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Abstract 

Studies of radiological error reveal high levels of variation between radiologists. 

Although it is known that experts outperform novices, we have only limited knowledge 

about radiological expertise and how it is acquired. This review identifies three areas of 

research: studies of the impact of experience and related factors on the accuracy of 

decision-making; studies of the organisation of expert knowledge; and studies of 

radiologists’ perceptual processes. 

Interpreting evidence from these three paradigms in the light of recent research into 

perceptual learning and studies of the visual pathway has a number of conclusions for the 

training of radiologists, particularly for the design of computer-based learning programs 

which are able to illustrate the similarities and differences between diagnoses, to give 

access to large numbers of cases and to help identify weaknesses in the way trainees 

build up a global representation from fixated regions. 
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Introduction 

 

In 1999 the Institute of Medicine’s Committee on Quality of Health Care in America 

produced a report ‘To Err is Human’ which contained the headline-grabbing statistic that 

as many as 98,000 Americans might be dying each year as a result of medical error [1]. 

The report was highly influential and led professional organisations and government 

agencies, not just in the United States, to pay increased attention to the problem of 

medical error and the concept of patient safety.  

 

Most studies of error in radiology report significant rates of ‘observer variability’ or 

disagreement with a gold standard. A review by Goddard et al. suggests a range of 2-20% 

for clinically significant or major error across radiological investigations [2]. More 

recently van Rijn et al. compared spiral CT with MRI in
 
a series of patients suspected of 

lumbar herniated discs and found only moderate levels of agreement between observers, 

who, for example, disagreed on herniation at CT evaluation
 
in 12% of discs [3]. Halligan 

et al. asked experts, consultants, and experienced trainees to report a consecutive series of 

20 double-contrast barium enema studies [4]. They found that experts misclassified 23% 

of cases whereas consultants misclassified 31% and trainees 34%.  Manning, Ethell and 

Donovan report a missed lesion rate of 27.2% in a study involving 4 radiologists viewing 

120 chest X-rays, containing 81 lung nodules [5]. Monnier-Cholley carried out an ROC 

study of lung cancer detection from a selected set of chest X-rays and noted that overall 

consistency in observer detection of lung nodules was
 
poor (the LROC Az being 0.54 ± 



0.024 for residents, 0.561 ± 0.033 for staff radiologists) [6]. These findings should be 

considered in the light of others suggesting that clinically insignificant errors 

predominate over significant ones and that audits of large numbers routine cases reveal 

lower error rates than laboratory studies based on selected cases [7,8].  

 

Many possible solutions to the problem have been proposed, including the use of 

computer aids, multiple human readers and improvements in working conditions 

[9,10,11]. The evidence about the effectiveness of computer aids is increasingly negative 

[12], constraints on manpower limit the scope for double reading while there is such 

variety in working conditions that general suggestions for improvement are not helpful. 

Another key variable which needs to be addressed is that of radiologist skill or expertise. 

We know that some radiologists are better than others, and that experts do better than 

novices. But what do we know about the nature of this difference? And does what we 

know help us to understand how training can best enhance radiologists’ abilities?  In the 

rest of this article I first review the research into radiological expertise and then 

summarise some more general findings about perception and experience. In the 

conclusion the reviewed research on expertise is interpreted in the light of the more 

general work in order to furnish some conclusions for radiological training.  

 

 

The science of radiological expertise 

 



Studies of radiological expertise can be considered under three headings: work on 

decision making, on the representation of expert knowledge and on perceptual processes. 

 

Studies of medical decision-making  

 

The concept of expertise is closely associated with a capacity for accurate decision-

making. Much psychological research has been directed at understanding decision-

making, and many of these researchers have considered the clinical domain. One 

paradigm in the study of experts’ decision making uses a mathematical technique known 

as judgement analysis to identify the relative weights assigned to different diagnostic 

cues (see Wigton for a review of this work applied to clinical decision making [13]). 

Another approach involves comparing human decision making to theoretically optimal 

decision-making (maximising a measure of expected utility), often in order to identify 

‘cognitive biases’ [14]. Interesting lessons have been learnt, judgement analysis, for 

example, reveals that decision-makers rely, for the most part, on small numbers of cues – 

experts making complex decisions rarely make significant use of more than four cues 

[15]. Cognitive biases identified in clinical decision-making include being over-

influenced by information from recent or highly salient events – for example doctors who 

have recently encountered a rare condition might be over-willing to consider it as a 

diagnosis – and under-using information about prevalence [16].  

 

Research in radiology often uses radiologists’ decision-making as the dependent variable, 

but generally it is a radiological technique that is being investigated rather than the 



decision-maker. Some studies have, however, looked at how decision-making is affected 

by important variables such as the availability of clinical information, or the experience 

of the radiologist. Swensson and colleagues carried out a series of studies to provide 

empirical support for the idea that searching in the absence of preconceptions allows for 

more accurate judgements about images. Swensson, Hessel and Herman 1985, for 

example showed that residents did better at distinguishing normal and abnormal features 

when instructed to search films and report all abnormalities that when primed to search 

for nodules or when asked to look at specified locations and say if a nodule was present 

[17].  

 

This effect seems to be due to quite subtle characteristics of the task. Berbaum, Franken, 

Dorfman et al., for example, asked residents to read chest X-rays with and without 

additional clinical information, in the form of a prompt that was correct for abnormal 

cases and plausible for normals. ROC analysis showed an improvement in diagnostic 

accuracy for diverse subtle lesions, although not for simple nodules [18]. The effect 

seemed to be perceptual rather than decision-making since the effect was not explained 

by a reduction in false positives but rather involved the improved detection of lesions. 

More recently a systematic review by Loy and Irwig found 39 articles studying the 

impact of clinical information on the accuracy with which diagnostic tests were 

interpreted [19]. They reviewed the results of 16 studies, including five dealing 

specifically with chest X-rays and three with bone radiographs. Overall they found that 

the use of clinical information led to improved test reading accuracy, although there was 



wide variation in the scale of the effect. They also suggest that the improvement seems to 

come more from improved sensitivity than specificity.  

 

There are different aspects of experience that can be tested to investigate how they affect 

performance. At least one study has looked at the impact of a training course and found 

that it improved diagnostic accuracy [20]. A number of studies of expertise compare 

readers at different levels of qualification and show that staff in more senior positions are 

more accurate [see e.g. 21,22]. Studies which look at experience either in terms of years 

of experience or the number of cases viewed tell a less consistent story, at least as regards 

screening mammography. Beam, Conant and Sickles found a negative correlation 

between reading performance and years since qualification [23]. Barlow et al. report that 

more recently qualified radiologists have higher sensitivity but lower specificity which 

might suggest that years of experience lead to a change in the threshold for recalling a 

patient rather than improved accuracy [24]. However Smith-Bindeman et al. have found 

that radiologists with more years of qualification had better specificity and slightly 

improved or at least equal sensitivity, suggesting that the improved specificity is the 

result of more accurate interpretation [25]. Their analysis is summarised in Figure 1. 

Esserman et al. found that radiologists reading more films achieved greater specificity for 

a given sensitivity. [26]. Beam, Conant and Sickles, however, found no relationship 

between accuracy and the volume of films being read. They argue that expertise is a 

complex phenomenon and hypothesise that the quality of a radiologist’s experience 

determines how it impacts on performance. 

 



As well as these investigations into the impact of clinical information or experience on 

decision-making, there have been studies that aim simply to assess the variability in the 

accuracy of radiologists’ interpretations, perhaps most notably in mammography. Wagner, 

Beam and Beiden. calculated the impact of radiologist variability on utility functions 

plotted in ROC space [27]. They argued that debate about the value of mammography, 

and, for example, about the potential of computer aids, must be informed by an 

understanding of the limited usefulness of poorly performing radiologists.  

 

 

Studies of the organisation and structure of radiological knowledge 

 

Research into the role of expertise in clinical reasoning has focussed, in recent years, on 

attempts to understand how an expert’s knowledge is represented. One of the central 

ideas in this latter work is that of the schema, or script [28,29]. The notion of schema is 

applied by psychologists to many areas of cognition, the central idea being that human 

reasoning, for the most part, employs knowledge embodied in semi-automated plans for 

dealing with the routine parts of daily life. A common approach in this research is to 

analyse statements recorded when experts are asked to think aloud while solving complex 

problems.  

 

Lesgold and colleagues carried out a classic series of such studies examining the nature 

of radiological expertise [30]. They compared the ‘think out loud’ reports of experts 

(radiologists with at least 10 years’ of experience post-residency) with those of residents 



at different stages in their training, in order to reveal how the acquisition of expertise 

alters the interpretation of radiological images. The first step in the analysis was to count 

the number of ‘findings’ – specific properties attributed to the film or the patient – each 

radiologist made. The researchers also counted how many times each radiologist made a 

connection between two findings. Experts identified more findings than residents and 

these findings were less likely to be unconnected observations, and were generally 

organised into clusters of connected observations (this, perhaps, explains why experts’ 

decision rules, modelled in judgement analysis, are so parsimonious). Experts also 

performed more inferential thinking: longer chains of reasoning could be identified from 

the transcripts of their reasoning.  

 

Lesgold et al. suggest that radiological schemata include a set of processes which will 

generally lead to a successful interpretation for a given class of cases, associated with a 

number of tests or prerequisites to ensure that the appropriate schema is selected. They 

argued that expert radiologists can, very efficiently, identify the best schema to guide the 

interpretation of the case; that they apply schema early, within the first two seconds, but 

continually test and elaborate the applied schema and can be flexible about changing 

schemata during interpretation.  

 

These conclusions could however be questioned by anyone inclined to be sceptical of the 

method. The transcription and analysis of the transcripts is time-consuming and studies 

tend to be limited in terms of the numbers of subjects and images involved. There are 

also problems with the methodology: thinking aloud is not a natural part of reasoning. 



Norman argues that at least some of the results obtained using this technique are probably 

artefacts of the method [31].  

 

Norman reviews research exploring other hypotheses about the representation of clinical 

expertise including formal knowledge of basic science, decision trees, mental probability 

matrices or what are termed semantic qualifiers (networks of simple Boolean variables – 

e,g, acute vs chronic pain, large vs small joint) and notes that evidence has been found to 

support each [32]. He suggests that experts probably have access to knowledge 

represented in different forms. Norman’s own work has considered two theories of how 

knowledge of diagnostic categories is represented. One ‘the prototypical view’, holds that 

category membership is determined by a set of explicit criteria, perhaps embodied as 

features of a prototype for that category; the other, ‘the exemplar’ view, considers that 

our mental categories are defined by the set of remembered category members so that 

membership is assigned following a search for a sufficiently similar exemplar. Although 

he and his colleagues have not considered radiology directly, they have addressed other 

visual tasks including dermatological diagnosis and ECG interpretation. In one 

experiment pre-clinical medical students studied a series of dermatological slides 

covering different conditions and were later tested on new slides [33]. The new slides 

included some that were carefully chosen to be either typical of the categories 

represented in the original slides or similar to the actual slides, but not both. Results 

showed that students were better if the new slides were typical (as the prototype theory 

would predict) but also better if the new slides were similar to the earlier ones (as the 

exemplar theory would predict).  A similar result was found by Ark, Brooks and Eva who 



compared the effects of priming students to assign a diagnosis on the basis of prototypical 

features or on the basis of an impression of familiarity or both and found that students did 

best when using a combined strategy [34]. 

 

However the value of a simple feature-based approach is challenged by a striking study 

reported by Kulatunga-Moruzi, Brooks and Norman. Participants (a mix of experienced 

dermatologists, family medicine specialists and residents) made dermatological 

assessments under three conditions: from a photograph, from a comprehensive list of the 

clinical features on the photograph – these lists were worked up by experts – and a 

combined condition in which the participants first read the comprehensive list then 

viewed the photograph [35]. Their performance was better in the first than the second 

condition and also better in the first than in the third condition. It is perhaps unsurprising 

that it is easier to make a diagnosis from an image than from its description, it is striking 

however that the extra information we get from our own visual processing is so important 

that being primed with an accurate and comprehensive verbal account, based on someone 

else’s processing, actually damages our capacity to interpret the case correctly. The 

finding is similar to that of Swensson, Hessel and Herman, above [17]. Understanding 

radiological expertise requires an understanding of radiologists’ perceptual processes. 

 

 

Studies of radiologists’ perceptual processes 

 



An alternative source of data about interpretation is obtained by monitoring eye 

movements. It is possible, using widely available equipment, to track a radiologist’s gaze 

and monitor which regions of the images are looked at and for how long (this work is 

well reviewed in [36] and [37]). This can tell us something about why abnormalities are 

missed, for example. In a classic early study of the eye movements of radiologists, in this 

case looking at chest X-rays, Kundel, Nodine and Carmody (1978) classified missed 

cancers according to whether the radiologists’ gaze completely missed the abnormality 

(errors of search), passed over it without dwelling on it long enough for an object to be 

recognised (errors of detection) or dwelt on it but did not correctly identify it (errors of 

decision); 30% of missed nodules correspond to errors of search, 25% to errors of 

detection and 45% to errors of decision [38]. Patterns of search show a clear evolution in 

the course of a radiologist’s training, becoming much more efficient, with the most 

dramatic changes occurring in medical school, apparently more affected by 

improvements in knowledge of radiographic anatomy and clinical medicine than by 

formal training in radiology [39]. Although errors of search are significant, a substantial 

majority of errors occur in regions of the image that appear to receive visual attention. 

Nearly half of those in the Kundel, Nodine and Carmody study occurred in regions that 

received prolonged attention. Mello-Thoms, Hardesty, Sumkin et al., classified errors in 

mammograms as Kundel, Nodine and Carmody had done, finding that 30% of missed 

lesions corresponded to errors of search, 40% to errors of detection and 30% to errors of 

decision [40]. They also collected data using images on which a visible cancer had been 

missed at the original screening exam. In these cases 47% of missed lesions corresponded 

to errors of search, 33% to errors of detection and 22% to errors of decision.  



 

The benefits of experience come into play very early in the processing of an image. 

Kundel and Nodine found that experienced radiologists could identify 70% of the lesions 

on chest X-rays when presented with the films for just 200ms [41]. Mugglestone, Gale, 

Cowley and Wilson repeated the experiment with experts reading a test set of 

mammograms, radiologists correctly identified 51% of lesions in the ‘flash’ condition 

compared to 69% when given unlimited time to view the images [42]. 

 

Christensen, Murray, Holland et al. compared the time faculty members and residents 

took to record observations on 100 selected chest radiographs. For experts the curves for 

true positives tend to be convex, with most observations being made very quickly, while 

those for false positives increase at a linear rate [43]. With residents the true positive 

curves level off more slowly and the false positive curves begin to curve upwards at the 

end of viewing time, sometimes crossing those for true positives. Plotting observations 

per unit time on a log scale against time produces a curve that can be modelled as the sum 

of two straight lines, suggesting that the results are produced by two distinct processes, a 

rapid, almost instantaneous recognition of obvious abnormalities, followed by a slower 

search of the image.  Nodine CF, Mello-Thoms C, Kundel HL, et al. found a similar 

effect plotting positive predictive value against time to observation for mammographers 

and trainees [44]. Nodine, Kundel, Mello-Thoms et al. analysed the accuracy of 

mammographic interpretation of three groups: technologists, radiology residents and staff 

mammographers with at least five years experience [21]. They too found that staff 

radiologists were both faster and more accurate than residents. In all these studies 



decision times tend to be longer for false compared to true outcomes. Comparing the time 

course of decision-making for groups at different levels of expertise shows the overall 

accuracy of less expert groups tailing off as false-positive results begin to outnumber true 

positive results.  

 

A recent series of experiments by Mello-Thoms and colleagues has used image 

processing to analyse fixated regions on mammograms. The technique is inspired by 

perceptual psychology which suggests that the eye responds to the spatial frequencies in 

an image. (Spatial frequency is the distance between elements in a repeating pattern and 

an indication of the scale at which useful information is detected. High spatial 

frequencies correspond to fine detail, lower spatial frequencies to coarser elements.) 

Mello-Thoms, Dunn, Nodine and Kundel measured the log of the energy (energy being 

the integral of the signal strength) of different spatial frequency bands across a range of 

orientations, for each region fixated by a radiologist [45]. The profile of the log-energy 

measurements is obtained for each fixated region, this profile contains the information 

that we believe is computed by the low level visual system. Since a radiologist makes 

comparative judgements, the experimenters consider not just the profile in each region 

(termed the local profile) but also a combined profile (the global profile) across all 

fixated regions in an image. The local profile is related to the conspicuity of local features, 

the global profile is a measure, specific to each observer, of the searched background to 

which local features are compared. Figure 2 shows the scan paths of two radiologists in 

the study and clearly demonstrates that the two are inspecting different areas on the film. 

 



Using this technique to compare the decision-making of full-time mammographers with 

that of residents, Mello-Thoms found that the computed profiles did not discriminate 

between mammographers’ true and false positive decisions [22]. This suggests that 

mammographers are making consistent use of a representation of malignant appearance 

which is well modelled by the spatial frequency representation. The profiles did, however, 

discriminate between mammographer’s true positive and false negative decision 

outcomes. Conversely for residents, true positives could be distinguished from false 

positives but not from missed cancers. Interestingly the residents in this study principally 

made perceptual rather than decision errors and the global profile seemed to play a much 

smaller role in their decision-making. Mello-Thoms concludes mammographers are better 

able to contrast local findings with global features, while residents are more guided by 

the local conspicuity of image features. The most striking result is that an artificial neural 

network (a form of software which when trained on examples can learn to classify 

complex data items) was able to use the profiles to predict how a radiologist would report 

an image region. The mammographers, as one might expect, behaved more predictably 

than the residents. 

 

 

Understanding the nature of perceptual learning 

 

Recent years have seen a great deal of research into perceptual expertise or perceptual 

learning, and psychologists and neurobiologists have combined to develop models of how 

the performance of visual tasks is improved by practice.  A convenient framework for 



reviewing this research is a computational model of visual object recognition in which 

perceptual processing computes a hierarchy of representations starting with processing of 

the retinal image to extract information about intensity changes across a range of 

orientations and spatial frequencies, this information is then processed at higher levels to 

compute successively more complex representations, eventually arriving at something 

which can be matched against the stored representations that make up our visual memory 

(see [46] for a classic account of this approach to understanding vision). Perceptual 

learning occurs when the capacity of a subject to recognise an object is enhanced by 

practice. This enhancement must reflect a change in the visual pathway in how low or 

high level representations are computed or processed. Research by Ahissar and Hochstein 

attempted to identify the level at which the change occurs, using the intuition that 

learning at the higher levels of visual processing would transfer across different tasks, 

whereas learning at the lower levels would be specific to low-level features of the stimuli 

used [47]. They found that where the learning task was made more difficult, there was 

evidence of low-level learning, but that this only occurred after higher level learning had 

taken place. Their findings led them to develop the Reverse Hierarchy Theory of 

perceptual learning, shown in Figure 3: changes in high level representations guide the 

selective tuning of low level perceptual processing, in conditions when improvements in 

signal-to-noise processing are required. 

 

Sowden, Davies and Roling carried out a series of studies to demonstrate that these kinds 

of improvements in visual sensitivity are involved in the acquisition of radiological 

expertise [48]. They found radiologists were better than non-radiologists at detecting 



small low contrast dots placed at random against a background of nested rectilinear 

structures, an artificial detection task for which radiologists’ conceptual knowledge and 

decision making skills would be irrelevant, suggesting that they had developed 

heightened sensitivity to these kinds of stimuli. In a further experiment they identified 

that a rapid increase in the performance of novice film readers could be obtained as a 

result of a few days experience with this kind of task, and that the improvement did not 

transfer to images in which the contrast was reversed (as it is in a photographic negative) 

suggesting that the improvement is due to low-level sensory learning. 

 

In the future we may be able to draw on quite new sources of evidence to answer these 

questions. Haller and Radue carried out fMRI scans of 12 experienced radiologists and 12 

non-radiologists performing a perceptual processing task on radiological and control 

images [49]. They found that the radiological images excited regions in the radiologists’ 

brains which were not activated in those of non-radiologists. The authors note that 

activations in these regions (bilateral middle and inferior temporal gyrus, bilateral medial 

and middle frontal gyrus, and left superior and inferior frontal gyrus) have previously 

been associated with visual attention and memory retrieval, suggesting that the 

radiological images automatically attract attention and invoke memories of reference 

images. Interestingly the control images (electron microscopy images) also led to 

different patterns of activity between the two groups, including activations which have 

associated with the generation of
 
a mental representation of an object and the mental 

rotation of objects in two- and three-dimensional
 
space. The authors speculate

 
that 

radiologists may create a mental representation
 
of the presented image, because such 



images
 
are sometimes rotated and the position of anatomic structures may vary, they 

develop an enhanced capacity mentally to rotate the presented
 
objects.   

 

 

The relationship between cognition and perception in radiology 

 

It is clear that the interpretation of radiological images involves the processing of 

characteristic perceptual data and that interpretive skill is in part a matter of skilled 

perception. The task is, however, not a purely perceptual one. We know, for example, 

that expert radiologists make more accurate assessments in the light of additional clinical 

information about a case [19]. One might think of the cognitive element of the task as 

being more reflective, involving conscious thought rather than the automated processing 

of visual information. The two elements are not easily separated however.  

 

The advantage experienced radiologists have over their junior colleagues seems to come 

into play very early in processing and to involve the processes which guide the collection 

rather than the assessment of evidence. Recent research using magnetoencephalography 

and functional MRI to measure activity in the visual cortex suggests that early analysis of 

low spatial frequencies triggers activity in the left orbitofrontal cortex, which takes place 

concurrently with the slower propagation along the visual pathway of both low and high 

spatial frequencies. Bar, Kassam, Ghuman et al. hypothesise that this activity serves as 

top-down facilitation of recognition: the rapid analysis of coarse-grained information 



serving to generate predictions about what might be in the image, which are then matched 

with the results of processing higher spatial frequencies [50]. 

 

The notion of attention, which is to do with the allocation of processing capacity or a 

selective emphasis on certain elements of information, is a cognitive rather than a strictly 

perceptual one. Selective attention is a way of optimising the processing of information 

for a particular purpose, e.g. searching for a particular target. It modulates our response to 

information gathered, including information from peripheral vision. This view of 

attention is supported by recent research which suggests that attention influences visual 

information even in the earliest steps in visual processing [51]. One theory, supported by 

evidence from neurobiology, is that the visual system creates an “integrated saliency 

map”, which combines information about the ‘conspicuity’ of visual features and an 

assessment of their behavioural relevance, combining sensory information from low-level 

processing with high-level knowledge about what should receive attention [52]. The 

salience of a feature on a radiological image might then be determined, in part, by the 

conspicuity of the feature, and, in part, by prior knowledge and expectations. Evidence 

from studies of neuronal activity suggests that an assessment of salience guides eye 

movements [53].  

 

Radiological expertise has a number of low level components. These are responsible for 

the kinds of effects observed by Sowden, Davies and Roling - the selective tuning of 

elements in early visual processing - and the computation of a representation of salient 

regions of mammograms in terms of spatial frequency profiles. It also seems to involve 



something that resembles the cognitive scientists’ concept of schemata: representations of 

habitual behaviours. The experienced radiologists studied by Lesgold et al. continually 

tested the appropriateness of the activated schema, monitoring the activity of the schema-

directed search and the perceptual processing it leads to, and monitoring their own 

reaction to it. Research reviewed above on the time-course of decision-making shows that, 

for both experts and non-experts, the longer the search time, the more positive predictive 

value lowers off as false positive responses begin to predominate [43,44]. In real life 

radiologists must decide when to stop searching an image. This decision is based on a 

judgement not just about the image but about the radiologists’ confidence in the accuracy 

of their assessment of the image. The radiologist must use a subjective response, a feeling 

of confidence, as the basis for a decision. They are reasoning that, after a certain point, 

had there been something in the image, it would have attracted their attention by now. 

 

 

Implications for radiological training 

 

A recent review concluded that there was very little research into the question of how 

radiologists are trained [54].  The research reviewed above, however, does suggest a 

number of tentative conclusions for the design of training programmes, and particularly 

of the scope for computer-based learning. 

 

(1) If we assume that object recognition is primarily a matter of matching the output of 

low level processing with stored exemplars of known categories, it follows that the 



primary goal of early training should be to provide radiologists with an appropriate set of 

exemplars. Some interesting work on computer-based learning has provided students of 

MRI with a tool which arranges examples from a training database in a conceptual space 

[55]. Each case is classified on a finite set of dimensions – each feature recorded about a 

case is represented as a value along a scale of some kind. The total set of cases can then 

be considered as a set of points in a multi-dimensional space. The tool displays a variety 

of two dimensional projections of the space. This can help trainees to get a sense of the 

way in which a set of instances of a disease are distributed around a mathematically 

‘typical’ case and to assess the ‘distance’ between a new case, of unknown diagnosis, and 

the typical presentations of candidate diagnoses. 

 

For example, in Figure 4, let the squares be the cases in the database of Syndrome A and 

the triangles images be those of Syndrome B, and the diamond a new image of unknown 

diagnosis. The idea is that the display helps the user pick out images from the database 

with which to compare the new image, in order to arrive at a classification. The centres of 

the circles, and the arrangements of the cases in the ‘space’ represent statistical measures 

of the typicality and similarity of the cases and are derived from the image findings to 

maximise the information provided by the display. 

 

(2) Sowden, Davies and Roling experiments support the idea, suggested by Ahissar and 

Hochstein’s Reverse Hierarchy, that expertise requires the tuning of low-level perceptual 

elements. Training programmes should be designed to support first the acquisition of 

appropriate knowledge then to allow the required perceptual learning to take place. Some 



aspects of experience seem to have a greater impact on performance than others. If it 

were simply a matter of the number of cases read, the more cases a radiologist saw, the 

better they would be. This is not exactly what we find. The effect of years of experience 

is much stronger than that of number of cases read. It might be that radiologists who view 

more cases per annum are not being given sufficient feedback on performance, or 

adequate opportunity for reflection for the experience to be beneficial. Smith-Bindeman 

et al. report radiologists reading 2500-4000 mammograms a year had improved 

specificity but that this effect was not found in radiologists reading more than 4000 per 

annum [25]. We need to ensure that all radiologists, but particularly recently qualified 

radiologists, are given not just experience but also the opportunity to learn from it. 

 

There is therefore an argument for building large databases of cases to be used for 

training. Ericsson, writing about expertise more generally, has argued that it requires a 

form of ‘deliberative practice’ and that the scarcity of outstanding performance is in large 

part because few people have the opportunity to engage in this [56]. A number of 

collaborations are now putting together substantial collections of annotated digital cases 

[57, 58]. Accessing these databases through appropriate tools may allow trainees to 

acquire the benefits of experience more efficiently than they can through on the job 

learning.  

  

(3) Students are frequently told to scan images systematically, and yet few radiologists 

seem to work this way [36]. The impact of training, is not that readers learn the right way 

to move their eyes across the image but that training provides a cognitive basis for 



recognising ‘perturbations’, deviations from the radiologist’s mental model of normal 

appearance. Kundel, Nodine, Conant and Weinstein suggest that experts can analyze the 

visual input of the entire retinal image holistically and locate an abnormality on the basis 

of this global processing [59]. Analysis of the spatial frequencies in fixated regions 

appears to tell us something about the basis of radiological decision-making and 

highlights the role of search in building up an accurate representation of the image 

background, in order to discriminate between true and false positives. Providing residents 

with clear feedback about their failure in this aspect of radiological search could lead to a 

rapid improvement in performance. Mello-Thoms has shown that an artificial neural 

network trained on this data can anticipate radiologists’ decisions [45]. Such a tool might 

have a role in computer-based training, as a model of the representation used by the 

radiologist to guide their decision-making. 

 

Conclusions 

 

The development and acquisition of radiological expertise has been studied for thirty 

years. Three distinct paradigms can be identified: studies of the impact of various factors, 

including experience, on the accuracy of radiologist decision-making; studies of the 

organisation of expert knowledge; and studies of perceptual processes. Although there 

has been relatively little research into the effectiveness of different approaches to training 

radiologists, the findings reviewed here suggest some interesting ways in which training 

interventions, particularly computer-based learning, could be designed. 
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Figure/Table Captions 

 

Caption for Figure 1. 95% confidence intervals for false positive rate and sensitivity of 

radiologists classified by age, years since qualification (greater or less than 5 years), 

annual volume and whether or not they focussed on screening, for first (A) and 

subsequent screening visits (Reprinted by permission of Oxford University Press). 



 

 

 

 



Caption for Figure 2. Example of the scan path of two radiologists reading the same case. 

The small circles show the location of the fixations, the light circles show the location of 

a malignant lesion and the dark circles the areas that attracted more than 1s of visual 

dwell. (© 2003 IEEE) 

 

 

 

 

 

 



Caption for Figure 3: The Reverse Hierarchy Theory of Perceptual Learning. The 

processing of visual information moves through a hierarchy of levels, with lower levels 

being responsible for detecting simple image features such as lines or edges, and higher 

levels performing the recognition or classification of objects. If perceptual learning 

resulted from changes in the processing of low-level features we would expect the 

learning to be specific to the low-level features of the stimulus (such as contrast or 

orientation). Such low-level learning seems to occur, but only after higher level learning 

has taken place and only if task demands are high (for example if the images are noisy).  

 

 

 

 

 

 



Caption for Figure 4: 

This diagram shows how innovative presentation can help teach classification. The tool 

displays a two dimensional projections of a conceptual space, created by charaterising 

cases along different axes. This can help trainees to get a sense of how instances of a 

disease are distributed around a typical case. The distance between a case of unknown 

diagnosis and the typical presentations of candidate diagnoses can be used to help in 

classification. 

 

 

 

 

 

 

 


