du*mmies included for Regional Health Authorities
SE : Standard deviation of 100 bootstrap estimates
Observations weighted by ward popul ation
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