United States Patent

US007117270B2

(12) (10) Patent No.: US 7,117,270 B2
Rosenblum @5) Date of Patent: Oct. 3, 2006
(54) METHOD FOR SENDING AND RECEIVING 6,728,715 B1* 4/2004 Astley et al.c.ccoeuee. 707/10
A BOOLEAN FUNCTION OVER A 6,760,340 B1* 7/2004 Banavar et al. 370/408
NETWORK 6,839,730 B1* 1/2005 Ramabhadran 709/201
6,907,011 B1* 6/2005 Miller et al. 370/254
75 . . 2002/0087881 Al 7/2002 Harif
(75) Tnventor: David S. Rosenblum, Orange, CA (US) 2002/0162025 Al 10/2002 Sutton et al.
*
(73) Assignee: Precache, Inc., Bridgewater, NJ (US) 2003/0021258 Al 1/2003 Novaesccccceeeveennnne 370/351
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this o -)
patent is extended or adjusted under 35 Che{“chua‘;l ‘zt al. Predl_cafte re‘:fmmg tfor”tr:ncsﬁn;g Boi!ean
queries 1 a heterogenceous irormation system, ransactions
US.C. 154(b) by 717 days. on Information Systems (TOIS), vol. 17 Issue 1, Jan. 1999.*
. Search Report issued on Mar. 29, 2004 in counterpart foreign
(21) Appl. No.: 10/199,439 application in WIPO under application No. PCT/US03/21338.
o Gupta, P., et al., Algorithms for Packet Classification. IEEE Net-
(22) Filed: Jul. 19, 2002 work, pp. 24-32, Mar/Apr. 2001,
. L. Srinivasan, V., et al., Fast and Scalable Layer Four Switching. In
(65) Prior Publication Data Proceedings of SIGCOMM *98, pp. 191-202, 1998.
Gupta et al., Packet Classification on Multiple Fields, Proceedings
US 2003/0154302 A1 Aug. 14, 2003 of ACM SIGCOMM *99, pp. 147-160, Aug. 1999.
Related U.S. Application Data (Continued)
(60) Provisional application No. 60/312,076, filed on Aug. Primary Examiner—William C. Vaughn, Jr.
13, 2001. Assistant Examiner—Yemane M. Gerezgiher
(51) Int. CL (74) Attorney, Agent, or Firm—Andrews Kurth LLP
GO6F 15/173 (2006.01) 57) ABSTRACT
(52) US.CL .o 709/238
(58) Field of Classification Search 709/238-240, Conversion of subscription predicates for transmission in a
709/242, 245, 246 publish-subscribe network. Subscriptions include Boolean-
See application file for complete search history. valued predicates defining content desired by a subscriber.
. An agent application converts the predicates into a suitable
(56) References Cited form for transmission to routers in a network core. The
U.S. PATENT DOCUMENTS routers process the predicates into filter tables or data
. o structures for use in content-based routing, which involves
5893911 A . 4/1999 Piskiel et al. 707/10 applying attributes in received packets to the filters. The
2’?2 i’;gl‘ i . 1?;;888 ggi:irzteélal' 00238 agent also receives content corresponding with subscriptions
6:32 1:2 67 Bl 11/2001 Donaldson anqbcalls applications for presenting the content to a sub-
6,405,266 B1* 6/2002 Bass et al. w.ooeeeurrrunnen. 719/328 ~ SCrioer
6,523,068 Bl 2/2003 Beser et al.
6,697,961 B1* 2/2004 Petrenko et al. 714/26 12 Claims, 20 Drawing Sheets

160

channel managers

152

154 156
serverQ}{ server N ‘

i) server 1 H
[

158

160

162

[t b— |

W

intelligent
router 1

intelligent
router 2

:

intelligent
router M

164

subscribers

166

168

subscribers

US 7,117,270 B2
Page 2

OTHER PUBLICATIONS

Lakshman, T., et al., High Speed Policy-based Packet Forwarding
Using Efficient Multi-dimensional Range Matching. In Proc. ACM
SIGCOMM 98, pp. 203-214, 1998.

Srinivasan, V., et al,, Packet Classification using Tuple Space
Search. In Proceedings of ACM SIGCOMM °99, pp. 135-146, Sep.
1999.

Adiseshu,,H., et al., Packet filter management for layer 4 switching.
In Proceedings of IEEE INFOCOM, 1999.

Buddhikot, M., et al., Space decomposition techniques for fast
layer-4 switching. In Proceedings of IFIP Workshop on Protocols
for High Speed Networks, Salem, Massachusetts, pp. 25-41, Aug.
25-28, 1999.

Gupta et al., Packet Classification Using Hierachical Intelligent
Cuttings. In Proceedings Hot Interconnects VII, Aug. 1999.
Warkhede, P.R., et al., Fast Packet Classification for Two-Dimen-
sional Conflict-Free Filters. In Proc. INFOCOM, pp. 1434-1443,
2001.

Waldvogel, M., Multi-Dimensional Prefix Matching Using Line
Search. In Proceedings of IEEE Local Computer Networks, pp.
200-207, Nov. 2000.

Eppstein, D., et al., Internet packet filter management and rectangle
geometry. In Proceedings of the 12" Annual ACM—SIAM Sym-
posium on Discrete Algorithms (SODA 2001), pp. 827-835, Wash-
ington, DC., Jan. 2001.

Feldmann, A., Tradeoffs for packet classification. In Proc.
INFOCOM, vol. 3, pp. 1193-1202. IEEE, Mar. 2000.

Woo, T., A Modular Approach to Packet Classification: Algorithms
and results. In Proc. IEEE INFOCOM, Tel-Aviv, Israel, pp. 1213-
1222, Mar. 2000.

Eugster, P., et al., Event Systems, How to Have Your Cake and Eat
It Too, In 229 International Conference on Distributed Computing
Systems Workshops (ICDCSW °02), Vienna, Austria, Jul. 02-05,
2002.

* cited by examiner

US 7,117,270 B2

Sheet 1 of 20

Oct. 3, 2006

U.S. Patent

ve

J

14

/

02

/

Jaquosqns

18ynoJ abipe

abessaw

3ol

oC

L 'OId

abessaw

10U JAY

paysies \ yoxoed

19x0ed

9l

\

14

\

a

Janor Juabij|sj

J

4

8l0D
sHOMeN

J01n01 abpas

Jaysygnd

US 7,117,270 B2

Sheet 2 of 20

Oct. 3, 2006

U.S. Patent

Jaquosqns

Jaquosqns

Jeinoy v Jaynol
juabyjsul \ Jusbyjeul
N / Janol \ Y
8 S¥ 9B |jo1u Pid rAZ

oy Jaynos 6S 8¢

A \ LTS / ‘

Jaynos 34 4 Janol

wablelul ov wabnRIul

Jaysygnd

4
a

Jaysyqgnd

U.S. Patent Oct. 3, 2006 Sheet 3 of 20 US 7,117,270 B2

=
4] @
® 3
g £
k7 c
o E 8
0 sl £ P4
0 'g \: % YY)
3
8 [{s]
14 ® 2

e
TR
N
(®)

FIG. 3

.-
IS
\%

US 7,117,270 B2

Sheet 4 of 20

Oct. 3, 2006

U.S. Patent

16-] ANepuodss

OISV
16 -
JaInol suogyoeq
\ g6
6 ~ £6 ~
Aowsw Jossaonold
abelols

Jaynou juabijisyul

US 7,117,270 B2

Sheet 5 of 20

Oct. 3, 2006

U.S. Patent

N eulyoew Jaquosgns

“ -
! (0148
|
{21543
8oIA8p 20IAsp
Reidsip ndino
-
gcl 4
AN
Jossasoid SJIASp
ynduy
S
vel 8zl
4
uabe
9zl
N\ uoneoydde
abelo)s
Aepuooss Aloussw
)
ocl 174}
| sulydew Jaquosqgns
L
[44]

G 'Old

NHIINETN

oci

N euiyoew Jaysyqnd

- |
8L u
“
oLl
0|ASp N 0IA8p
Ae|ds)p jndjno
N~
9Ll 80l
AN
Jossaooud SolASp
ndui
-
127" 90l
N
Jusbe
0l
\/ uoneoydde
Jays|qnd
abeioys
Kiepuooas Aiowsw
N~ \
147" 201
| sujyoew ._ocm__nza
\
ool

US 7,117,270 B2

Sheet 6 of 20

Oct. 3, 2006

U.S. Patent

slequosqns

slaysiignd

B9l

9 '9Old

991

9l

W Jainol

jusbijjeiul Juab)

Z lanol

Hepul

| Jaynol
uabyem

NJoAles |— ZJomes |—{ | Joaiss

N2

I
|
I
I
|
|
!
}
|
i
I
|
|
I
] |
I
! 7
|
I
|
I
i
I
I
t
t
]
1
|
|
I
1

951

¥si

slebeuew jsuueyd

slaquosqns

sJaysiiqnd

US 7,117,270 B2

Sheet 7 of 20

Oct. 3, 2006

U.S. Patent

|nou

JusBijjepur

wr 002

L "Old

Jabeuew
jpuueyd

ﬂf 861

yled
|OJIU0D

H) 961

76l ~
AJeuqi| Jayojedsip
06T
Z6l | Aelq) Buibesssw Aleiqj) |puueyo Qeiqy sayoeo _ gg}
uied eyep <>
y0e
ogl - Adeuq)) Jusae
Juabe .,
281 uonedldde Jesn
*_
081 }oe)ls

US 7,117,270 B2

Sheet 8 of 20

Oct. 3, 2006

U.S. Patent

8 "Old

8le
A\

Jabeuew ayoed

2z
yed ejep <» uowaep Buinos — 912
0ce
19BBUBL [0JU0D b Jayojedsip uowaep Buuey N
piz
) Jajnos Jusbijejul
(1174

US 7,117,270 B2

Sheet 9 of 20

Oct. 3, 2006

U.S. Patent

6 "Old
[N] @inquye
|
YA LA
A [L] ainqupe
(@] einquye
[NIs
|
ove .
< 0k
[o]s
8€Z Yibua|
9€T - lopesy shessaw
V€T Japesy 401 dan
TET Japeay d|
A
0ee

US 7,117,270 B2

Sheet 10 of 20

Oct. 3, 2006

U.S. Patent

0L 'old

[4IAN]

saynquye |puueyd
UM SOUBPIOTOER Ul UOREBOLIIOU U0 JUdU00 ysignd

192

SanjeA
ajeudosdde yum saynquye uonediou siejndod

09Z |

suonduosgns
Buissaoo.d u| asn Joj siaynol Jusbysjul 0}
UOIJBLUIOJU! JUBJUCD PUE [SuUUBYD jJO (] JWsuel

}

852 \

[8UUBYD UO UOKEINOU 8jEaID

!

952

jSUUBYD 1O} SIINQUYIE BAIB08)

i

1 TNy

UONBLULIOU| [2UUBYD UM |3uueyd dn-jas

€52

soepslul Ue ybnoly)
JauuByo a8y} 4o} Jeuuo) sbessaw e aujuus)ep

i

252

Jjeuuey Joy Axold Jo uoneald Jaysyqnd aAieal

(+aystignd)
Nio3g

US 7,117,270 B2

Sheet 11 of 20

Oct. 3, 2006

U.S. Patent

942 —

Ll "Old

Buisssooid

Jo} yusbe o) uopduasqns spuss |dy

»

viC

Jasn wouy uolduosgns Jo} SenjeA aAie0al

1%

[AXARS

uoido pajosies Yim Buipuodsauod |auueyo
Joj Jasn 0} suoldo uonduosqns suasald jdy

»

04T - [suueyd pajos|as 1o} |4V SIied IND
i
892 — [SUUBYD B JO UO[}08|8S J8SN BAI808)
t
992 | lasn o} sjsuueyd ajqe|eAe sjussald |NO
v9¢

(4aquosqgns)
NI©O34

US 7,117,270 B2

Sheet 12 of 20

Oct. 3, 2006

U.S. Patent

¢l 'Old

08z ,w 4

san|ea uonduosgns Jojua

$8¢ —
X [duueyo
X 1eqjoo}
7
08e
N jsuueyd
_
,
<8¢ —» -
Z |auueyo
81C | [Buueyd
X Jeq|o0}
08¢

US 7,117,270 B2

Sheet 13 of 20

Oct. 3, 2006

U.S. Patent

aN3

ON

-

1)1} Yum pajeroosse
sa|nJ Aq paquosaid
suonouny aJNoaxa

)
vLE

> ¢ SIo)l} I0W
MW/»\ S3A

yojewsiw
19yl alejoep

SlE —

Zpalsies ey

oie 7

(s1s8) @3nquye)

18}y 0} 1930ed Woyy (s)singune Adde

!

80¢ /_

(s1se} eynqupe jo dnoib) sy e arsLlal Tl

!

90€ lh

sajnquye eAswlal ‘gl jeuueyo Buisn ‘

i

p0e /_

@l |suueyd suuLalep |

i

coe i

jeoed aneoa) |

00€

(Bunnou paseq-jusjuod)
NIo3d

FIG. 13

US 7,117,270 B2

Sheet 14 of 20

Oct. 3, 2006

U.S. Patent

v1 'Old

Bupnol

vee /| 404 Joynos suogyoeq O} BYep payded Jajsuel)

1senbai 0}
zee 7| Buipioooe ‘xapui Butsn ejep payoeo sAs}el

ejep payoe
Jo} jsenbal

eAl998l
oce
sdwe;js awy pue
8¢ — ‘sjosigns ‘| [suueys AqQ ejep psyses xapul
sze < ejep ayoeo |
v2e — ejep yiew swy |
728 spafgns pue |
d| 1suueyd ‘ejep buiaey sbessaw aa1909y
0ze (Buiyoeo)

NI©3¢g

U.S. Patent Oct. 3, 2006 Sheet 15 of 20 US 7,117,270 B2

(o]

™)

™

N\
o

@

L

® 0

© -
e >3 O

™

N
=’

data in
338

US 7,117,270 B2

Sheet 16 of 20

Oct. 3, 2006

U.S. Patent

91 "Old

ON3

pLE l_’ J8inol Juebijjeiu) o) abessaw Jajsues _

[}

(733 (_ obessow e oju uoissaidxe JNQg Bunnss: eposus _

A
0e L! SPJEOP|IM LUBAUOD >=m:o.aaoJ
)
298 §159) diysiaquiew pue suaj|y abuel Ajuo
UIBIUOD O} JMONUls 4NQ Jo suoissaidxa Ny Apduns
i
99¢ I_ BJNIONUS NG O} 81NjONLS BIRp S)R|SUR) _
[}
8 uuoj eAsod 0} ainpPnys
BJep Ul suoIssaidxe [enbe-jou Jusnipsuod sjejsuel)
[
29¢ /._’ aJnjonJis ejep u) uoissaidxa wLoﬁmJ

188N
0} efessaw
JoLuo Juesasd

cuonduosgns -
u) SJoud S3A
8¢¢ 09g
96¢ I* sioua Aue yoajap o} buys esied 1_
¥5€ uonduosqns
Joj uoissa.dxe uesjoog Buikyeds Suuys eiessn
4
2se /4* uonduUISqnS BAB93) _
05¢ (jusbe)
NIO38

US 7,117,270 B2

Sheet 17 of 20

Oct. 3, 2006

U.S. Patent

Ll "Old

P8¢

Jewloy Jayjo 10 N9
ul uonduosgns Joj abesssw syuasaid |gy

4

28¢g

[ouueyd 1oy} |4V [1ed

08¢ —

uonduosgns
Yum Buipuodseliod jguueyo sulue)sp

f

8.8

uonduosgns e yum Buipuodsallod Jaynol
abijsyul wolj (Joxoed) ebessaw aAeoal

L

€

(yuabe)
NI©39

US 7,117,270 B2

Sheet 18 of 20

Oct. 3, 2006

U.S. Patent

8l "Old

uaaM}aq aWn|oa Jo puesado puooeg

U93M}aq BWIN|OA JO pueIado Jsiig

=< 9oud jo puesadQ

(Buipped moSm Z + SI8joeieyd g)
= = |OqWAS Jo puesadQ

== [OqWAS Jo puelssdo jo azig

=< 80ud Jo puesadQ

ummﬁwmsmo,%@ =< 80ud Jo Buipoouz
= mv_mm_ﬁhwcﬂ_m =< 82ud jo Buipoous
salAq ¢ 0} bujpped < Jo} Q| Palgng
1S8} 9)NQURE J0 JaquinN Um_%%%__.%._wﬂ_u_.ucs N
a_aww_ﬂwwwmrm (pownsse) Jaqunu pod
NOlghdRans # 40y Q1 Yolans
spjay 10algns jo Jaquny pasnun

(pswnsse) Jaqunu aguanbag

(pewnsse)} qj uoissag Jayslgng

(pawnsse) () Jaysignd

(pawnsse) qg| jpuueyn

abessaw uj saiig

.
88e

0000}
000}
ot
NN NN n 1
<
ol
010 00LL0 0100000 }+ | LOO OLLOO 0000000 O
LL000L 10 1000000 L | LOO OL 10O 0000000 O
0 G
L4 }
0 9895
0S 0
< 0
6¢
P8E6056
100¢
4
4
N
98¢

US 7,117,270 B2

Sheet 19 of 20

Oct. 3, 2006

U.S. Patent

0¥ 7|

0000} = puelsado

6L 'Old

0001 = puesado

=»> = Jojesado =< = Jojelado
g = apooadfy 9 = apooadA}
Z = uomsod 2oy 7 Z = uomsod
awn|oA = sWweu SWN|OA = sweu
sny = pauyspaid any) = pauyapaid
J9)|l49jdWiS
N1 = puelado
w == = Jojelado
Z) = apooadhy
oov 86€ | | = uonysod
J48}I4puy - |OqQAS = sweu
any} = pauyapald
SECIELVISH
0l = puesado
Mv =< = Jojesodo
g = apooadAy
96¢ 7| ¥6€ 7 0 = uomsod
4831410 - soud = sweu
arnu) = paulyapald
§
26€ 7|
06¢

US 7,117,270 B2

Sheet 20 of 20

Oct. 3, 2006

U.S. Patent

0Z "Old

oy /_ 9|ru pauuojsuey sjebedoid ‘Alessaosu j

3
144 4 L-N< Yibus| pjay 0y juiensuod Lbus| sbueyd
S3A

&u<u PIRY-QNS
puesado jse| si

9y

¢SPIBY-qns
ajow S3A

vey

(444 +
N 1o = [l piey *ajru o} esnejo sAnuNfucd ppe
ON

¢prespiim e [ijo
ploy-gqns puesado si

S3A

oy
AN PIoY-Qns e aAsLal |+——
ol L N = yibus) pjoy A._M:E 8| mau azjieniul _
1434 /._ hcmcmao ul spjay Junoo |
A
(444 i pieop|im Buirey uopduosgns anjeoel |

(preopjim)
NIO3g

US 7,117,270 B2

1
METHOD FOR SENDING AND RECEIVING
A BOOLEAN FUNCTION OVER A
NETWORK

REFERENCE TO RELATED APPLICATION

The present application is a continuation-in-part of U.S.
Provisional Application Ser. No. 60/312,076, entitled
“Method for Sending and Receiving a Boolean Function
Over a Network,” and filed Aug. 15, 2001, which is incor-
porated herein by reference as if fully set forth.

FIELD OF THE INVENTION

The present invention relates to a method and apparatus
for sending and receiving a Boolean function over a network
for use in processing subscriptions to content.

BACKGROUND OF THE INVENTION

Network bandwidth is increasing exponentially. However,
the network infrastructure (including routers, servers, dae-
mons, protocols, etc.) is still using relatively old technolo-
gies. As a result, Internet applications and network routers
cannot keep up with the speed of the bandwidth increase. At
the same time, more and more devices and applications are
becoming network enabled. The load that these devices and
applications put on the network nodes have increased tre-
mendously. The increase of network load and number of
applications also makes the complexity of implementing and
maintaining network applications much higher. As a result,
the increase of network bandwidth and the ubiquitous use of
network devices and applications can cause problems for
routing and transmission of data in the old network infra-
structure, particular when publishing content to subscribers.

A model for having networks push information from
servers to clients is the publish-subscribe style. In this
model, the server becomes a simplified publisher of its
information, without regard to which clients may be inter-
ested in that information or where they are located in the
network. The clients become subscribers for information,
with information delivered as it becomes available, poten-
tially without regard to details about where in the network it
was published. The network is then responsible for effi-
ciently routing published information to subscribers, for
matching information to active subscriptions, and for doing
all of this in a way that is transparent to the publishers and
subscribers.

Because the complexity of the server is greatly reduced in
the publish-subscribe model, the distinction between a
heavyweight server and a lightweight client can begin to
disappear, or rather to merge into the notion of a peer that
can be either publisher, or subscriber, or both. Numerous
kinds of applications have a natural affinity for publish-
subscribe-style interaction between peers. A common theme
underlying many of these applications is that the information
being published and subscribed for is in the form of events.
For example, an investor buys or sells a stock, causing the
price of the stock to change. A traffic incident occurs on a
freeway, causing traffic on the freeway to back up. A security
hole in a software system is discovered, causing a patch to
be developed for the users of the software. A player fires a
weapon in an Internet game, causing another player’s avatar
to die. All of these exemplary phenomena are events that are
potentially of interest to large numbers of subscribers and
can be propagated over a network to notify those subscribers
that the events happened. An event is thus simply a self-

—

0

—

5

20

25

40

50

2

contained, succinct piece of information about something
potentially interesting that happened at some point in time at
some place on the network.

Another example involves a scheduled broadcast, which
has differing characteristics from applications involving
only asynchronous events where the time of events is
unpredictable and random. First, the event is scheduled to
take place at a known time. Secondly, an event does not need
to be a succinct piece of information. Instead, it could be a
massive amount of data. Directing this massive load of data
to the parts of the network where interested subscribers are
found requires substantial server processing.

Typically the server or publisher performs the routing
decisions for the network in order to instruct the network on
where to send published content in the publish-subscribe
model. The publisher stores the subscriptions for content
that it publishes. Upon receiving or generating new content,
the publisher compares the content with each of the sub-
scriptions to identify any matches. If the content (event)
satisfies any subscriptions, the publisher pushes the content
to the corresponding subscriber via the network. This con-
ventional publish-subscribe model places a tremendous bur-
den on the publishers, particular as more devices become
network-enabled and as the number of subscriptions
increases. A complementary approach can be just as odi-
ous—a subscriber evaluates its own subscriptions on all
published events.

With greater convergence of untold numbers of applica-
tions across the Internet, the possibilities for exploiting
event notification become endless. However, those possi-
bilities require a more efficient way to make routing deci-
sions and determine when events satisfy subscriptions, alle-
viating the burden on the publishers. Thus, a pervasive,
persistent event notification service could provide tremen-
dous value-added benefit for Internet applications, as well as
other applications and implementations.

SUMMARY OF THE INVENTION

A method and apparatus consistent with the present
invention provide for transmitting predicates in a publish-
subscribe network. An expression is received including
Boolean-valued predicates relating to a subscription. The
expression is encoded into a message for transmission in the
network for use in content-based routing, and the message is
transmitted to at least one router in a network core in order
to provide content-based routing for the subscription.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings are incorporated in and
constitute a part of this specification and, together with the
description, explain the advantages and principles of the
invention.

FIG. 1 is a diagram illustrating intelligent routing in a
network core.

FIG. 2 is a network diagram illustrating intelligent routers
for publishers and subscribers.

FIG. 3 is a diagram illustrating a network infrastructure
for intelligent routers and backbone routers.

FIG. 4 is a diagram of hardware components of an
intelligent router.

FIG. 5 is a diagram of publisher and subscriber machines.

FIG. 6 is a diagram of channel managers for intelligent
routers.

FIG. 7 is a diagram of software components in a user
machine for interfacing the machine with intelligent routers

US 7,117,270 B2

3

FIG. 8 is a diagram of software components for an
intelligent router.

FIG. 9 is a diagram of a packet structure for a message.

FIG. 10 is a flow chart of a publisher method.

FIG. 11 is a flow chart of a subscriber method.

FIG. 12 is a diagram of channel and subscriber screens.

FIG. 13 is a flow chart of a content-based routing method.

FIG. 14 is a flow chart of a caching method.

FIG. 15 is a diagram illustrating a cache index.

FIG. 16 is a flow chart of an agent method for an outgoing
message.

FIG. 17 is a flow chart of an agent method for an incoming
message.

FIG. 18 is a diagram illustrating an example of encoding
of a message.

FIG. 19 is a diagram of a database structure for storing
subscriptions.

FIG. 20 is a flow chart of a wildcard method.

DETAILED DESCRIPTION
Overview

An Internet-scale, or other distributed network-scale,
event notification system provides applications with a pow-
erful and flexible realization of publish-subscribe network-
ing. In this system, an application program uses event
notification application program interfaces (APIs) to publish
notifications and/or to subscribe for and receive notifications
about events occurring inside the network.

A notification in the system is given a subject, which is a
string or other structure that classifies the kind of informa-
tion the notification encapsulates. Also, a notification is
completed with a set of attributes containing information
specific to the notification. For example, an application
might publish notifications about transactions on the New
York Stock Exchange using the subject quotes.nyse and
attributes symbol and price. The application might publish
an individual notification having specific attribute values,
for example with symbol equal to SNE (the stock ticker
symbol for Sony Corporation) and price equal to 85.25.
Most if not all of the attributes in a notification are pre-
defined, in the sense that they are found in all notifications
for the same family of subjects. However, publishers can add
discretionary attributes on a per-notification or other basis in
order to provide additional event-specific information.
Therefore, not all or even any attributes need be predefined.

In this system, subscribers are not restricted to subscrib-
ing only for subjects or whole channels. Channels are further
explained and defined below. They can include an hierar-
chical structure specifying, for example, a subject field and
one or more levels of related sub-fields (sub-subjects). Thus,
subscribers can provide much more finely-tuned expressions
of interest by specifying content-based filters over the
attributes of notifications. For example, a subscriber might
subscribe for all notifications for the subject quotes.nyse
having symbol equal to SNE and price greater than 90.00
(indicating perhaps a sell opportunity for a block of shares
owned by the subscriber). All notifications matching the
subscription can be delivered to the subscriber via a callback
or other type of function that the subscriber provides at the
time it registers its subscription or at other times. One
subscription can be broken down into many filters.

The callback can perform many computations, including
something as simple as writing a message to a terminal or
sending an e-mail, to something more complex such as
initiating the sale of a block of shares, and to something even

—

0

20

25

30

40

50

4

more complex that initiates new publish-subscribe activity
(for example, replacing the existing subscription with a new
subscription for a buy opportunity at a price of 75.00, or
publishing a new notification that the subscriber’s portfolio
has been modified).

Applications are aided in their publishing and subscribing
activities by agents, for example. The agents can possibly
make use of or be implemented with proxies. The agents,
when used, provide network connectivity for outgoing noti-
fications and subscriptions and delivery of incoming match-
ing notifications to subscribers. Once a notification enters
the network, the system’s network of routers propagate the
notifications to all subscribers whose subscriptions match
the notification. One way of accomplishing this would be to
broadcast the notification to all points of the network and
then let the application agents decide whether the notifica-
tion is relevant to their subscribers. However, this is not
necessarily a scalable approach—the network would usually
be quickly overwhelmed by the load of message traffic,
especially in the presence of large numbers of active and
verbose publishers. And even if sufficient bandwidth were
not a problem, the subscribers would be overwhelmed by
having to process so many notifications.

The system’s exemplary network is much more efficient
in the way it routes notifications. First, it can use multicast
routing to ensure that a notification is propagated, for
example, at most once over any link in the network. Second,
it can employ a large number of sophisticated optimizations
on filters to reduce as much as possible the propagation of
notifications.

FIG. 1 is a diagram conceptually illustrating this intelli-
gent routing in a network core. A publisher 14 transmits
content in messages via an edge router 16 to a network core
10, used in a publish-subscribe network. A publish-subscribe
network includes any type of network for routing data or
content from publishers to subscribers. The content is trans-
mitted via one or more channels 18 representing logical
connections between routers or other devices. An intelligent
router 12 in network core 10 determines whether to route or
forward the message. In particular, intelligent router 12 can
determine if the message includes content as subscribed to
by a subscriber 24.

Each subscription encapsulates a subject filter and an
attribute filter. Routers can possibly expand a subject filter to
the set of matching subjects and merge attribute filters on a
per-subject basis. An intelligent router evaluates the subject
filter against the subject of notifications, and evaluates the
attribute filter against the attribute values in notifications.
The syntax for subject filters can possibly use wildcards, and
the syntax for attribute filters can use Boolean expressions,
both of which are further explained below. The term “filter”
is used to describe a set of events that a subscriber is
interested in receiving from publishers. Routing rules are
generated from the filters and are used by intelligent routers
to make routing decisions.

Therefore, if the entire filter set is not satisfied by a
message 26, for example, intelligent router 12 drops (dis-
cards) message 26, meaning that the message is not for-
warded. If any filter of the entire set is satisfied by a message
20 according to the evaluations of subject and attribute
filters, for example, intelligent router 12 routes (forwards)
message 20 via edge router 22 and possibly other devices to
a subscriber 24, or performs other functions internal to
router 12 with message 20, according to all the routing
and/or action rules prescribed for the matching filter. The
search will continue until either the entire set of filters has

US 7,117,270 B2

5

been exhausted, or decisions about all the rules have been
obtained, whichever comes first.

This type of intelligent content-based routing in a network
core provides for real-time data delivery of, for example,
alerts and updates. Examples of real-time data delivery for
alerts include, but are not limited to, the following: stock
quotes, traffic, news, travel, weather, fraud detection, secu-
rity, telematics, factory automation, supply chain manage-
ment, and network management. Examples of real-time data
delivery for updates include, but are not limited to, the
following: software updates, anti-virus updates, movie and
music delivery, workflow, storage management, and cache
consistency. Many other applications are possible for deliv-
ery of information for subscriptions.

Table 1 illustrates storing of subscriptions with subjects
and predicates for the filtering. They can be stored in any
type of data structure, as desired or necessary, anywhere in
the network. As explained below, the predicates are com-
ponents of subscriptions. The subscriptions can be expressed

in any way, examples of which are provided below.
TABLE 1
subscription 1 subject 1 predicate 1
subscription N subject N predicate N

Table 2 provides an example of a publication and sub-
scription for a quote server. This example is provided for
illustrative purposes only, and subscriptions can include any
number and types of parameters for any type of data or
content.

TABLE 2
Quote Server Example

Subject Tree Publication
Quotes.NYSE subject = Quotes. NYSE
Quotes. AMEX Attributes
Quotes.NASDAQ Symbol = SNE

Price = 51

Volume = 1000000
Attributes Subscription
Symbol Subject == Quotes.NYSE
Price Filter
Volume (Symbol == SNE) & (Price > 55)

The predicates provide the Boolean expressions for the
subscription and the subjects provide an indication of a
channel for the subscription. Subscriptions can be expressed
in many different ways. Use of Boolean expressions is one
such example and provides an ability to easily convert the
subscription into a subject filter and an attribute filter for
content-based routing. Subscriptions can alternatively be
expressed without reference to a subject; however, use of a
subject or channel (further explained below) provides a
context for interpreting and applying filters to attributes.

The routing decisions can be accomplished in the network
core and distributed throughout the network, alleviating
processing burdens on publisher and subscriber machines,
and significantly enhancing the efficiency of the network.
FIG. 1 illustrates one publisher, one subscriber, and one
intelligent router for illustrative purposes only; implemen-
tations can include many publishers, subscribers, and intel-
ligent routers. The term intelligent router refers to a router or
other entity having the ability to make routing decisions by
inspecting the payload of a packet or message in a network
core or other locations.

20

25

30

35

40

45

50

55

60

65

6

Network Infrastructure

FIG. 2 is a network diagram illustrating intelligent routers
for publishers and subscribers. A routing entity 30 providing
channel services is, for example, effectively layered on a
network infrastructure, as explained below, for routing mes-
sages among intelligent routers. A publisher 32 conceptually
includes, for example, an application 34 to receive an
indication of published content, such as a pointer for retriev-
ing the content, and an agent 36 to encode the content for
network transmission via channel services 30. A collection
of logically interconnected intelligent routers 38, 40, 42, 44,
46, and 48 route the content from the publisher using routing
rules generated from subject filters and attribute filters for
subscriptions. A plurality of links 39, 41, 43, and 45 provide
the logical connections between intelligent routers 38, 40,
42, 44, 46, and 48. Other links 37 and 47 provide, respec-
tively, logical connections between publisher 32 and intel-
ligent router 38, and between a subscriber 54 and intelligent
router 46. Subscriber 54 includes an agent 50 to detect and
receive the subscribed content, and an application 52 to
present the content.

A channel can include, for example, a related set of logical
multicast connections implemented in a distributed manner.
A channel in this exemplary embodiment is a logically
related collection of network resources used to serve a
community of publishers and subscribers exchanging con-
tent. The content is classified according to the channel
subject namespace, and the resources are managed, con-
trolled, and provisioned via channel services provided by
channel managers. Multiple channels may share the same
resources. Channels can provide a highly scalable directory
service such as, but not limited to, the following examples:
publisher and subscriber information, authentication and
authorization information, message types, management
information, and accounting and billing information. Chan-
nels can also provide, for example, persistence through
caching, a fast data delivery mechanism, security, and user
and network management. Channels can be used for any
other purpose as well.

The filtering by the intelligent routers can occur in a
network core to distribute routing decisions. In addition,
intelligent routers can also function as edge routers connect-
ing a user device, such as a publisher or subscriber, with the
network core. Also, the same device connected to the
network can function as both a publisher to push content to
subscribers via routing decisions in the network and as a
subscriber to received pushed content. The intelligent rout-
ers and channels can be connected in any configuration, as
necessary or desired for particular implementations, and the
configuration shown in FIG. 2 is provided for illustrative
purposes only.

FIG. 3 is a diagram of an exemplary network infrastruc-
ture for intelligent routers and conventional backbone rout-
ers, also illustrating logical connections for channels. The
intelligent routers in this example use existing backbone
routers in the network, such as the Internet or other distrib-
uted network, and the intelligent routers are thus effectively
layered on the backbone routers. In this example, Internet
Service Provider (ISP) networks 58, 59, and 60 each include
several backbone routers for conventional routing of mes-
sages or packets. A plurality of intelligent routers 61-70 are
connected with one or more backbone routers in ISP net-
works 58, 59, and 60. Intelligent routers 61-70 are also
interconnected by a plurality of links 73-85, representing
examples of links, and can be connected to end user devices
by the links as well. Intelligent routers 61-70 can be

US 7,117,270 B2

7

controlled by one or more administrator machines such as an
entity 71, and one or more virtual private network (VPN)
controllers such as an entity 72. The ISP networks 58, 59,
and 60 would also be connected to publisher and subscriber
machines (not shown in FIG. 3). The backbone routers in
and among ISPs 58, 59, and 60 are interconnected in any
conventional way within the existing network infrastructure.

The intelligent routers 61-70 and links 73-85, as illus-
trated, can be implemented using existing network infra-
structure, and they provide for content-based routing in the
network core. The links 73-85 represent logical connections
between intelligent routers 61-70 and can be implemented
using, for example, existing network infrastructure or other
devices. A link, for example, can be implemented using a
logical connection called the tunnel. A tunnel includes the
hardware, and possibly software, network infrastructure for
implementing a link, and one tunnel can be a component of
multiple channels. The channels facilitate content-based
routing in the intelligent routers by providing logical con-
figurations for particular types of content and thus providing
a context for attributes transmitted over the channels.
Although intelligent routers can perform routing decisions
without channels, the channels enhance the efficiency of
content-based routing by the intelligent routers in the net-
work core.

This exemplary embodiment includes use of channels and
links. A link is a connection between two routers—albeit
intelligent routers. A channel is a network entity encompass-
ing a (typically large) collection of routers, configured
statically or dynamically by the interconnecting links to
achieve one-to-many or many-to-many logical connections.
In particular, a channel is a top-level logical entity describ-
ing the essential characteristics of the channel. Under one
channel, there could be many subjects. Each subject will
form a sub-network (such as a multicast tree) involving a
collection of interconnected routers. These subject-based
sub-networks can be allocated, oriented, and configured in
different manners. The channel, being a collection of all the
sub-networks formed for the subjects under it, may resemble
a mesh of networks, for example.

FIG. 4 is a diagram of exemplary hardware components
of an intelligent router 92, which can correspond with any of
the other referenced intelligent routers. A network node 90
can include intelligent router 92 connected with a conven-
tional backbone router 95. Intelligent router 92 includes a
processor 93 connected to a memory 94 and a secondary
storage 97 (possibly implemented with a detached machine,
for example), either of which can store data, as well as cache
data, and store applications for execution by processor 93.
Secondary storage 97 provides non-volatile storage of data.
Under software control as explained below, processor 93
provides instructions to backbone router 95 for it to route
(forward) or not route (discard) messages or packets based
upon routing rules generated from subject filters and
attribute filters for subscriptions. Although shown as imple-
mented in a separate processor-controlled device, intelligent
router 92 can alternatively be implemented in an application
specific integrated circuit (ASIC) within backbone router 95
to provide the intelligent routing functions in hardware
possibly with embedded software. The intelligent routing
functions can also be alternatively implemented in a com-
bination of software and hardware in one or multiple routing
devices.

FIG. 5 is a diagram of exemplary publisher and subscriber
machines. A publisher machine 100 or 118 can include the
following components: a memory 102 storing one or more
publisher applications 104 and an agent application 105; a

—

0

—

5

20

25

30

40

50

8

secondary storage device 112 providing non-volatile storage
of data; an input device 108 for entering information or
commands; a processor 114 for executing applications
stored in memory 102 or received from other storage
devices; an output device 110 for outputting information;
and a display device 116 for providing a visual display of
information.

A subscriber machine 122 or 140 can include the follow-
ing components: a memory 124 storing one or more appli-
cations 126 and an agent application 128; a secondary
storage device 130 providing non-volatile storage of data; an
input device 132 for entering information or commands; a
processor 134 for executing applications stored in memory
124 or received from other storage devices; an output device
136 for outputting information; and a display device 138 for
providing a visual display of information. Publisher and
subscriber machines can alternatively include more or fewer
components, or different components, in any configuration.

Publisher machines 100 and 118 are connected with
subscriber machines 122 and 140 via a network 120 such as
the network described above. Network 120 includes intel-
ligent routers for providing distributed routing of data or
content in the network core via packets or messages.
Although only two publisher and subscriber machines are
shown, network 120 can be scaled to include more publisher
and subscriber machines. The publisher and subscriber
machines can be implemented with any processor-controlled
device such as, but not limited to, the following examples:
a server; a personal computer; a notebook computer; a
personal digital assistant; a telephone; a cellular telephone;
a pager; or other devices. Network 120 with intelligent
routers can include any wireline or wireless distributed
network, connecting wired devices, wireless devices, or
both. Network 120 can also potentially use existing or
conventional network infrastructure.

FIG. 6 is a diagram illustrating channel managers 150 for
intelligent routers. In this example, channel managers 150
are implemented with multiple servers 152, 154, and 156.
Each server includes its own local storage 158, 160, and 162.
Intelligent routers 164, 166, and 168 contact channel man-
agers for information about particular channels. The channel
managers can also provide for data persistence, fail over
functions, or other functions. The channel managers thus
provide the channel services, which include a database or set
of databases anywhere in the network specifying, for
example, channel-related information, properties for data
persistence, user information for publishers and subscribers,
and infrastructure information. The infrastructure informa-
tion can include, for example, an identification of intelligent
routers and corresponding tunnels connecting them, subjects
for the channels, and attributes for the channels (a name and
type for each attribute). Packets or messages can also carry
channel-related information including identification of fixed
attributes and variable attributes.

A user when on-line can download channel information.
For example, a user can register by using a user name and
password. Upon authenticating the user’s log-on, the user
can open (invoke) a channel and retrieve information about
the channel from the channel managers. Publishers can use
that information in publishing content, and subscribers can
use that information for entering and registering subscrip-
tions.

Each channel manager 152, 154, and 156, in this example,
acts as a primary for each intelligent router. In particular,
each intelligent router is provided two Internet Protocol (IP)
addresses in this example, one for a primary channel man-
ager and another for a back-up channel manager. The

US 7,117,270 B2

9

intelligent routers use those IP addresses to contact a channel
manager and retrieve channel information. If the primary
fails, an intelligent router can contact a back-up channel
manager. The channel managers 152, 154, and 156 thus
share data, as indicated by the lines connecting them,
concerning channel properties and other information. Each
channel manager also has a designated back-up so that if the
channel manager fails, another one can take over processing
for it. Devices in the network can use commands, for
example, to retrieve channel information, examples of which
are provided in Table 3. Intelligent routers can alternatively
only have a primary channel manager or more than two
channel managers.

FIG. 7 is a diagram of exemplary software components in
a stack 180 in a user machine or device for connecting it with
a network having intelligent routers. The user machine can
be used as a publisher, subscriber, or both, and it can include
the exemplary devices identified above. Stack 180 can
include one or more user applications 182, which can
provide for receiving subscriptions from a user, receiving
channel information from a publisher, or receiving content
or data to be published. User application 182 can also
include any other type of application for execution by a user
machine or device.

The stack 180 can also include, for example, an agent 184,
an event library 186, a cache library 188, a channel library
190, a messaging library 192, and a dispatcher library 194.
Agent 184 provides for establishing network connections or
other functions, and Table 3 provides examples of com-
mands implemented by agent 184, which can use proxy
commands or other types of commands. Event library 186
logs events concerning a user machine or other events or
information. Cache library 188 provides for local caching of
data. Channel library 190 stores identifications of channels
and information for them. Dispatcher library 194 provides
connections with a control path 196, a channel manager 198,
and one or more intelligent routers 200, and it can include
the exemplary functions identified in Table 4. Messaging
library 192 provides a connection with a data path 204.

Tables 5-9 provide examples of messaging APIs in the C
programming language. Tables 5 and 6 provide examples of
APIs to send and retrieve messages. Tables 7 and 8 provide
examples of APIs to send and retrieve notifications. Table 9
provides examples of APIs to send and retrieve control
messages. These APIs and other APIs, programs, and data
structures in this description are provided only as examples
for implementing particular functions or features, and imple-
mentations can include any type of APIs or other software
entities in any programming language.

TABLE 3

Examples of Agent Commands

command function

pe.chn.open open channel, retrieve all information
for channel, and locally cache it
close channel

retrieve information for routers on
channel

retrieve information for attributes of’
channel

retrieve properties for channel

pe.chn.close
pe.chn.getRouterInfo

pe.chn.getAttributeInfo

pe.chn.getProperties

20

25

40

55

60

65

10

TABLE 4

Dispatcher Functions

Server-Side

Client-Side

Listens for connections (sits on accept).

Creates a thread to handle each connection.

The thread is responsible for receiving and
processing all requests coming on that connection.
Creates a thread that initiates a connection

and is responsible for receiving and processing
all data coming into the connection.

TABLE 35

Example of API to Send a Message

PC__Status

PC__Status
PC__Status
PC__Status

PC__Status
PC__Status
PC__Status

PC__Status

PC__Status

PC__Status

PC__Status

PC__Status

PC_msg__init(ChannelHandle ch, PC__UINT chld,
PC_UINT userid,
PC__Typelnfo* MsgType, PC__ UINT msgTypeSize,
PC_msg_SessionHandle *sess);
PC_msg_cleanup(PC_msg_ SessionHandle sess);
PC_msg_closeTransport(PC__msg SessionHandle sess);
PC_msg_ create(PC__msg_ SessionHandle s,
PC_msg_DataType dType,
PC_msg_MsgHandle *msg);
PC_msg delete(PC__msg MsgHandle msg);
PC_msg_clone(PC_msg MsgHandle org,
PC_msg_MsgHandle *new);
PC_msg_setSubject(PC_msg_ MsgHandle msg,
PC__CHAR *subject);
PC_msg_setSubjectint(PC_msg MsgHandle msg,
PC_USHORT *subjectArray,
PC_UINT arraySize);
PC_msg_setAttrByNamelInt(PC__msg MSGHandle msg,
const PC_CHAR *name, PC__INT value);
// for each type
PC_msg_setAttrByPosInt(PC__msg_ MsgHandle msg,
PC__UINT attributePos, PC__INT Value);
// for each type
PC_msg_addAttrInt(PC_msg MsgHandle msg,
const PC_CHAR *name,
PC_INT value); // for each type
PC_msg_send(PC_msg_MsgHandle msg);

TABLE 6

Example of API to Retrieve a Message

typedef struct__attribute {

PC_CHAR *name;

PC__TypeCode type;

void *value;
PC_UINT arraySize;

} PC_msg_ Attribute;
typedef struct__attributeArray {

PC_UINT
PC_msg_ Attribute

size;
*Hattrs;

} PC_msg_ AttributeArray;

PC__Status

PC__Status

PC__Status

PC__Status

PC__Status

PC__Status

PC_msg_init(ChannelHandle ch,
PC_UINT__chld, PC__UINT userid,
PC__TypeInfo* MsgType,

PC__INT msgTypeSize,
PC_msg_SessionHandle *sess);

PC_msg_cleanup

(PC_msg_ SessionHandle sess);

PC_msg_recv(PC_msg_SessionHandle

sh, PC_msg_MsgHandle *msg);

PC_msg_ctrlRecv

(PC_msg_ SessionHandle

sh, PC_msg_MsgHandle *msg);

PC_msg getSequenceNum

(PC_msg_ MsgHandle msg,

PC__UINT *seqNo);

PC_msg_getPublisherInfo

(PC_msg_ MsgHandle msg,

PC_msg_PublicInfo *pub);

US 7,117,270 B2

11

TABLE 6-continued

Example of API to Retrieve a Message

12

TABLE 7-continued

Example of API to Send a Notification

PC_msg setAttrValueByNamelnt(msg, “stockvalue™, 100);

PC_msg_setAttrValueByPosString(msg, 1, “PreCache”);

mycomments™);

TABLE 8

Example of API to Retrieve a Notification

PC_msg getAttrValueByPosString(msg, 0, &company);

PC_msg getDynamic Attributes(msg, &attrArray);

PC_msg_freeAttribute Array(attrArray);

PC__Status PC_msg getSubject 5
(PC_msg_MsgHandle msg,
PC_CHAR **subject); Types [1].type = PC_INT_TYPE;
PC__Status PC_msg_getSubjectInt . .
(PC_msg_ MsgHandle msg, Types [1].name = “stockvalue’
PC_USHORT **subjectArray, PC_msg_init(ch, chld, userld, Types, 2, &sh)
PC_INT *size); 10 .
PC_ Status PC_msg_getDataType PC_msg_create(sh, PC_MSG_DATA, &msg);
(PC_msg_MsgHandle hMsg,
PC_msg_DataType *dataType);
PC__Status PC_msg getAttrByPosInt
PC_msg MsgHandle msg, PC_msg addAttrString(msg, “comment”,
PC_UINT pos, PC__INT *val); 15 .
/ for each type PC_msg_send(msg);
PC__Status PC_msg getAttrValueByNamelnt PC_msg_delete(msg);
(PC_msg_MsgHandle msg, .
const PC__CHAR *name, PC_msg_closeTransport(sh);
PC_INT *val); PC_msg_cleanup(sh);
PC__Status PC_msg getAttrTypes 20
(PC_msg MsgHandle msg,
PC__TypeCode* Types,
PC_INT *arraySize);
PC__Status PC_msg_getAttributeByPos
(PC_msg_MsgHandle msg,
PC__UINT attributePos,
PC_msg__Attribute **attr); 25
PC__Status PC_msg_getAttributeByName ChannelHandle ch;
(PC_msg_MsgHandle insg, PC_msg MsgHandle msg:
const PC*CHAR n:;rgne, PC_msg SessionHandle sh;
PC_msg_Attribute elLttr) ’ PC_msg_Typelnfo Types[2];
PC__Status PC_msg_getPredefinedAttributes . * .
PC_msg_MsgHandle msg 30 PC_msg_Attribute Array *attrArray;
] > * .
PC_msg_AttributeArray **attrs); EE*CIN}EFARI c?mpany,
PC__Status PC_msg getDiscretionaryAttributes — value; .
(PC_msg_ MsgHandle msg, Types [0].type = PC__STRING_ TYPE;
PC_msg_AttributeArray **attrs); Types [0].name = “company’
Void PC_msg_freeAttribute Types [1].type = PC_INT_TYPE;
(PC_msgAttribute *attr); 35 Types [1].name = “stockvalue™
Void PC_msg_freeAttributeArray PC__msg__init(ch, chld, userld, Types, 2, &sh);
(PC_msg_ AttributeArray *attrArray); While (1) {
PC_msg recv(sh, &msg);
40 PC_msg_ getAttrValueByNamelnt
TABLE 7 (msg, “stockvalue”, &value);
Example of API to Send a Notification
ChannelHandle ch; PC_msg_delete(msg);
PC_msg MsgHandle msg; 45 1

PC_msg SessionHandle sh;
PC_msg Typelnfo Types[2];
Types [0].type = PC_STRING__TYPE;
Types [0].name = “company”

PC_msg closeTransport(sh);

PC_msg_cleanup(sh);

TABLE 9

Example of APIs to Send and Retrieve Control Messages

Sender Side Code

Receiver Side Code

ChannelHandle ch;
PC_msg MsgHandle mh;
Int chld = 10;
// Get a Channel handle for channel
10
PC__msg__init(ch, chld, publd, NULL,
0, &sh)
PC_msg create(th,
PC_MSG_CONTROL,

&mh);
PC_msg_setSubject(mh,
“#.ADD__SUBJECT");

ChannelHandle ch;
PC_msg MsgHandle msg;
PC_msg__init(ch, chld, subld, NULL, 0, &sh);

for () {

PC_msg_recv(sh, &msg);

PC_msg_getSubject(msg, &subject);

PC_msg getAttrValueByNamelnt(
msg, “Channelld, &chld);

PC_msg getAttrValueByNameString(
msg, “Subject”, &subject);

PC_msg_delete(msg);

US 7,117,270 B2

13

TABLE 9-continued

14

Example of APIs to Send and Retrieve Control Messages

Sender Side Code Receiver Side Code

PC_msg_addAttrInt(mh,,“Channelld”, }

chld); PC_msg_ closeTransport(sh);
PC_msg addAttrString(mh, PC_msg_cleanup(sh);
“Subject”,

“Quote.cboe™);
PC_msg_send(mbh);
PC_msg delete(mh);

FIG. 8 is a diagram of exemplary software components
210 for an intelligent router such as those identified above
and intelligent router 92 shown in FIG. 4. Software com-
ponents 210 can be stored in, for example, memory 94 for
execution by processor 93 in intelligent router 92. Compo-
nents 210 include, for example, a filtering daemon 212, a
dispatcher 214, a routing daemon 216, and a cache manager
218. Filtering daemon 212 provides filtering for content-
based routing to process content for subscriptions according
to routing rules, as explained below. Dispatcher 214 pro-
vides for communication of control messages such as those
required for propagating filters via path 220, and the dis-
patcher can also provide for a single point of entry for users
and one secure socket with channel managers, enhancing
security of the network. In other words, users do not directly
contact channel managers in this example, although they
may in alternative implementations. Dispatcher 214 uses
control messages to obtain attributes (name-value pairs)
from a channel manager.

Routing daemon 216 provides for communication with a
data path 222, which can occur via a conventional backbone
router as illustrated in FIG. 4 or other routing device. Cache
manager 218 provides for local caching of data at the
network node including the corresponding intelligent router.
The operation of cache manager 218 is further explained
below, and it provides for distributed caching of data
throughout the network core.

Content-based routing can be implemented at the kernel
level, as an alternative to the application level. Memory
accessible by the kernel is separate from that in the appli-
cation layer. To have content-based routing running in the
application requires, for example, that message data be
copied from the kernel memory area to the application area,
and switching the context of the application from that of the
kernel to that of the routing application. Both can induce
substantial overhead. If instead the kernel is modified to
support content-based routing, the routing could take place
much faster being rid of the overhead described above.

With this feature of content-based routing in the kernel,
the routing daemon 216 may or may not directly send or
receive data via the data path 222, depending on the imple-
mentation. The daemon is a process running in the applica-
tion layer, pre-computing the content-based routing table to
be injected into the kernel. Once injected, however, the
routing table can be used by the kernel to make routing
decisions. Similarly, the filtering daemon pre-computes the
filtering table and injects it into the kernel. In this kernel
implementation, neither the routing daemon nor the filtering
daemon would directly interact with the data path.

FIG. 9 is a diagram of an example of a packet structure
230 for a message possibly including content for subscrip-
tions. A packet or message for use in content-based routing
includes, for example, a header section and a payload
section. The header section specifies routing or other infor-
mation. The payload section specifies data or content, or an

—

5

40

indication of the data or content. Packet structure 230
includes an IP header 232, a User Datagram Protocol (UDP)
Transmission Control Protocol (TCP) header 234, a length
value 238, one or more subject fields 240, and one or more
attributes 242. Packet structure 230 illustrates a basic struc-
ture for a length value and the subjects and attributes. A
packet used in content-based routing can also include other
or different elements, such as those illustrated in the example
of FIG. 18 explained below, and packets for content-based
routing can be configured in any manner. Also, the attributes
can include discretionary attributes appended to the end of
a message, for example. These discretionary attributes are
ad-hoc information, for example, added by the publisher (or
even routers) that cannot necessarily be conveyed using the
message format prescribed for the channel.

Publisher and Subscriber Methodologies

FIG. 10 is a flow chart of an exemplary publisher method
250 for use by a publisher to set-up a channel and publish
content. Method 250 can be implemented, for example, in
software modules including agent 106 for execution by
processor 114 in publisher machine 100. In method 150,
agent 106 in the publisher machine receives a publisher
creation of a proxy for a channel (step 252). The proxy
provides for communication with the network. Agent 106
determines a message format for the channel through an
interface (step 253), and the format information can be
obtained from, for example, the channel managers or other
entities in the network. Agent 106 sets up the proxy for the
channel using the received channel information (step 254),
which includes receiving attributes for the channel (step
256) and creating a notification on the channel (step 258).
The notification provides content for devices “listening” for
content on the channel. The attributes define parameters and
characteristics for the notification.

Agent 106 transmits an identifier (ID) of the channel and
content information to intelligent routers in the network core
or elsewhere for use in processing subscriptions (step 260).
The publisher populates the notification attributes with
appropriate values (step 261), and the publisher can then
publish content on notification in accordance with the chan-
nel attributes (step 262). Steps 260-262 in this example
accomplish publishing the notification, which can alterna-
tively involve different or additional steps depending upon a
particular implementation. Therefore, the information asso-
ciated with a notification in this example is partitioned into
an ordered sequence of attributes, each of which has a name,
a position within the notification (starting at 1), a type, and
a value. Alternatively, attributes can have different charac-
teristics depending upon a particular implementation.
Attributes can include, for example, predefined attributes,
discretionary attributes, or both.

The intelligent routers can use the channel ID in a packet
to obtain the attributes for the corresponding channel, which

US 7,117,270 B2

15

determines the structure or format for packets transmitted
via the channel. In particular, each packet can contain, for
example, a tag associated with a channel ID and other header
information such as a publisher ID and subjects. The tags
can be used to map subjects to numbers in the message
format, an example of which is shown in FIG. 18. Small
integer values, for example sixteen bit values, can be used
for the numbers. Alternatively, any other type of numbers or
information can be used to map the subjects. Mapping
subjects to numbers can provide particular advantages; for
example, it can save space in the message format and
provide a uniform or standard way to specify indications of
the subjects in the message so that they can be quickly
located and identified. Intelligent routers can locally store
the mapping or, alternatively, use the numbers to remotely
obtain the corresponding subject through a command.

Table 10 illustrates a structure for mapping numbers to
subjects, in this example using integer values. The subject
tree parameter in the table indicates that a subject can
include one or more subject fields in an hierarchical rela-
tionship; for example, a subject tree can include a string of
subject fields demarcated by particular symbols. Examples
of subject trees are provided in Table 2. As an example, a
subject tree quotes.nyse includes a subject “quotes” and a
sub-field “nyse” with those two terms demarcates by a ““.” as
found in URLs or other network addresses. Aside from using
periods and specifying URL-type strings, subject trees can
be specified in any way using any characters and symbols for
demarcation.

TABLE 10

Number Subject Tree

subject tree 1
subject tree 2

integer value 1
integer value 2

integer value N subject tree N

Thus, knowing the packet format or structure for a par-
ticular channel, the intelligent routers can quickly locate
subjects and attributes, or other information, in the packet
for content-based routing. For example, a channel can
specify byte positions of subjects and attributes transmitted
over the channel, making them easy to locate by counting
bytes in the packet. Alternatively, intelligent routers can
parse packets to locate subjects and attributes, or other
information.

Table 11 provides an example of a publisher program in
the C++ programming language. Table 12 provides an
example of an API to create a channel. Table 13 provides an
example of a channel configuration file maintained by a
channel manager (see FIG. 6) and providing channel-related
information, as illustrated. The system can alternatively
have a global channel manager providing IP addresses of
geographically dispersed servers functioning as local chan-
nel managers in order to distribute the processing load.

TABLE 11

Example of Publisher Program

#include “PC__evn_ Notification.h”
#include “PC__evn_ Proxy.h”
using namespace precache::event;
int main(int arge, char argv[])

PC__UINT QuotesRUs = myChannelofInterest; // channel ID
PC_UINT myID = myPublisherID; // publisher ID

Proxy p(QuotesRUs, myID);

30

35

50

55

60

65

16

TABLE 11-continued

Example of Publisher Program

Notification nl(p, “quotes.nyse™);

nl.SetPredefined Attr(“symbol”, “LUS™);
nl.SetPredefinedAttr(price”, 95.73);

p.Publish(nl);

Notification n2(p, “quotes.nyse™);

n2.SetPredefinedAttr(1, “SNE”); // attribute symbol is

in position 1

n2.SetPredefinedAttr(2, 80.18);// attribute price is in position 2
p.Publish(n2);

catch (InvalidChannelException icex) {
cerr << “bad channel” << endl;

catch InvalidSubjectException isex) {

catch (InvalidNotificationException inex) {
cerr << “bad notification” << endl;

catch (Exception ex) {
cerr << “unknown error” << endl;
}

TABLE 12

Example of API to Create a Channel

PC__Status rc;

rc = PC__chn__create(Provider__info, authinfo, ConfigurationFile,
&hChannel);

/* the first one primary channel manager */

rc = PC__chn_addChannelManager (hChannel, ©10.0.1.1);

/* secondary channel manager */

rc = PC__chn_ addChannelManager (hChannel, “10.0.2.2");

*/

rc = PC__chn_setProperties (hChannel, ConfigurationFile);

/*

Set the message type (only in fixed part of the message)

by using rc = PC__chn__setAttributeType(hChannel, name, position,
attributeType).

The type information is propagated to all edge routers.

*/

rc = PC__chn__setAttributeType(hChannel,”Priority”,1,PC__UINT
16_TYPE);

rc = PC__chn_ setAttributeType(hChannel,” Alarm_ Name™,2,
PC_STRING_TYPE);

rc = PC__chn__setAttributeType(hChannel,” Alarm__ Time”,3,
PC_INT32_TYPE);

rc = PC__chn_ updateAttribute(hChannel);

rc = PC_chn_ close(hChannel); /* finish channel creation®/

TABLE 13

Example of a Channel Configuration File

Channel Setup - Read by Channel AP, event and messaging

Each channel entry information is tagged with the

type of information e.g.

[ChannelComm 5] for Channel 5 Communication related information
[ChannelSubjects 5] for subject related information in channel 5
[Channel Attributes 5] for attribute information in channel 5

#

The Channel id is appended to the tag to indicate

the channel that the information belongs to

e.g. [ChannelComm 5] indicates routing information

for channel 5.

#

All the fields need not be set. For example if

running with the central server, the MulticastIP is

not needed.

[ChannelComm 5]

MulticastIP=225.0.0.1

US 7,117,270 B2

17

TABLE 13-continued

Example of a Channel Configuration File

RouterIP=test3
RouterPort=12345
ProxyPort=9015
ProxyCtrlPort=9016
[ChannelSubjects 5]
NumberOfSubjects=2
subject1=#.SUBSCRIPTION
mapping1=0.100
subject2=Quotes.Nyse
mapping2=102.101
[ChannelAttributes 5]
NumberOfAttributes=4
namel=StockId
typel=PC_UINT_TYPE
name2=Company
type2=PC__CHARARRAY_TYPE
name3=Price
type3=PC_FLOAT_TYPE
name4=Volume
type4=PC__UINT_TYPE

FIG. 11 is a flow chart of a subscriber method 264 for use
in receiving and processing subscriptions. Method 266 can
be implemented, for example, in software modules including
agent 128 for execution by processor 134 in subscriber
machine 122. In method 264, a graphical user interface
(GUI), for example, presents an indication of available
channels to a user (step 266), which can be accomplished by
application 126. The information identifying the channels
can be received from, for example, the channel managers
providing channel-related information. Any type of appli-
cation 126 can be used for presenting identifications of
channels in any particular way or format. The application
receives a user’s selection of a channel (step 268) and calls
an API or other program for the selected channel (step 270).
The API presents subscription options to the user for the
channel corresponding with the selected option (step 272).
The API receives values for the subscription from the user
(step 274) and sends the subscription to agent 128 for
processing, as explained below (step 276).

The parameters for the subscription can include, for
example, the predicates as illustrated in Table 1. Each
channel can use its own API, for example, in order to process
subscriptions according to the particular requirements or
parameters for the corresponding channel. These APIs can
include, for example, web-based or Java-based APIs for
receiving subscriptions and can use any type of user inter-
face and processing to receive information for a subscription
and pass it along to the agent application.

FIG. 12 is a diagram conceptually illustrating channel and
subscriber screens or GUIs 278 and 284, which can be used
in conjunction with method 264 for receiving a subscription.
Screen 278 includes a plurality of sections 282 identifying
available channels for selection by a user. Upon selection of
a particular channel, screen 284 can be displayed for receiv-
ing a user’s values for the subscription in a section 286. A
user can select a section 288 to submit the subscription or
select a section 290 to cancel the subscription. Screens 278
and 284 can be formatted as, for example, HyperText
Markup Language (HTML) web pages or in any other
format. Also, the screens can include any configuration of
sections and content, possibly including, for example, text,
graphics, pictures, various colors, or multi-media informa-
tion in order to provide, as desired, a user-friendly and
visually appealing interface for subscribers. The screens can
also include a toolbar 280 providing, for example, conven-
tional browser functions.

20

40

50

60

18

Table 14 provides an example of a subscriber program in
the C++ programming language.

TABLE 14

Example of Subscriber Program

#include <unistd.h>

#include <iostream>

#k c.jde “PC__evn_ Filter.h”

#include “PC__evn__Subscription.h”
#include “PC__evn_ Proxy.h”

using namespace precache::event;

class SubscriberApp : public Subscriber
!

!

private™:
PC__UINT notificationCount = 0;

public:
Subscriber App() {} ?? default constructor
void run()

PC_UINT QuotesRUs = myChannelofInterest; // channel ID
PC__UINT myID = myPublisherID; // publisher ID
try {
Proxy
FilterFactory™*

p(QuotesRUs, myID);
factory =
FilterFactory::GetFilterFactory();

Filter* f = factory->CreateFilter(p,
“symbol ==
VLUV

PC_INT cl =0;

SubscriptionHandle sh = p.Subscribe(*“quotes.nyse”,

f, this, (void*)&cl);

while (notificationCount < 2) {

get some notifications
sleep(5);

// let notify()

p-Unsubscribe(sh);

catch (InvalidChannel Exception icex) {
cerr << “bad channel”<< endl;

catch (InvalidSubjectException isex) {
cerr << “bad subject” << endl;

catch (InvalidChannel Exception ifex) {
cerr << “bad filter”<< endl;

catch (InvalidSubscriptionHandleException ishex) {
cerr << “bas subscription handle” << endl;

catch (Exception ex) {
cerr << “unknown error” << endl;

void Notify(Notification® n, void* c) // this is the callback

method

if(*(PC_INT*)c == 0){ // check the closure object
PC__STRING symbol;
PC__FLOAT price;
n->GetPredefinedAttr(“symbol”, symbol);
n->GetPredefined Attr(“price”, price);
cout << “The price of” << symbol << * is ” << price <<
endl;;
notificationCount++;

3
int main(int arge, char argv[])

SubscriberApp a;
arun();

}

Content-Based Routing Via Payload Inspection and
Channels

FIG. 13 is a flow chart of a content-based routing via
payload inspection method 300. Method 300 can be imple-

US 7,117,270 B2

19

mented, for example, in software modules for execution by
processor 93 in intelligent router 92, as represented by
filtering daemon 212. Alternatively, it can be implemented in
an ASIC or a combination of hardware and software. The
content-based routing as illustrated in method 300 can be
performed in intelligent routers anywhere in the network,
such as in the network core or in edge routers.

In a general sense, the content-based routing involves
inspecting a payload section of a packet in order to deter-
mine how to process the packet. This content-based routing
methodology can include, for example, processing a list of
subscriptions (using filters, for example) in any order, com-
paring a message subject-by-subject and attribute-by-at-
tribute with routing rules to determine a routing for the
message, and performing the processing in a network core.
The rules can include rules governing in-router processing
or any rules associated with a filter. These routing decisions
can thus be distributed throughout a network core. The use
of subjects as represented by channels determines a message
format, thus providing an intelligent router with a way of
quickly locating attributes within the message, for example
by knowing their byte positions in the message or packet for
a particular channel.

In method 300, intelligent router 92 receives a packet for
a message (step 302). It determines from the packet a
channel ID for the corresponding message (step 304) and
retrieves attributes for the channel using the channel ID (step
306). In this example, the type of channel (determined from
the channel ID) determines locations of attributes in the
packet. The attributes for the channel can be locally stored
or retrieved remotely such as via a channel manager. Intel-
ligent router 92 retrieves a filter, which corresponds with a
subscription (step 308). The filter includes one or more
attribute tests, usually a group of attribute tests for subscrip-
tions. Intelligent router 92 applies attributes in the packet to
the corresponding attribute test(s) in the filter description
(step 310).

If all the attribute test(s) in the filter description produce
a positive result (step 312), meaning the attributes satisfy all
the attribute test(s), the intelligent router executes a set of
functions prescribed by the rules associated with the filter
(step 314). These functions can include, for example, routing
the packet to the next link, and/or performing some action or
computation with the content of the packet at the local router
as prescribed by the rule(s). The action or next link can be
identified, for example, in a data structure specifying the
corresponding subscription. When the rule is a link, it
typically identifies the next network node to receive the
packet, which can include an intelligent router, backbone
router, a network-connected device, or other entity. Alter-
natively, the next links can be specified or associated with
the subscriptions in other ways.

If all the attribute test(s) in the filter description did not
produce a positive result (step 312), meaning the attributes
do not satisfy all the attribute test(s), the filter is declared a
mismatch (step 315). The intelligent router recursively fol-
lows the above procedure until all the attribute tests in the
filter description are exhausted or a first negative result is
encountered, whichever comes first.

Once all the attribute tests have been processed for this
filter, the intelligent router determines if more filters exist
(step 316) and, if so, it returns to step 308 to retrieve the
attribute test(s) for the next filter to process the attributes for
it. The matching procedure (steps 308, 310, 312, 314, 315,
and 316) continues until either the complete set of filters is
exhausted, or results for all the action or routing rules can be
determined, whichever comes first. If the packet does not
satisfy any filter, it will be dropped (discarded) and not
forwarded.

—

0

—

5

50

20

Intelligent router 92 can sequence through the filters in
any particular order. For example, as illustrated in Table 15,
intelligent router can store the filters for subscriptions in a
file or routing table and linearly sequence through them to
apply the attributes to filters (attribute tests). Alternatively,
the routing table can include links or pointers to the filters.

The content-based routing can optionally use more than
one method at the same time, depending on the applications
and performance-enhancing heuristics such as the switching
of algorithms based on traffic conditions, for example. The
filters for the processing can optionally be encrypted,
decrypted, transformed, and merged at a router in the
network for use in performing inspecting of a payload
section for the content-based routing. For example, a sub-
scription such as price>$3.54122 may be truncated to
price>$3.54 because the publications in the application are
known not to contain currency attributes beyond the second
decimal points. Also, foreign currency may be translated
into U.S. currencies as well when a publication sent from
overseas reaches the first router located in the U.S., for
example.

As an alternative to a linear approach, intelligent router 92
can select filters for processing in other orders or according
to various algorithms that can possibly enhance the speed
and efficiency of processing. Table 16 provides examples of
subscriptions and corresponding links for them; in these
examples, the subjects relate to a particular channel and the
subscriptions for the subjects can be represented by routing
rules for the filters. The subjects can include, for example,
network addresses such as Uniform Resource Locators
(URLs) identifying a source of content.

TABLE 15
Subscriptions Links
Channel 1
filter 1a links la
filter 2a links 2a
filter Na iinl-{s na
Channel N
filter IN links la
filter 2N links 1b
filter NN links 1n
TABLE 16
Content Predicate Links
sub = “quote.optimist™ & x10, x11
(($1>5 & $2=“LU")
(81 > 30 & $2 =“T"))
(sub = “sony.music” | sub = “sony.movie”) x11, x13
& $1 > 30 & $4 = “Beethoven”
sub = “movie.ratings” & x11, s15

($1 > 1999 | $2 = “Kurosawa”) & $3 = «+*»

Caching at Network Nodes

FIG. 14 is a flow chart of a caching method 320. Method
320 can be implemented, for example, in software modules
for execution by processor 93 in intelligent router 92, as
represented by cache manager 218. Alternatively, it can be
implemented in an ASIC or a combination of hardware and
software, either in the same or different physical device as
the corresponding intelligent router. In method 320, intelli-

US 7,117,270 B2

21

gent router 92 receives a message having data or content, a
channel ID, and subjects (step 322). Intelligent router 92
time marks the data (step 324) and locally caches it such as
in memory 94 or secondary storage 97 (step 326). It indexes
the cached data by, for example, channel ID, subjects, and
time stamps (step 328).

If intelligent router 92 receives a request for data (step
330), it retrieves cached data, using the index, according to
the request (step 332). Intelligent router 92 transfers the
cached data to backbone router 95 or other routing entity for
eventual transmission to the requester or others. Method 320
can be repeatedly executed in order to continually cache data
and retrieve cache data in response to requests.

FIG. 15 is a diagram illustrating a cache index (336) for
use with method 320. Cache index (336) receives data (338)
and stores it with time stamps (340). As data is gathered, it
is marked upon every duration of delta t, where delta t
represents the time between marks, for example t,—t,. Other
types of indexes for time marking in any way can alterna-
tively be used.

Table 17 conceptually illustrates indexing of cached data.
Table 18 conceptually illustrates a data structure for storing
a connection history for caching. Table 19 provides
examples of data structures for use in locally caching data in
network nodes having intelligent routers.

The time marking can occur at any fixed or variable
interval. For example, data can be cached and indexed every
five minutes. Upon receiving a command to retrieve cached
data (such as #.getCache) specifying a time and subject,
channel manager 218 uses the cache index to determine if it
can retrieve cached data corresponding with the request for
step 332.

Each subject or channel can include, for example, its own
IP address in a multicast tree and a set of intelligent routers.
Therefore, Table 18 represents a connection history among
such routers that can be locally stored a user machine; if an
edge router fails, the machine can access the connection
history to determine how to reconnect with upstream routers
for the channel when the edge router comes back on-line. It
can also execute a get cache command for the duration of the
time that it was disconnected in order to obtain any pending
content for subscriptions, for example.

TABLE 17
ty channel ID 1 subjects 1-n pointer 1 to cached data
ty channel ID 2 subjects 1-n pointer 2 to cached data
tn channel ID N subjects 1-n pointer N to cached data
TABLE 18
Connection History
time router network addresses
t, R2 UR2 UR3
t, R2 UR2 UR3
TABLE 19

Examples of Cache Data Structures for Intelligent Router

Channel Node
Struct ChannelNode {
PC_UINT unChanld;
PC__AttributeInfo *pAttrinfo;
PC_BOOL bPersistent; /* Persistent or RT*/

—

0

40

45

50

55

60

65

22

TABLE 19-continued

Examples of Cache Data Structures for Intelligent Router

PC_UINT unTimeout;

PC_UINT unTimeGranularity;/* in minutes */
PC_INT nDirFd;

HashTable *pFirstLevelSubjs;

Subject Node

Struct SubjectNode {

PC_USHORT unSubjectld;
PC_UINT unSubjLevel;
Void pParent; / Channel or Subject */
PC_INT nDirFd;
HashTable *pNextLevelSubjs;
DataNode *pData;
)
Data Node
Struct DataNode {
PC_INT nDirFd;
SubjectNode *pParent;
LastTimeGrainNode *pLastTGrainData;
DLIST *pStoredData;/*list StoredTimeGrainNode */
PC_Mutex mStoredDatal.ock;

Stored Time Grain Node

Struct StoredTimeGrainNode {

PC_UINT unStartTime; /* in minutes */Chanld;
PC_UINT unEndTime; /* in minutes */
PC_INT nFd;

Last Time Grain Node

Struct LastTimeGrainNode {

PC_CHAR pLastTGrainData; / could be a list */

PC_UINT unLastTGrainStartTime;
PC_BOOL bReadyToStore;
PC__Mutex mCachedDatal.ock;

These exemplary data structures include the following
information. A subject node contains a subject identifier,
subject level, pointer to parent channel or subject node, file
descriptor for its own directory, pointer to hash table con-
taining its next level subject nodes, and pointer to a data
node. A data node contains a pointer to its subject parent
node, file descriptor for the data directory, circular buffer
containing the data structures for the data stored on each
storage device, head and tail of the buffer, and lock for
locking the data node during retrieval and storage. The
stored time grain node is the node representing the actual
data file, and the last time grain node represents the last
buffer that has not yet been stored to the storage device but
is maintained in memory. The caching and data storage
threads in this example use the mutex of the last time grain
node for preventing concurrent access to the last time grain
node.

Agent Processing

FIG. 16 is a flow chart of an agent method 350 for an
outgoing subscription message. Method 350 can be imple-
mented, for example, in software modules as represented by
agent 128 for execution by processor 134 in user (sub-
scriber) machine 122. In method 350, agent 128 receives a
subscription such as via the method described above in
FIGS. 11 and 12 (step 352). Agent 128 creates a string
specifying a Boolean expression for the subscription (step
354) and parses the string to detect any errors in the
subscription (step 356). If an error exists, agent 128 can

US 7,117,270 B2

23

present an error message to the user (step 360) in order for
the user to correct the error and re-enter the subscription. If
the subscription contains no errors (step 358), agent 128
stores the expression in a data structure, an example of
which is provided below (step 362). Agent 128 translates
constituent not-equal expressions in the data structure to
positive form (step 364) and translates the data structure to
a corresponding disjunctive normal form (DNF) structure
(step 366). Agent 128 also simplifies AND expressions of
the DNF structure to contain only range filters and mem-
bership tests (step 368).

The DNF is a well-known canonical form in which a
Boolean expression is represented as an OR of one or more
sub-expressions called disjuncts, each sub-expression being
an AND of one or more attribute tests. For example, the
Boolean expression (price>=10 AND (symbol=="“LU” OR
symbol=="T"")) has an equivalent DNF representation of
((price>=10 AND symbol=“LU”) OR (price >=10 AND
symbol=—="T")).

The transformation in step 364 involves translating
expressions having the “not-equal” operator (represented in
an exemplary syntax as !=) into an equivalent “positive”
form that specifies all allowed values rather than the one
disallowed value. This transformation is performed prior to
creation of the DNF, and it is needed because the routers in
this example require formulae to be in positive form. For
example, the expression (price !=80) can be transformed to
the equivalent positive expression (price<=79 OR
price>=81).

The transformation in step 368 is performed after the
DNF is created and involves an extra simplification of the
resulting AND expressions, and it is also performed to
simplify the work of the routers in this example. In particu-
lar, an AND of multiple attribute tests for the same attribute
can be simplified into a canonical “range filter” having either
one lower bound, one upper bound, both a lower and upper
bound, or a single value in the case of an equality test. The
particular kind of range filter is then encoded according to
Table 22.

For example, the expression (price>=10 AND price<=80
AND price>=20 AND price<=100) can be simplified to the
expression (price>=20 AND price<=80), which is an
example of a range filter with both a lower and an upper
bound. Examples of the other kinds after simplification are
the following: (price>=20) (lower bound only); (price<=80)
(upper bound only); and (price==50) (single value). In
creating these range filters, it is possible that some sub-
expression will simplify to true or to false, in which case the
sub-expression can be eliminated according to the laws of
Boolean algebra, thereby further optimizing the encoding of
the expression in a message. For example, the expression
(price>=50 AND price<=20) simplifies to false, since no
value for “price” can satisfy the expression. In the special
case in which a whole filter expression simplifies to false,
the agent need not create a message at all, thereby relieving
the router of unnecessary work.

If the subject filter contains wildcards, agent 128 can
optionally convert them as explained below (step 370).
Otherwise, any wildcards can be converted in the network,
rather than on the user machine or other device. In this
exemplary embodiment, the syntax for subject filters is the
only syntax that uses wildcards, and the syntax for attribute
filters is the only syntax that uses Boolean expressions.
Alternatively, implementations can use different or varying
types of syntax for subject filters and attribute filters.

Agent 128 encodes the resulting DNF expression into a
message (step 372) and transfers the message to an intelli-

20

30

50

24

gent router (step 374). The encoding can involve converting
the subscription to a flat message format, meaning that it
constitutes a string of data. This transferring can involve
propagating routing rules generated from subject filters and
attribute filters for the subscription to one or more intelligent
routers or other routing entities in the network. For the
propagation, the subscription expression can be mapped into
a conventional packet structure, for example.

The encoding for step 372 involves marshalling subscrip-
tions for a channel into a messaging format of the messaging
API for propagation throughout a channel. A subscription is
internally messaged, for example, as a notification with
subject #.SUBSCRIPTION. Because there are both a vari-
able number of subject filter fields and a variable number of
attribute tests, one pair of bytes is used to store the number
of subject filter fields, and another pair of bytes is used to
store the number of attribute tests in this example. The
individual fields of the subject filter are marshaled sequen-
tially, for example, in the order in which they were specified
in the original subscription and are each marshaled into a
two-byte portion of the message. Wildcard fields can be
marshaled as described below.

In marshaling the attribute tests, the operands of the tests
are marshaled at the end of the message in a manner similar
to the marshaling of attribute values of notifications. Prior to
marshaling the attribute tests and operands, they are sorted
by attribute order within each disjunct of the DNF with tests
on predefined attributes in position order, followed by tests
on discretionary attributes in name order. Furthermore, the
set of relational tests on scalar valued attributes within each
disjunct are simplified to a canonical form as range filters
having either one limit (for left- or right-open ranges or
equality tests) or two limits (for closed ranges between
distinct limits). The remaining information about the tests is
encoded into, for example, two-byte pairs in the same order
as the operands; this sequence of two-byte pairs is placed in
the message immediately following the sequence of two-
byte encoding of subject filter fields. The two-byte pairs can
constitute one form of a sequence of bit-string encodings of
attribute tests, which can also be used to represent other
types of encodings aside from two-byte pairs. Examples of
attribute tests are provided below.

The schema for the encoding of the attribute tests is
depicted in Table 20. Table 21 illustrates encoding for the
two-byte pairs, and Table 22 illustrates encoding of the
Operator ID in the two-byte pairs.

TABLE 20

Encoding Rules

1 A zero in the D bit indicates the beginning of a new disjunct
in the DNF, while a one in the D bit indicates an additional
conjunct within the current disjunct.

2 Avalue other than all ones in the Notification Attribute
Position indicates the position of a predefined attribute
(as defined by the channel’s notification type)
to which the test applies; the operand for the test is
marshaled as depicted in the example shown in FIG. 18.

3 Avalue of all ones in the Notification Attribute Position
indicates that the test applies to a discretionary attribute,
in which case the name length and name of the attribute to
which the test applies are marshaled with the operand.

4 The bits for the Operand Type ID encode one of the
predefined types for attributes.

5 The bits for the Operator ID encode the operator used in
the test, as defined in Table 22.

US 7,117,270 B2

25
TABLE 21
First Byte
0 1 2 3 4 5 6 7
D Notification Attribute Position

Second Byte

0 1 2 3 4 5 6 7

Operand Type ID Operator ID

TABLE 22
Operator Operator ID
Left-open range 000
Right-open range 001
Closed-range 010
Equality test 011
Positive membership test (in) 100

Negative membership test (not in) 101

Because the two-byte pair for a test already indicates both
the type of the operand of the test and whether or not the test
applies to a predefined or discretionary attribute, there is no
need to separately marshal the number of tests performed on
discretionary attributes or their types. This scheme assumes
there are no more than 127 predefined attributes in a
notification. Alternatively, this design may use more bits to
encode attribute tests.

While this marshaling convention orders and groups
attribute tests according to the DNF of the attribute filter, an
infrastructure element (such as a router) may choose to
evaluate the tests in some other order (perhaps according to
dynamically derived local data about the probability of
success or failure of the different tests) in order to make the
overall evaluation of the attribute filter more efficient. The
Subscription ID field of the message is a value generated by
the agent for uniquely identifying the subscription to the
agent’s edge router in subsequent requests to modify or
unsubscribe the subscription. In particular, a dynamic modi-
fication to the attribute filter of a subscription is propagated
using the message format shown in the example of FIG. 18,
except that the subject is #.RESUBSCRIPTION and the
Subscription ID is that of the previously registered subscrip-
tion being modified. And an unsubscription is propagated
using, for example, the message format of FIG. 18 up
through the Subscription ID field, with the subject being
#.UNSUBSCRIPTION and the Subscription ID being that
of the previously registered subscription being unsub-
scribed.

The following provides an example to illustrate the con-
version and encoding by the agent as described above.
Consider the following example attribute filter expression:
price>=10 and (symbol==“LU” or (volume>=1000 and vol-
ume<=10000)). FIG. 19 presents a Unified Modeling Lan-
guage (UML) diagram 390 depicting the objects used by the
agent in step 362 to store the expression. This diagram
illustrates an hierarchical relationship for specifying the
subscription, which can include variables, constant values,
or both. The objects in the diagram can be instances of filter
classes depending upon a particular implementation. Each
SimpleFilter object depicts the values of attributes used to
store information about a corresponding attribute test of the
filter expression. In the expression of FIG. 19, an OR filter
396 connects two AND filters 392 and 400. The AND filter
392 contains a simple filter 394 with attributes for the

20

30

45

26

subscription. Likewise, the OR filter 396 contains a simple
filter 398, and the AND filter 400 contains simple filters 402
and 404.

For the purposes of this example, attributes price, symbol,
and volume are assumed to be predefined attributes of the
associated channel and are assumed to be defined in posi-
tions 0, 1 and 2, respectively. Furthermore, the types of the
attributes are assumed to be unsigned integer (typecode 6),
character array (typecode 12), and unsigned integer (type-
code 6), respectively.

Consider next a subscription containing the above
example attribute filter expression as its attribute filter. FIG.
18 presents the marshaling of the subscription into a mes-
sage. The schematic 386 on the left side of FIG. 18 shows
the actual message contents, while the schematic 388 on the
right provides a legend for the different parts of the message.
The width of each schematic in this example is four bytes.
Prior to marshaling, the filter has been converted to its
equivalent DNF: (price>=10 and symbol=="“LU”) or
(price>=10 and volume >=1000 and volume<=10000).

The sixteen-bit attribute test encodings are shown as bit
sequences, with gaps showing the separation into the dif-
ferent parts. Note that the two tests on price in this example
cannot be combined since they are in separate disjuncts, and
thus they are marshaled separately as ranges that have no
right bound (“right-open ranges”). On the other hand, the
two tests on volume can be combined since they are in the
same disjunct, and thus they are marshaled together as a
single “closed-range” test.

Finally, note also that certain fields are characterized as
being “assumed”; this means that values for these fields
were chosen arbitrarily for this example and are in general
independent of the subscription that was marshaled. In
addition, the subject filter for the subscription was arbitrarily
chosen to be “>,” which matches any subject defined by the
associated channel. The example described above and
shown in FIGS. 18 and 19 is provided for illustrative
purposes only, and the marshalling can be used with any
other type of subscription. Also, method 350 provides only
one example of marshaling subscriptions, and they can be
marshaled in any other way.

FIG. 17 is a flow chart of an agent method 376 for an
incoming message. Method 376 can be implemented, for
example, by agent 128 and application 126 in user machine
122. In method 376, agent 128 receives a message from an
intelligent router corresponding with a subscription (step
378). Agent 128 determines a channel corresponding with
the subscription (step 380), for example by the channel 1D
in the message, and calls an API for the channel (step 382).
The API present the data for the subscription in a GUI or
other format at the user machine (step 384). The processing
of incoming messages can use a process of decoding the data
in the reverse of the encoding process described above, and
this decoding (reverse encoding) can be performed in a
router or in other network entities.

Wildcard Processing

FIG. 20 is a flow chart of a wildcard method 410. This
method illustrates an example of using a set of routing rules
for a filter to convert wildcards in expressions for subscrip-
tions. Method 410 can be implemented, for example, in
software modules as represented by agent 128 for execution
by processor 134 in user machine 122. Alternatively, wild-
cards can be processed in the network by processor 93 under
software control in intelligent router 92 or in the correspond-
ing functions contained in ASIC 91. Wildcards include open
fields or variable length fields, examples of which are
provided in Table 21.

US 7,117,270 B2

27

In method 410, agent 128 or other entity receives a
subscription having a wildcard (step 412). The subject
length for subscriptions can be specified by a publisher when
publishing content, and the subject can be pre-processed on
the publisher machine, for example, to count the fields of the
subject and thus obtain a field count (length) for it. Agent
128 counts the number of fields in the filter operand (step
414) and initializes a new rule (filter) of field length=N (step
416). Agent 128 retrieves a sub-field for the subscription
(step 418) and determines if the filter operand sub-field O[i]
is a wildcard (step 420). If the filter operand sub-field is not
a wildcard, agent 128 adds a conjunctive clause to the rule,
field [i]=O[i] (step 422). If the filter operand has more
sub-fields (step 424), agent 128 returns to step 418 to
process additional sub-fields. The parameter “i” represents a
field where i is an integer representing the field number in
this example.

After processing the sub-fields, agent 128 determines if
the last filter operand sub-field is a “>” (step 426) and, if so,
it changes the length constraint to field length>N-1 (step
428). Wildcard processing can use any type of symbol, and
a “>” is only one such example. In this example, a “a.>” can
mean a.b, a.c, a.d, etc. and all their sub-subjects at all levels
(for example, a.b.x, a.cx, a.b.x.y, etc.). Other symbols can

be used for other implementations of wildcards.

If necessary, agent 128 propagates the transformed rule to
intelligent routers or other entities in the network (step 430).
Accordingly, the method iterates through the sub-fields in
order to process them for conversion of the wildcards to
non-wildcard rules, meaning rules that do not contain wild-
cards. The conversion of wildcards can occur anywhere in
the network, for example on the subscriber machine or in an
intelligent router. The conversion can thus occur in one
entity with the transformed rule propagated to other entities
or it can occur dynamically.

Table 23 provides a summary, along with examples, of
these exemplary routing rules for processing wildcards.
These routing rules can be generated in the intelligent
routers, for example, or generated in other network entities
and propagated to the intelligent routers. In addition, the
routing rules in Table 23 are provided for illustrative pur-
poses only and other routing rules are possible for convert-
ing wildcards.

TABLE 23

Original Rule Transformed Rule

subject = “a.b” subject.length ==

& subject[0] == “a” & subject[1] ==
“py»
subject = “C.*.D” subject.length ==
& subject[0] == “C” & subject[2] ==
D”
subject = “foo.>"” subject.length > 1
& subject[0] == “foo”
subject.length > 5
& subject[2] = “b” & subject[4] == “¢”

subject = “*.*.b.*.c.>”

While the present invention has been described in con-
nection with an exemplary embodiment, it will be under-
stood that many modifications will be readily apparent to
those skilled in the art, and this application is intended to
cover any adaptations or variations thereof. For example,
various types of publisher machines, user or subscriber
machines, channels and configurations of them, and hard-
ware and software implementations of the content-based
routing and other functions may be used without departing
from the scope of the invention. This invention should be
limited only by the claims and equivalents thereof.

—

0

—

5

25

45

55

28

The invention claimed is:

1. A method for transmitting predicates in a publish-
subscribe network, comprising:

receiving an expression including Boolean-valued predi-

cates relating to a subscription;

encoding the expression into a message for transmission

in the network for use in content-based routing wherein
the encoding step includes converting the expression
into a corresponding disjunctive normal form, convert-
ing the disjunctive normal form into a corresponding
sequence of bit-string encodings of attribute tests,
simplifying AND expressions in the disjunctive normal
form to contain range filters and membership tests and
translating not-equal parameters in the expression to
positive form; and

transmitting the message to at least one router in a

network core in order to provide content-based routing
for the subscription.
2. The method of claim 1 wherein the encoding step
includes converting the expression into a flat message for-
mat.
3. The method of claim 1 wherein the receiving step
includes receiving for the predicates conjunction, disjunc-
tion, or negation terms.
4. The method of claim 1, further including:
receiving the subscription; and
creating the expression from the subscription.
5. The method of claim 1, further including parsing the
expression in order to detect errors in the subscription.
6. The method of claim 1, further including storing the
expression in a data structure.
7. An apparatus for transmitting predicates in a publish-
subscribe network, comprising:
a receive module for receiving an expression including
Boolean-valued predicates relating to a subscription;

an encode module for encoding the expression into a
message for transmission in the network for use in
content-based routing, wherein the encode module
includes a module for converting the expression into a
corresponding disjunctive normal form, a module for
converting the disjunctive normal form into a corre-
sponding sequence of bit-string encodings for attribute
tests, a module for simplifying AND expressions in the
disjunctive normal form to contain range filters and
membership tests and a module for translating not-
equal parameters in the expression to positive form;
and

a transmit module for transmitting the message to at least

one router in a network core in order to provide
content-based routing for the subscription.

8. The apparatus of claim 7, wherein the encode module
includes a module for converting the expression into a flat
message format.

9. The apparatus of claim 7, wherein the receive module
includes a module for receiving for the predicates conjunc-
tion, disjunction, or negation terms.

10. The apparatus of claim 7, further including:

a module for receiving the subscription; and

a module for creating the expression from the subscrip-

tion.

11. The apparatus of claim 7, further including a module
for parsing the expression in order to detect errors in the
subscription.

12. The apparatus of claim 7, further including a module
for storing the expression in a data structure.

& ok ok ok 3k

