
mss # Vera-Hernández; AP art. # 5; RAND Journal of Economics vol. 34(4)

RAND Journal of Economics
Vol. 34, No. 4, Winter 2003
pp. 670–693

Structural estimation of a principal-agent
model: moral hazard in medical insurance
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Despite the importance of principal-agent models in the development of modern economic theory,
there are few estimations of these models. I recover the estimates of a principal-agent model and
obtain an approximation to the optimal contract. The results show that out-of-pocket payments
follow a concave profile with respect to costs of treatment. I estimate the welfare loss due to moral
hazard, taking into account income effects. I also propose a new measure of moral hazard based
on the conditional correlation between contractible and noncontractible variables.

1. Introduction

� Contract theory has been extremely important in the development of modern economic
theory during the last thirty years. However, the increasing sophistication of the theory has not gone
hand-in-hand with empirical validation of the models, as Salanié (1997) points out. Chiappori and
Salanié (2003) offer an up-to-date perspective on the literature that has tried to link econometrics
and contract theory. Most of the existing works have used a reduced-form approach.1

This article’s main contribution is to estimate the parameters of a principal-agent model with
moral hazard. This allows me to use the principal-agent paradigm when solving for the optimal
contract. This presents two main advantages. First, principal-agent models have developed in the
last thirty years as a rigorous framework for studying the moral hazard concept. For my purposes,
the optimal contract can be obtained directly from first principles, so I do not need to make further
assumptions about the first-best level of utilization. Second, this approach requires the analyst to
make a clear distinction between contractible and noncontractible variables. The relation between
these variables provides important information for deriving the optimal contract.
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I concentrate on the problem of health care insurance. Moral hazard in the use of medical
services has been one of the most recurrent issues in health economics; early references on the
topic are Arrow (1963), Pauly (1968), and Zeckhauser (1970). Moral hazard arises because health
shocks are not contractible and consequently contracts are not complete. It might then be optimal
for insurers to give incentives so the consumer will not seek expensive treatments for minor health
shocks.

In the health care setting, it is natural to think that the noncontractible variable is the health
shock, while the contractible variable is treatment cost. This will be important when deriving the
optimal contract, since cost can indicate the severity of the health shock. This will also be the
basis for our proposal of a new measure of moral hazard: the correlation between health shocks
and treatment costs.

Previous articles have tried to estimate optimal health care insurance contracts (Feldstein,
1973; Feldman and Dowd, 1991; Buchanan et al., 1991; Newhouse et al., 1993; Manning and
Marquis, 1996). However, their methodology is based on optimal taxation rather than asymmetric
information theory.2 Medical insurance may distort the consumption of health care services, since
it lowers the marginal price of consumption. In this respect, the problem of optimal taxation is
similar to optimal health insurance. As Besley (1988) points out, however, there is a crucial
difference between them: the insurance problem is against a background of incomplete markets.
The previous approaches are based on comparing the welfare loss of a given insurance contract
to the situation of no insurance. Consequently, they assume that the first-best level of health
care services corresponds to the one where there is no insurance. Ma and Riordan (1997, 2002)
have shown that this assumption does not hold true in the presence of income effects. In fact,
the implementation of the first best requires the consumer to be responsible for only a fraction
of treatment costs, because the marginal valuation of income rises once the consumer pays her
out-of-pocket portion.3,4 In this article I can deal with this issue because I obtain the optimal
contract directly from first principles as the solution to the principal-agent problem.5

This article also differs from previous literature in the way I model health care consumption. In
previous approaches, the individual decision is over the amount of monetary resources dedicated
to health care. Hence, utility would be a function of the amount of dollars spent in an illness
episode. Though this is a simplifying assumption, it is undesirable because it assumes that the
larger the health care costs, the higher the utility. It is preferable to disentangle quantity consumed
from the cost of producing it, since the individual will derive utility from quantity but not from the
cost of production. In my model, the individual decides whether or not to have treatment against
an illness spell with some level of severity. The costs of treatment are given to the individual as
a technological relation. My approach, though more complicated from an econometric point of
view, allows me to disentangle quantity from costs. An important advantage of this approach is
that I can exploit the stochastic relation between costs and health shocks when solving for the
optimal contract. If treatment costs are strongly correlated with health shocks, then the problem
of moral hazard will be alleviated because the insurer can infer the value of the noncontractible
variables from the contractible ones.6 This informational relation will be my basis for proposing

2 The term moral hazard originated in the insurance context, but it has evolved and expanded. Nowadays it is
natural to draw on the developments of the incomplete-contracts literature when discussing moral hazard in the insurance
context (Winter, 2000).

3 Ellis and McGuire (1993) are also reluctant to identify the first-best health care utilization as the one obtained
without insurance. This is related to an early observation by De Meza (1983) that previous approaches might overestimate
welfare losses due to moral hazard in the presence of income effects. Cutler (2002) also emphasizes that moral hazard is
the substitution effect, not the income effect.

4 An interesting discussion on the role of income effects and related issues has been carried out in a recent volume
of the Journal of Health Economics by Blomqvist (2001a, 2001b), Manning and Marquis (2001), and Nyman (2001). In
contrast to them, I use the principal-agent paradigm.

5 Blomqvist (1997) also obtains the optimal contract from first principles, but my model differs from his in a
number of dimensions.

6 Buchanan et al. (1991) also disentangle quantity consumed and health care costs, but they ignore the correlation
between contractible and noncontractible variables and do not obtain the optimal insurance plan using the principal-agent
paradigm.
© RAND 2003.
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a new measure of moral hazard using the correlation between health shocks and treatment costs.
This measure is based on the informational content that contractible variables (treatment costs)
have over noncontractible ones (health shocks). The previous literature has used elasticities of
health expenditures with respect to copayments as a measure of moral hazard.7 I view my measure
of moral hazard as a complement rather than a substitute to the traditional elasticity measure. My
measure checks for the support condition that is commonly assumed in theoretical models but
has not previously been examined in empirical research.8 My measure is especially valuable if
nonlinear contracts are allowed, as is commonly the case in health insurance contracts. See Cutler
(2002) and Cutler and Zeckhauser (2000) for examples of nonlinear health insurance contracts in
the United States.

I use data from the RAND Health Insurance Experiment (HIE) that randomly assigned
individuals to insurance contracts. This is a significant advantage: in particular, I do not need to
model the individual’s choice of insurance contracts. Moreover, the randomization will also be
important for the identification of the model.

The article is organized as follows. Section 2 describes the theoretical model and some of
its implications. Section 3 describes the data. Section 4 discusses the econometric strategy used
to estimate the theoretical model. Section 5 gives the results of a descriptive analysis. Section
6 discusses the estimates of the structural parameters and evaluates the suitability of the model.
Section 7 sets up and solves the principal-agent problems and discusses my measure of moral
hazard. Section 8 concludes. Finally, the Appendix contains details of the computation of the
log-likelihood function.

2. The demand model

� Individual decision problem. This section is devoted to modelling individual decisions
about whether or not to be treated when suffering an illness spell. This is the basis for the
estimation of the parameters of the principal-agent model. In my setup, the consumer faces a
specific insurance contract that will influence her decision.

My model draws on Ma and Riordan (1997, 2002). Their model is well suited for my purpose,
as they consider income effects and separate quantity from treatment costs. The main difference
between their model and mine is that I allow treatment costs to be random and stochastically
related to illness severity (health penalty). From an empirical point of view, this is important for
obtaining my measure of moral hazard.9

In the model, the individual decides whether or not to be treated but does not decide the cost
of treatment. In fact, Keeler and Rolph (1988) and Newhouse et al. (1993) found that insurance
contracts mainly influence the decision whether or not to seek treatment against an illness episode,
rather than the treatment costs. This is expected given the informational asymmetry between doctor
and patient. I shall also assume that the doctor chooses treatment costs independently of the
individual’s insurance contract and income. This corresponds to the situation where the medical
guideline that the doctor follows does not take into account individual economic characteristics
but gives the most cost-effective treatment. Consequently, I shall assume that treatment costs
come from a given technological relation. I emphasize one important hypothesis in my model:
The individual is rational and compares benefits and costs when she decides whether or not to
seek treatment. This might be a strong assumption when one is dealing with severe illnesses for
which the individual lacks experience and can hardly value the benefits and costs. Furthermore,

7 Cutler and Zeckhauser (2000) review about 22 studies that estimate the elasticity of medical care.
8 By support condition I mean that there is no deterministic function linking contractible and noncontractible

variables. If there were such a function, the moral hazard problem would disappear (see, for instance, Winter (2000)).
More generally, the correlation between contractible and noncontractible variables is likely to play a role when designing
the optimal contract.

9 This also allows me to obtain an empirical model that is not specific to an illness. There are some other differences
between their model and mine. In my model, the illness probability and the health penalty shock are drawn from the same
distribution, while in their model these processes are modelled independently. I need this assumption to be able to identify
the parameters in the estimation.
© RAND 2003.
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the treatment decision in the case of very severe illnesses might depend on long-term effects that
would severely complicate the model. In the empirical application I shall restrict the type of illness
spells studied to make behavior more likely to conform to modelling assumptions.

I assume the individual is endowed with a health capital stock s and an income level y. An
individual is ill when she receives a penalty health shock of magnitude s > 0. There is a stochastic
relation between s and s, given by the density function fs|s . If s ≤ 0, the individual is not ill and
therefore treatment is not demanded. The support of s is (−∞, +∞).

The individual is under the coverage of an insurance contract that under premium p
reimburses the cost of the treatment c, if the individual agrees to pay the quantity k ∗ c, where
k ∈ [0, 1] is the copayment rate. The health penalty shock and cost of treatment variables will
follow a joint density function that depends on both the health stock, s, and cost shifters c given
by

gs,c|s,c =




0 if c < 0
0 if s ≤ 0 and c > 0
fs|s if s ≤ 0 and c = 0
fs,c|s,c if s > 0 and c > 0.

(1)

The first line implies that costs cannot be negative, while the second one means that costs cannot
be positive when the individual is not ill (s ≤ 0), since there is no need for treatment.

The timing of the model is as follows. First the individual receives a random draw of (s, c)
from the joint density gs,c|s,c. When the individual suffers an illness spell (s > 0), she will obtain
different utilities depending on her decision about treatment. I assume that the individual knows
the health penalty s and the cost c when she decides. I also assume that in case the treatment is
obtained, there is perfect healing and the initial level of health is fully recovered. Specifically, the
consumer’s ex post utility will be




U (y − p, s), if ill with health penalty s but treatment is not obtained,
U (y − p − k ∗ c, 0), if ill and treatment is obtained with k ∗ c as out-of-pocket payment,
U (y − p, 0), if consumer is not ill.

(2)
I assume that U (·, ·) is increasing and concave in the first argument, while decreasing and convex
in the second.

In what follows, I describe the individual decision problem. Given that the set of actions is
discrete (to have or not to have treatment), it is of interest to look for the health penalty threshold
that, given a cost, leaves the individual indifferent between having treatment or not. Below is the
formal definition of the health penalty threshold.

Definition 1. The health penalty threshold is the function s̃(c) such that U (y − p, s̃(c)) =
U (y − p − k ∗ c, 0).

Given a draw of (s, c) from the distribution implied by (1), the individual will decide to have
treatment (T = 1) or not (T = 0), according to the following rule:

T =
{ 1 if s > s̃(c)

0 if s ≤ 0 or 0 < s < s̃(c).
(3)

The intuition is very simple. The individual will decide not to have treatment (T = 0) either
when she is not ill (s < 0) or when the health penalty shock does not offset the out-of-pocket
payment (0 < s < s̃(c)). Notice that s̃(c) depends on the copayment rate. In particular, if the
copayment rate, k, is equal to zero, then the individual will decide to have treatment when she is
ill, independent of the treatment costs. As expected, s̃(c) is increasing in the copayment k. This
means that the greater the copayment, the greater must be the health penalty in order to ask for
treatment, given a cost. It is also the case that the expected cost, E[c | k], is decreasing in the
© RAND 2003.
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copayment rate. However, notice that

∂ E(c | T = 1, k)
∂k

=

∫ +∞

0
(E[c | k, T = 1] − c) fs,c|s,c(s̃(c), c)

∂ s̃(c)
∂k

dc

Pr(T = 1 | k)
(4)

can be positive or negative, depending on parameter values. Consequently, it is ambiguous how the
expected cost conditional on having a treatment changes with the copayment rate. Two opposing
forces are at work here. On one hand, given a value of health penalty, consumers facing high
copayment rates will have treatment only if the treatment is inexpensive enough. On the other
hand, it might be the case that consumers facing high copayment rates will have treatment, on
average, for relatively severe episodes. However, consumers facing zero copayment rates will
also have treatment for relatively minor episodes. This last effect will increase the expected cost
conditional on having treatment for consumers facing high copayment rates relative to those facing
zero or low copayment rates.

3. The data

� The experiment. The data I use come from the RAND Health Insurance Experiment
(HIE), a social experiment conducted between 1975 and 1982 at six different U.S. sites: Dayton,
Ohio; Seattle, Washington; Fitchburg and Franklin County, Massachusetts; and Charleston and
Georgetown County, South Carolina. Families participating in the experiment were randomly
assigned to one of fourteen different fee-for-service health insurance plans. Eligible individuals
for the experiment were younger than 61. More information about the experiment can be obtained
in Manning et al. (1987) and Newhouse et al. (1993).

I would like to highlight two important characteristics of the dataset. First, insurance plans are
exogenous to the individuals. Individuals did not choose their insurance plan, but were randomly
assigned. Therefore, the analyst does not face the problem of endogenous insurance coverage,
that is, the possibility that less-healthy people, anticipating large medical expenditures, buy more
generous insurance coverage.

Second, it gives information on illness episodes. Claims from providers were grouped
to create episodes of treatment. For each episode, the dataset contains information on total
expenses, as well as the type of episode and the principal provider of the service. Episodes are
classified as acute, chronic, chronic flare-up,10 well-care, and prenatal/maternity. The classification
for providers includes hospital inpatient, hospital outpatient, physician, dentist, pharmacy, and
nonpharmacy supplier. The classification of the provider is hierarchical, that is, outpatient services
preceding or following a hospitalization were classified as a hospital provider. Drugs and tests were
part of the episode in which they were prescribed. This information about the type of episodes will
be useful when restricting the type of illness spells that I use. More information on how episodes
were constructed can be obtained from Keeler and Rolph (1988) and the references therein.

The fee-for-service plans of the experiment had different levels of cost sharing that varied
over two dimensions: the copayment rate (the percentage of the cost of each insurance claim
that the individual paid out of pocket) and an upper limit on annual out-of-pocket expenditures
called maximum dollar expenditure (MDE). Consequently, the family only paid according to the
copayment if the total out-of-pocket expenditures had not exceeded the MDE. The copayment
rates were 0%, 25%, 50%, 95%, or 100%. Depending on the plan, the MDE was 5%, 10%, or 15%
of the previous year’s income, with a maximum of $4,253 (2002 dollars).11 Below I comment on
the consequences of this MDE. Participants in the experiment did not pay any insurance premium.

10 A temporary problem in a usually controlled condition.
11 Apart from the ones mentioned above, there was an HMO plan as well as an individual deductible plan that

limited annual out-of-pocket outpatient expenditures to $637.90 per person (2002 dollars), with a 95% copayment rate
for outpatient expenditures. These will not be used in this study.
© RAND 2003.
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� The sample. In this subsection I specify the sample used in the estimation. I begin by
discussing the types of episodes used. In my structural model, individuals can receive a health
penalty shock. This is not compatible with treatments that can be predicted in advance, such
as well-care, prenatal care, maternity care, or chronic care. I exclude episodes of care for such
treatments. I further exclude inpatient episodes, since they are often quite severe and individuals
are less likely to decide about such treatments on the basis of economic factors.12

Summarizing, I limit my sample to acute and chronic flare-up outpatient episodes.
Acute episodes (Newhouse et al., 1993) are defined by unforeseen and undeferrable treatment
opportunities. From an economic point of view, spending on these episodes will occur only
when the patient is temporarily sick. Chronic flare-up episodes are similar to acute episodes
but are caused by a chronic condition. Since I have not considered inpatient episodes, most of
the episodes will result from relatively minor conditions. In addition, it is important to have a
relatively homogeneous sample of illness episodes, since in general the consumption of different
health care commodities will imply different optimal insurance contracts associated with them
(Besley, 1988). For instance, it is a common empirical fact that cost-sharing levels of inpatient
episodes are lower than outpatient ones.

Most individuals in the dataset were enrolled for three contract years (contracts had a duration
of 365 days but they did not correspond to natural years, so they were called contract years), though
a subsample was enrolled for five years. Enrollment duration was not an individual’s decision but
was part of the experimental design. I will use observations on all the available contract years for
an individual, so my estimation dataset will be an unbalanced panel.

My model does not allow for multiple spells. As we will see, the econometric implementation
needs to account for sample selection in costs because I do not observe the treatment costs of those
who were ill but did not seek treatment. Consequently, the model is already quite complex without
the added complication of accounting for multiple spells. Therefore, the dependent variable is a
dichotomous variable that takes a value of one if the individual began treatment for a new episode
during the first month of each contract year.13 We have 6,780 valid person-year observations.
Only 1.56% of them had two episodes in a month, and .15% had three episodes. Consequently, I
think that the multiple-episode problem is not important in the data selected for analysis. As in
Gilleskie (1998), if someone started more than one episode in the month, I use only the first one.
Therefore, I have only one observation per person per contract year.

I only consider people older than 17 because I want to consider only episodes that are decided
by the individual and not the parents. I also do not consider people who were self-employed (there
were very few of these in the sample) because they might differ significantly in their opportunity
costs of having a treatment, and I do not have information about this opportunity cost. Finally, I
deleted observations with missing values in relevant variables. Table 1 gives the description of the
variables used, as well as the descriptive statistics of the observations used in the estimation. The
models were estimated using monetary variables valued in 1973 dollars (as entered in the data).
In this article I show all the monetary variables in December 2002 dollars. Because substantive
technological change and economic growth has occurred since the dates of the experiment, the
comparability of monetary values should be treated carefully.

� The maximum dollar expenditure and the copayment rate. In the estimation I will
condition on the individual’s copayment rate. Therefore, it is important that the copayment rate
I condition on is the same one that the individual uses to decide on demand for treatment. As
Keeler, Newhouse, and Phelps (1977), Ellis (1986), Keeler and Rolph (1988), and Newhouse et

12 I also do not consider dental episodes, since they were not usually covered by insurance contracts in those years
and consumers showed opportunistic behavior during the experiment. I do not analyze mental care episodes, since they
have different determinants, and even with generous insurance coverage, relatively little was spent on outpatient mental
health care at the time the experiment was conducted.

13 More specifically, during the second day of the contract year and the following 30 days. Medical expenses in
the new contract year that were generated by illness episodes that started in the preceding contract year were recorded
as starting the first day of the new contract year. I want to exclude them, since they are not decisions taken in the current
contract year.
© RAND 2003.
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TABLE 1 Description of Variables

Standard
Variable Mean Deviation Description

Endogenous
Treatment .14 .35 =1 if treated by an episode that started

in the first month, 0 if the contrary
Costsa $143.8 $237.6 episode treatment cost

Exogenous
Copayment .32 .37 copayment rate: 0, .25, .5, .95, 1
Incomea $1990 $1718 monthly per-capita family income at enrollment
Female .56 .49 =1 if female
Healthb 70.22 14.60 general health index [0, 100]; higher values

indicate better health
Educationb 12.09 2.97 number of years of education
Diseaseb 12.16 8.80 index for number of diseases, [0, 58.6];

higher values indicate more diseases
Age 38.72 11.71 age in years
Appointmentb 44.26 28.91 satisfaction with length of wait for medical

appointments, [0, 100]; higher values
indicate greater satisfaction

Seattle .23 .42 =1 if person lives in Seattle, 0 otherwise
Franklin .17 .37 =1 if person lives in Franklin County, 0 otherwise
Charleston .13 .33 =1 if person lives in Charleston, 0 otherwise
Year78 .22 .41 =1 if observation corresponds to 1978, 0 otherwise
Year80 .11 .32 =1 if observation corresponds to 1980, 0 otherwise

aValued in 2002 dollars.
bStandardized for estimation.

al. (1993) have noted, the existence of a cap on out-of-pocket payments may make the effective
marginal price differ from the nominal price (the copayment rate I condition on). If individuals
were able to anticipate exceeding the cap with some probability, then the effective marginal price
would be smaller than the nominal one.

I have reasons to think that in my case this is a minor problem. First, according to Newhouse et
al. (1993), p. 106, “Few participants [in the HIE experiment] proved able to anticipate exceeding
the MDE, which allowed us to ignore this factor and to obtain a much more tractable estimation
problem.” In addition, they show that the size of the remaining MDE was important in the decision
to initiate a hospital episode but not to initiate other types of episodes. Consistent with the same
idea, Keeler and Rolph (1988) showed that people participating in the experiment adopted a
mixture of myopic and inflexible behavior. That is, if expenditures did not exceed the MDE,
then they responded to current copayments. Once out-of-pocket expenditures exceeded the MDE,
people did not adapt to the zero price of medical care instantly but instead took some time to do
so.

My analysis is based on the first month. Given the references above, families in the first month
of the contract year should be far from either exceeding the MDE or anticipating exceeding the
MDE. Moreover, I will not use the insurance plan with a deductible, as the MDE for this plan
was smaller than for the copayment plans. Therefore, I feel confident conditioning on the current
copayment rate.

4. Econometric specification

� Functional-form assumptions. In this subsection I give functional-form assumptions that
are maintained throughout. I use the subscript t to denote that the observation refers to time period
t . Following Ma and Riordan (1997), if the individual is ill and decides not to have treatment, the
© RAND 2003.
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utility function will be given by

U (y − p, st ) = U (y − p) − sγ
t ,

whereas if she decides to have treatment, then the utility will be given by

U (y − p − k ∗ ct , 0) = U (y − p − k ∗ ct ).

Notice that the health penalty threshold, s̃(c), defined by the above utility function changes with
income. Consequently health care demand changes with income, i.e., the model exhibits income
effects. The parameter γ is the elasticity of the nonmonetary part of the utility with respect to the
health penalty shock. I still must give a functional form for U (·). The exponential utility function is
very convenient for my purposes. Ferrall and Shearer (1999) comment that from a computational
standpoint, the exponential utility is perhaps the only feasible functional form when solving the
principal-agent problem.14 Support to the exponential utility is given by Manning and Marquis
(1996) and Marquis and Holmer (1996). Also using data from the RAND HIE experiment, they
both argue in favor of the constant absolute risk-aversion hypothesis.15 Therefore, based on both
the complexities that arise using different specifications and the support found in favor of the
constant absolute risk-aversion hypothesis, I will use

U (z) = − exp(−θ z),

where θ stands for the constant absolute risk-aversion coefficient. Marquis and Holmer (1996)
found that θ did not vary with income or other demographics, so I will not parameterize it as a
function of individual characteristics. I will use Marquis and Holmer’s estimate of θ (.00309 in
1973 dollars, .000727 in 2002 dollars) for the estimation. I will discuss this issue in the subsection
devoted to identification.

The rest of the equations that close the model are the following:

st = xstβs + µs + εst , (5)
ln ct = α ln(st + 1) + xctβc + µc + εct if st > 0, (6)

Pr(T = 1 | c) = Pr(st > s̃(ct )), (7)

where xst and xct are two vectors of covariates, and βs and βc are respectively their conformable
vector of parameters. The random vector (µs, µc) controls for time-invariant unobserved
heterogeneity. I assume (µs, µc) is bivariate normal with zero mean. The parameters of its
variance-covariance matrix are σ 2

µs, σ
2
µc, ρµ. In an analogous way, (εst , εct ) is also assumed

bivariate normal with zero mean and variance-covariance parameters given by σ 2
εs, σ

2
εc, ρε.

Equation (5) gives the health penalty, and equation (6) refers to the cost per episode. Inside
the logarithm of the left-hand side, I add one to the health penalty. This ensures that the cost
increases with α for any st > 0. The functional form above is convenient because the predicted
cost is always positive for any value of the parameters. All the studies cited above that estimated
cost equations also used a logarithm transformation.

By means of a change of variable I can obtain the joint density of (st , ct ), conditional on both
(xs,t , xc,t ) and (µs, µc) when both dependent variables take positive values:

f (st , ct | xst , xct , µs, µc)

=
1

ctσεsσεc
∗ b

(
st − xstβs − µs

σεs
,

ln ct − α ln(st + 1) − xctβc − µc

σεc
; ρε

)
, (8)

14 Other authors who have used the exponential utility function are Townsend (1994), Mace (1991), Haubrich
(1994), and Margiotta and Miller (2000).

15 In their footnote 13, Marquis and Holmer (1996) provide additional references in favor of the constant absolute
risk-aversion hypothesis coming from studies of the demand for health insurance.
© RAND 2003.
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where b(·, ·; ρε) is the standardized bivariate normal with correlation coefficient equal to ρε. Note
that ρε measures how strongly the health penalty shock is related to the cost shock. In particular,
if ρε were 1, then one could recover the exact value of st from the observed ct . Consequently, ρε

measures the extent of information asymmetry. Further details will be given in Section 7.

� The likelihood function. Estimation will be done by simulated maximum likelihood; here
I give its formulation. Whether the individual had treatment or not provides different information.
For individuals with treatment, I can observe the treatment cost. However, I cannot observe it for
individuals who were ill but decided not to have treatment. This is a sample selection issue that
the model must accommodate.

The likelihood function for individual i , for period t , conditional on time-invariant
unobserved heterogeneity, if she had treatment (Tit = 1) at a cost cit > 0, is

L1i t =
+∞∫

s̃ j (cit )

f (sit , cit | xsit , xcit , µs, µc)∂sit , j = I, N I, (9)

where f (· | ·) is the joint density (sit , cit ) as in (8). The integration limits correspond to the area
at which it is optimal to have treatment when costs are ci,t . As given by (3), this occurs when the
health penalty is large enough.

The likelihood function for individual i if she did not have treatment (Tit = 0) is

L0i t = �

(
− xsitβs − µs

σεs

)
+

+∞∫
0

s̃ j (cit )∫
0

f (sit , cit | xsit , xcit , µs, µc)∂sit∂cit , j = I, N I, (10)

where �(·) denotes the cumulative distribution function of the standardized normal. The first term
is the probability of not being ill, while the second is the probability of being ill but with a health
penalty not large enough to offset the out-of-pocket costs. The cost has to be integrated out, since
it is not observed for those who did not have treatment.

The likelihood function for individual i and period t , conditional on (µs, µc), is given by

Lit (µs, µc) = 1[Tit = 1] ∗ (L1i t ) + [Tit = 0] ∗ (L0i t ).

Consequently, the likelihood function is obtained by integrating out the time-invariant
unobserved heterogeneity across the time periods available to each individual: qi , that is,

ln L =
N∑

i=1
ln

(∫ qi∏
t=1

Lit (µs, µc)d F(µs, µc)

)
. (11)

Computation of the log-likelihood function requires evaluation of four integrals, which is
computationally intensive. Details of the computation of the likelihood and other econometric
issues are in the Appendix.

� Identification. In my model, the individual decides whether or not to seek care. This is
a discrete-choice problem. As in any discrete-choice problem, the scale is not identified. For
instance, in a probit model it is standard to fix the variance of the error term to one in order to
estimate the rest of the parameters. Here, I fix the risk-aversion parameter using the estimate by
Marquis and Holmer (1996); this should be a good enough approximation to the risk-aversion
parameter of my dataset, since they estimated this parameter for the same dataset and used the
same utility function.16

16 In this and other issues, my analysis clearly benefits from extensive work that has been performed using the
RAND HIE data.
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Another important issue is the identification of both ρ and α. For this section only I use the
cost function

ln ct = αst + xctβc + εct , (12)

which uses a log-linear specification rather than log-log. This is to emphasize that my identification
argument does not depend on functional-form restrictions. I have checked that the simulations
below also hold for the cost function used in the estimation, the log-log cost function. For the
sake of simplicity, I omit the time-invariant unobserved heterogeneity terms. To facilitate the
discussion, I introduce the following notation:

E(ln(ct ) | Xst , Xct , Tt = 1, k = 0) = ACα,ρε
(k = 0)

and

E(ln(ct ) | Xst , Xct , Tt = 1, k > 0) = ACα,ρε
(k > 0).

I first look at the group of people with zero copayment rate. Because they do not pay anything,
they do not compare health penalty and costs when deciding about having treatment. This makes
the observed cost function easy to analyze for this group of people. From equation (12), it is easy
to see that cost will increase in both ρε and α for the group of people with zero copayment, since
they do not censor any of the positive draws of cost. They just have treatment whenever they
are ill. An increase in α directly increases the cost. When the individual is ill, εst is high, so an
increase in ρε will increase the likelihood of large draws of εct . The formal expression for average
cost conditional on having treatment for the consumers with zero copayment is

ACα,ρε
(k = 0) = Xctβc + ασεs

(
Xstβs

σεs

)
+

φ

(
Xstβs

σεs

)

�

(
Xstβs

σεs

) [ασεs + ρεσεc] , (13)

where φ and � are, respectively, the density and cumulative distribution function of the
standardized normal. This equation resembles the Heckman (1979) sample selection model except
for the additional complication that α is not zero. Here, exclusion restrictions in Xct will not be
enough to identify the model. This is because there are infinite combinations of α and ρε that are
compatible with a given value of ACα,ρε

(k = 0). As we will see, it is crucial for the identification
to have people with exogenously different copayment rates.

In what follows, I analyze how the information on people with other copayment rates
contributes to the identification. First, however, we must understand that α and ρε must follow
a decreasing relation to be compatible with a given value of ACα,ρε

(k = 0). In particular, for
each value of α there is one and only one value of ρε that is compatible with the given value of
ACα,ρε

(k = 0). The higher α is, the smaller ρε has to be to obtain the same value of ACα,ρε
(k = 0).

This is because (13) increases in both α and ρε. So the task is to explain how the information on
consumers with positive copayments will tell us which particular combination of α and ρε will
prevail in my model, out of those that are consistent with the given value of ACα,ρε

(k = 0). The
intuition is clear if we look at two extreme cases: (i) α is high and ρε is close to zero, and (ii) α

is close to zero and ρε is close to one.
If α is high and ρε is close to zero, there are a considerable number of large draws of ct that

come from large draws of εct but not from high draws of εst . Notice that these combinations are
quite likely as ρε is close to zero. As health penalty shocks are not particularly high but costs are,
then consumers with positive copayments will not ask for treatment. Consequently, these draws of
ct will not be observed. Hence ACα,ρε

(k > 0) will be particularly low compared to ACα,ρε
(k = 0),

as individuals with positive copayments will not have treatment for a large fraction of large draws
of ct .
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TABLE 2 Simulated Observed Costs for Different Combinations of α and ρ

α = 3.34, ρ = 0 α = 0, ρ = .9

Copayment rate (k) Average Standard Deviation Average Standard Deviation

0 139.2 100.9 139.3 25.9

.25 118.9 49.2 157.9 31.3

.5 101.9 36.4 163.9 31.6

.95 83.6 26.32 168.3 32.6

Note: Simulated using log-linear cost function. Costs are valued in 2002 dollars.

On the other hand, if α is close to zero and ρε is close to one, large draws of ct have to come
from large draws of εct due to the small value of α. Given that ρε is large, large draws of εct are
jointly obtained with large draws of εst . Because the health penalty shocks are high, consumers
with positive copayments will be willing to pay for treatment. Consequently, high values of ct
would be more likely to be observed for this group of people than if α were high and ρε were
close to zero. Consequently, ACα,ρε

(k > 0) will not be as low as the previous case, and it might
even become larger than ACα,ρε

(k = 0).
The mathematical complexity of the problem prevents me from giving a formal proof of the

argument. However, Table 2 provides a simulation to support it. It shows the results for two extreme
cases: the first one is for α = 3.34, ρε = 0, and the second one is for α = 0, ρε = .9.17 Notice that
the average cost conditional on treatment is decreasing in the copayment rate for the first case and
increasing for the second one, while ACα,ρε

(k = 0) is the same, up to simulation error, in both
cases. Hence the results of the simulation confirm my argument in the three previous paragraphs.
The two combinations of (α, ρε) seen in Table 2 belong to the infinite possible combinations
of (α, ρε) that are compatible with the same value of ACα,ρε

(k = 0), though they provide very
different results on how the cost conditional on treatment changes across copayment rates. The
relation shown in Table 2 is smooth. For instance, for intermediate values of (α, ρε) I obtain a
decreasing profile but not as strong a one as in in Table 2. Though intuition might make us think
that average conditional cost should always decrease across copayment rates, both the simulations
and the expression in (4) make clear that this is not necessarily the case.

Table 2 can be used to show another source of identification—how the variance of observed
costs changes across copayment rates. When ρε = .9, the standard deviations of the observed
costs are very similar across copayment rates. This is because a large shock of εst (illness
episode) translates to a large shock of εct . This reduces the variance of εct across all copayment
rates. However, when ρε = 0, the occurrence of illness does not influence the variance of εct .
Consequently, only small values of ct will be observed for those with high copayment rates. This
reduces the variance of observed costs for those with high copayment rates, but not for those with
zero copayment rates. For them we observe both small and large values of ct , and consequently
the variance of observed costs is much larger for this group than for the one with .95 copayment
rate.

5. Descriptive analysis

� This section focuses on Tables 3 and 4, which show the results of a descriptive analysis of
the data. Table 3 shows how frequency of episodes treated varies with copayment rates. Those
who enjoy a zero copayment rate seek care more often than those who face cost-sharing contracts.
Table 4 shows the estimates of a standard multiperiod probit model for Treatment as a dependent

17 The rest of the parameters are Xst βs = −.56, Xctβc = .94, σ 2
εs = .29, σ 2

εc = 2.25, and γ = 2.45. I chose them
based on the results of our model and have checked to confirm that my results are robust to other parameter values. These
parameter values give the results in 1973 dollars.
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TABLE 3 Distribution of Episodes Treated

Number of Observations Percentage of Mean of
Copayment Person-Years Sample Treated Observed Cost

0 2,955 16.98% 155.2
(267.6)

25% 1,724 13.22% 148.1
(235.7)

50% 550 11.27% 117.1
(178.9)

≥95% 1,551 10.38% 112.0
(139.1)

Observations 6,780 953

Note: Standard deviations are in parentheses. Costs are valued in 2002 dollars.

variable. Since I use panel data, I can control for time-invariant individual heterogeneity using
random effects. This probit model is not related to the theoretical model explained above. It
is just a statistical model used as a descriptive device. For the estimation of this model I used
the same illness spells employed for the estimation of the structural model. The results on the
copayment rates supply basically the same information as in Table 3. The coefficients of the dummy
variable for copayment groups are negative and statistically significant, indicating that copayment
influences the probability of having treatment in the expected way. Apart from copayments, other
significant variables are Female, Health, Disease, Age, and Charleston.18 It is worth mentioning
that once I control for Health and Disease, Age decreases the probability of having an episode
treated.

Valuable information about income effects is gained through analyzing the results in Table
4. Income increases the probability of having treatment for those who have to pay for medical

TABLE 4 Estimates of Multiperiod Probit Model for Tt = 1,0

Coefficient Standard Error

Constant −.7857∗ .1160
Healtha −.0695∗ .0236
Female .2041∗ .0469
Diseasea .0913∗ .0253
Age∗1e − 2 −.4686∗ .2018
Appointmenta .0370 .0221
Educationa .0023 .0245
Charleston −.3556∗ .0970
1[Copay = .25] −.2931∗ .0744
1[Copay = .5] −.4202∗ .0957
1[Copay ≥ .95] −.4619∗ .0742
Inc ∗ 1e − 3 −.0194 .0816
Inc ∗ 1[Copay > 0] ∗ 1e − 3 .2201∗ .1034
S.D. Unob heterog .3501∗ .0516
Log-likelihood −2,657.07

Note: 1[condition] = 1 if condition is true, 0 otherwise. Inc is valued in 1973 dollars
for the estimation.

*Significantly different from zero at the 95% confidence level.
aEstimates refer to the standarized variables.

18 The estimation included time dummies and dummies for each town, but Charleston was the only significant one.
Time dummies were not statistically significant either.
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treatment (those with 1[Copay > 0] = 1). Consequently, it is clear from the descriptive analysis
that the data exhibit income effects. Manning and Marquis (1996) and Cardon and Hendel (2001),
among others, have also found evidence of income effects. As highlighted in the Introduction,
previous approaches that did not use the principal-agent paradigm might have neglected the role
played by income effects when solving for the optimal contract.

Table 3 shows the average treatment cost conditional on having treatment. The data show that
average cost conditional on treatment decreases with copayment rates. However, this difference
is not significantly different from zero at the usual confidence levels. The same conclusion was
found by Keeler and Rolph (1988) and Newhouse et al. (1993) using data from the full sample
period, not only the first month as I do here. For further reference, the 50th, 75th, and 95th
percentiles of the observed cost distribution for those with zero copayment are $74.4, $155.8, and
$535.2 respectively (2002 dollars). These numbers are consistent with the decision not to include
inpatient episodes.

6. Structural estimation results

� Model results. This section discusses the estimation of the structural model. I first comment
on the results of a large specification, the results of which are not shown here but are available
upon request.19,20 I found α to be negative (−1.95) and not statistically significant different from
zero (t-value = .88). I also tried a log-linear specification but found a negative point estimate.
Given that it is quite implausible to think that costs decrease with health penalty, the negative
sign could be an indication that the size of the true effect must be quite small, so I estimated
the model with α restricted to zero. This does not mean that health penalty does not influence
costs. Costs and health penalty are still related through their correlation between unobservables,
εst and εct . Hence I proceeded to estimate a more parsimonious specification of the model in
which α was fixed to zero, Education and Female did not enter into the cost equation, and only
some of the year and site dummies were included—those that were significant or were closer to
being individually significant in the large specification. The results of this more parsimonious
specification are reported in Table 5.21 The coefficients reported refer to the model estimated
using Income and Costs valued in 1973 dollars.

As shown by the results in Table 5, better health status (large Health) reduces both health
penalty and costs. Female shifts the mean of the health penalty equation upward. The more
illnesses a person suffers (larger Disease), the larger the health penalty, though no significant
effect is found in the cost of treating a single episode. Similar to the multiperiod probit model
results, once I control for Health and Disease, Age decreases the level of health penalty. The sign
of Appointment is consistent with the idea of a supply capacity indicator. The larger Appointment
is, the less a person has to wait for a medical appointment. Hence, relative supply capacity is
larger and thus costs might be smaller. Notice that this is consistent with the results on Table 4.
However, the coefficient is not statistically significantly different from zero at the 95% confidence
level.

As expected, the correlation parameters are positive and significant, indicating that health
penalty and costs are positively related. It is worth mentioning that the correlation between (εts, εtc)
is quite high (.79), even if we are controlling for time-invariant correlated individual heterogeneity.
This means that the health penalty shock can be moderately well predicted by observing the costs,
which reduces the extent of informational asymmetry. Using the analogy with an R2 measure,

19 In this large specification I included both Female and Education in the cost equation, but they were not statistically
significantly different from zero. I also included all year and site dummies in both equations. I excluded both Education
and Appointment from Xst .

20 In this large specification I excluded Age from Xct . Keeler and Rolph (1988) and Newhouse (1993) give results
of an equation for observed cost for acute episodes. They do not find significant variation in Age for people between 18
and 65, once the effect of other covariates has been taken into account.

21 The parsimonious model has 22 parameters to estimate and the large one has 41. The first model took about
seven days to estimate, and the second took about two weeks. The P-value of the log-likelihood ratio test is .28, so the
restricted model is not rejected at the 95% confidence level.
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TABLE 5 Estimates of Structural Model with Income Effects

Health Penalty Equation (βs ) Cost Equation (βc)

Constant −.479∗ .928∗

(.138) (.276)
Healtha −.040∗ −.152∗

(.016) (.048)
Female .115∗ 0

.040 (–)
Diseasea .048∗ .027

(.020) (.045)
Age∗1e − 2 −.276∗ 0

(.121) (–)
Appointmenta 0 −0.049

(–) (.037)
Seattle 0 .242∗

(–) (.088)
Franklin −.048 0

(.030) (–)
Charleston −.184∗ −.308

(.067) (.162)
Year78 −.028 0

(.023) (–)
Year80 −.050 0

(.035) (–)
α 0

(–)
σε .541∗ 1.503∗

(.153) (.115)
σµ .204∗ .448∗

(.061) (.117)
Correlation parameters
ρε .796∗

(.066)
ρµ .860∗

(.143)
Utility function parameters
θ ∗ 1e + 3 3.0992

(–)
γ 2.452∗

(.456)
Log-likelihood −4,103.66

Notes: Asymptotic standard errors are in parentheses. A (–) indicates that the value of the
coefficient was fixed during the estimation.

*Significantly different from zero at the 95% confidence level.
a Estimates refer to the standardized variables.

about two-thirds of the health penalty shock variance would be explained by the costs.22 The
high correlation of .79 is not due to restricting α to zero. In the unrestricted model, the estimated
correlation was .89.

� Model evaluation and robustness checks. To assess the validity of the model, I compare

22 Given my parametric assumptions and parameter estimates, one can compute the expected value of the health
penalty given some realization of costs. For instance, for an individual with zero copayment and mean covariates, if we
observe that the logarithm of the cost is larger than its mean plus one standard deviation, then the predicted value of the
health penalty shock is 1.48 standard deviations of its unconditional mean.
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TABLE 6 Predicted Values of Endogenous Variables
Using Table 5 Estimates

Frequency of Treatment (%) Observed Costs

Copayment L inf Mean Lsup L inf Mean Lsup

0 15.4 16.7 18.6 125.5 140.3 174.8
25% 12.0 13.1 14.7 123.3 143.7 174.4
50% 10.9 12.0 13.5 108.8 133.5 156.9
≥ 95% 9.25 10.6 11.9 97.8 133.5 155.2

Notes: L inf and Lsup refer, respectively, to the inferior and superior limit of the 95%
confidence interval. Costs are valued in 2002 dollars.

the predictions for the dependent variable from the estimated model (Table 6) with the real data
(Table 3). For this task, I have used the estimates shown in Table 5 to predict the frequency of
treatment and observed costs from the structural model. I also report approximate 95% confidence
intervals for the predictions computed by obtaining random draws from the asymptotic distribution
of the estimates.

For the frequency of treatment, comparing the mean prediction in Table 6 with the third
column of Table 3 shows that the model does a good job of fitting the actual frequency of treatment
across copayment groups. Moreover, the real values are well within the 95% confidence interval
for the prediction. The bigger difference in the actual frequency of treatment is between the 0%
and the 25% copayment groups (16.9 versus 13.2 in Table 3), with little difference in frequency
between the 50% and the 95% copayment groups (11.2 versus 10.3). This nonlinearity has been
previously documented in Newhouse et al. (1993). Notice that the mean predictions in Table 6
do reproduce this nonlinear effect. It is promising that a structural model with a linear budget
constraint can fit the nonlinearity displayed by the actual frequency of treatment. The parameter
γ is important in producing this nonlinearity. Moreover, some of the confidence intervals do not
even overlap, which shows that the predictions are quite accurate. As expected, the results for the
observed cost of treatment are not that good. Out of the sample size of 6,780, we have only 953
episodes with treatment, so we cannot learn as much from the costs as we learn from the treatment
frequencies. Still, the actual means in Table 3 lie within the confidence intervals in Table 6 for
all the copayment groups. The mean predictions do not considerably differ among copayment
groups. This is consistent with the fact that there are no statistically significant differences in
average costs across copayment rates.

Participation incentives were paid to minimize the risk of attrition bias in the experiment.
Manning et al. (1987) mention that both refusal to participate and attrition seemed to be random.
Newhouse et al. (1993) compare the characteristics of the participants on the free care plan and
other plans using 20 different variables. The only statistically significant difference at the 95%
level was found for sex, which I control for in the analysis. I still perform a robustness check to
confirm that attrition bias is not a major problem. To do that, I estimated the cross-section version
of the structural model using just the first year of the experiment. All the panel data point estimates
of the slopes fell within the 95% confidence interval estimated using the first year cross-section.

7. The principal-agent problem

� Because my theoretical model is not dynamic, in the remainder of the article I omit any
subscript t . In our problem, moral hazard will emerge because the health penalty variable s is
noncontractible, that is, the insurance contract cannot be contingent on the value taken by s. That
might occur because it cannot be verified by a third party, or it could be too costly to do so.
To understand the moral hazard problem, assume that the individual faces a complete insurance
contract. Hence the individual will look for treatment even if the cost c is very large and the health
penalty s is positive but very small. Consequently, the insurance premium for such a contract
would be relatively high to cover treatment for this large draw of c. The individual would be
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VERA-HERNÁNDEZ / 685

better off committing not to have treatment when c is large and s is small so the insurance premium
would be much smaller and could offset the small health penalty s. If the contract were contingent
on both s and c, then the individual would easily commit to that policy by signing a contract
that would not reimburse treatment when s is low and c is high. But if the contract cannot be
contingent on s, then the individual cannot sign such a contract, which results in a welfare loss. If
s is not contractible, it might be optimal to use monetary incentives as an imperfect commitment
device so that consumers do not demand treatment when c is large and s is small.

I use the estimates of the parameters of the model to solve for the optimal contracts. That
is the advantage of structural estimation. Because of the experimental design of the data, I did
not need to assume that contracts were optimal when estimating the parameters. I assume that
the individual signs the contract before she knows the realizations of (s, c). As in the previous
sections, I assume that the individual knows the realizations of (s, c) when she decides whether
or not to have treatment. I follow Ma and Riordan (1997, 2002) very closely when setting up the
maximization problems. However, unlike Ma and Riordan, I have to deal with the random nature
of the cost function.

� First-best problem. In the first-best problem, both costs and health penalty are contractible.
The first-best contract should specify the insurance premium, the out-of-pocket payment function,
and the combinations (s, c) for which this out-of-pocket payment function applies. In the first-best
problem there is no market failure, hence optimal insurance should equalize marginal utility of
income across states of nature. In my model, the realizations of (s, c) represent the states of nature.
Consequently, the marginal utility of income should be independent of the realizations of (s, c).
Given the concavity of the utility function, this implies that available income should change with
neither s nor c. As out-of-pocket payment would be paid only if s > 0, then the optimal contract
should exhibit zero out-of-pocket payment in order to have constant available income across states
of nature. In particular, this means that if treatment is obtained, the insurance company will fully
reimburse (complete insurance) the individual for the costs.

I still must discuss when treatment will be obtained. In the first-best problem, the consumer
will not be free to choose whether or not to have treatment. The first-best contract will specify
when treatment is obtained according to the realizations of (s, c). It cannot be optimal to have
treatment when cost is large and health penalty is low. Notice also that if it is optimal to have
treatment when cost is c and health penalty is s, then it will also be optimal to have treatment for
higher values of s at the given c. Hence I can define the function O(c) that gives the minimum
level of s for which it is optimal to have treatment when costs are c. With this in hand, I can set
up the first-best problem as

max
{p,O(c)}

Pr(s < 0 | s) ∗ U (y − p, 0) +
∫ +∞

0

∫ O(c)

0
U (y − p, s)gs,c|s,c(s, c)∂s∂c

+
∫ +∞

0

∫ +∞

O(c)
U (y − p, 0)gs,c|s(s, c)∂s∂c, (14)

subject to p =
∫ +∞

0

∫ +∞

O(c)
c ∗ gs,c|s,c(s, c)∂s∂c. (15)

The first two lines are the consumer expected utility. The premium is denoted by p. The first term
represents the utility in case illness will not occur. The second term gives the expected utility
when the consumer is ill but treatment is not obtained. The third term is the expected utility when
treatment is obtained. The third line specifies that the premium should be actuarially fair. To solve
the first-best problem I must find the insurance premium level and the function O(c) that gives the
minimum level of health penalty at which treatment is obtained. The way I approach the problem
is to parameterize O(c) in a flexible way and then find the value of the parameters that solve the
© RAND 2003.



mss # Vera-Hernández; AP art. # 5; RAND Journal of Economics vol. 34(4)

686 / THE RAND JOURNAL OF ECONOMICS

maximization problem.23 I have chosen the following parameterization:

O(c | a0, a1, a2, a3) = max{0, a0 + a1 ∗ c + a2 ∗ c2 + a3 ∗ c3}. (16)

The argument of O(c) is a polynomial that allows the function to follow a flexible profile on c. I
increased the polynomial degree up to a third order, at which point the results for larger polynomial
degrees were very similar. Numerical approximations based on polynomial expansions are known
to be sensitive to initial conditions. I used Simulated Annealing as the maximization routine. This
is a very robust, though computationally intensive, random search algorithm that is able to escape
from local optima (Goffe, Ferrier, and Rogers, 1994).24 It can also handle nondifferentiable
problems. I have computed the solution for the individual with values of Xst and Xct set at their
mean values and µs and µc set to their unconditional means (0). Notice that for the solution to
the principal-agent problem, µs and µc have the same interpretation as Xst and Xct , since they
do not add uncertainty at the individual level. The only difference is that Xst and Xct are known
by the econometrician while µs and µc are not, but all of them are individual characteristics that
are common knowledge in the principal-agent relation.

The solution to the problem is p = 12.80, a0 = .108, a1 = 7.21E-04, a2 = −3.56E-07,
and a3 = 5.213E-11 (for c valued in 2002 dollars). As expected, for the relevant range of c, the
function is always increasing in c. That is, the higher the cost, the higher the health penalty must
be in order to be optimal to obtain treatment. I use the function O(c) when computing the welfare
loss below.

� Second-best problem. The second-best problem assumes that the insurer can contract on
just the costs and not on the health penalty shock. Consequently, in the second-best problem no
argument of the contract can depend on the health penalty shock. This informational asymmetry is
the source of moral hazard.25 Moreover, since there is noise between these two random variables
(εs and εc are not perfectly correlated), the insurer cannot perfectly recover the health penalty
from the observed cost. The second-best contract will specify a premium p and a cost-sharing
function D(c) that will determine how much the individual will pay out of pocket for receiving
medical treatment with costs c. At the second-best, the insurer cannot design a region of (s, c) for
which the contract applies, since s is not contractible. On the contrary, the insurer will take into
account that the insured will behave according to her optimal decision rule (3).

The second-best problem is defined by

max
{p,D(c)}

Pr(s < 0 | s) ∗ U (y − p, 0) +
+∞∫
0

∫ s̃(c)

0
U (y − p, s)gs,c|s,c(s, c)∂s∂c

+
∫ +∞

0

∫ +∞

s̃(c)
U (y − p − D(c), 0)gs,c|s(s, c)∂s∂c, (17)

subject to p =
∫ +∞

0

∫ +∞

s̃(c)
(c − D(c))gs,c|s,c(s, c)∂s∂c, (18)

U (y − P, s̃(c)) = U (y − p − D(c), 0). (19)

23 Dynamic programming models are commonly solved by parameterizing the policy function as I do here. In a
dynamic programming context, this way of solving the problem is commonly called the projection method. I am not aware
of any other application of this methodology in the principal-agent framework.

24 The coefficients of the polynomial are the inputs to the maximization routine. At each combination of polynomial
coefficients, I solve the premium constraint numerically and then evaluate the objective function. I have benefited from
the Simulated Annealing code written by E.G. Tsionas.

25 I say this is a moral hazard problem since it is an informational asymmetry after the contract has been signed
(Laffont and Tirole, 1993; Macho-stadler and Pérez-Castrillo, 2001). Because it is more an informational advantage than
an action, other authors might call it hidden information.
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The expected utility of the second-best problem is analogous to the first-best problem. Both the
expected utility and the fair premium constraint take into account that the consumer will pay out
of pocket. Equation (19) is the constraint that takes into account the individual’s optimal decision
about whether or not to have treatment. That is, this constraint gives the health penalty threshold
as a function of D(c). To solve for D(c), I use a procedure analogous to the one used to solve the
first-best problem, except that the function will take the parameterization

D(c | a0, a1, a2, a3) = L(a0 + a1 ∗ c + a2 ∗ c2 + a3 ∗ c3) ∗ c, (20)

where L(·) stands for the cumulative distribution function of the logistic. This parameterization
has the advantage that it restricts the value of D(c) to be between zero and c, since a cumulative
distribution function always takes a value between zero and one. In this case a third-order
polynomial was also enough to provide a good approximation, as the fourth and fifth polynomials
gave very similar results. The solutions to the problem are p = 6.21, a0 = 2.38, a1 = −9.917E-
03, a2 = 1.106E-05, and a3 = −4.1E-09 (for c valued in 2002 dollars). Like O(c), D(c) is also
increasing in the relevant range of c.

The second column of Table 7 shows selected cost-sharing values. The percentage that
the consumer pays out of pocket decreases from 88.1% when medical costs are $40 to 38.4%
when medical treatment costs are $600 (2002 dollars). The out-of-pocket function, D(c), shows
a concave pattern that gives more coverage to the individual in case of higher costs. The premium
that corresponds to the optimal contract is $6.21. This is a small number because I consider only
a limited set of episodes, those for acute conditions that do not need hospitalization and start in
a given month. It might be argued that this contract is too complicated to be implemented. I also
obtained more simple contracts: a copayment (D(c) = k ∗ c), a deductible (D(c) = min{c, d}),
and a piecewise linear contract (D(c) = min{c, f + q (c − f ) , m}). The solutions are k = .42,
d = 187, f = 51.9, q = .52, and m = 242.6. All of them gave less utility than the polynomial
approximation found before. However, the level of utility of the piecewise linear contract was
found to be quite close to that of the polynomial approximation. In fact, the cost-sharing values
of the second and third column of Table 7 are reasonably close. This piecewise linear profile is
frequently observed in health insurance contracts: they do not provide coverage at low costs, they
cover a fixed percentage for higher costs, and, when costs exceed an upper bound, the insurance
company covers all the extra costs (Cutler and Zeckhauser, 2000).

To satisfy the model assumptions, I only used data on acute and chronic flare-up episodes.
This means that not much information is available on expensive episodes. Consequently, my cost-
sharing values for expensive episodes should be interpreted carefully. For the same reason, it is
worthy to examine how this limited information on large-cost episodes influences my cost-sharing
values for less-costly illness episodes. To explore this issue, I solved the second-best problem

TABLE 7 Selected Cost-Sharing Values Given by
Contracts (D(c)/c ∗ 100)

Income Effects
No Income Effects

3rd Degree Piecewise 3rd Degree 3rd Degree
Costs (c) Polynomial Linear Polynomiala Polynomial

40 88.1 100 91.2 94.0
80 84.0 83.1 83.2 92.0
120 79.3 72.8 77.1 89.8
200 69.1 64.4 — 85.1
400 48.0 58.2 — 76.0
600 38.4 40.4 — 75.1
Premium $6.20 $6.12 $0.76 $1.49

Note: Costs and premium are valued in 2002 dollars.
aCost density was truncated not to take values larger than $155.8.
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using the original density function but truncated in costs. In particular, the density function was
truncated not to take values of costs larger than $155.8. This is the 75th percentile of observed
cost distribution for those with zero copayment. I also used a third-order polynomial to solve the
second-best problem. The implied cost-sharing values are given in the fourth column of Table
7. The cost-sharing values of the truncated (fourth column) and untruncated (second column)
solutions are quite similar, especially for treatment costs between $40 and $120. The optimal
copayment when costs cannot be larger than $155.8 is 82%.

Even though extensive previous work used the RAND HIE data, it is difficult to compare
my results with those in previous work. First, my model deals with illness episodes that start in
a month, rather than all the illness episodes in a year. Second, I have included neither chronic
expenditures, because they are not random, nor episodes that require hospitalization. I follow this
focus because Besley (1988) points out that different health care services will require optimally
different cost-sharing rules, since they have different elasticities. I have also done so in order to
use episodes that are consistent with the basic assumptions of the model.

� Moral hazard measure and welfare loss. In this subsection I will give a new empirical
measure of moral hazard. Though it might be natural from a theoretical point of view, I am
not aware of previous estimates of it. The health economics literature has traditionally relied
on the elasticity of utilization with respect to copayment as a measure of moral hazard. This
price elasticity measures an important aspect of moral hazard: how sensitive individuals are to
incentives. However, it is not the only aspect to measure. Here I propose a new measure of
moral hazard that is complementary to elasticity rather than a substitute for it. My measure is
clearly linked to the informational content of contractible variables over noncontractible ones,
and hence it is especially appealing when we look at the problem from the incomplete-markets or
principal-agent paradigm. As Winter (2000) points out, if there is a deterministic relation between
contractible and noncontractible variables, then there is no moral hazard and the first best can
be achieved by means of a nonlinear contract.26 As pointed out at the beginning of this section,
moral hazard arises because s is noncontractible. If there is a deterministic relation between c and
s, however, then it is enough to sign a contract contingent on c. That is, the insurer can recover
the value of s from the observed c, meaning that the value of s is no longer the insured’s private
information. This suggests var(s | c) as our moral hazard measure. If this variance were zero,
then the relation between s and c would be deterministic. Given that in my model any uncertainty
at the individual level is through εs and εc, the moral hazard can be measured by var(εs | εc).
Due to the bivariate normality assumption, var(εs | εc) = σ 2

εs(1 − ρ2
ε ). Hence if ρε = 1, then

there would not be moral hazard. Notice that from the results in Table 5, we may reject the
nonexistence of moral hazard at the 95% confidence level. Apart from the issue of rejecting or not
rejecting the moral hazard hypothesis, it is clear that the value of ρε is important because it tells
us how health penalty changes with costs. This is particularly important if nonlinear contracts
are used. Although it is hard to interpret whether a value for ρε of .79 is high or low, it seems
moderately close to one and hence the extent of moral hazard seems reduced. However, there is
still significant informational asymmetry. Using the analogy with an R2 measure, we can say that
about two-thirds (approximately .792) of the variance of residual health penalty is explained by
the cost, but one-third remains unexplained.27 I would like to highlight that the availability of my
moral hazard measure is a product of my modelling choice to make a clear distinction between
contractible and noncontractible variables.

A measure of the importance of the moral hazard problem can be obtained by computing the
welfare loss due to moral hazard, that is, due to the noncontractability of the health penalty shock.
I compute the compensating variation as the amount of income that must be subtracted from the

26 That would occur independently of the elasticity value. Even if demand were very elastic, a deterministic relation
between contractible and noncontractible variables would preclude the existence of moral hazard. That is why my measure
is complementary to elasticity.

27 In a linear model of residual health penalty over costs and a constant, the R2 measure would give the fraction of
the variance of residual health penalty explained by the costs. The R2 is equal to the square of the correlation coefficient.
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consumer in order to obtain with the first-best contract the same expected utility level as from the
second best. I find that the compensating variation is $.68, or 4.82% of the second-best expected
health care expenditure (premium plus out-of-pocket payments). This seems to reinforce the idea
that the moral hazard problem is not too large.

The elasticity of expected costs with respect to copayments has been the traditional measure
of moral hazard. The reader might be interested in the values of these elasticities predicted by my
model. This is easy to obtain given the information in Table 6. The arc elasticity between the 0%
and 25% copayment rate is −.108, while it is −.243 for the 25%–95% range. These predictions
are quite close to the Manning et al. (1987) results of −.13 and −.21, respectively, for outpatient
care reported in their Table 8. My estimate of the elasticity of expected costs with respect to
income is .07 when copayment equals 12.5%, and .26 when copayment equals 60%.

� Comparison with a model without income effects. In this subsection I compare my results
with those of a model that does not take into account income effects. To do this comparison, I
estimate the structural model using U (Y −sγ ) as the utility function. Notice that the health penalty
threshold, s̃(c), defined by this utility function does not depend on income. There is an obvious
caveat for this comparison. If the data exhibit income effects, as mine do, the estimates of a
model without income effects are almost necessarily inconsistent. Hence, the cost-sharing values
estimated using the model without income effects are also inconsistent. Thus, my comparison can
only be interpreted in the following way: How would my results change if I had not considered the
presence of income effects? Given the results in Section 5, one must clearly prefer the income-
effects specification. However, I find the comparison of the contracts obtained under the two
hypotheses interesting.

In principle, a first approximation to the problem could be obtained by computing the
compensated elasticities of expected costs with respect to the copayment rate. In my model with
income effects, the compensated price elasticities are almost identical to the uncompensated ones
(the compensated ones are −.108 for the 0%–25% range, and −.241 for the 25%–95% range).
The compensated and uncompensated elasticities are almost identical because the expected cost
is around 1% of mean income (notice that the probability of any cost is around .13 and the
probability mass for small costs is substantial). Consequently, a first approximation would tell
us that income effects are not important in the determination of optimal cost-sharing values.
However, I find below nonnegligible differences between the optimal cost-sharing values implied
by the model with income effects and the model without income effects. This could be because the
model without income effects gives inconsistent estimates. Another possible explanation is that
the compensated elasticity is based on the share of expected cost on income, while it could be the
share of realized costs on income that matters in the determination of cost-sharing values when a
contract that conditions on cost (a nonlinear contract) is used. In fact, I find evidence of this by
comparing the second and fifth colums of Table 7. The difference between the two cost-sharing
values increases with the magnitude of costs. As one would expect, the larger the share of costs
over income, the more important the income effect.

I would like to put this in perspective with the recent theoretical literature on optimal cost
sharing. Ma and Riordan (1997, 2002) have highlighted the role played by income effects at
determining the first-best level of health care use.28 I think this explains, at least partially, the
difference in cost-sharing values that we find between the specifications with and without income
effects. Table 8 shows the first-best thresholds, O(c), for both specifications.29 From the results

28 Unlike the no-income-effects model, the income-effects model “requires the consumer to be responsible for
only a fraction of the treatment cost because his marginal valuation of income rises once a deductible is paid out of his
income” (Ma and Riordan, 1997, p. 9). This means that if income effects are present, health care use is larger in the first
best than in the absence of insurance, while both coincide when income effects are absent. See De Meza (1983) for a
similar observation.

29 It is easy to obtain O(c) in the specification without income effects because O(c) does not depend on either
income or premium; see Ma and Riordan (2002) when a = 1 and b = 0. In my case, O(c) = c1/γ . I use γ = 1.58 and
σε = 39.996, which are the values estimated under the no-income-effects specification. These parameters are for costs
valued in 2002 dollars.
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TABLE 8 First-Best Values (O(c)/σεs)

Costs (c) Income Effects No Income Effects

40 .252 .258
80 .302 .400

120 .350 .517
200 .441 .715
400 .634 1.109
600 .783 1.433

Note: Costs are valued in 2002 dollars.

in Tables 7 and 8, I conclude that both the difference in the first-best thresholds and the
difference in cost-sharing values between the income-effects and no-income-effects specifications
are positively related to the magnitude of the realized cost of treatment. Both specifications give
similar results for episodes when costs are a small fraction of income, but they differ when costs
are a large fraction of income.

8. Conclusions

� Unlike previous empirical research, I have used the principal-agent paradigm to estimate the
optimal insurance contract for reimbursement health care insurance. Consequently, the optimal
contract is derived from first principles and is robust to the presence of income effects. The
empirical implementation allows me to estimate a new measure of moral hazard based on the
correlation between unobservables influencing contractible and noncontractible variables. This
new measure is complementary to the elasticity measure commonly used in the literature. I have
also disentangled the treatment decision from the cost of treatment following previous research
that attributed to the consumer the decision whether or not to seek treatment, while the cost
decision is mostly left to the doctor.

The panel data used come from the RAND Health Insurance Experiment, a social experiment
conducted between 1975 and 1982 in six different U.S. sites. Families participating in the
experiment were randomly assigned to insurance plans, which allows one to consider the insurance
status as exogenous. Structural parameters were estimated by simulated maximum likelihood
using Monte Carlo integration to accommodate both sample selection (costs of treatment are
observed only for those who decided to seek medical treatment) and individual unobserved
heterogeneity.

The real data in frequencies of treatment and costs lie within the confidence interval
predictions of my model. The real data exhibit a nonlinear effect of copayment on frequencies
of treatment that my model does accommodate. I estimate a moderately high correlation (.79)
between unobservables influencing health penalty and those influencing costs, which reduces the
extent of moral hazard. This amounts to saying that about one-third of the residual health penalty
variance remains unexplained by costs. The optimal out-of-pocket function shows a concave
profile on costs, providing a larger coverage for episodes with larger costs. A piecewise linear
contract provides an out-of-pocket function close to the optimal one. I estimate that the welfare
loss due to moral hazard is 4.82% of the second-best total health care expenditure. A few remarks
are important. My results apply only to acute illness episodes that do not require hospitalization.
Given my limited information, the cost-sharing values for expensive treatments should be treated
carefully. In particular, my results cannot be applied to catastrophic events. My sample is restricted
to adults younger than 65 years old.

Due to lack of data, I have not considered the optimal mix of consumer and provider
incentives (Ellis and McGuire, 1993). Consequently, I have looked for the optimal insurance
contract restricted to the set of those that give incentives only to the consumer. My model seems
to provide a hint on how a joint analysis of consumer and provider incentives could be carried
out. Provider incentives could influence my cost function, should the necessary data be available.
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I would like to point out that this article has followed the tradition of a sovereign consumer who
is able to correctly evaluate health status and, in particular for my model, health penalty. More
research is needed to evaluate this point and its consequences. I have not studied multiple illness
spells, so it is not clear how to extend my results for a period in which the individual could
possibly face multiple illness episodes. Given the lack of data, I have not been able to incorporate
uninsurable costs (such as travel costs and others) in consumer behavior. Overall, the article has
provided an empirical analysis in the field of moral hazard in health care utilization in a fashion
close to the principal-agent paradigm, though it is clear that substantial work is still needed.

Appendix

� The computation of the log-likelihood function follows.

The likelihood function contribution in (10) has two integrals, one over sit and the other over ci t . Since the log-
likelihood function has two individual effects, then computation of the log-likelihood requires the evaluation of four
integrals. Since evaluating integrals numerically is computationally intensive, there is an interest in cutting the number
of integrals to compute. This can be done by taking advantage of the joint normality of (εst , εct ), since their conditional
densities will also be normal and hence its cumulative distribution function (CDF) is available in standard econometric
software.

Let ε̃ct (εst ) be the function that for each εst gives the value of εct such that the individual is indifferent between
having or not having treatment. Let gεst (εst ) be the normal density with zero mean and variance σ 2

εs . Hence the second
term of (10) can be obtained as

∞∫
−Xst βs−µs

Pr(εct > ε̃ct (εst ) | εst )g(εst )dεst ,

that is, in the range for εst for which the individual is ill: (−Xst βs −µs , +∞), the average probability of obtaining a draw
from εct such that it is not worthwhile to have treatment (εct > ε̃ct (εst )). This expression can be approximated, using
Monte Carlo integration, by

1
H

H∑
r=1

Pr(εct > ε̃ct (ε̂r
st ) | ε̂r

st ) ∗ �

(
Xst βs + µs

σεs

)
,

where ε̂r
st are random draws from g(εst | εst > −Xst βs − µs ), the factor �(Xst βs + µs/σεs ) corrects for this condition,

and H is the number of draws. Notice that the term Pr(·) can be directly obtained by using the CDF of the normal. To
obtain draws from g(εst | εst > −Xst βs − µs ), I use the transformation �−1(�(−Xst βs/σεs )u + (1 − u)), where u
are random draws from the uniform (0, 1) distribution. Consequently, it is only necessary to compute one integral when
computing the second term of (10).

Computation of (9) is performed in a similar way. Tt equals 1 when st > s̃(ct ), that is, εst > s̃(ct ) − Xst βs − µs .
Hence the probability of Tt = 1 and observing costs ct is

+∞∫
s̃(ct )−Xst βs−µs

hεc|εs (ε̃c(εst ))g(εst )dεst ,

where ε̃c(εst ) = ln(ct )−α ln(1 + Xst βs + µs + εst )− Xctβc −µc is the value of εct that gives ct conditional on εst . Notice
that εct | εst follows a normal distribution and hεc|εs is its density. In the same fashion as before, the above integral can
be computed, using Monte Carlo integration, as

1
H

H∑
r=1

hεc|εs (ε̃c(ε̂r
st )) ∗

[
1 − �

(
s̃(ct ) − Xst βs − µs

σεs

)]
,

where ε̂r
st are random draws from g(εst | εst > s̃(ct ) − Xst βs − µs ), and the last factor corrects for this condition. For

the sake of exposition, I have omitted both the i subindex and the conditionality on (µs , µc). The above expressions are
used to compute L0i t and L1i t in (10) and (9). Finally, computation of (11) is also done through Monte Carlo integration
by drawing H pairs of (µ̂r

s , µ̂r
c) from the corresponding bivariate normal distribution, that is,

ln L =
N∑

i=1
ln

(
1
H

H∑
r=1

qi∏
t=1

Lit (µ̂r
s , µ̂r

c)

)
.
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The above simulation routine gives a log-likelihood that is smooth in the parameters that allow one to use standard gradient
methods for maximization of the log-likelihood, as well as to obtain standard errors using standard inference procedures.
This estimator, as any computed through simulated maximum likelihood, is consistent when the number of draws tends
to infinity. I have used H = 40 with antithetics as a bias-reduction technique. To assess the reliability of my simulation
routine, I estimated a single-period model without time-invariant unobserved heterogeneity using both my routine and
using numerical integration by quadrature methods (Judd, 1998) directly in (10) and (9). I found very similar results in
both coefficients and standard errors. The results of this comparison are available from the author upon request.
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