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ABSTRACT

We analyse the radial structure of self-gravitating spheres consisting of multiple interpene-
trating fluids, such as the X-ray emitting gas and the dark halo of a galaxy cluster. In these
dipolytropic models, the adiabatic dark matter sits in equilibrium, while the gas develops
a gradual, smooth, quasi-stationary cooling flow. Both affect and respond to the collective
gravitational field. We find that all subsonic, radially continuous, steady solutions require a
non-zero minimum central point mass. For Mpc-sized haloes with 7-10 effective degrees of
freedom (F»), the minimum central mass is compatible with observations of supermassive
black holes. Smaller gas mass influxes enable smaller central masses for wider ranges of F».
The halo comprises a sharp spike around the central mass, embedded within a core of nearly
constant density (at 10'—=10%° kpc scales), with outskirts that attenuate and naturally truncate
at finite radius (several Mpc). The gas density resembles a broken power law in radius, but
the temperature dips and peaks within the dark core. A finite minimum temperature occurs
due to gravitational self-warming, without cold mass dropout nor needing regulatory heating.
X-ray emission from the intracluster medium mimics a S-model plus bright compact nucleus.
Near-sonic points in the gas flow are bottlenecks to the allowed steady solutions; the outermost
are at kpc scales. These sites may preferentially develop cold mass dropout during strong per-
turbations off equilibrium. Within the sonic point, the profile of gas specific entropy is flatter
than s oc r'/2, but this is a shallow ramp and not an isentropic core. When F) is large, the
inner halo spike is only marginally Jeans stable in the central parsec, suggesting that a large
non-linear disturbance could trigger local dark collapse on to the central object.

Key words: accretion, accretion discs — hydrodynamics — cooling flows — galaxies: clusters:
general — dark matter — X-rays: galaxies.

flows (Cowie & Binney 1977; Fabian & Nulsen 1977; Mathews &

1 INTRODUCTION

Galaxy clusters consist of baryonic and dark matter in the cosmic
ratio (Spergel etal. 2007). Black holes and the stars in galaxies and in
the intracluster light only constitute a small (10—15 per cent) fraction
of the baryons; and the intracluster X-ray emitting hot gas comprises
the majority of the baryons (Lin, Mohr & Stanford 2003; Gonzalez,
Zaritsky & Zabludoff 2007). Relaxed clusters are found to contain
a round core of approximately constant density, attenuating into
fringes below detection limits (Lea et al. 1973; Cavaliere & Fusco-
Femiano 1976). There are also clusters with more centrally peaked
core. They are thought to be systems with short radiative cooling
time in comparison with the Hubble time. As radiative cooling
causes the depletion of pressure support near the cluster centre, gas
inevitably subsides inwards from the cluster outskirts, i.e. cooling
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Bregman 1978).

Cooling flows have been linked with accretion onto, and star
formation in the dominant galaxy in the cluster, and also the fu-
elling of their galactic nuclei (e.g. Silk 1976; Sarazin & O’Connell
1983; Fabian et al. 1984b; Nulsen, Stewart & Fabian 1984). Early
models of cooling flow invoked a number of simple assumptions.
In some fluid formulations for the cluster structure, a static global
gravitational potential was used, and there was no consideration of
gas or halo self-gravity. Kinetic and ram pressures were often not
considered explicitly, and this caused a cooling runaway near the
cluster centre, leading to a rapid deposition of a great amount of
cold gas. Approximate deprojected cluster X-ray images indicated
that the gas inflow rates 7z diminishes nearer the cluster centre
(Stewart et al. 1984; Thomas, Fabian & Nulsen 1987). This was
taken as evidence for widely distributed ‘mass dropout’ — thermal
instability spawning small, underpressured, invisibly cold clumps
within a multiphase medium. Thermal conduction and magnetic



1404  C. J. Saxton and K. Wu

fields were argued to be too weak to inhibit this instability and
dropout.

The early cooling flow models were challenged by various mul-
tiwavelength observations (see reviews by Donahue & Voit 2004;
Peterson & Fabian 2006). First of all, radio and optical imaging have
not shown the expected accumulations of cold gas, nor the expected
bursts of star formation. Moreover, X-ray spectroscopic and imag-
ing deprojections of cluster profiles indicates a temperature floor
typically a factor of 3 or 4 below the peak temperature (Kaastra
et al. 2001; Peterson et al. 2001; Tamura et al. 2001; Johnstone
et al. 2002; Sakelliou et al. 2002; Peterson et al. 2003). In some
systems the temperature even appears to increase at the smallest
radii (e.g. O’Sullivan et al. 2007). Spectral analyses suggest that the
intracluster medium (ICM) is likely to be single-phase (Bohringer
et al. 2001; David et al. 2001; Molendi & Pizzolato 2001; Mat-
sushita et al. 2002). These difficulties prompted the search of pos-
sible processes that could suppress the cooling flows, e.g. thermal
conduction, or non-gravitational heating, such as the power injected
by active galactic nuclei (AGN). (See review by Peterson & Fabian
2006, and references therein.) There are still open questions whether
the heating processes can fine-tune to counteract the cooling stably,
and whether the heating would distribute appropriately across the
relevant regions in the cluster (Fabian et al. 1994; Johnstone et al.
2002; Brighenti & Mathews 2003; Conroy & Ostriker 2008).

Meanwhile, theories of halo structure have been overturned sev-
eral times. Once, it was assumed that cluster dark matter follows
the distribution of galaxies, in approximately isothermal, flat-cored
assemblages (e.g. King 1966; Rood et al. 1972; Cavaliere & Fusco-
Femiano 1976; Cowie & Binney 1977; Fabian et al. 1981). This
view was naturally compatible with the classic signs (in the ro-
tation profiles of disc galaxies) that galaxian dark matter is more
shallowly and widely spread than the baryons. By the 1990s, cosmo-
logical N-body simulations were becoming fine enough to resolve
cluster and galaxy haloes, under the simplifying assumption that
dark matter acts like a collisionless stellar dynamical fluid (without
any short- or long-range gauge fields of its own). Simulated haloes
develop sharp power-law central density cusps,(see e.g. Dubinski &
Carlberg 1991; Navarro, Frenk & White 1996; Moore et al. 1998;
Diemand, Moore & Stadel 2004; Navarro et al. 2004; Diemand et al.
2005). The redistribution of cooling, contracting gas may steepen
the dark cusp further (e.g. Blumenthal et al. 1986; Gnedin et al.
2004; Sellwood & McGaugh 2005).

In a circular way, cuspy profiles became an ansatz in the fitting
cluster observations. Cuspy profiles have been assumed as templates
in composite mass models fitted to gravitational lensing observa-
tions. It has been shown that a cuspy halo can hold a cored X-ray
emitting gas distribution qualitatively similar to that of traditional
cored halo models (Makino, Sasaki & Suto 1998). Gravitational
lensing suggests flat cores in some clusters (Tyson, Kochanski &
dell’ Antonio 1998; Gavazzi et al. 2003; Sand et al. 2004, 2008).
However, on galaxy scales, a considerable weight of evidence dis-
favours the existence dark cusps today (or implies that haloes are
less centrally concentrated than baryons). These lines of evidence
include velocity fields of dwarf and low surface brightness galaxies
(Flores & Primack 1994; Moore 1994; Burkert 1995; de Blok &
McGaugh 1997; Weldrake, de Blok & Walter 2003; de Blok 2005;
Simon et al. 2005; Kuzio de Naray et al. 2006); and kinematics of
dwarf spheroidal galaxies (Lokas 2002; Gilmore et al. 2007). Cur-
rent observational data for dwarf spheroidal galaxies cannot rule
out cuspy profiles from the kinematics alone (Walker et al. 2007),
though tidal tracers hint circumstantially at gentle cores in specific

cases (Kleyna et al. 2003; Goerdt et al. 2006). Lensing analyses of
isolated elliptical galaxies suggest cuspy profiles near the observed
radii (Read et al. 2007), while the kinematics of other cases imply
flat cores or low dark densities (Romanowsky et al. 2003; Douglas
et al. 2007; Forestell & Gebhardt 2008). Possible explanations of
the cusp problem may involve subtle numerical systematics of N-
body methodology, extra dark physics, or some forms of gaseous,
stellar or AGN feedback.

Feedback, if it is responsible for erasing cusps, must overturn
a substantial fraction of a galaxy’s baryonic mass, from the deep-
est zone of its potential, without leaving abnormal metallicities
and stellar populations. The implementation of feedback in numer-
ical simulations suffers from severe challenges of resolution, and
considerable arbitrariness or uncertainty in recipes for small-scale
physics. Relevant fluid instabilities differ greatly between numer-
ical schemes (e.g. Agertz et al. 2007). Energy budgets of popular
Lagrangian hydrodynamics methods are broken by endemic (but
rarely mentioned) ‘wall heating’ artefacts (e.g. Noh 1987), with
unknowable consequences in simulated media where heating, cool-
ing or thermal instability are important. A definitive answer to the
‘feedback’ question is far off; presently it is an almost unfalsifiable
proposition.

This paper aims to present a new formalism for the structures of
relaxed galaxy clusters, and to probe the scope of its initial implica-
tions for cooling flows and dark matter (reserving empirical detail
and observational fits for future refinements). We re-examine the
classic scenario of inflows in galaxy clusters with a more complete
and consistent treatment of the gravitational interaction and energy
exchanges in the gas and the dark matter components. Also a sen-
sible polytropic equation of state is used for the dark matter that
admits cuspless solutions for some systems and allows multiple de-
grees of freedom in the dark matter. Note that a polytropic halo may
arise if dark matter has strong self-interactions (SIDM), or if the
system is formulated properly in the framework of Tsallis’ statisti-
cal thermodynamics (cf. the Boltzmann statistical thermodynamics;
Tsallis 1988; Plastino & Plastino 1993), or in collisionless systems
with isotropic velocity distributions. We illustrate the properties and
profiles of spherical, spatially continuous, stationary solutions rel-
evant to cluster-sized systems. We quantify certain signature radii
of these solutions, for the benefit of comparison with simpler mod-
els in the literature, and to inform future observational tests. Our
solutions indicate that it is inevitable that point-like central masses
would emerge in relaxed clusters, groups or pressure-supported
galaxies. For some appropriate regimes of the halo microphysics,
the predicted minimum central mass is consistent with those of
supermassive black holes (SMBHs) in giant galaxies. We discuss
implications for the rapid origin of SMBHs, monolithic condensa-
tion of early stellar populations in galaxies, and the problem of the
central structures of dark haloes.

The paper is organized as follows. Section 2 gives the general
formulation of the multicomponent self-gravitating systems, and
the construction of the gas and dark matter dipolytropes. Next,
Section 3 describes the valid solutions in the cluster parameter
space, the properties of the solutions, their comparisons with current
observations, and predictions to be tested by future observations.
In Section 4 we discuss our results in the context of galaxy and
cluster evolution. We conclude in Section 5. The appendices show
the derivation of our model’s natural units, the normalization and
the rescaling of the model, the interpretation of the effective degrees
of freedom for the dark matter and comparisons between our model
and other standard spherical models for clusters.

© 2008 The Authors. Journal compilation © 2008 RAS, MNRAS 391, 1403-1436



2 MULTICOMPONENT SELF-GRAVITATING
SYSTEMS

2.1 Multifluid formulation

In our model the system has multiple components. It is self-
gravitating, and the distinct components interact among each other
through their shared gravitational potential. Each component, i, has
its equation of state, which takes the form

pi = pioy = s;p]" (1
with partial pressure p;, density p;, isotropic velocity dispersion o;
(which corresponds to an isothermal sound speed in the fluid de-

scription), specific entropy s; and adiabatic index y;. The adiabatic
index is related to an effective number of degrees of freedom F; via

42 )
Vi = P
The mass, momentum and energy conservation equations read
0
—Pi V. iV = 0, 3
5P tVor A3)
0 2
3PtV pivivi + Vpiop = pif “4)
0 2
a—té,-—f—V-(61+p,-0,.)vi=pivi'f,'+[m )
where the energy density is
2 Vi
Pi0; | Si P; |
= 5t = — p;jvi. 6
€i yi_l+2p,v, y,-—1+2pv' (©6)

Equivalently, the energy conservation equation (5) may be expressed
in term of the entropy:

0 )
Esi +v; Vs, =i — DLip ™. @)

The variable £; is a volumetric power, which specifies the energy
gains and losses. For a component net loss, say radiative cooling,
L; < 0. We assume that £; is determined by the local thermody-
namic and dynamic variables. This assumption is justified in cluster
environments as the radiative processes are optically thin.

The gravitational potential, ®, satisfies the Poisson equation

V2O =47G Y pr. )
The gravitational force is determined from the gravitational poten-
tial f = —V® for all i, and the force field is the same for all the
mass components.

2.2 Steady spherical solutions

In this paper we consider only stationary spherically symmetric sys-
tems. Time-dependent analysis will be discussed in Saxton, Wu &
Ferreras (in preparation), and systems with more complicated ge-
ometries will be presented elsewhere. In a stationary spherically
symmetric system, the density, velocity, temperature and gravita-
tional field are functions of radial coordinate » only. The mass conti-
nuity equation (3) requires that density and velocity are related by

1y = 41 piv;. 9)
For mass inflow riz; < 0; and for mass outflow m; > 0. A system
in hydrostatic equilibrium has riz; = 0 and v; = 0 everywhere. The
entropy equation (7) becomes

dS,' E,‘

— =0-D—,

= 10
dr v; O (10)
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and the conservation equations (3)—(5) now read
Vi pi 0 d Pi Zy;
ol piv; i | =y | =z, (11)
2w dr
0 pivy JE5piv o? Zs
where the three source/sink terms are
2 i Vi
2z, =22 (12)
r
Zn=pif, (13)
Zy = pivi f + L. (14)
The component mass m; interior to radius r is given by
dm;
= 4, (15)
dr
and is related to the force by
G
r i
It follows that
df 2f
— =—— —4nG ; - 17
dr r Z P a7

For a system with a central point mass (e.g. a supermassive central
black hole of a cD galaxy in a cluster) f rises asymptotically near
the origin. For systems without a point mass (Section 2.7), f = 0 at
the origin.

Inversion of (11) gives

dp; 1 [2p0? (vi — DL

= — d i —_ |, 18
dr A; { r +oif v; (18)
dv; 1 2y;02y; L;

= — |-——t— —; = 1)— |, 19
o AL[ vi f + )p‘l 19)
do? . — 1 [20v%6? 2 _ 2
Ul — y vl Ul _|_ G,'Zf + Gt vl Ei , (20)
dr A; r PiV;

with the sonic factor, A; = y;0% — v?, where A; > 0 corresponds to
a subsonic flow. If the matrix in (11) is singular, one of the hydro-
dynamic variables must be eliminated algebraically to reduce the
number of equations. For stationary, spherically symmetric systems,
two of (p;, v;, Uf, i, 5;) suffice to describe the stationary solution.

We will distinguish the mass components in the model for zero
and nonzero r1;, as the solution to above equations depends on
whether or not the mass component is in a bulk inflow. In either
case the mass conservation equation (9) will be used to eliminate
one of the dynamical variables of each component.

2.3 Stagnant component, ; = 0

Usually, a static structure with zero inflow (riz; = 0) is forbidden
(see equations 18 and 20), if there is a net energy loss (£; # 0) or if
the system is not isothermal (y; # 1). An isothermal condition can
be established if heat transport is more rapid than other radiative
and dynamical processes in the system. This is not easily satisfied
for the radiative gas components in a cluster. However, the situation
is different for the dark matter component as dark matter neither
radiates nor absorbs light. Self-interacting dark matter could behave
like a fluid. Thus, such a dark halo may have a hydrostatic profile
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satisfying m; = 0, £; = 0, v; = 0 and dv;/dr = 0 everywhere.
Moreover, its structure is completely specified by the density (o;)
or temperature (velocity dispersion) (o?) profiles.

The gradients of the density (18) and temperature (20) are given
by

dp; i

aoi _ P fz @0

dr Y:0;

and

dO't-z Yi — 1

s 7. 22)
r Vi

respectively. The latter implies that o7 = —(y; — 1)(® — ®g)/y;. In
the cluster setting, &5 corresponds to the dark halo surface potential.

The specific entropy is uniform in the cluster. The effectively
polytropic equation of state is appropriate for dark matter if it is self-
interacting, governed by Tsallis thermostatistics, or has a power-
law phase-space density (i.e. collisionless). In the latter case, the
momentum equation is identifiable as the Jeans equation in the
isotropic limit. (See Appendix C.) We note that if only one self-
gravitating fluid component is present and if there is no central
point mass, the object is essentially a Lane—Emden sphere (Lane
1870; Emden 1907; Chandrasekhar 1939).

2.4 Flowing components, rz; # 0

Fluids with ri7; # 0 exhibit a central density cusp, p; — oo as r —
0. In order to keep the equations numerically tractable, we use (9)
to eliminate p;. The equation for the density gradient (18) is then
redundant, leaving two relevant gradient equations:

dv;,  —v; 2y,07 4rr? L
- [f +—=Wi- 1).7} ; (23)
r A; r n;
do? (y; — Do? 202 o? —v?\ 4nr2L;
i i - i d , 24
dr A; U r + 0[2 m; (24)
and the mass profile equation:
dr v’

Elimination of p; in terms of v; and r, particularly from the cooling
function £;, clarifies the asymptotic behaviour of the differential
equations, especially in the inner regions. The flow velocity v; may
take any value at the origin. Models in which v; # 0 at the origin
describe accretion onto, or winds emerging from, a central object,
presumably compact. Note that inflowing constituents have some
cuspy behaviour near the origin (either p; — 0o, v; = O or v; — 00)
regardless of the occurrence of radiative cooling. This causes some
trouble in numerical integration. Changes of variables, including a
switch of the independent variable, may, however, circumvent the
problems.

2.5 Composite system: radiative gas embedded in
self-interacting dark matter

We consider a model cluster, which is a composite system consist-
ing of a cooling gas component with 7iz; < 0 and £; < 0 and a
self-interacting dark matter component with r, = 0 and £, = 0.
We treat both of them as separate fluid components. We omit the
stars in galaxies, as they are a minor fraction of the cluster baryons.
The dominant radiative loss of the gas component is optically thin

thermal bremsstrahlung radiation. We omit line cooling, dust, con-
duction and Compton effects. Thus, the radiative loss is specified
by a cooling function

L, = —Bplo) = —Bpf”l)/zsl'/z, (26)

where the normalization B depends on the gas composition
(Rybicki & Lightman 1979). Cooling domination implies £; < 0
everywhere, and the specific entropy increases monotonically with
r. This also ensures buoyant stability.

The inner boundary is a gas density cusp, p; — 00, regardless of
whether radiative cooling or compressional heating dominates the
gas inflow (accretion). There are two kinds of cusps: the cold cusp
(01 — 0) and the hot cusp (o7 — 00). In cold cusps, the gas pressure
pi1 is finite everywhere. The specific entropy vanishes, s; — 0, at
the cusp. For the hot cusps, the entropy decreases smoothly towards
the origin. The flow reaches the origin exactly, r, = 0, where the
speed and pressure reach infinity. For fluids with an adiabatic index
of y; = 1 + 2/F;, the asymptotes are p o< r /2 02 oc r~! and
v o< r'fi=9/2_There may be a positive mass compact object at the
origin, m,. The flow at a hot cusp is a self-gravitating generalization
of subsonic Bondi accretion (Bondi 1952).

A fully general model of multifluid self-gravitating objects per-
mits supersonic inflows, existence of sonic points and formation
of shocks. However, we focus on quiescent systems in this paper.
We consider solutions in which any inflow, if present, is subsonic
everywhere in the cluster.

2.6 Central asymptotic behaviours

The asymptotic power-law behaviours of the variables in the central
region allows us to introduce a new set of variables:

Bo = 01.2 r, 27)
By = pi rfi2, (28)
B = v r I, 29)

where i = 1 for the gas and i = 2 for the dark matter. These variables
are finite at » = 0. The corresponding equation of state is given by

B = siB)" (30)

We define a logarithmic radial coordinate / = Inr. In terms of the
new variables, the gradient equations are now

g, ., [4-F 1 .
a =M YiBa, (1 — M?) Vibo
—Gm + f_jﬁm’] } G
b, yi — 1 o
T Ty vEy {2;/,/30,./\4
—Gm—U—MNﬁmW} (32)
dB,,
dlp = ﬂﬁi{g + y/ﬁni(llf./\/lz) {2%’,&,'/\/12
—Gm+ ;ﬂm} } 33)
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where m = m; + m,. The entropy equation is

@__S. (-—I)M (34)
a YT BB

The cooling function is

_ BBu\/Pn )

AL
Bo,
and the radial index of cooling term is
7—-2F
c="— 3 (36)

The Mach number M? = ﬁflrp 173 /11 B5,, and its profile is given
by the equation

dME M 4<M2+1)+( SR
T Ve Fi "y B
—1 re
Sy DR 37
yl,Bal
whose solution to the profile equation requires that
00 if Fj <3,
lirr(1)M2 ={ M2>0 ifF =3, (38)
0 if Fi > 3.

Note that the dark matter component does not have radiative cool-
ing. This implies 8,, = 0, dp,,/dl = 0 and ds,/d! = 0 throughout
the system, and the dark matter structure is determined by

dﬁﬁz Y2 — 1 2Gm
= Po, — Gm = — —, 39
T 7
By, = Q — Gm = Qﬂ(Fz—2)/Fz dﬂ”l. (40)
dl 2 pBs) 7 25 dl
The mass and moment of inertia are given by
dm,;
T 4np,, o2 @1
di '
and
dl; 8m
o — ! (10—F;)/2 42
a = 3br ’ “2)

respectively. The mass profile would have a steep, cuspy gradient
near the origin for F; > 6. The moment of inertia shows a central
cusp when F; > 10, but this F; corresponds to systems with in-
finite mass and radius, which are unphysical and are irrelevant to
astrophysical galaxy clusters.

2.7 Numerical calculations

Some numerical difficulties could arise in solving the structure
equations given in the above section when F; > 6. To overcome
these we consider another coordinate

4= 2 pemp @3)
6—F ’

instead of / and the transformation

a _ F(P=62 _ _ 2 (44)

da (6 — Fy)a

for the derivatives.
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We set the boundary conditions at the surface of the dark matter
component, R, and the integration proceeds inwards to the cluster
centre. At the outer boundary (r = R), we specify the total mass
[m(R) = m(R) + my(R)], the matter inflow rate (riz), the specific
entropy of dark matter (a constant s, > 0), the gas temperature
[Tk = 02(R)) and Mach number (M = M(R)]. The density and
temperature of the dark matter are zero at » = R. The entropy s,
is non-zero, and it defines the dark matter density and temperature
gradients.

An adaptive-step Runge—Kutta scheme (Press et al. 1992) is used
in the integration. We first integrate a small step radially inwards,
using o, as the independent variable, to avoid numerical troubles
that could be caused by the steep gradients at the cluster boundary
surface. We then proceed with the main integration, using the vari-
able [ or a, approaching a reference radius chosen to be r = 10~ U, ..
(Here U, = B/G is the natural unit of distance; Appendix A.) We
examine how the variables behave near this radius. If the gradients
become too steep, we would consider alternative variables for the
integration. There are two types of breakdown that may necessi-
tate a switch. We name them as ‘cold catastrophe’ and ‘supersonic
catastrophe’, and will discuss each of them in more detail.

The ‘cold catastrophe’ arises when the cooling is too efficient,
causing the temperature to plummet steeply. We make use of the
local monotonicity of s; to define a new variable z = s}/ * for the
integration. Although there are a steep radial gradients for the vari-
ables B,1.e. the corresponding |dB /d!| diverge, the derivatives df /dz
are still well behaved and finite. Thus, it allows a smooth integra-
tion towards the centre, where z — 0 monotonically. Note that if
the cooling catastrophe occurs at a non-zero radius — forming a
zero-temperature shell — we may discard it, as it is not a viable
steady solution. The cold shell lacks pressure support, and material
at large radius would fall inwards until a more stable configuration
emerges. Such a system would have a variety of interesting dynamic
behaviours, and we will discuss it and related systems in a separate
paper.

The ‘supersonic catastrophe’ arises when the gas Mach number
increases towards unity at a certain radius. The (1 — M?)~! factor
will diverge and create numerical problems. As a resolution, we
switch to M? as the independent variable when the integration pro-
ceeds and approaches the sonic horizon (M? — 1). Two situations
would occur. In the first one, the solution has a discontinuity, with
causal disconnection between the inner and outer regions. This is
the shock solution, which is interesting but does not correspond to
steady galaxy clusters, the prime interest in this paper. The second
one corresponds to a smooth transonic flow, in which the inflow
would pass a sonic point (Bondi 1952), beyond which the accre-
tion becomes supersonic. The steady transonic solutions are valid,
but they tend to give lower gas densities than the solutions with
subsonic inflows throughout the entire cluster. This also implies a
greater residual central mass m,. In this paper we seek to minimize
m, within the set of truly steady solutions, and we prefer the wholly
subsonic solutions.

We consider various trial (Mg, 5,) at R in the integration. In
each trial we record the radius, r, where integration stops, and the
central, interior mass, m,. For fixed (F;, F>, R, m(R), m, Tg), we
map the (M, s») plane and divide it into zones according to their
physical and numerical characteristics (see Fig. 1). Qualitatively, we
have four principal zones. Three of them are either unphysical or
irrelevant to astrophysical galaxy clusters: (i) ‘too cold’ — afflicted
by a cooling catastrophe at a certain radius; (ii) ‘too fast’ — con-
taining a supersonic discontinuity; (iii) ‘levity’ — with insufficient
pressure support, implying a negative central gravitating mass in

© 2008 The Authors. Journal compilation © 2008 RAS, MNRAS 391, 1403-1436
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Figure 1. Broad and detailed maps of the key parameter domains of models
with standard mass m(R) = 40U, ~ 3.57 x 104 me), radius R = 4U, ~
0.983 Mpc, inflow iz = 10 mg yr~!, gas surface temperature 1 keV and
degrees of freedom F; = Fp = 3. The axes are the surface gas Mach
number and the dark specific entropy. In a wedge-shaped domain (‘deep’,
top panel) steady models reach from the dark surface to the origin. To
the right-hand side (‘too fast’) the profile suffers a supersonic break at an
intermediate radius. To the left-hand side (‘too cold’) a cooling catastrophe
occurs. Models in the shaded region (‘levity’) require a negative central
mass. The ‘fast’ and ‘cold’ borders intersect at a point (circled) above the
m, = 0 contour. Thus m, has a positive minimum for truly steady models.

compensation. The acceptable, physical solutions lie in the wedge-
shaped region between the ‘too cold’ and ‘too fast’ zones. These
solutions correspond to steady structure and subsonic flow through-
out the cluster. The (Mg, s,) values where the ‘too cold’ and ‘too
fast’ boundaries intersect depend on (Fy, F», R, m(R), rir, Tg). The
tip of this wedge region of acceptable solutions does not generally
touch the contour where m, = 0, i.e. the boundary of the ‘levity’
zone. The central mass m, of a physical cluster must be positive
and exceed some certain value. All steady, self-gravitating, spheri-
cal, cooling multicomponent clusters would require a central point
mass. Strictly speaking, a spherical, cooling cluster with gas and
dark matter composites without a central mass condensation is never
steady. It will eventually evolve into another configuration on a dy-
namical time-scale. Readjustment may start with the growth of a
central mass, with waves of disturbances propagating outwards like
the ‘swallowing waves’ as described in Mathews & Baker (1971). In
the later sections, we will present two of the mechanisms that lead

to the formation a central condensation in multicomponent galaxy
clusters.

3 STEADY INFLOW SOLUTIONS

3.1 Size, mass and compositional families

We now compare model clusters with different inflow rates (),
gas surface temperatures (Tg) and dark matter degrees of free-
dom (F,) for a given total mass m(R). We choose to fix m(R) =
40U,, =~ 3.56 x 10'“me, unless otherwise specified, although
the masses in the cluster solution are rescalable (see Appendix
B). We fix F; = 3 for the gas. The values of 7z span the range
I <m < 1000mg yr~!, inferred from X-ray imaging and spec-
tral observations of cooling core clusters (e.g. Fabian et al. 1981;
Nulsen et al. 1982; Stewart et al. 1984; Edge et al. 1994; White et al.
1994). For given (Fy, F>, R, m, m, Tg), we minimize m, over the
(Mg, s7) plane. The contours of m, and gas fraction (1/Y = m,/m)
are plotted in the (F2, R) plane (Fig. 2), with other parameters held
constant.

The radius of a minimal-m, cluster increases with F, along a
T -track. All else being equal, gas-richer tracks have larger cluster
radii. Each family of solutions shows a similar variation of R with
F, when following a particular Y-track: for cosmic composition,
we find that R(F, = 9) ~ 1.229 R(F, = 2). Also, m, decreases as
F> increases in a Y -track. However, for fixed F», m, varies with R.
As shown in the upper panel of Fig. 2, a peak m, appears for R &~
1.25 Mpc, in the models with F, ~ 8, 1t = 1mg yr~' and T =
1 keV.

The m, contours behave qualitatively differently in several dis-
tinct regions of the (F, R) plane:

(i) For F, = 7, the values of m, drop steeply with increasing F,.
In the case of i = I mg yr~!', m, drops by a factor of ~0.1 for
each increment of 1 in F,. The drop is steeper for larger rz. The
cooling and sonic constraints permit a smaller central mass if the
central density profile is steep. This occurs most easily for haloes
with more degrees of freedom.

(i) In another regime, with small radius R, both the gas fraction
and the minimal m, drop steeply with decreasing R, regardless of
F,. The poverty of gas loosens the ‘cold’ and ‘fast’ constraints,
enabling smaller m,. As R shrinks, the solution approaches that of
the Lane—Emden ideal polytrope (which lacks a central mass) or else
it becomes a point mass lacking both halo and gaseous envelope.

(iii) The rest of the (¥, R) plane is arelatively featureless plateau
(top left-hand region of Fig. 2): m, increases only slightly even when
there is a large increase in R. The Y-tracks, however, vary smoothly
across the borders from plateau to the low-m, slopes. This insensi-
tivity of Y occurs because the determination of bulk composition
is global, whereas m, is governed by local gas constraints acting in
local bottlenecks of the inflow at small radii.

The attainable range of m, values across the (F,, R) map de-
pends on the gas inflow rate, riz. Smaller 7z reduces variation in m,,
with lower values on the plateau. The three panels of Fig. 2 compare
families of solutions that differ only in 7. The m, contours are com-
pletely different for different choices of . For h = 1mg yr™,
the cosmic-Y-track crosses ~4 orders of magnitude in m,. For
i1 = 10mg, yr~!, the equivalent track crosses almost ~4.5 orders
of magnitude. For i = 100m¢ yr~!, the track crosses ~5 or-
ders of magnitude. Note that increasing s also shifts each Y -track
to smaller radii, i.e. for a given composition, clusters with strong
inflows tend to be more compact.
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Figure 2. For a fixed cluster mass (m = 40), surface temperature (T =
1 keV) and inflow rate, we vary the outer radius R and dark degrees of
freedom F5. Black/solid contours map the minimal values of log1o(m+/mg),
the central point mass. Red/dashed contours show the gas fraction, 1/Y
relative to the cosmic baryon fraction (1/4,1/2,3/4,1,5/4, ...)/Y «. This
sequence of panels shows the effect of varying the inflow rate, with i1 =
1, 10 and 100 mg yr_1 from top to bottom, respectively. For large s, the
Y -tracks occur at smaller radii, and m,. varies more widely along each track.

Increasing the gas surface temperature T (with everything else
fixed) shifts the Y-tracks to smaller radii. However, varying T has
negligible effect on the m, contours. Thus the m, = m,(F,) profile
of a given track shifts to slightly lower masses, but this is only due
to migration of the track across fixed m,-contours. Compare the
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Figure 3. Minimal-m, and 1/Y map corresponding to the bottom panel
(100 mgy yr‘l) of Fig. 2, but for a warmer (3-keV) cluster surface. The m,
contours are almost unchanged. The tracks for given 1/Y occur at smaller
radii.

lower panel of Fig. 2 with Fig. 3. Thus, all else being equal, a hotter
cluster is a smaller cluster but with a similar central mass.

3.2 External atmosphere

As 1 is a constant at all radii, all stationary solutions have some
tenuous gas extending indefinitely far beyond the dark halo. This
atmosphere must lose its identity in the Hubble flow at some point.
In this paper we take this cosmic atmosphere or accretion flow for
granted. We will not consider its distribution in detail, but briefly
discuss the qualitative implications of two scenarios.

We may suppose that infinite atmosphere is a continuation of
the cooling, polytropic gas inflow but without a dark component.
The density attenuates with distance, and bremsstrahlung cooling
becomes negligible. The effects of local self-gravity dwindle. If no
sonic horizon appears, then the asymptotic atmospheric structure
follows some power-law decline.

Alternatively, we may choose to interpret the halo surface gas as
a cosmic accretion shock (e.g. Bagchi et al. 2006). Its temperature
depends on the cluster mass and radius. In practice we select m(R)
and T’g. Then shock conditions constrain the plausible range of radii,

F, Gm F, Gm
————— <R= -,
(Fy 4+ 1) Ty Fi+2 Ty

with the lower and upper limits corresponding to strong and weak
shock extremes, respectively. More exact constraints emerge if we
consider the post-shock Mach number and pre-shock cooling. Not
all families of models enable the cosmic Y-track to satisfy (45).
For rin = 1mg yr~! and Ty = 1 keV, the radii of (m,, Y)-optimal
solutions are too large; however, a cooler family of models with
Tk = 0.4 keV is satisfactory. By adjusting 7z and Ty in the opposite
direction, we obtain hotter and more compact cluster models that
also suit a shock interpretation (e.g. Figs 3 and 4).

For very high Ty the atmosphere would extend infinitely, with
pressure dropping to some asymptotic value, and temperature rising
as a power law. This restricts the upper limit of Tk for physical
solutions. Such phenomena also occur in the adiabatic, hydrostatic
clusters (Gull & Northover 1975), where below some threshold
(effectively a minimum 7T), a gas inflow truncates at finite radius
(Mathews & Bregman 1978).

(45)
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Figure 4. Minimal-m, and Y-track map as in Fig. 2, but with hotter gas
and more inflow (Tg = 6 keV, riz = 1000 m¢; yr‘1 ). This map includes our
most compact solutions of a given Y.
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Figure 5. Minimal-m, and 1/Y map for F, = 8, m = 10mg yr~! and
variable surface temperature Tk. The Y-tracks shift, but the minimal m,

hardly changes.

In our solutions, flow continuity (constant 7z) means that the
subcritical gas atmospheres can break at an external sonic point
(M? = 1) with non-zero density. It is unclear what external con-
ditions should match on to such a supersonic break. Reducing Tk
further causes the gas profile to break somewhere inside the halo,
r < R. These are not numerically feasible, searchable solutions, and
we avoid them. We have coarsely scanned the parameters (Tg, R)
for fixed (F,, riz) and found little qualitative variation in the inner
profiles or minimal-m, values, aside from the Y '-tracks shifting (see
Fig. 5).

3.3 Radial structure of particular clusters

3.3.1 General properties and density profiles

We now examine the internal structures of specific clusters in detail.
Here we discuss only the minimal-m, models where the overall
composition is cosmic, 1/Y =~ 0.163. Table 1 lists the parameters
and some global properties of these cluster solutions. In each model
we chose F, for the halo and (71, Tk) for the gas, then tuned the
cluster radius R to obtain cosmic composition. We tabulate signature

radii of the models defined in Section D1: R, R;,, R; are effective
core or lever radii, weighted by inertial moments of gas, the halo and
both combined; R,, characterizes the concentration of gravitational
potential energy; R;,R,,R3, R, are radii where the total density
has a radial logarithmic slope of —1, —2, —3 and —4; R, is the
outermost peak of the rotation curve. Sections D2-D11 compare
these signature radii to other spherical models in the literature (see
Table D1 for data).

The gas + halo models differ from gasless models (Section D2) in
several key respects. For F, > 7 the gassy clusters are gravitationally
more compact: Ry, /R is smaller than for corresponding gasless, non-
singular polytropes. The central mass and dense cusp deepen the
potential well significantly (especially when F; is large).

The concentration of gas mass (R, /R) is rather insensitive to
F,. In all of our minimal-m, models, the gas is less centrally con-
centrated (0.74 < Ry, /R < 0.81) than in a simple F = 3 polytrope
(R;/R =~ 0.715). The presence of gas affects the halo concentra-
tion (R;,/R), depending on F,. For F, = 2,3, the dark mass is
slightly more concentrated (smaller R, / R than for gasless spheres).
For larger F,, gas makes the halo less concentrated (larger R;,/R
than for polytropes). The combined mass distribution has an ef-
fectively intermediate concentration: either R;, < R; < Ry, or
R, < Ry < Ry,.

The rotation curve peaks farther out than in gasless haloes (Lane—
Emden spheres) of the same F,, and more so for large F,. Specif-
ically, R, enlarges by ~1 per cent for F, = 2 but by ~20 per cent
for F, =9 cases. In all cases we find that R, > R3. Importantly, this
means that the rotation curve does not peak until outside a radius
where the combined density slope is steeper than —3. For optimized
gassy models with F, = 2,3 we find R, > R4; however, we find
R3 < R, < R4 for F; > 5 generally (and for F, > 4 for the compact
models). In contrast, the gasless haloes have R, < R, < Ry for
F, =2,3,4,5. For real, relaxed galaxy clusters, the comparison of
measured R; and Ry (e.g. from gravitational lensing at the outskirts)
and of R, (e.g. via member galaxy kinematics) could constrain the
actual effective value of F,, and enable extrapolation of the halo
radius R.

Fig. 6 illustrates the radial structure of our baseline minimal-#,
solutions with iz = 10m¢, yr~! and Tz = 1 keV, but differing in
F,. Fig. 7 depicts comparable models with a stronger gas inflow,
hotter surface and smaller radius. Fig. 8 shows solutions with weak
inflow, and a cool surface at large radius. The gas density profile is
monotonic in radius, approximating a broken power law with the
break appearing at kpc scales, and a slightly shallower slope on the
outside. In the outer parts, the index of & —1 is consistent with
the simplest early models of cooling flows (e.g. Cowie & Binney
1977; Fabian & Nulsen 1977; Mathews & Bregman 1978). As
expected from analysis, in the innermost regions both the gas and
halo have singular density profiles approximating a Bondi accretion
flow, p; o< r~Fi/2 for both gas and dark matter. The dark cusp is
radially smaller than the gas cusp. Note that the dark cusp emerges
for different reasons than the cusps of hypothetical collisionless
haloes in N-body simulations. The dark cusp emerges as a self-
consistent, time-independent, hydrostatic response to the central
mass m, and the gaseous mass inflow. In the latter sense it is related
to an ‘adiabatic contraction’ effect (Blumenthal et al. 1986). It is
not a time-dependent relic of cosmic structure formation or merger
history.

The dark halo density slope varies more than that of gas. A core
of approximately constant dark matter density surrounds the cusp,
spanning from ten to hundreds of kpc radius. The halo outskirts are
a rapid decline to zero density at the surface. As in gasless models
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Table 1. Parameters and global properties of the minimal-m, cluster models. We fix a fiducial total mass, m = 40U,, ~ 3.57 x 1014 m¢), and seek cosmic
composition, 1/ =~ 0.163, inside R. From left- to right-hand side, the columns are: dark degrees of freedom, inflow rate (m¢ yr—1); surface gas temperature
(keV); outer radius (U, & 0.246 Mpc units); gas, dark and total concentrations; gravitational radius ratio; four of the density slope radii; the peak of the rotation
curve; and the minimal central mass (given in solar units and as a fraction of the cluster mass). The signature radii (R;;, Ry, R;, Rw, R1, R2, R3, R4, Ro)

are defined in Section D1.

F i Tr R Ry/R  Rnp/R  R//R Ry /R Ri/R Ry/R R3/R R4/R Ro/R my/mey My /m
2 1 04 462 0829 0.806 0.810  0.798 0.470 0.646 0.739 0.797 0.882 6.45(9) 1.81(=5)
3 1 04 470 0820 0.714 0.733  0.744 0.355 0.522 0.628 0.704 0.761 3.45(9) 9.68(—6)
4 1 04 478 0812 0.625 0.659  0.686 0.272 0.417 0.525 0.612 0.637 3.3509) 9.39(—6)
5 1 04 489 0806 0.536 0.588  0.621 0.207 0.326 0.427 0.519 0.515 3.2209) 9.03(—6)
6 1 04 502 0802 0.446 0.521  0.548 0.154 0.246 0.334 0.426 0.400 3.06(9) 8.59(—6)
7 1 04 518 0801 0.355 0.458  0.00534 0.108 0.176 0.245 0.329 0.291 2.85(9) 8.00(—6)
8 1 04 539 0803 0.260 0.402  1.07(=5) 0.0691 0.113 0.162 0.229 0.190 3.70(8) 1.04(—6)
9 1 04 568 0813 0.155 0.358  0.00233 0.0340 0.0555 0.0816 0.123 0.0950 1.27(7) 3.57(=8)
9.5 1 04 591 0824 0.0927 0343 0.0115 0.0174 0.0284 0.0422 0.0662  0.0490 2.66(6) 7.45(=9)
9.9 1 04 625 0842 0.0274 0341  0.00980 0.00386  0.00631 0.00944  0.0153  0.0109 5.71(5) 1.60(=9)
2 10 1.0 184 0.829 0.806 0.809  0.798 0.470 0.647 0.739 0.797 0.882 1.60(10)  4.47(-5)
3 10 1.0 187 0820 0.714 0.733  0.744 0.355 0.522 0.628 0.704 0.761 1.55(10)  4.34(-5)
4 10 1.0 191 0812 0.625 0.659  0.686 0.272 0.417 0.525 0.612 0.637 1.49(10)  4.19(-5)
5 10 1.0 195 0806 0.536 0.588  0.621 0.207 0.326 0.427 0.519 0.515 1.43(10)  4.00(-5)
6 10 1.0 200 0.802 0.446 0.521  0.499 0.154 0.246 0.334 0.426 0.400 1.35(10)  3.78(-5)
7 10 1.0 206 0.800 0.355 0.458  2.84(—5) 0.108 0.176 0.245 0.329 0.291 1.24(10)  3.48(-5)
8 10 1.0 215 0.803 0.260 0.402  1.53(=5)  0.0690 0.112 0.161 0.229 0.190 5.82(8) 1.63(—6)
9 10 1.0 227 0813 0.155 0.357  0.00293 0.0340 0.0555 0.0815 0.123 0.0950 2.18(7) 6.13(—8)
9.5 10 1.0 236 0.824 00919 0343 0.0102 0.0172 0.0281 0.0417 0.0656  0.00186  5.22(6) 1.46(—38)
9.9 10 1.0 249 0841 0.0273 0.341  0.009 86 0.00385 0.00629  0.00941 0.0152  0.0109 9.02(5) 2.53(-9)
2 10> 30 7.0 0.835 0.806 0.811  0.799 0.472 0.648 0.740 0.798 0.883 7.06(10)  1.98(—4)
3 102 30 720 0827 0715 0.734  0.745 0.357 0.523 0.629 0.705 0.763 6.82(10)  1.91(—4)
4 10> 30 733 0820 0.625 0.661  0.687 0.273 0.418 0.525 0.613 0.638 6.54(10)  1.83(—4)
5 102 30 748 0814 0536 0.590  0.623 0.208 0.326 0.427 0.520 0.516 6.22(10)  1.74(—4)
6 10> 30 7.67 0811 0447 0.524  0.0376 0.154 0.246 0.334 0.426 0.400 5.83(10)  1.64(—4)
7 102 30 790 0810 0.355 0.461  2.12(=7) 0.109 0.176 0.245 0.329 0.291 4.87(10)  1.37(—4)
8 10> 3.0 819 0813 0.260 0.405  2.12(-5)  0.0690 0.112 0.161 0.229 0.190 8.00(8) 2.24(—6)
9 102 30 862 0823 0.153 0.361  0.00287 0.0335 0.0548 0.0806 0.122 0.0937 3.35(7) 9.40(-8)
9.5 10> 3.0 895 0.833 0.098 0346 0.0107 0.0168 0.0276 0.0410 0.0645  0.0475 8.25(6) 2.31(-8)
99 10> 3.0 943 0850 0.0267 0.344  0.00970 0.00375 0.00612 0.00916  0.0148  0.0106 1.48(6) 4.15(=9)
2 10> 60 295 0828 0.805 0.809  0.798 0.469 0.646 0.739 0.797 0.881 3.19(11)  8.96(—4)
3 100 60 299 0818 0714 0.732  0.744 0.354 0.522 0.628 0.703 0.761 3.07(11)  8.60(—4)
4 100 60 305 0810 0.624 0.658  0.685 0.271 0.416 0.524 0.611 0.636 2.93(11)  8.21(—4)
5 10° 60 312 0804 0535 0.587 0.616 0.206 0.325 0.426 0.519 0.514 2.77(11)  7.76(—4)
6 10° 60 320 0799 0446 0.520  2.55(—4) 0.152 0.246 0.333 0.425 0.399 2.58(11)  7.25(—4)
7 10° 60 331 0798 0354 0456  1.65(—8)  0.107 0.174 0.244 0.329 0.289 8.06(10)  2.26(—4)
8 10° 6.0 343 0800 0.259 0.400  3.02(=5)  0.0685 0.112 0.161 0.229 0.189 1.12(9) 3.14(—6)
9 10° 60 3.64 0810 0.154 0.356  0.00323 0.0334 0.0548 0.0807 0.123 0.0938 4.86(7) 1.36(=7)
95 10° 60 379 0821 00910 0342 0.0112 0.0168 0.0276 0.0411 0.0648  0.0475 1.24(7) 3.47(-8)

(Section D2), haloes with fewer dark degrees of freedom exhibit
a larger core. The density gradients of the dark matter in the core
are flattest in the cool, puffy solutions (e.g. Fig. 8) than in the more
compact cases, where the slope is appreciably nonzero (e.g. Fig. 7).

Locally, the dark matter density outweighs the gas in some but
not all layers of each cluster. Constancy of 7 at the dark matter
surface means that p; > p, in a thin surface layer. However, the
halo density dominates gas throughout most of the volume, as far
inwards as the core radius and deeper. This halo-dominated layer
is thicker when F, is larger: e.g. reaching in to » ~ 2 kpc in the
F, = 9 model shown in Fig. 6. For modest F,(<8), gas dominates
the Bondi-like accretion region of the deep interior. For larger F», the
steep dark matter density cusp dominates over gas in the innermost
regions. In the F, = 9 case shown, we have p, > p; at subparsec
radii near the origin, beneath a gas-rich layer several kpc thick. The
layers dominated by dark matter density are smaller for the hot,
compact solutions (top row, Fig. 7 than for cool, extended clusters

(Fig. 8). In principle, this might become observationally apparent in
cD galaxy kinematics if the gaseous, stellar and dark components
could be distinguished perfectly.

The gravitating mass at the outskirts is predominantly dark,
my(r) > my(r), which follows naturally from the assumption of
cosmic baryon fraction. For models with small F, (e.g. F, = 3 in
Fig. 6), the gas mass dominates within » < 100 kpc, and the central
mass m, is the dominant component farther in (e.g. r < 10 kpc in
this example). Since haloes with larger F, are more concentrated
(smaller R, /R) the dark matter dominated part of the mass profile
is thicker for greater F, (middle and right-hand upper panels of
Fig. 6). Increasing F, shrinks the minimal m,, so the central object
becomes less dynamically significant too.

Fig. 9 shows radial variations of the logarithmic index of the
total density (p; + p2) for some of the (m,, Y)-optimal solutions.
Cases with lower F, are flatter out to larger radii, as the dark core is
larger. The gas inflow tends as p; oc #~! (or steeper) near the centre,
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land Tk = 6 keV. These are the hottest and most compact

models. They have the smallest temperature ratio T'max /T min Of the (m., Y)-optimized models.

and this contribution prevents the overall index from reaching zero
exactly, even deep within the dark core. The steepest index is —4
or lower, occurring where the dark fringe drops. Gas dominates
increasingly at larger radii, bringing the index up to ~ —1.3 near

the halo surface. From panel to panel in Fig. 9, curves of a given F,
but different (riz, Tx) look alike except for a radial dilation. With Y
implicitly fixed, the halo parameter F, controls the proportions of
the core relative to the outer surface R (see radii ratios in Table 1
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Figure 8. Cluster profiles as in Fig. 7 but with iz = 1mg yr—!and Ty =
variation (T max /T min) in the ICM.

and Sections D1 and D2). Thus, observing a few signature radii of
a real cluster could constrain its F, and R. As a consistency check,
satellites orbiting beyond R ought to exhibit Keplerian motion. We
may disfavour some solutions based on their radii: the family of
(1000, 6) models are smaller than 1 Mpc; while the bloated family
(1,0.4) exceed 10 Mpc (too cosmologically large).

Many X-ray, kinematic and gravitational lensing observations
of clusters find total density indices dropping with r from tens of
kpc outwards. X-ray analyses typically assume hydrostasis, and
probe out to radii of a few hundred kpc (or ~Mpc in rare cases).
Strong gravitational lensing also constrains mass profiles out to
10? kpc radii, while weak lensing gives statistical evidence at Mpc
scales. In many instances where measured indices happen to range
from —1 to —3, this is presented as support for NFW-like profiles
(Navarro et al. 1996, see Section D7). Our reference models show
similar indices at comparable radii, but with crucial differences
in the core (flatter) and fringe (steeper, then the halo truncates).
The present paper does not attempt to fit specific clusters, but will
compare model properties to results in observational literature. Such
comparisons are tentative: the commonly assumed S-model density
law (Section D5) may overflatten the central gas, overestimating
the halo density. Likewise, gravitational lens models involve subtle
degeneracies (e.g. Saha, Read & Williams 2006; Liesenborgs et al.
2008, and their references) that might confuse cores with cusps.

Dipolytrope models can naturally describe those clusters ob-
served to have soft cores. Some X-ray deprojection studies have
fitted parametric halo models assuming a density cusp, and a few
appear softer than cold dark matter (CDM) predictions. Katayama &
Hayashida (2004) find an index 0.47 &£ 0.31 in the central 100 kpc
of A1835. Ettori et al. (2002a) indicate ~0.6 in A1795. Ettori,
De Grandi & Molendi (2002b) prefer a modified Hubble model
(Section D5) over NFW fits for 10/20 clusters, giving r; of a few
hundred kpc. Voigt & Fabian (2006) found indices <1 in 4/12 of
their clusters. Zhang et al. (2006) fit a wide scatter of flattish cusp
indices among 13 clusters. Combining gravitational lensing with
stellar kinematics of the cD galaxy, Sand, Treu & Ellis (2002);
Sand et al. (2004, 2008) find indices ~0.6, and <1 confidently.
Rzepecki et al. (2007) finds an index ~0.7. These results at radii
<100 kpc are consistent with the shallow regions (» < R;) of many

107 10™ 1072 10° 10%107° 107" 1072 10° 10%107® 107™* 1072 10° 10%

T T

0.4 keV. These clusters are very radially extended, and have a large temperature

curves in Fig. 9. However, the most bloated family (upper panel,
i = 1mgyr !, Tz = 0.4keV) flattens through R; at Mpc scales
(implausibly large) disfavouring cases with F, < 9.5. Among the
compact family (lower panel) the F, = 9.5 and 9.9 curves are too
steep in relevant ranges. The medium cases (middle panel) or their
homologous relatives (Appendix B) are more likely representations
of normal cored clusters.

Many gravitational lensing studies treat cluster cores as pseudo-
isothermal spheres (PIS, Section D4), which bear comparison to
dipolytrope cores. Given any empirical PIS core size r;, we can
infer R, > Ry & r,. Then one can extrapolate R from Table 1 ratios,
and this should enclose the observable cluster. Dahle, Hannestad
& Sommer-Larsen (2003) found r, & 66 kpc for an ensemble of
clusters. Appraising that this core is too small, they rejected fluid-
SIDM models of the day. However, in our calculations this core size
predicts a plausible halo surface radius of R 2 1.9, 3.8 or 17 Mpc
(for F, =9.0,9.5 and 9.9, respectively). PIS and NFW fits by Ettori
et al. (2002a) imply R; ~ 0.10 Mpc and R, ~ 0.49 Mpc in A1795.
Diego et al. (2005) fit r¢ = 15kpc for A1689. This is awkwardly
small, favouring higher F, &~ 10. However, Broadhurst et al. (2005)
found a core ~200 kpc in the same cluster, and a fringe truncating
around 2 Mpc (favouring F', ~ 7). Halkola, Seitz & Pannella (2006)
found a similar profile, but with r; &~ 66 kpc, which constrains (£,
R) like Dahle et al. (2003). Limousin et al. (2007) fit two halo core
elements with r; & 99 kpc and 66 kpc. For RX J1347—1145, a very
massive cluster, Halkola et al. (2008) find a core r; ~ 117 kpc while
Bradac et al. (2008) fit 160 kpc. A core larger than A1689’s befits a
heavier system, assuming universal values of F, and R, /R. Rzepecki
et al. (2007) find flat cores in RCS0224—002, with r; ~ 112kpc
and 12kpc. We interpret the larger measurement as the true halo
core, and the smaller feature as baryon-induced contraction. Saha
& Read (2008) find cuspy profiles for r > 25kpc in ACO 1703,
but possibly a density shelf at =100 kpc. They suggest the shelf is
mesostructure; we suggest an innate core with a partly contracted
interior.

Simple collisionless dark matter models predict p, o ¥~ asymp-
totically forever, whereas we predict ever steeper indices until finite
truncation at Mpc scales. In future, cluster outskirts will become key
observational tests of halo models. Deeper exposures from newer
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Figure 9. Profiles of the radial log index of the total density p; + p2, for
(my, Y)-optimal solutions with F» values annotated. Panels from top to bot-
tom show families (riz/mg yrl, Tr/keV) = (1,0.4), (10, 1) and (100, 3),
respectively.

generation X-ray observatories are needed, and more conclusive
gravitational lens models would help. Already there are lensing
hints of outskirts steeper than NFW (Broadhurst et al. 2005; Diego
et al. 2005; Umetsu & Broadhurst 2008). An X-ray deprojection by
Nevalainen et al. (1999) implies a periphery with p, oc 7~*. A much
wider cluster X-ray deprojection out to r &~ 1.7 Mpc (George et al.
2008) shows that a hydrostatic NFW-based model cannot fit obser-
vations, because of an excess of mass or a deficit of gas pressure in
the fringe. We interpret this as evidence for a finite polytropic halo.

3.3.2 Thermal structure

For dark matter, o2 decreases monotonically with  (e.g. dark curves
in lower panels of Figs 6-8). The temperature peaks (like o% ocrh)

in the inner density spike, then stays flat over several decades in
radius, but plummets between the core and the dark surface. The
upturn from core to spike occurs at what is effectively a central
gravitational sphere of influence, » ~ Gm/co3. Note that the central
point mass m, does not yet dominate at this radius: the intervening
gas and halo masses also contribute. Thus the border of the spike is
essentially a sphere of self-influence, where the self-gravity terms
become important.

The gas temperature gradient is negative in the cusp. Accretion
power dominates over cooling, and the temperature profile evolves a
Bondi-like slope, 0 o r~!. Near the central object, the ratio of dark
to gaseous temperatures approaches a constant. Taking the limit
r — 0 in equations (32) and (39) gives

2Gm,

o)k = 46
b= 1 (46)
and

2

0, F1+2 4—F1 2

£ _ 1+ ——"tag?), 47
0‘12* F2+2( F] * ( )

explicitly involving the central mass and gas Mach number.

Outside this hot, parsec-scale accretion zone, the gas thermal
structure depends upon the local balance of radiative cooling, com-
pression and accretion power. Gas temperature gradients may be
either positive or negative, depending on which terms dominate
equation (20). Our optimal solutions show a local maximum tem-
perature (7Tp,.x) at a radius typical of the dark core, and a global
temperature minimum (7},;,) somewhere in the kpc-scale interior.
The region between these extrema, where d7'/dr > 0, is one reason-
able definition of the ‘cooling core’. The peak typically appears of
the order of a few x0.1 Mpc, as in X-ray observations since the ear-
liest studies of clusters. This characteristic radial scale ~U, = B/G
may be natural to bodies governed by gravity and bremsstrahlung
radiation (see Appendix A). The temperature peak occurs at smaller
radii in the compact solutions than in wide clusters (compare Figs 7
and 8) The temperature dip appears at around r ~ 1-10" kpc, with
little sensitivity to 7iz. The dip radius is outside both the halo density
cusp and the break radius in the gas density profile.

Most of the cooling core overlaps a deep layer where dark matter
is hotter than gas (03 > o3). This layer comprises the dark core
(except the central spike). Here, any disturbance from the cluster
equilibrium is likely to cause waves of adjustment that propagate
faster via the halo than gas acoustic modes.

In all our solutions, the gas temperature drops off at large radii,
as expected in any well bound polytrope. Cooling is ineffective at
the low densities on the fringe, and at large r the velocity terms
may also vanish from (24). This leaves the gravity term dominant,
which guarantees d7/dr < 0. The chosen boundary values of T
correspond roughly to bound or accretion-warmed configurations
(Section 3.2). We predict that all isolated clusters have a temper-
ature decline at sufficiently large radii. Many observations agree
(e.g. Markevitch 1998; Finoguenov, Arnaud & David 2001; De
Grandi & Molendi 2002; Piffaretti et al. 2005; Vikhlinin et al. 2005;
Zhang et al. 20006; Pratt et al. 2007). In cases where outer tempera-
ture profile seems flat (e.g. Allen, Schmidt & Fabian 2001; Kaastra
et al. 2004; Arnaud, Pointecouteau & Pratt 2005) we predict that a
decline will eventually appear farther out.

The finding of Ty, # 0 is a highlight of the model. There exists
a non-zero floor temperature for every steady cluster. Gas does not
cool indefinitely, and we have no need to invoke distributed mass
dropout. It is no surprise that observed cooling cluster cores lack
massive condensations of cold gas and extragalactic stars. More
significantly, the existence of a temperature floor does not require
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Figure 10. F5-dependency of the peak and dip temperatures of the (.,
T)-optimal models. Black lines show the ICM fringe peak temperature.
Grey/cyan lines show the inner dip temperature. The families of solutions
are symbolized by: (T /keV, rir/mg yr’l) = (6, 1000) (< solid); (3100)
(A dotted); (1,10) (O dashed) and (0.4, 1) (O dot—dashed).

non-gravitational heating. It emerges simply from the co-adaptation
of gas and halo profiles in their shared gravitational potential
(whether an active galaxy operates or not).

When constrained to cosmic composition and minimal m,, both
Tmax and T, increase with increasing F, (Fig. 10). However, the ra-
ti0 T'max /T min appears less sensitive to F, than to the other global pa-
rameters, such as R. In the moderate models (with rin = 10 m¢ yr~™
and Tz = 1) the ratio is 10 < Tyax/Tmin S 41, and usually ~35. For
the smaller, strong-inflow models (with 7z = 100mg, yrfl, Tr =
3) we find 8 < Thax/Tmin S 22, For the most compact and heavily
accreting model (with 7z = 1000 mg yr~!and Ty = 6) we find 5.3
< Tiax/Tmin S 8. At the opposite extreme, for the radially largest,
coldest series of solutions with lowest gas influx (1 mg yr~!, Tg =
0.4), we find a deep temperature contrast: 35 < Tax/Tmin S 81. The
widest clusters provide the greatest cooling length before the inflow
reaches the accretion-warmed interior. Relatively high temperature,
compactness and heavy inflow yields the smallest temperature vari-
ation in the model ICM.

X-ray cluster observations reveal Tpax/Tmin ~ 3—4, which is
softer than the temperature range of our optimal models. However,
this difference is reconcilable, since T pax / Tmin Tatios vary across the
solution space. The minimal-m, model typically has a temperature
ratio near the upper extreme. Neighbouring solutions with greater
Mg or m, can have a warmer thermal dip, and the soft limit of
Tmax/Tmin & 1 is attainable for m, several times heavier than the
minimum.

One may also ask how far the observed Tpax/Tmin could un-
derestimate actual ratios due to finite radial binning and imperfect
deprojection. The thermal minimum is a thin layer at small 7; and an
observational annulus superimposes hotter gas from outer shells. If
ashell of density o, and temperature o, overlaps the annulus by area
SA then its emission weight is & p301(8 A). Fig. 11 shows the con-
tributions of shells to two annuli centred on the temperature dip and
peak of a cluster. For annuli of relative radial thickness £10 per cent,
the integrated, weighted temperature ratio (7' yax)/(Tmin) shrinks
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Figure 11. Any observational projected annulus includes gas of tempera-
tures (7) superimposed from a range of three-dimensional shells. We plot
emission weights of gas shells crossing two mock-observational annuli: the
grey curve depicts matter in an annulus around the thermal dip r € [0.9,
1.1]Rmin; the black curve shows an annulus around the thermal peak r €
[0.9, 1.1]Rmax- The model has m, =2.85 x 10’ m@), F» =9, Tg = 1 keV and
m = 10mg yr~!. Projection reduces the apparent peak/dip temperature
ratio from Tax /Tmin =~ 5.96-3.96.
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Figure 12. Comparison of actual ICM temperature range T'max/7min and
the projected ratios (Tmax)/(Tmin) calculated with weights as in Fig. 11,
with the same (F,, m1, Tg). Each point is a model with non-minimal m, near
the ‘cold’ border.

by <60 per cent (see Fig. 12 for examples). Thickening the annuli
makes little more difference. Projection effects cannot wholly hide
the strongest thermal contrasts.

Ratios of Tax/Tmin ~ 3 may occur naturally if clusters have
non-minimal m, and the gas physics varies from our ideal. Raising
the ICM effective heat capacity, F; > 3 (describing microscale
turbulence or a cosmic ray component) may help. Conduction and
non-gravitational heating may play a role, though less influentially
than popularly thought.

Bremsstrahlung radiative cooling becomes locally dynamically
significant on time-scales of

_p/n—1) _ Fio
£ L T 2Bp;
In our optimal models, the radial profile of the cooling time is
approximately a power law, t, ~ t,., (r/r,)* (see Fig. 13). The
constant ¢ ., is approximately the same within families of clusters
with the same (Y, m, 1, Ty) but different F,. For minimal-m, so-
lutions, the index is fairly consistent from kpc to Mpc scales, o &
1.6—-1.7. This is mildly steeper than X-ray evidence. For example,
Voigt & Fabian (2004) and Bauer et al. (2005) deproject tens of

(48)
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Figure 13. Cooling time-scale profiles of (., Y')-optimal cluster solutions,
for F, = 9 haloes. Curve patterns correspond to the (12, T ) cases in Fig. 10.
The grey horizontal line marks a time of 13.7 Gyr, assuming an ion compo-
sition factor ¢ = 1, as in Appendix A. We assume the default cluster mass
scale m = 40U,,.

clusters observed out to moderate redshifts, showing 1.3 <« < 1.5
in strata from 10 kpc to 0.5 Mpc. Their normalization also seems
comparable to our standard scaling, since their curves also cross the
Hubble time around ~0.1 Mpc. This is a fair agreement, especially
considering the constancy of the fiducial mass that we imposed, and
the difference between their assumption of hydrostasis and the use
of the full Euler equation. Improvement might be possible if we
were to vary the state of the gas F; > 3.

Cooling is cosmologically relevant wherever 7. is shorter than
the Hubble time. This occurs in some sufficiently dense inner zone
of each cluster. If we define this region’s cooling radius, R, where
. < tu, then we typically find that 0.2 < R, < 1 (about 50—
250 kpc, Fig. 14). The ‘cool core’ can reasonably be defined as
the layer r < R, rather than in terms of thermal gradients. The
cool core is usually smaller than the halo core (R, < Rj,). Along
the (m,., Y)-optimized tracks, we find that R . (Y, F,) shrinks with
increasing F,, despite the increase of R(Y, F,) with F, and the near
constancy of the gas concentration (R;, /R).

Although formally the cool core is a minor part of the cluster vol-
ume, cooling controls or affects the exterior gas structure indirectly.
Contraction and subsidence of cooling gas reduces pressure support
and draws in the effectively adiabatic gas farther out. (Thus the flow
does not need breaking around R, as in Binney & Cowie 1981).
In steady solutions, the core inflow matches the global rate 2 of
cosmic accretion from outside the halo. If the central inflow caused
by cooling does not match the global inflow at the outer boundary,
then a corrective acoustic wave, rarefaction wave or shock must
propagate outwards into the external cosmic medium. Pedantically,
it would be misleading to describe a cooling flow as driven by ex-
ternal pressure; the core slumps because cooling undermines local
hydrostasis, and the outskirts merely follow in sinkage.

cooling core radius R,

0.0 | | |

2 4 6 8 10
halo degrees of freedom F,

Figure 14. Variation with F> of the radius R, within which cooling is
cosmologically relevant, i.e. the cooling time matches the Hubble time. We
have assumed the cluster mass m = 40U,,. The symbols represent the same
families of solutions as in Fig. 10. The hot/compact, large-riz clusters have
the largest R ..

3.3.3 Entropy profiles

The gas entropy profile is potentially an important diagnostic of the
structure and history of a cluster. For a settled, convectively stable
system, ds; /dr > 0 everywhere. Hot bubbles float (and cool clumps
sink) whilst changing volume adiabatically, until settling at a level
with comparable s;. Spherical adiabatic accretion is expected to
yield a power-law slope, s; o< r*. Central non-gravitational heating
may create a radially constant ‘entropy floor’ comprising an ‘isen-
tropic core’. For gas that shocks as it accretes into a cuspy halo,
theory and hydrodynamic simulations predict ¢ = 1.1 and no flat
core (Tozzi & Norman 2001; Kay 2004; Voit et al. 2005).

Our solutions show different indices in distinct layers. In the
cooling core (10kpc Sr S R,.) wefinda =~ 1.7, but o S 1 in the
effectively adiabatic outskirts. Our model lacks non-gravitational
heating, so our solutions never develop a constant entropy floor.
Instead, the entropy profiles soften to o ~ 0.2 in the hot accret-
ing interior around/within the outermost (quasi-)sonic point (r ~
10 kpc; see e.g. the bottom panel of Fig. 15). This slope persists in-
wards for several orders of magnitude in radius. The flatness means
that cooling is less significant in the warm kpc-scale interior than in
the cool-core, but there still remains a shallow stratification of s;.

The entropy slopes in the ICM are not very different from obser-
vation, though less agreeably than the indices of the cooling time.
Flat isentropic cores are not observed (Ettori et al. 2002a; Ponman,
Sanderson & Finoguenov 2003; Pratt & Arnaud 2003; Piffaretti
et al. 2005), though there is debate about whether the entropy nor-
malization of smaller systems is affected by to feedback heating
or pre-heating. The entropy ramp appears at s; ~ 20-140keV cm?
in observed profiles (e.g. Lloyd-Davies, Ponman & Cannon 2000;
David et al. 2001). It begins at ~1keV cm? in minimal-m, mod-
els, but higher for non-minimal cases (e.g. 10keV cm? for that in
Fig. 11). Crudely, we expect the stellar matter potential to have a
raising effect similar to large m, (work in preparation). Most au-
thors find slopes « ~ 1 in the cooling core. Ettori et al. (2002a);
Piffaretti et al. (2005); Pratt, Arnaud & Pointecouteau (2006); Zhang
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Figure 15. Radial profiles reaching the deep interior, for (., Y')-optimal
solutions where 1 = 10 m¢ yr‘l, Tg = 1keV and F, =3, 8,9,9.9 (an-
notated). Panels from top to bottom show Mach number squared, enclosed
non-gaseous mass, and gas entropy.

et al. (2006) found o ~ 097, ~ 0.95,«¢ ~ 1.1 and o = 0.99 +
0.06, respectively. Lemze et al. (2008) combined X-ray and lensing
maps to model the mass of A1689, assuming spherical hydrosta-
sis and outskirts declining as p;, p, o r~>. In the range 10kpc <
r < 1 Mpc, they exclude any entropy floor, and found indices o =
0.82 £ 0.02 when the halo was freely fitted (or 1 & 0.2 when forcing
a cuspy halo model). Thus observed slopes are slightly flatter than
either simulations or our solutions. This may be an artefact of the
NFW-like profiles assumed in the analysis of data and construction
of simulations. Alternatively, gas physics with F; > 3 or thermal
conduction might improve the match.

Several X-ray observations have seen a softer entropy slope in
regions inside r < 20 kpc, and the plots show anindex 0.1 <« < 0.5,
in agreement with the results here. Such observations are uncommon
as they require fine resolution of thin annuli at small radii. Ponman
etal. (2003) plot entropy profiles of 66 varied objects, and the curves
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seem softer at smaller radii. Though unclear, this might be the start
of an & < 0.5 ramp. Pratt et al. (2006) observed mild flattening at
r < 10kpc. David et al. (2001) deproject the Hydra A cluster finely
in over 30 annuli, showing a < 0.5 clearly across the innermost
four of them. Russell, Ponman & Sanderson (2007) observed a
cool-core group with no active AGN, and an entropy slope of 0.5
appears within 7 < 15 kpc. When this kind of entropy break appears
and attracts comment, AGN heating is conventionally invoked. The
observed shallow region has been regarded as merely the outer edge
of an (unseen) slope-zero isentropic interior. We argue that this slope
is actually a signature of subsonic inflow inside the (quasi-)sonic
point (Section 3.3.5), and not necessarily due to heating. We predict
that the o &~ 0.2 zone persists inwards to the nucleus.

Nevertheless we caution that the inner entropy slopes may prove
hard to test. Fitting a flat-cored B-model could potentially under-
estimate the central gas density, since a classic cooling flow has
o1 o r~! at relevant radii. Temperature variations can hide this
slope, giving an apparently flat X-ray brightness core. Underes-
timating gas density could lead to overestimates of the entropy,
exaggerating the flatness of an observed inner s,(r) profile.

3.3.4 Illusory mass deposition

Early X-ray imaging studies used approximate formulae to estimate
rii from their deprojected temperature and luminosity profiles. In
the notation adopted in this paper, the gradient equation for gas
temperature (20) was commonly reduced to

L(<r)

5 - ; (49)
(5/2)o{ + ®(r) — P(inner)

1(r) =

where L is the luminosity emitted by annuli interior to r. Kinetic
terms are dropped. For example, Stewart et al. (1984) plotted iz (r)
dropping towards the centre. This was taken as evidence for mass
dropout throughout the cooling core, and was justified in terms of
runaway local thermal instability in a multiphase medium, depend-
ing on some initial spectrum of clumpiness (Nulsen 1986). Radially
varying m and multiphase gas became standard ingredients of cool-
ing flow fits (e.g. Thomas et al. 1987; Johnstone et al. 1992) and
theories (e.g. White & Sarazin 1987). However, the implied depo-
sition products (cold gas and stars) are not observed in sufficient
amounts, leading to the ‘cooling flow problem’.

When we apply formula (49) to the gas density and temperature
solutions, it reproduces the true 7z somewhere near r < R, but at
smaller radii the formula underestimates 7z (Fig. 16). The fictitious
radial variation of ‘i1’ resembles observationally derived curves.
Such profiles are caused by omission of velocity terms. It is a
signature of proximity to the kpc-scale (quasi-)sonic point. Thus
we propose to reconcile centrally depressed ‘riz” profiles with the
dearth of massive cold condensates on cluster scales. Mass dropout
from the ke V-temperature cluster medium may be unnecessary, and
a single-phase ICM may be plausible after all. We conclude that that
gas inflows reach the central object when the system is settled, or
perhaps stall at small, intragalactic radii during any episodes when
the structure is driven briefly off stationarity. We discuss this further
in Section 4.1.

We have also tested the effect of the hydrostatic approximation
on mass profiles estimated from gas density and temperature ob-
servables. We find that the errors are negligible outside 2 10kpc,
and the mass underestimate is only a few per cent at kpc radii.
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Figure 16. Hydrostatic imaging estimates of sz give a misleading ap-
pearance of radial variation. The true inflow rate (dotted) is constant,
m = 10mg yr~1. We plot cases with T = 1keV, and varied halo types:
F> =2,6,9.9 (annotated). Curves are plotted up to the cooling radius R ..

3.3.5 Mach number profile and bottlenecks

The Mach number profiles of (m,, Y)-optimal solutions show a
variety of features almost anywhere from the cluster surface to the
smallest calculable radii (e.g. top panel of Fig. 15). There is at least
one local maximum in M?, and they are more numerous (per decade
in r) if F, > 8. In many cases, the flow becomes transonic (M? —
1) sharply around one of the maxima. This is corresponds to the
‘sonic point’ of a maximal subsonic solution in simpler models of
adiabatic, non-gravitating accretion (Bondi 1952). A slight variation
of the outer boundary conditions can change a sonic point into a
supersonic break. Thus these points define bottlenecks that incur the
‘too fast’ border (as in Fig. 1) thereby constraining the set of steady
solutions. The radially outermost M? maximum is often (but not
always) the tightest bottleneck. Throughout our survey of 7iz and T
parameters, the outer bottleneck usually occurs somewhere in the
radial range 10~* < r < 1072 (~0.25-25 kpc).

Bottlenecks in the gas entropy s; can also occur, where small
variations in outer boundary conditions can trigger a cooling catas-
trophe in a specific radial band. The most susceptible radial layers
define the ‘too cold’ border.

The cause of bottlenecks appears in the structure of the Mach
number equation (37). The cooling term B r¢ vanishes at small
radii, so that the geometric and gravitational terms compete to de-
termine the sign of dM?/dl. Approaching the origin, there is less
interior mass, and in some solutions the ratio m/f,, shrinks enough
to guarantee that dM?/dl < 0. As M? increases nearer the origin,
the denominators (1 — M?) shrink, which steepens the gradients of
gas-related quantities. Often this leads to a runaway descent into a
supersonic or cold catastrophe. In other conditions there is a narrow

escape and return to low-M conditions at deeper radii. Even in
these ‘narrow escapes’, the behaviour in the deep interior can be
dominated by ‘see-sawing’ between positive and negative terms in
the ODEs. In the set of surviving solutions, the multiple ‘narrow
escapes’ appear as ripples or steps on the density profile.

For larger F,, the central mass gradients are steeper, and prone
to yield low m/B,, values, which triggers more bottlenecks and
see-sawing in layers near the origin. These tend to become more
numerous and restrictive as F, increases. As the middle panel of
Fig. 15 shows, when F}, is big the halo structure in the nuclear region
is a concentric set of uniform cores with steep fringes. Undulations
appear in the gas entropy profile as departures from the typical s;
slope, coinciding with the deep-core mass shells (bottom panel of
Fig. 15).

3.4 Jeans stability

The outer surface of a finite single-fluid polytrope occurs at a radius
comparable to the local Jeans radius,

myo? (50)
r, = .
! 4Gp

As equilibrium structures governed by the balance of self-gravity
and pressure, they are necessarily stable against gravitational col-
lapse. Thus these bodies are Jeans masses, albeit with non-uniform
interiors.

The gravitational stability of a two-component system is not
as immediately obvious, with or without complications of inflow
and cooling. The effective sound speeds and densities of the con-
stituents differ at every location, and so their Jeans radii differ as
well, r,, # r,. It is possible for the dark matter to be locally
Jeans-unstable while the gas is Jeans-stable, or vice versa. Fig. 17
shows the ratio of the radial coordinate to the local Jeans scale,
throughout a set of reference models with cosmic composition. As
expected, r approaches ry in the fringe, for both gas and dark matter.
Descending from Mpc- to pc-scale radii, each becomes more Jeans-
stable. Indefinitely nearer to the origin, the gas becomes ever more
stable.

However, the central, subparsec gravitational stability of the halo
is more complex and contingent. For low F,, the dark halo is Jeans-
stable at all radii. In the F, = 6 case, the halo sits at a nearly
constant degree of Jeans-stability in the subparsec interior. For
F, > 6 halo stability lessens nearer the origin. For F, > § the
halo hovers near marginal Jeans stability for several decades in ra-
dius near the central mass. The upturn towards this condition begins
at radii as large as 10 pc, and is sharper for larger F,. In steady so-
lutions, the ratio r/ry within the cusp never exceeds its maximum

Mpc) Mpc)

107'® 10‘“g 1073 10%107"® 10’1g 107°
10 frmrerrrre A e

L 1077k 1t J 1

~

N 107t 1k 1

& 4o halo L L 1L |
e’ F=311 F=6 =9 =9.9
1619 = = F,=9 F,=9.9

107 107"° 107° 10%107""  107"° 107° 10°107"% 107" 107° 10°107"*  107"° 107° 10°
T T r r

Figure 17. The ratio of the radius to the local Jeans radius, for (1, Y')-optimal solutions with 7z = 10 m¢ yr’l, Tr = 1 keV and F, dark degrees of freedom.
Halo and gas profiles are marked in black and grey, respectively. A dotted line marks the instability threshold, » = r;. In the > > 6 cases the arrows mark
where the marginally stable inner halo encloses a dark mass of 107, 108, 10° mg,. A sufficiently large perturbation might make this mass collapsible.
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value near the dark surface. Thus the dipolytropic cluster models are
formally gravitationally stable, and we cannot infer a spontaneous
collapse of the dark cusp, without the onset of other instabilities. In
Section 4.1 we will discuss the possibility of externally stimulated
collapse.

3.5 Virial scaling

Our formulation deals with the stationary, relaxed conditions to
which spherical clusters tend ultimately. By construction, we omit
time-dependent, externally driven evolution and our results are in-
different to cosmological history. Collisionless self-gravitating sys-
tems are expected collapse to a typical mean density that is some
multiple of the cosmic critical density, implying a ‘virial mass’
within a ‘virial radius’. The model clusters in this paper are not
collisionless idealizations, but their constituents may have been out
of acoustic contact before assembly, which is effectively similar.
Thus virial scaling may have some back-of-the-envelope relevance
in observational comparisons.

Mass-wise, our solutions rescale freely, and the virial radius is
not an emergent scale. In order to mimic cosmological virial scaling
relations, we can rescale the mass, temperature and other profiles
such that R, matches one of the signature scales. In Table 2 we show
how three choices of virial radius (R, = R3, R, = R;, R, = R) affect
the normalization of the (m,, T)-optimal models. We show the mass
within the virial radius, and the rescaled inflow rate. Our radially
extended solutions become giant clusters. For them, the choice of
R, = R s clearly excessive. The most compact solutions rescale to
the mass of a group or giant elliptical galaxy. For the compact cases
with high F,, the density profile is steep almost everywhere, Rj is
small and thus the choice R, = R; implies a puny galaxy mass and
negligible inflow. If any simple prescription for R, applies to all
the model cluster families here, then R, ~ R; seems like the most
realistic choice.

Virial scale selection is not necessarily the best choice for linking
our solutions to a cosmological scenario. We could alternatively
scale each cluster so that the acoustic crossing time is some fraction
of the Hubble time. However, this range of choices is too wide to
explore in the present work. For the purposes of calculating X-ray
spectra (in Section 3.6 below) we shall adopt the simple choice of
Rv - RI-

3.6 X-ray brightness profiles and continuum spectra

For photons of energy hv, the emission power per unit volume due
to thermal bremsstrahlung is
2
jo = BPLght, )
01

We project the spherical structure of each cluster solution by inte-
grating this emissivity along sightlines to produce simulated X-ray
surface brightness maps. Fig. 18 shows the brightness profiles of our
baseline models in 0.1-2.4 and 2—-10 keV bands. The dense central
spike appears as a bright, steep spot at radial scales r < 1072 U, ~
3 kpc. This is comparable to the size of a cD galaxy, a tiny fraction
of the cluster volume. The soft X-ray profile declines at all radii, but
is shallower between the bright spot and R,. The hard X-ray profile
is more clearly structured: steep in the central spot; flat in some core
ranging from 1 kpe < r < 0.1R,; and steep again in the outskirts. It
is noteworthy that the apparent X-ray core is smaller than the halo
core and smaller than the radius where gas temperature peaks. The
X-ray core contains the radius of the temperature dip. The core is
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Table 2. Virial masses and inflow rates for some of our (m,, Y')-optimal
solutions, under mass rescaling with three choices of virial radius: R, =
R3,R, = Ry and R, = R. Masses are expressed in terms of logjo(m¢)) and
inflows in terms of log 19(mg yr7h).

Standard R, =R3 R, =R, R, =R
—— —— —— ——

F> T Tr my, T ny T my T

20 0 040 165 3.17 16.6  3.26 169  3.55
30 0 040 163 2.94 16.5 3.10 169  3.58
40 0 040 16.1 2.67 164 294 170  3.62
50 0 040 159 2.35 16.3 276 170  3.66
60 0 040 156 1.96 162 2.56 170  3.71
70 0 040 152 1.47 16.1  2.36 17.1  3.77
80 0 040 147 0.777 159 217 17.1  3.85
90 0 040 139 —0.400 15.8  2.03 17.2 3.96
95 0 040 131 —1.58 15.8 2.03 172 4.03
99 0 040 112 —4.36 159 213 173  4.14
20 1 1.0 153 2.37 154 246 15.7 276
30 1 1.0 151 2.14 153 231 15.7 279
40 1 1.0 149 1.87 152 214 15.8  2.82
50 1 1.0 147 1.55 15.1 1.96 15.8 286
60 1 1.0 144 1.16 150 1.76 158 292
70 1 1.0 140 0.670 149 1.56 159 298
80 1 1.0 135 -0.0227 147 137 159  3.05
9.0 1 1.0 127 —1.20 147 1.24 16.0 3.16
95 1 1.0 119 —2.40 146 123 16.0 3.24
99 1 1.0 10.0 —5.17 147 1.33 16.1  3.35
20 2 3.0 141 1.51 142 1.60 145 1.89
30 2 3.0 139 1.27 141 144 145 192
40 2 3.0 137 1.00 140 1.27 145 195
50 2 3.0 134 0.682 139  1.09 145  1.99
60 2 3.0 132 0.293 13.7  0.899 14.6  2.04
70 2 3.0 128 —0.206 13.6  0.698 146 210
80 2 3.0 123 —0.906 13.,5  0.504 14.7 217
9.0 2 3.0 115 —2.11 13.4  0.366 147 227
95 2 3.0 106 —-3.32 134 0.360 14.8 234
99 2 3.0 874 —6.12 135 0.449 148 245
20 3 6.0 129 0.790 13.1  0.878 133 1.17
30 3 6.0 12.7 0.553 129  0.720 134 1.20
40 3 6.0 125 0.285 128 0.554 134 1.24
50 3 60 123 —-0.0312 12.7 0375 134 129
60 3 6.0 120 —-0.419 12.6  0.181 134 134
70 3 6.0 11.6 —0.918 125 —-0.0231 135 1.40
80 3 60 112 —1.61 123 —0.221 135 147
9.0 3 6.0 103 —-2.79 123 —0.346 13.6  1.58
95 3 6.0 9.50 —4.00 123 —0.348 13.7  1.66

smaller when F, is larger (and seems almost to vanish in the F, =
9.9 solutions).

Observed X-ray brightness profiles of galaxy clusters are em-
pirically fitted with a ‘B-model’ atmosphere within a presumed
isothermal distribution of dark matter or galaxies (Cavaliere &
Fusco-Femiano 1976, see Section D5). In such fits, the surface
brightness varies with projected radius b according to

S(b) = Soll + (b/b)* 1 +12, (52)

The index g fits the outer slope, while the parameter . measures
the core radius. The observed range is 0.4 < 8 < 1.4 and typically
0.1Mpc < b, < 0.5Mpe (e.g. Jones & Forman 1984; Ettori &
Fabian 1999; Mohr, Mathiesen & Evrard 1999; Neumann & Arnaud
1999). Variant models exist to fit more centrally peaked clusters, by
combining cusps and/or 8 components of different sizes (Xu et al.
1998; Pratt & Arnaud 2002). The B-model was originally derived
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Figure 18. Brightness profiles of X-ray continuum projected from (1, Y)-
optimal solutions with rin = 10 m¢ yr~! and Tx = 1 keV, but various F.
Black lines show 0.1-2.4 keV emission; grey shows the 2-10 keV band. We
have rescaled the mass and temperature to a virial selection of R, = R;. The
X-ray core is smaller than the halo core, and both shrink as F} rises.

for isothermal atmospheres, but it is still applied to clusters that are
now known to have radial temperature variations.

Excepting the central spike, the f-model resembles the synthetic
X-ray profiles presented here. In the h = 10me yr™' series, we
find core sizes b. < 0.3 Mpc, shrinking slightly with rising F.
However, the (m,, Y')-optimal model for ', = 9.9 forms no X-ray
core at all, which is empirically unfavourable. The fringe brightness
declines with similar slopes in all bands: 8 ~ 1.0 £ 0.2 around
R, < r < Ry. These results sit within the observed range.

We note that B-like profiles are not a distinguishing feature of
our formulation, nor cored haloes as a class. Even in the entirely
cuspy profiles predicted for collisionless dark matter, the gas settles
as a cored atmosphere, with shallow central gradients, fitting some
kind of B-model (Navarro, Frenk & White 1996; Eke, Navarro &
Frenk 1998). Makino et al. (1998) have shown that S-like profiles
are broadly natural to isothermal hydrostatic clusters, though cuspy
haloes yield smaller b..

Like the projected light distributions, the three-dimensional lumi-
nosity profile L = L(r) has a flat core, a declining fringe and a bright
nuclear spot. The central X-ray spike fits inside radii » < 1072, so we
choose this as a cut-off defining the luminosity of the ICM. At stan-

dard scaling, m(R) = 40U,,, the ICM luminosity increases with 7
and with F,. We find Lic, = 2 x 10*! erg s~ in the wide/cool family
of clusters (2 = 1 mg yr~!, Tx = 0.4keV). For the medium-sized
solutions (riz = 10mg yr7!, Tp = 1 keV), we find L, > 5 x
10”2 erg s~!. In the more compact solutions we have Li.,, 2> 1.4 x
10% ergs™' (for i = 100m@e yr~', T = 3 keV); and Liem 2 2 X
10" erg s~ for the most compact set (7in = 1000mey yr~!, Tg =
6 keV).

The nuclear spot is more luminous, but this depends on where
we truncate the model. If we had undertaken a relativistic for-
mulation (Section 4.2.6), then structures at the classical inner
radius r, = 0 would shift out to an event horizon at r, =
2Gm,/c?. If we truncate L(r) at r ~ 5r, (suiting accretion on to
a black hole) then we find typical nuclear luminosities around
L. =~ 5 x 10%@i/1mg yr~"ergs™', which is plausible as the
total accretion power of an AGN. Realistically, we would expect
a large share of this power to emerge in forms other than ob-
servable bremsstrahlung radiation. Extra physics and subparsec
AGN anatomy may reduce the emergent luminosity to a small
fraction of the accretion power (see Sections 4.1-4.2.7). In par-
ticular, Compton scattering and dense obscuring interstellar me-
dia must alter or reprocess the escaping radiation. Thus, the cen-
tral density and accretion power in the present, undetailed model
may be consistent with radiatively inefficient black hole feeding
or with AGN, which is not such a dire outcome as early reviews
assumed. (Indeed the bright spot is hot and therefore qualitatively
different from the cold catastrophe accumulations that early works
predicted.)

All of the ICM and nuclear luminosities given above have as-
sumed the standard normalization, with total cluster mass m(R) =
40U,, ~ 3.57 x 10 mg. If we rescale the masses by a factor X
then the luminosity changes by a factor X>/? (see Appendix B). For
instance, if we lighten the compact, Mpc-scale, riz = 1000 m¢ yr!
solutions by a factor X = 0.01 to represent an isolated giant el-
liptical protogalaxy, then the inflow shrinks to /n = Img yr™,
with nuclear luminosity L, ~ 5 x 10* ergs~! and ICM luminosity
Liem ~ 2 x 10*0 —2 x 10" ergs~!. The central mass limit rescales
as well: the central black hole must weigh at least 1.2 x 10° m¢g <
m, < 3 x 10° mg) (depending on F5).

Luminosity and mean ICM temperature correlate in our basic
models, Lic, o T¢ (see Fig. 19). For raw models set via inflow con-
dition (45), the slope is & = 3.46, which is steeper than observed
(~2.6-3.0, e.g. Markevitch 1998; Arnaud & Evrard 1999; Novicki,
Sornig & Henry 2002; Ikebe et al. 2002; Lumb et al. 2004). Clus-
ters rescaled to virial density (Section 3.5) show o = 2.22,2.02 and
2.05 (for R, = R3, Ry, R, respectively) resembling the o = 2 pre-
diction from gravitational collapse theory (Kaiser 1986). Nature’s
way of breaking the mass homology seems intermediate: the cause
may involve the boundary condition, heating (Ponman, Cannon &
Navarro 1999; Loewenstein 2000) or other aspects of gas physics
(Section 4.2).

We have calculated synthetic X-ray spectra at several projected
radii in the bloated, medium and small cluster solutions (see Fig. 20).
As with the projected brightness profiles, each of these plots as-
sumes the virial mass scaling R, = R;. This makes the large clus-
ters hotter and more massive than under the original normalization
[m(R) = 40U,,] becoming a massive supercluster with temperatures
of tens of keV around the virial radius, which is several Mpc. This
rescaling does not resemble any known realistic object; the choice
of R, = R; appears unsuited to this family of solutions. Clusters of
medium radius (middle row) show temperatures of several keV near
the virial radius, which is near or outside the temperature peak. At
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Figure 19. Luminosity/temperature relation of model clusters. The mean
temperature derives from the total mass and internal energy of gas
[kT, = (2/3) Ui /m;] in the ICM (r > 0.01U,). Circle data are the models
from Table 1. Squares, diamonds and stars are rescaled to ‘virial’ density
according to the rules in Table 2.

the projected radius of the temperature dip, the continuum curves
in a clearly multitemperatured way.

The results are similar for the smaller clusters (bottom row) but
the peak temperature is &1 keV and the continua are more obvi-
ously curved in the 0.1-10 keV band that we display. However,
line cooling is significant compared to bremsstrahlung in low-mass
systems such as these, which may alter the profiles appreciably
(Section 4.2.1). Further calculations are needed, with a more de-
tailed cooling function, to model galaxy/group spectra including
line and edge features. However, line cooling would break the ho-
mology of the present solutions (Appendix B), requiring a more
expensive exploration of parameter space. We defer this topic for
future investigation.

3.7 Projected mass and gravitational lensing profiles

To help predict and assess the gravitational lensing signatures of
our cluster models, we calculate mass maps by integrating p; +
0> along lines of sight at various projected radii b. Fig. 21 presents
the projected profiles of total mass column density, ¥ = X(b),
for several representative (m,, Y)-optimized models. The radial
gradients are steep on scales from several hundreds of kpc to several
Mpc (beyond the effective core radius R;). The distribution flattens
on scales between tens to hundreds of kpc. (This is the mass core.)
In the deepest inner regions, within tens of parsecs of the origin,
the central spike dominates and the flat core steepens again. The
border between core and spike typically occurs around 10~ to 1073
U,, regardless of whether the cluster is cool/bloated, moderate or
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hot/compact. The radius of the projected mass spike is comparable
to, or smaller than, the radius where the X-ray brightness spike
begins. The spike in X exists in theory but may be unobservable in
practice: dominated by the stellar mass of a cD galaxy.

As was apparent in three-dimensional density profiles, the pro-
jected X core is smaller and denser when F) is greater. The outer
radius R varies more slowly with F,, so the mean slope of the out-
skirts is shallower if F, is high. The spike profile depends on F,
also: for F, < 6 the gas density dominates at ~10 pc scales, and
the profile has a logarithmic slope of ~ —1. For F, > 6 the spike is
more often dominated by dark mass, and ¥ shows a slope steeper
than —1. These predominantly dark spikes are more prevalent and
more radially extended in the compact/hot cluster models. In the
coolest, most diffuse models (top left-hand panel of Fig. 21) all the
spikes are gas-dominated down to 107U,.

We predict that gravitational lensing measurements that probe
images on Mpc scales will see steep mass slopes of the halo fringe.
Medium-separation lensing systems (probing just within the core
radius) may reveal shallower gradients of the dark core. However,
¥ indices are unlikely to reach zero in the core, due to the p; o r!
gas contribution, and the projection of outer layers. If the innermost
regions can ever be discerned through the light of the cD galaxy
then they may appear spiky.

4 DISCUSSION

4.1 Implications in galaxy evolution

As we report in Section 3.3.5, the bottlenecks that select the valid
stationary solutions occur on two different radial scales. The outer
critical region occurs at kpc radii. It may not be a coincidence that
this is the characteristic extent of the stellar matter in an elliptical
galaxy. If a primitive, initially starless protocluster or protogroup
were perturbed from a stationary state, then the cooling catastrophe
will tend to emerge within <3 kpc from the centre. Nulsen et al.
(1984) and Fabian, Nulsen & Canizares (1984a) anticipated this size
from back-of-the-envelope arguments; our radially complete calcu-
lations substantiate it. During a strong enough disturbance, excess
cold gas may drop out as star formation, until a new stationary
configuration settles. In short, bumping or shaking a protogalactic
globule may spawn a spheroidal galaxy monolithically. However,
the bottleneck radii limit the extent of stellar condensation, influ-
encing the high-mass cut-off of galaxies (perhaps alongside AGN
or conduction effects, e.g. Silk & Rees 1998; Begelman & Nath
2005; Silk 2005; Best et al. 2006; Fabian, Voigt & Morris 2002).
The inner critical regions occur on subparsec scales, comparable
to the sizes of galactic nuclei. Here again, transient disturbances
towards overcooling might form a local concentrations of stars.
However, in high-F, cases, the inner halo sits on the brink of Jeans
instability (Section 3.4), and the upturn towards this threshold be-
gins as far out as ~10 pc. In these conditions, a non-linear perturba-
tion may trigger collective gravitational collapse by the dark matter
(until a new stationary solution emerges). SMBHs may be the natu-
ral product. The spikes of high-F, haloes may collapse themselves
into holes whenever anything rattles the central galaxy appreciably.
The collapsible spike mass is comparable to real SMBH masses.
Earlier works have proposed mechanisms for black holes to feed
and grow from self-interacting dark matter, evading Eddington lim-
its and emitting little directly luminous evidence (Soltan 1982).
Ostriker (2000) and Hennawi & Ostriker (2002) considered dark
Bondi accretion on to stellar black hole seeds, followed by slower,
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Figure 20. Projected X-ray spectra (continuum only) from the models with fiducial parameters (7/m¢ yr~!, Tr /keV) = (1, 0.4), (10, 1) and (100, 3) (from
top to bottom rows, respectively). Here, however, the masses and temperatures are rescaled to virial conditions, choosing R, = Ry, as in Table 2. The halo
freedom is F» = 3,6,9 in the left-hand, middle and right-hand columns. In each panel, the blue (dotted) spectrum reaches the temperature dip radius; red
(dashed) reaches the temperature peak; and the black spectra are projected at fractions of the virial radius, b = {1/32, 1/16, 1/8, 1/4, 1/2, 1} R,. The bold
curve is at b = R,,. Rescaled values of the peak and dip temperatures (keV) are noted in the top right-hand corner of each panel.

diffusive loss-cone refilling. Their feeding scenario requires SIDM
interactions to be weak enough to provide an initial NFW-like cusp.
Munyaneza & Biermann (2005) show that an SMBH can grow at an
asymptotic (exceeding exponential) rate if the dark halo has a degen-
erate fermion core. Balberg & Shapiro (2002) found that gravother-
mal collapse in conductive, weakly SIDM can spawn 10° m¢, black
holes directly (and these require gas accretion to reach 10° mg).
Like the latter mechanism, our scenario requires no seed, and its
preconditions are self-organized by the gas/halo interplay. Like the
fermion-feeding model, we are free to consider interactivity at a
strength that precludes NFW cuspiness in any epoch. The mecha-
nism is a differentiated Jeans collapse: when stimulated, the hole
feeds from a single dark gulp, and this intake is only limited by the
mass of the dark spike.

Stationarity of the whole cluster demands the development of
a central mass. Note however that the m, limits express only the
minimal object. This lower limit does not predict the correlation
between SMBHs and stellar bulge properties. Such relations prob-
ably involve extra regulatory processes operating on galaxy scales.
The depth of the galaxy potential and the kick velocities of black
hole mergers may influence the upper limits (e.g. Haiman 2004;
Madau & Quataert 2004; Bogdanovi¢, Reynolds & Miller 2007;
Campanelli et al. 2007a,b; Gonzélez et al. 2007; Schnittman &
Buonanno 2007; Volonteri 2007). In our scenario, massive black
holes can form rapidly and darkly. If a merging galaxy is apt
to expel its SMBH then we would expect a replacement to con-
dense when the scene settles to a resurgent gas inflow and dark
spike.

During the tranquil periods between mergers, there are two plau-
sible fates for the gas inflow after it penetrates below kpc radii.

It may suffer cold catastrophe (if the configuration is near the
critical border) depositing cold gas and new stars centrally. This
essentially shrinks the ‘cooling flow problem’ down to parsec
scales, which is arguably an improvement over the old 0.1-Mpc
sized problem. More likely, the inflow feeds the central black hole
directly.

The existence of powerful quasars in the era z > 6 (Barth et al.
2003; Walter et al. 2003; Willott, McLure & Jarvis 2003) requires
that black holes grew rapidly. Our model not only allows this, but
requires it to happen before a galaxy or cluster achieves stationar-
ity. Whether large 7z inflows are sustainable into the modern era
is another matter. The accumulated stellar mass distribution may
eventually alter the central potential enough to change the allowed
domain of steady feeding solutions (Section 4.2.4). If high 2 inflows
can persist, the implied AGN activity needs explaining. Much of the
time, an AGN may accrete in a radiatively inefficient mode: many
complicating factors could reduce the settled AGN luminosities to a
small fraction of the actual accretion power. Opacity (Section 4.2.6)
and thermal conduction (Section 4.2.2) may smudge or dim the nu-
clear bright spot. An opaque, super-Eddington inflow entrains and
swallows much of its own luminosity (Begelman 1978, 1979). The
non-luminous power of jets and bulk outflows from subparsec re-
gions may hide much of the accretion power (e.g. Di Matteo et al.
2003; Allen et al. 2006).

If cD galaxies form from massive cooling inflows, then they may
differ qualitatively from elliptical galaxies in the field. We expect an
association between cooling cores and the presence of a cD galaxy.
A cluster merger might displace an old cD galaxy, and temporarily
disrupt the cooling core. A new cD galaxy would eventually sprout
in the middle of the resuming cooling flow.
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Figure 21. Projected profiles of the total projected density, X(b), of (m,, Y)=optimal cluster solutions with different F, values (annotated circles). We scale

each model to the default total mass, m(R) = 40U,,.

4.2 Extra baryonic and radiative physics

Here we briefly discuss several baryonic phenomena that could
potentially modify our quantitative results.

4.2.1 Line cooling

The presence of line cooling would break the mass/temperature
homology of the solutions assuming bremsstrahlung cooling alone.
Additional parameters are therefore needed in the hydrodynamic
formulation, thus increasing the dimensionality of the problem and
the complexity and computational cost in searching for the structure
solutions.

Line emission must affect cooler systems (galaxies and groups)
more than rich clusters. The extra cooling may tighten the con-
straints of the ‘cold’ border, perhaps raising the lower limits on
m,/m for lighter objects. This may also alter the compactness of
clusters of given mass, composition and 7: i.e. the Y -tracks may
shift in the (F,, R) plane.

Hydrogen and helium cooling must have been significant for
primordial ‘minihaloes’ — hypothetical, metal-free bodies of gas
and dark matter that were lighter than modern groups or galaxies. If
their radii are smaller than the most compact models in this paper,
then minihaloes develop proportionally larger central masses. The
contribution of line cooling above bremsstrahlung may raise the

minimal level of m, /m further. This supports the notion that massive
black holes condensed directly from primordial envelopes, and that
condensation may have been as fast as free-fall or the onset of
cooling catastrophe.

4.2.2 Thermal conduction

The role of thermal conduction in the ICM has been contentious
for decades (e.g. Mathews & Bregman 1978; Binney & Cowie
1981; Nulsen et al. 1982; Tucker & Rosner 1983; Stewart et al.
1984; Friaca 1986; Bertschinger & Meiksin 1986; Boehringer &
Fabian 1989; Tribble 1989; Suginohara & Ostriker 1998; Narayan
& Medvedev 2001; Loeb 2002; Voigt et al. 2002; Kim & Narayan
2003; Zakamska & Narayan 2003; Voigt & Fabian 2004; Conroy
& Ostriker 2008). Locally tangled magnetic fields may hinder con-
duction by inhibiting diffusion transverse to field lines. However,
fields that have been aligned radially by a bulk inflow might rather
promote radial heat conduction (Bregman & David 1988; Soker
& Sarazin 1990). Unsuppressed conduction could warm the cold-
est layers and lessen radial temperature variations: raising the dip
temperature and reducing the 7T 'yax/T'min ratio.

In the conventional models, cluster outskirts have been seen as a
plausible reservoir for conductively heating the cool core. This was
a natural proposition when solutions were sought in the ‘too cold’
domain, and the whole core was thought to suffer a multiphase,
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distributed cooling catastrophe. We emphasize that heat conduction
outwards from the hot nucleus may also be relevant. These regions
are ideal for conduction, since the densities, temperatures and tem-
perature gradients are all high. Conductive cooling of the nucleus
must flatten the central temperature and density profiles, dimming
the central luminous spot. Some of the central accretion power con-
ducts outwards, ultimately to emerge as ICM luminosity elsewhere.
Conductive heating may loosen the constraint of the ‘too cold’ bor-
der, enabling smaller m, values. We expect this quantitatively, but
it requires proof from extended analyses.

4.2.3 Thermal instability

The relevance of thermal instability to the phase structure of cool
cores has also been debated since the early theories of cooling flows
(Fabian & Nulsen 1977; Mathews & Bregman 1978). In uniform,
isobaric conditions, overdense clumps may overcool radiatively in
a runaway manner, and condense as a cold phase in thin, hot sur-
roundings (Field 1965). However, dense blobs may rain towards the
gravitational centre, resulting in ablation and warming that counter-
acts instability. Blobs that fall deep and fast enough may reheat via
shocks (Cowie, Fabian & Nulsen 1980; Nulsen, Stewart & Fabian
1984). Buoyancy may inhibit instability from the start, by shifting
cool or warm blobs to strata of matching entropy. Thermal conduc-
tion hinders thermal instability by warming nascent blobs. Local
magnetic fields that enwrap blobs might help isolate them, aiding
thermal instability and mass dropout. Fields that thread blobs and
their surroundings might bind the phases to comove (Nulsen 1986;
Thomas et al. 1987).

Studies of thermal instability in interstellar shocks and stellar
accretion suggest that local, homogeneous, isobaric analyses are
incomplete or too simple for many applications. The shape of the
cooling function affects instability; if line-cooling complicates the
cooling law then gas is stable at some temperature. Macroscopic
flow geometry can be influential: in general the Eulerian operator
(0, + v - V) couples temporal evolution with motion and gradients.
(See e.g. Chevalier & Imamura 1982; Bertschinger 1986; Saxton
& Wu 1999, and references therein.) A better treatment of thermal
instability in clusters requires analysis of global structure as well
as local physics (e.g. Malagoli, Rosner & Bodo 1987; Balbus &
Soker 1989). By retaining temporal terms in the governing equa-
tions, our model is ready for stability analyses that relate regional
thermal (in)stability to deformations in the halo and gas profiles (in
preparation).

However, the strongest original argument for thermal instability
fades in our present results. A full treatment of the conservation laws
and flow velocity seems to dispel an old illusion of radially varying
rir. Constant-riz models resemble observations as well, and so we
need not invoke multiphase effects, nor mass dropout across the
core. If mass drops out anywhere (for reasons beyond our model)
then it happens deep inside the cD galaxy, and we have at least
reduced the ‘cooling flow problem’ to a sub-kpc AGN problem
(e.g. Tabor & Binney 1993). Without dropout, the cooling flow
leads into hot spherical accretion feeding the nucleus.

Having a warm T;,, our solutions are consistent with the paucity
of cold gas and star formation measured at long wavelengths (see
review by Donahue & Voit 2004), and also with the X-ray spec-
troscopic evidence that disfavours widespread mass dropout to
very low temperatures (Kaastra et al. 2001; Peterson et al. 2001;
Tamura et al. 2001; Peterson et al. 2003). Observations both in-
side and outside the cooling radius are consistent with single-phase
flows but spatially varying temperature (e.g. Bohringer et al. 2001;

David et al. 2001; Molendi & Pizzolato 2001; Ettori et al. 2002a;
Matsushita et al. 2002). Thus we justify omitting microscale thermal
instability and retain a smooth, single-phased flow model.

4.2.4 Stellar material

Our present analyses omit the effects of collisionless, stellar mass.
This is justifiable on cluster scales, where stars are effectively pas-
sive tracers, and gas comprises most of the baryons. Our formulation
also applies directly to primordial structures, if protogalaxies de-
tached from the background before stars became abundant.

Stellar mass dominates within the effective radii of modern ellip-
tical galaxies, such as the brightest central galaxies grown in cluster
cores. A stellar mass distribution (see Section D10) may alter our
solutions within the central kpc, by deepening the potential there.
The extra accretion warming may loosen the ‘cold’ constraints on
m,. It may also soften the ICM temperature dip. We defer the eval-
uation of gas/dark dipolytropes in elliptical galaxy potentials for
future study.

If the central galaxy is quiescent then direct stellar interactions
with the inflow are negligible. It was recognized early that stel-
lar mass-loss in modern elliptical galaxies is weak compared to a
cooling cluster’s inflow (e.g. Nulsen et al. 1984), and likely to be
smothered in terms of mass, momentum and energy. In our solu-
tions, the central gas is near local virial temperature, already similar
to the stellar velocity dispersion. Drag from stellar motions may
stir gas locally, but the cross-section and covering factor of stars
is too small for much global effect. Thus the main effect of stars
is gravitational and limited to the centre (unless a starburst erupts).
Starbursts may affect the early life of a cD galaxy, heating nearby
gas as an AGN might.

4.2.5 Heating by active galaxies

We omit AGN interactions from our model, in order to focus on
the undriven, natural tendency of clusters. Feedback effects require
extra semi-empirical terms, with a diabolically tempting number
of adjustable parameters. If jet activity or other phenomena drive
the cluster medium to convection or turbulence, with eddy kinetic
energies comparable to the gaseous internal energy, then the gas
gains extra effective degrees of freedom, F; > 3. This may steepen
gas density profiles, and shift the ‘cold’ and ‘fast’ constraints
on m,.

Some authors propose that AGN output (such as the mechan-
ical power of radio lobes) can suppress or even regulate cooling
flows (e.g. Tabor & Binney 1993; Binney & Tabor 1995; Briiggen
& Kaiser 2001; Churazov et al. 2001; Quilis, Bower & Balogh
2001; Ruszkowski & Begelman 2002; Kaiser & Binney 2003;
Ruszkowski, Briiggen & Begelman 2004). There seems enough
raw available power for low and medium-mass clusters (Birzan
et al. 2004; Allen et al. 2006), but the sufficiency of AGN warm-
ing in massive cooling flows is debatable. For AGN to be effective
heaters, radio lobes must mix with the ICM, or the gas must be
viscous enough to dissipate disturbances. The distribution of AGN
power is questionable in some systems: strong jets may cut them-
selves channels out of the core, dumping their power ineffectually
in the outskirts (e.g. Best et al. 2006; Vernaleo & Reynolds 2006).
In some clusters, ICM metallicity gradients imply that mixing has
not been thorough. Some cool cored clusters lack nuclear activity
altogether.

Because of their low entropy, cooling flows may simply sink and
slip around the sides least disturbed by AGN channels. If so then
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active cooling clusters may still resemble our solutions overall.
However, if the AGN blocks the inflow near the centre then the
model needs modification there: an additional distributed heating
function in £, and a local drop in 7z2. Starvation on sub-kpc scales
may dim the luminous nucleus. The outskirts (beyond the reach of
radio bubbling) should match the standard profiles obtained here.

However, our adaptive model improves or solves key aspects
of the ‘cooling flow problem’ without resort to extrinsic heating.
Considering a responsive halo, and all relevant momentum and self-
gravity terms, we find that steady clusters always develop a floor
temperature due to purely gravitational self-warming. This level is
high enough to explain the rarity of cold condensates. Consequently,
we do not need non-gravitational heating to dominate on Mpc scales.
We dispel the need for finely tuned, two-way feedback between the
cooling flow and the heating processes. Stellar and AGN heating
are demoted to an incidental, intermittent role. Heating need not be
persistent nor stable.

4.2.6 Relativity, opacity and cosmic rays

In a relativistic formulation, the inner boundary would shift from
r« = 0 to the Schwarzschild radius of the central mass. The
bremsstrahlung cooling function acquires relativistic corrections.
Gravitational redshift dims the inner boundary. Inflow velocities
will be naturally subluminal. As the gas becomes relativistic in
the nuclear regions, it gains more effective degrees of freedom, F;
— 6. This implies a higher combined heat capacity than a normal
Fy = 3 medium. The region where the dark spike verges on Jeans-
instability may enlarge. Otherwise the issues of pressure support,
the subsonic constraint and the avoidance of cooling catastrophes
remain qualitatively unchanged in a relativistic framework.

If gas in the central regions becomes Compton-thick or otherwise
dominated by radiation pressure then this will also result in F; —
6. This will steepen the gas density spike and may promote collapse
of the dark spike. The opaque inner inflow must be radiatively
inefficient, enlarging the domain of effectively adiabatic Bondi-like
behaviour. We cannot presently say in which direction the m, limits
change. Subparsec AGN anatomy may complicate the issue.

If cosmic rays contribute significant pressure to the intercluster
medium, then they would deserve incorporation as a third fluid in
our model. Extra source terms enter the momentum and energy
equations to express cosmic ray diffusion and heat exchanges with
the coterminous thermal gas. As a relativistic plasma, cosmic rays
have F3; ~ 6 degrees of freedom. The consequences for the in-
nermost structures and m, limits may follow cases of a halo with
F, > 6.

4.2.7 Angular momentum

If some of the cluster gas possesses significant angular momentum
then the inflow could deviate from radial streaming at small radii.
Some fraction would accrete on to a small disc, of a size determined
by rotational support (e.g. Nulsen et al. 1984). This may alter the
minimal-m, limits slightly, and the steady solutions might require
some minimal disc surface density profile. If the disc is viscous
then it is only a temporary residence for inflowing gas; it ultimately
feeds the central mass. A disc that accretes enough mass could self-
gravitate and develop density waves, or fragment. This is a recipe
for forming spiral galaxies.

However, discs (and filaments) are only viable as long as they
avoid contact with similar bodies. Collisions and stirring by asym-
metric substructures can restore the spherical approximation in the
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long run, and on the scales relevant to our model. Turbulence or
convection in the inner regions could easily destroy or preempt a
disc, easing angular momentum efflux and quasi-spherical mass
influx. Empirically, our spherical approximation is valid as far as
relaxed clusters and central galaxies are actually roundish.

A spherical model cannot address the topic of halo substruc-
ture directly. Collisionless dark matter cosmogonies overpredict the
abundance of satellites at galaxy and group scales by at least an
order of magnitude (Klypin et al. 1999; Moore et al. 1999a, 2000;
D’Onghia & Lake 2004). Several authors have debated whether
a (weakly) SIDM halo can be lumpy and aspherical enough as a
gravitational lens and host of satellite galaxies (e.g. Moore et al.
2000; Gnedin & Ostriker 2001; Meneghetti et al. 2001; Furlanetto
& Loeb 2002; Natarajan et al. 2002). Dwarf haloes might ablate at
dark bow-shocks, or (we suggest) might persist as self-bound, dark
eddies that roll as they orbit in a turbulent background. Within a
cluster, each galaxy perturbs the cluster profile locally, and each sub-
halo centre probably develops a miniature analogue of the spherical
inflow solutions.

4.3 Nature of dark matter

In detail, our solutions depend on the assumption of a polytropic
equation of state for the dark matter. This condition is the emergent
equilibrium if Tsallis’ thermostatistics govern the halo, even if dark
matter lacks non-gravitational interactions entirely. If dark matter
is a Bose—Einstein condensate, then it is effectively polytropic in
the classical limit (Sin 1994; Goodman 2000). If it is a degenerate
fermion gas then it has a more complex equation of state, ob-
tainable by integrating a local distribution function (Munyaneza
& Biermann 2005, 2006), or else a polynomial approximation
(Nakajima & Morikawa 2007). If dark matter is collisionless but
ruled by long-range dark forces then a more complicated treatment
becomes necessary, analogous to collisionless plasma physics. If
dark matter feels strong enough local self-interactions, then it is
analogous to an adiabatic ideal gas, and a polytropic equation is
expected.

The possibility of local dark self-interactivity (Goodman 2000;
Peebles 2000; Spergel & Steinhardt 2000) is theoretically and obser-
vationally attractive, but not yet exhaustively tested. This scenario
explains the cored halo profiles evident in many galaxies, and may
yield more realistic substructure than collisionless cosmogonies.
Early numerical studies of weakly self-interacting haloes mimicked
SIDM using particle codes with Monte Carlo scattering, which
bred realistic cores but found a gravothermal catastrophe that could
eventually degrade the cores into isothermal cusps (Burkert 2000;
Kochanek & White 2000; Moore et al. 2000; Yoshida et al. 2000a,b;
Davé et al. 2001). However, later analyses (Balberg, Shapiro &
Inagaki 2002; Ahn & Shapiro 2005) considered more general initial
conditions, delaying collapse beyond the Hubble time. Polytropic
haloes (as in this paper) can describe a more strongly interacting
fluid regime, where the mean free path is short enough that conduc-
tion and gravothermal effects vanish.

Despite the indications from galaxy scales, the fashionable pref-
erence is to defer and displace the faults of CDM substructure on
to ‘baryon feedback’, which is beset with long-term challenges in
numerical methods and in theory. The evidence on cluster scales
is still ambiguous enough to allow this. Many observers assume
cuspy profiles in their data fits. (Fully non-parametric modelling
remains rare.) For relaxed clusters, some X-ray deprojections show
soft-cored halo profiles (e.g. Nevalainen et al. 1999; Ettori et al.
2002b; Katayama & Hayashida 2004; Zhang et al. 2005; Voigt &
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Fabian 2006; Zhang et al. 2006) while others seem compatible with
cusps (e.g. Pointecouteau, Arnaud & Pratt 2005; Vikhlinin et al.
2006). In some cases the total mass profile appears cuspy, but not
to the extent expected of a collisionless halo affected by gas (e.g.
Zappacosta et al. 2006). Gravitational lensing analyses also give
mixed signs: some prefer or allow soft cores (Tyson et al. 1998;
Sand et al. 2002; Dahle et al. 2003; Gavazzi et al. 2003; Sand
et al. 2004; Diego et al. 2005; Halkola et al. 2006; Rzepecki et al.
2007; Halkola et al. 2008; Sand et al. 2008) while others prefer
cusps (Broadhurst et al. 2005; Sharon et al. 2005; Saha et al. 2006;
Limousin et al. 2007).

In more violent circumstances, cluster mergers have been treated
as probes of dark interactivity. One gravitational lens ‘bullet cluster’
was claimed as a merger of collisionlessly interpenetrating haloes,
separating from shocked gas (Clowe et al. 2006). The mass, speed,
timing and rarity of the hypothetical merger have been questioned,
and well-tuned simulations devised in reply (Hayashi & White 2006;
Farrar & Rosen 2007; Springel & Farrar 2007; Milosavljevi¢ et al.
2007; Zhao 2007; Angus & McGaugh 2008; Nusser 2008). Subse-
quently, an antibullet cluster has appeared, where the dark matter is
the more dissipative constituent (settled in the middle) while galax-
ies fly on the periphery (Mahdavi et al. 2007). Another lensing
cluster is reported with an encircling ring or shell of dark matter
(Jee et al. 2007). Taken together, these special cases tell an in-
consistent story about dark physics. However, particular projected
morphologies admit multiple interpretations: for instance the ‘bul-
let’” subcluster velocity vector can be reversed, and the line-of-sight
shapes and displacements are unknown. This paper cannot aim to
disentangle all the latent assumptions in the dark matter merger
problem, but clearly some alternative gestalts are needed. Varieties
of SIDM remain among the promising candidates.

In the absence of a central mass or gas inflow, a polytropic halo
can have a constant-density core (Section D2), compatible with
galaxian evidence. However, for galaxy clusters with inflowing gas,
we do not obtain simple cored profiles like those assumed com-
monly. The presence of inflow requires a central mass for station-
arity, and a polytropic cluster halo grows a density spike within its
core. The spiky haloes are effectively a ‘contraction’ induced by the
central mass and gas inflow. For large F, or large i1, the core radius
may be small enough to give a misleading appearance of a NFW-like
cusp. Smallness of some observed cluster cores (e.g. Dahle et al.
2003; Katgert et al. 2004; Limousin et al. 2007) is not evidence
against SIDM. Rather, it will help to constrain the dark freedom
F, and the inflow history of baryons. Cluster cores as small as a
few tens of kpc are possible if F; is large. This fits the concordance
favouring 8 < F, < 10, which minimizes the central mass m, (this
paper) and agrees with Nunez et al. (2006), who effectively find
F, ~ 9.6 by fitting galaxy rotation curves.

Given any alternative closed set of equations for the dark dynam-
ics and statics, one can repeat the formulation of this paper, to find
obtain another set of differential equations coupling the gas and
halo. The interplay of these constituents in their shared potential
must always lead to the exclusion of some domains due to cool-
ing catastrophe or acoustic breaks in the gas. However, it must be
proven, for each scenario, whether nonzero m, is required (as in
the model dipolytropes here) and whether structures with cosmic
baryon fraction can exist.

5 CONCLUSIONS

We have presented a self-consistent two-component model for
galaxy clusters, bound by a non-static gravitational potential that

emerges naturally from the solutions along with the co-adapted halo
and gas profiles. Applying this formulation to clusters of plausible
total mass and composition, we reconcile some of the observational
difficulties involving gas inflows due to cooling. Furthermore, we
find that stationary solutions of the cluster structure invariably re-
quire (or develop) a non-zero central mass.

We have analysed the distribution of cooling gas in a responsive
spherical halo of Mpc scale. Mass, momentum and energy conti-
nuity are imposed. Bremsstrahlung radiative cooling is allowed to
become dynamically significant. All constituents participate grav-
itationally. Realistic models emerge when dark matter has a poly-
tropic equation of state, which is justified in terms of the equilibria
of Tsallis thermostatistics, adiabatic dark self-interactions or Bose—
Einstein condensation.

We find that there exist steady, continuous solutions spanning all
radii inside the halo. The joint constraints of cooling and acoustic
continuity set the minimal central mass. The minimal m, varies
with 7z and F, but only weakly with the gas surface temperature
Tg. The cluster’s total gas fraction is linked with s, R and Tk.
The masses, 7z, densities, temperatures, velocities of any particular
solution can rescale to yield another valid solution with the same
radial dimensions.

A cosmic baryon fraction and observed SMBH masses are con-
sistent with the halo’s effective microscopic degrees of freedom
being in the interval 7 < F, < 10. The lower limits on m, are laxer
if 122 /m? is smaller. For cosmic composition, the fiducual total clus-
ter mass and v > 1mg yr~!, we always find m, 2 5 x 105 mg
(or m,/m 2 2 x 107°). Smaller central masses are impossible in
steady clusters, unless extra physics dominate. To enable 7, as small
as 10°-10’ m@ in a cluster, we need 9 < F, < 10. This agrees
with galaxy rotation models of Nunez et al. (2006) which imply
F, =~ 9.6.

The halo density develops a spike around the central mass, sur-
rounded by a flat core attenuating to a fringe on Mpc scales. These
layers are less distinct when F, is larger. This varied structure
remains apparent in projections of the total column density. For
F, high enough to enable plausible m,, we find halo cores with
10 < Ry < 300 kpc. Observationally, there are reported core fits with
15 < Ry £ 200kpe (e.g. Dahle et al. 2003; Diego et al. 2005;
Rzepecki et al. 2007; Halkola et al. 2008) which is similar to what
we obtain. We predict that mass profiles steepen beyond NFW in
the dim fringe. Given observable scale radii such as R;, one could
predict the outer radius where a halo naturally truncates.

Our solutions belong outside the inevitably overcooling regime
where classic cooling flows were constructed. They naturally pro-
vide a non-zero floor temperature, obviating the need for (unob-
served) mass dropout and cold condensation. The entropy, density
and temperature profiles broadly resemble observed clusters, sug-
gesting that varying the gas parameters may enable detailed fits in
future. We find a shallow gas entropy ramp at radii inside the sonic
point, rather than a flat isentropic core. In projection, the ICM resem-
bles the classic B-model X-ray profile in the outskirts, plus a peaked
cooling/warming core. The central luminous spot is comparable to
AGN power, though opacity, conduction and detailed AGN anatomy
could probably soften and spread the emission, and lower the
radiative efficiency considerably. In the optimal-m, solutions, the
ratio of peak/dip temperatures is a factor of 5-40. This reduces the
need for AGN self-regulation (as distinct from incidental heating).
The inclusion of thermal conduction and F; > 3 might improve the
profiles and lessen the AGN role further.

By construction, the classes of solutions that we obtained
comprise the steady configurations of bremsstrahlung-cooling
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Mpc-scale spheres. If our broad physical assumptions hold, and if
structural asymmetries are subdominant, then these solutions rep-
resent end points of cluster relaxation. In the configuration space
of spherical clusters, the solutions are fixed points. If feedback or
non-gravitational heating processes become globally, persistently
important, then they drive the evolving cluster state in a forced orbit
around those natural points.

A temporary disturbance of the system may cause a local cool-
ing catastrophe or acoustic disconnection, and the structure must
somehow adjust until reaching another steady state in neighbour-
ing configuration space. Our analysis does not outline a particular
evolutionary path, but the profiles offer clues. The critical bottle-
necks for gas continuity occur at radial scales typical of elliptical
galaxies. This may be a preferred layer for cold gas dropout and star
formation, during any transient, externally driven detour into cool-
ing catastrophe. Stability analyses are needed to determine whether
our scenario implies regulation or runaway monolithic collapse. For
F, > 6, the innermost halo is only marginally Jeans-stable, implying
that large-amplitude disturbances could trigger a local gravitational
collapse of dark matter (without involving the gas directly). This
mechanism for dark growth of SMBH may turn out to be an impor-
tant process (besides baryonic feeding and gravitational ejection)
influencing SMBH demographics.
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APPENDIX A: NATURAL UNITS

If the gas has approximately solar composition then the brems-
strahlung constant has a value B =B ~ 5.06 x 10 g~' cm*s72,
calculated according to Rybicki & Lightman (1979) (for a Gaunt
factor gg = 1.25) as in Saxton et al. (2005) with the abundance tables
of Anders & Grevesse (1989). We parametrize the composition
dependency of B relative to the solar value as a correction factor,
¢ = B/B. Values of { depend on the abundance-weighted ionic

mass (/), charge (Z) and charge squared (22),

72 Z 3”2 Z
L . Al
(;O‘Z(m/me+z) 1+2z % (A

For astrophysical plasmas, ¢ is close to unity: for the same g in a
pure H plasma, ¢ ~ 0.979; for a 9:1 mix of H and He, ¢ ~ 0.925.

If we define a system of units such that B = 1 and the gravitational
constant G = 6.6732 x 1078 g~! cm® s2 = 1 also, then the unit of
length is

U, = B/G =17.58 x 10%¢cm = 0.246¢ Mpc, (A2)

It may be significant that this scale, which is natural to any ob-
ject governed by self-gravity and optically thin bremsstrahlung, is
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typical of the observed X-ray core radii of galaxy clusters (e.g. Jones
& Forman 1984).

If we adopt a velocity scale where 02> = 1 corresponds to a
temperature of 1keV, then the unit of velocity is

U, =3.95x 10" cms™!, (A3)
which implies a time unit
U =U,/U, =192 x 10" ¢ s = 0.608 ¢ Gyr. (A4)

The age of the universe (Spergel et al. 2003) is presently thought to
be ~22.5/¢. The unit of mass arises from

U, =U UG =1.77x 10° ¢ g =8.91 x 10” ¢ mgy, (AS)
and the unit of density is
U,=U, U7 =407 x107% ;2 gem™. (A6)

The critical density for the universe today is p. =2.33 x 107 ¢2 U,
and the mean matter density is 2, 0. ~ 6.23 x 1073 ¢2 U,,. The unit
of particle number density depends on plasma composition in a more
complicated way:
UP
U, = —%—. (A7)
m+ Zme

For solar composition we have U, & 3.96 x 1072 cm™3. The units
of mass accretion and power are

Uy =U,/U =147 x 10* Mg yr ', (AB)

UL =U,U/U =144 x 10¥ergs™ =3.77 x 10" Lo, (A9)

and neither depends on composition, ¢.

APPENDIX B: SCALING RELATIONS

Given one steady cluster model, it is possible to construct a set of
equivalent models that differ only by uniform multiplicative rescal-
ing of the physical variables. Let us define the transformation factors
as

r— X, r,

m— X, m,

m — X, m,

or —> X, o2,

s —> X s,

v—> X, v BD
and

p— X, p.

Mass conservation (9) implies a constraint

X = XX, X,. (B2)
The equations of the mass profile, such as (15) or (41), require that
X, =X, X (B3)

Mach numbers must be left unchanged during the transformation,
and thus

X2 =X,. (B4)

In each of the gas equations, say (31), all of the additive terms must
rescale by the same product. After some evaluation, this implies
that

X=X, X, = X, X2 (B5)

Satisfaction of (B3) and (B5) implies that the spatial dimensions
cannot vary,

X, =1. (B6)

Therefore, any valid similarity transformation parametrized by a
scale X, implies the following scaling factors for the key physical
variables:

X,=X,=X,=X,

X, = X',
th — X3/2,
X, = XE-D/F, (B7)

Luminosities and surface brightness scale as X = Xme = X,
so the X-ray luminosity scales as m>/? within any family of solutions.
The relations (B7) imply the existence of two invariant length-
scales, associated with the mass inflow and temperatures:

Rm = \/ﬂolm/m‘Rs (BS)

R, = Gm/ylalz}R. (B9)

The latter is algebraically equivalent to the sonic radius in simple,
adiabatic Bondi accretion, although cooling and self-gravity mean
that our models needn’t develop a sonic point nor M? extremum at
this radius. Together, the parameters (£, F,, R, R;,, R,) uniquely
denote a set of homologous cluster models.

APPENDIX C: EFFECTIVE DEGREES
OF FREEDOM

The key property of an ideal fluid is F, the effective degrees of
freedom. Thus F is a qualitatively decisive parameter of the halo
models. In ordinary space, free particles have three translational
degrees of freedom. If the particles are individual, point-like en-
tities lacking substructure then F' = 3. However, many physically
motivated scenarios entail F > 3 or non-integer values.

If individual particles can rotate, twist or distort then there are
additional internal microscopic degrees of freedom (e.g. F = 5 for
a diatomic gas). Highly relativistic or radiation-dominated fluids
have F = 6 (e.g. cosmic ray contributions to ICM pressure). Larger
integer values of F' could also occur if the particles experience
higher spatial dimensions, e.g. if their de Broglie wavelength is
smaller than the scale of compact hidden dimensions. If a fluid
includes subspecies that do not fully interact, then the effective F is
larger than for single species.

Some alternative scenarios involve fewer degrees of freedom. If
the fluid is a classical Bose—Einstein condensate (as in Goodman
2000; Arbey, Lesgourgues & Salati 2003; Bohmer & Harko 2007;
Lee 2008) then F = 2, for an equation of state p o p>. A case
F =1 could describe constrained particles, analogous to beads on
an abacus. An incompressible fluid corresponds to F' = 0. Isobaric
conditions can be described by F' = —2.

If non-local physical interactions are important, and the medium
is described by Tsallis’ statistics (Tsallis 1988), then F is effec-
tively some non-integer, F' = (3¢ — 1)/(¢g — 1) for some constant ¢
(Plastino & Plastino 1993; Hansen 2005; Nunez et al. 2006; Zavala
et al. 2006). In a gravitational context, this includes and entails
the ephemeral constraints and interactions present on all interme-
diate levels between the small scale of two-body scattering and the
large scale of the global potential. Other mesoscale physics, such as
the energy associated with turbulent eddies, can also provide larger,
non-integer values of F. If highly efficient heat transport processes
operate then the fluid approaches isothermality and F — oo.
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APPENDIX D: STANDARD GASLESS HALO
MODELS

D1 Comparative measures of a halo

To found our treatment of two-fluid cluster models, we will here
review the intrinsic properties of polytropic haloes (without gas),
and contrast them with other halo models in the literature. In order
to compare theoretical and semi-empirical halo models with each
other and with observations, it is necessary to define some global
physical measurements. Every real halo ought to have a finite outer
radius, R, but the invisibility of dark matter means that R is not
directly determinable. In practice, the cluster’s baryons are only
visible out to certain detection limits (e.g. to a limiting X-ray flux)
and this extent sets lower bounds on R. We prefer to characterize
the models using spatial measurements (which can be compared to
the true outer radius) since these are invariant under mass rescaling
(Appendix B).

For non-singular and cored halo models, a ‘King radius’ is defined
in terms of the central conditions (e.g. Binney & Tremaine 1987,
p- 228)

Rk = V/902/41tGp

This scale typifies the extent of the flat density core in many models.
The cluster rescaling (Appendix B) leaves Rk invariant. However,
Ry is undefined for cuspy haloes or those with a central point mass.
Thus we require alternative measures of core size and overall halo
concentration.

First, let us define a radius that contains a majority of the mass,
or that typifies the central concentration. We refer to a sphere’s total
mass m and moment of inertia,

(D)

r=

8 o0
I = on pr4 dr (D2)
3 Jo

which give a mass-weighted lever radius,

R, =+/51/2m, (D3)

which is scaled such that R, = R for a uniform sphere. The ra-
dius R; is applicable to models where the core is not explicitly
parametrized. Since density decreases monotonically in 7, the inner
layers dominate R;. When the mass is centrally peaked or the core
is small compared to the fringe, the ratio R; /R is small. Though the
true surface may be invisible below some flux or density thresh-
olds, truncated observational estimates of R; or R;/R might still
approximate the global values acceptably.

We define another radial scale measuring the cluster’s self-
gravity. The gravitational potential energy of a spheroid,

oo o0
W = —47'(G/ mpr dr = 27'(/ Dpr? dr, (D4)
0 0

is finite for realistic models. This leads to the definition of a gravi-
tational radius,

Ry = —Gm*/W (D5)

(see Binney & Tremaine 1987, p. 68), which can be regarded as the
size of energetically typical orbits in the halo.

Halo structure can be diagnosed by observable kinematic tracers,
such as velocities of gas clouds or stars in circular orbits in a galaxy,
or the motions of galaxies within a cluster. The circular orbital
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velocity of test particles peaks at some radius R, if

(4mpr® — m)‘r:RO =0

and (D6)
dlnp <« _o

dinr |, _g -

We denote a sequence of signature radii where the logarithmic
density slope passes specific values:

dlnp
dIlnr

={-1,-2,-3,-4,...}. (D7)

r={R|,R,R3,R4....}

For instance, p o r~> at the slope 3 radius Rj3, and so on. These
slope radii may be multivalued, if the density profile undulates (i.e.
exhibiting concentric, alternating steep and flat layers). If the halo
is radially finite (R < 0o) then all slope radii are finite too. Infinite
models may lack some of the slope radii. If the rotation curve peaks
anywhere, then (D6) implies that R, > R,. The total mass cannot be
finite without R3 existing. A finite moment of inertia and R; requires
finite Rs. Finite W and R,, require R, s and R to occur at least once
in the outskirts.

The literature on cosmological simulations conventionally de-
fines a ‘virial radius’, R,, enclosing a mean density that is some
multiple, §., of the cosmic critical density. This overdensity is
in the range 100 < 8. < 200, depending on the cosmological
model. As in Bryan & Norman (1998), we use 8, = 187> +
82(Q, — 1) —39(R,, — 1), corresponding to idealized spherical
collapse, and €2,, = 0.27 such that

3m,
4mR}

~ 97.01p. ~ 0.02259 U,. (D8)

The virial radius conveniently measures idealized, radially infi-
nite models, or numerical simulacra which are unresolved in their
fringes. The drawback of R, is that it loses information about the
outskirts. It also fails to characterize compact objects where R,
encloses the entire mass (e.g. the most compact (m,, T )-optimal
models with R < 1 Mpc). Since R, is defined relative to an absolute
density, it does not transform neatly under mass and temperature
rescaling (Appendix B). On the other hand, it is always possible to
rescale the cluster masses so that R, = R or some other signature
radius (Section 3.5). The same is true for King models or any model
with at least one free scale.

X-ray imagery and gravitational lensing studies constrain the
column densities of gas and dark matter, as projected on to the
plane of the sky. Thus it is useful to calculate comparative two-
dimensional projected properties. An effective half-light radius,
R., is conventionally defined by a line-of-sight cylinder that en-
circles half the emission (or projected mass). If the total mass
and halo radius were known, then we can also define a radius Ry
for the image contour with mean brightness (or column density),
Y =m/nR>.

D2 Gasless polytropic halo

Here, for the sake of clarifying our main results, we review the
intrinsic behaviour of finite polytropic dark haloes without gas.
We will examine the influence of a central point mass. The upper
blocks of Table D1 characterize a set of gasless polytropic haloes,
of different degrees of freedom, with and without a central mass.
The first subset lack a central mass (m, = 0), and share the same
entropy and central density: s = 1, p(0) = 1. Fig. D1 shows their
density profiles. These solutions are classical Lane-Emden spheres
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Table D1. Signature radii and masses of some representative gasless halo models. From left- to right-hand side, the columns are: dark degrees of freedom,
surface radius; inertial concentration; gravitational concentration; the density slope radii with indices —2, —3 and —4; the rotation-curve peak radius; the

projected mean light radius and effective radius; total mass. Models marked

P

* ’

e’ and ‘@’ contain a central point mass, n, = 1078,107° and 10~ m,

respectively.
F R Ri/R Rw/R Ry/R R3/R R4/R Ro/R Rx/R Re/R m/psr?
2 1.253 0.8084 0.8000 0.6458 0.7286 0.7817 0.8733 0.6524 0.4636 2.507
3 1.630 0.7152 0.7368 0.5200 0.6141 0.6813 0.7500 0.6025 0.3980 3.026
4 2.127 0.6222 0.6667 0.4126 0.5076 0.5830 0.6229 0.5500 0.3353 3.534
5 2.826 0.5287 0.5882 0.3191 0.4076 0.4860 0.4989 0.4943 0.2748 4.040
6 3.891 0.4340 0.5000 0.2369 0.3135 0.3895 0.3810 0.4345 0.2162 4.555
7 5.706 0.3374 0.4000 0.1645 0.2251 0.2932 0.2708 0.3693 0.1594 5.091
8 9.444 0.2376 0.2857 0.1010 0.1426 0.1965 0.1695 0.2955 0.1043 5.668
9 21.06 0.1313 0.1540 0.045 87 0.066 78 0.098 80 0.07829 0.2050 0.05094 6.323
9.5 4491 0.072 86 0.08027 0.021 64 0.03198 0.049 47 0.03722 0.1444 0.02509 6.707
9.5% 4491 0.072 86 0.010 19 0.021 64 0.03198 0.049 47 0.03722 0.1444 0.025 06 6.707
Te 5.706 0.3374 0.3999 0.1645 0.2251 0.2932 0.2708 0.3693 0.1594 5.091
8e 9.444 0.2376 0.047 66 0.1010 0.1426 0.1965 0.1695 0.2955 0.1040 5.668
e 21.06 0.003 432 1.429(-5) 1.702(—4) 3.674(—4) 9.730(—4) 2.451(—4) 0.026 58 2.754(—4) 6.323
9.5 4491 1.766(—4) 5.217(—6) 1.089(-5) 1.871(=5) 3.656(—5) 1.827(-5) 0.005 347 1.474(-5) 6.707
6@ 3.891 0.4340 0.4999 0.2369 0.3135 0.3895 0.3810 0.4345 0.2161 4.555
7@ 5.706 0.3374 0.05895 0.1645 0.2251 0.2932 0.2708 0.3693 0.1594 5.091
8@ 9.444 0.04559 1.061(—6) - 0.008 330 0.04773 - 0.1138 0.004 818 5.668
9e 21.06 5.554(—5) 1.252(=7) 6.603(—7) 1.432(—6) 3.829(—6) 9.464(—17) 0.002 563 1.072(—6) 6.323
9.5@ 4491 2.688(—6) 5.486(—8) 8.617(—8) 1.481(=7) 2.894(=17) 1.445(=7) 5.631(—4) 1.167(=7) 6.707
SIS o0 V5/3 1 0 - - - - - S
NIS 00 V5/3 1 1.357Rk - - 2.998Rk - - 00
PIS 0 V5/3 1 o0 - - 1r - - 0
Hubble o 0 0 N2rg o - 2.920r - - o
NFW 00 0 0 1rs 00 - 2.163r - - 00
Burkert o0 0 0 1.521r o0 - 3.245r, - - o)
Hernquist 00 0 6ry 0.57 2rg 00 1rg - 1.815r 27T
King c:% 10°FRx  0.4685 0.5277 0.2484 0.3400 0.4316 0.4075 0.4535 0.2318 0.8142
c=1 10°Rx 03514 0.3823 0.1174 0.2064 0.3476 0.2156 0.3721 0.1457 0.5436
c= % 10°FRx  0.2557 0.2840 0.041 12 0.1342 0.3493 0.08297 0.3236 0.08841 0.4024
c=2 10°Rg  0.2098 0.2868 0.013 40 0.1990 0.3738 0.028 52 0.3276 0.07970 0.3951
= % 10°Rg  0.3238 0.2575 0.004 282 0.2332 0.3831 0.009 384 0.3559 0.1100 0.4669
Sérsicn =2 00 3.421r 3.235r¢ 0.49467 1.557r 3.213r 0.9748r - 1.002r 33.27
n=3 00 5.039r¢ 3.132r¢ 0.2541r, 1.571rg 4.840r 0.5355r; - 1.001rg 40.02
n=4 00 7.418r 2.965r 0.1290r 1.578r¢ 7.277rs 0.2835r; - 0.9999r 45.79

of index n = F/2 (Lane 1870; Emden 1907; Chandrasekhar 1939;
Horedt 1986). We prefer F as the more physically motivated nota-
tion. Each sphere has a core of nearly uniform density, surrounded
by declining outskirts. For smaller F the core is a larger fraction
of the volume, and the fringe is steeper. If F < 10 then the halo
possesses a zero-density outer surface at radius R. These finite poly-
tropes do not tend to any asymptotic outer slope; the density index
steepens infinitely as r — R.

With central conditions held constant, the radius and mass in-
crease with F, and the binding energy increases both in absolute
terms and per unit mass. In absolute terms, R; increases slightly
with F. Proportionally, the core (R;/R), the gravitational radius
(Ry/R), the two-dimensional radii (Rg/R, R./R) and the rotation
peak (R,/R) all shrink with F. The slope radii (R, R3, R4) also shrink
with rising F. They become multivalued for large F' (the index of p
wobbles in some layers). In such cases, we tabulate the steepening
point farthest on the edge of the core. This tends to be near the peak
of the rotation curve. We generally find that R, > R; and R, > Ry.
Consecutive slope indices (R, R3, R4, ...) occur in roughly even

steps, but the steps ultimately diminish near the true surface (R). In
non-singular haloes, R, & R;. As F increases, all the signature radii
shrink relative to R in a common manner (see Fig. D2).

However, the non-singular model is a specially contrived con-
dition. Most galaxies are thought to contain a point-like central
mass such as a nuclear star cluster or black hole. At cluster scales,
the analogous object is a cD galaxy or its black hole. To clar-
ify the effect of such a mass, we tabulate singular polytropic
haloes with central masses in astronomically realistic proportions:
m,/m = 1078,107%, 10>, We fixed the total mass and R of corre-
sponding Lane—Emden spheres, but vary the entropy. Fig. D3 shows
density profiles for m, /m = 1078, The central object draws a den-
sity spike about itself, of index — F/2. Beyond this sharp sphere
of influence, the halo flattens into a core, then steepens into out-
skirts and a surface like those of non-singular models. For small or
medium F, the addition of m= > 0 reduces the slope radii (R,, R3, R4)
slightly. However, for sufficiently large F and m,, the spike steep-
ens the entire core, to the point where R, and higher slope radii
vanish.
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Figure D1. Density profiles of polytropic dark haloes with different adia-
batic indices, y = 1 + 2/F, but no gas and no central mass. We set s = 1
and p = 1 at the origin. Labels denote the effective degrees of freedom F
in each case. For large F the flat core fills less of the total volume. The case
F = oo is the non-singular isothermal sphere (‘NIS’, Section D3).
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Figure D2. Signature radii (as fractions of the surface radius R) of non-
singular (m,, = 0) finite polytropic halo models. Bold curves mark the density
slope radii, Ry /R, R3/R, R4/R and Rs/R. ‘I’ marks the lever radius, R;/R.
‘M’ marks the half-mass radius, R, /R. ‘W’ marks the gravitational radius,
Ry /R. ‘O’ traces peaks of the rotation velocity, R,/R. Two-dimensional
projected quantities are marked ‘X’ (Ry /R the mean-brightness radius) and
‘e’ (Re/R the half-light radius). These radii stay bundled together but shrink
in relation to the surface as F rises.

For F > 9, the spike develops density undulations (at subpar-
sec scales for a cluster). In this tiny, deep core, the slope radii are
multivalued and the rotation curve peaks multiply. Some undula-
tions locally approach the brink of Jeans stability. The dense spike
reduces R; and R,, dramatically for F' > 8.

Table D1 reveals several trends for as m,/m varies. As m, in-
creases, Ry, /R changes appreciably before the slope radii and ro-
tation peak do. The two-dimensional projected quantities (Rx /R,
R./R) are the least sensitive to the central mass. Large F enhances
the sensitivity of all the of signature radii with respect to m,.

If F > 10 then the halo density attenuates indefinitely (R = o0),
regardless of m,.. The borderline case of F = 10 has an infinite radius
but finite mass: this is the well-known Plummer (1911) model,
where p o 77 at large radii. In the isothermal limit, F — oo, the
fringe declines like p o r~2 (Section D3).
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Figure D3. Density profiles of gasless polytropic halo models in the pres-
ence of a central gravitating mass (m, = 10~8 m). Curves are annotated
with their respective F values.

D3 Isothermal spheres

If the particle velocities are isotropic and o' is constant everywhere,
then the halo is an ‘isothermal sphere’. This is essentially an ex-
treme polytrope in the limit F — oo. Isothermality is plausible
when some strong mechanism asserts global thermal equilibrium:
e.g. thorough and violent relaxation (Lynden-Bell 1967), or efficient
thermal conduction. Isothermal spheres are popular toy models in
gravitational lensing studies. Such haloes also predict flat rotation
curves, resembling the observed outer parts of disc galaxies.

The density profile depends on the central boundary condition.
The ‘non-singular isothermal sphere’ (NIS) has dp/dr = O at the
origin, exhibiting a shallow density core, but at large radii it tends
to a decline o< =2 (see e.g. Binney & Tremaine 1987, and the F =
oo curve in Fig. D1). The ‘singular isothermal sphere’ (SIS) has a
self-similar profile,

o =o%/2nGr?. (D9)

For NIS and SIS, R; and higher slope radii never occur. The density
fails to vanish at any finite radius, so the halo lacks a distinct surface.
Within some ad hoc truncation radius, the mass, moment of inertia
and gravitational potential energy of the SIS are

m = 20°r/G,
I =46%3/9G
and
W = —4o%r/G. (D10)

It follows that the gravitational radius R,, = r and the effective lever
radius R; = ~/5r/3. For the SIS, the circular velocity is radially
constant. A SIS gravitational lens bends light rays by a constant
angle at all projected radii. The SIS virial radius is

2 172
CIOC

which is ~1.130 Mpc for a halo at 1-keV temperature.

D4 Pseudo-isothermal sphere

In some observational studies the exact non-singular isothermal
sphere is approximated by an empirical cored profile that also has
o r~2 outskirts. The ‘pseudo-isothermal sphere’ (PIS) has a density
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Figure D4. The dependency of the virial radius upon the halo’s density at its
scale radius, for: pseudo-isothermal (W); NFW (N); Burkert (B); Hernquist
(H); Sérsic n = 2,4 (S2,S4) models.

profile

_ pS
Sl
where x = r/rg and (ps, 1) are some density and radial scales. The
PIS has infinite radius, mass and moment of inertia. At large radii,
R;/r = +/5/3 and R,,/r = 1. The slope 2 radius is at infinity, as is
the peak circular velocity (R, = R, = 00). Fig. D4 shows numerical
solutions for the virial radius depending on (ps, 75), comparing PIS
to some other radially infinite models.

P (D12)

D5 Hubble profile and g-model atmospheres

The modified Hubble profile (Hubble 1930; King 1972; Rood et al.
1972) approximates the projected mass or brightness of any non-
singular cored sphere as

P
1+x2’
defined such that the intensity drops to half its central value (%) at
the projected radius scale r,. This empirical fit has been applied to

the stellar light profiles of elliptical galaxies, globular clusters and
galaxy clusters. The corresponding spatial density profile is

~ Ps
(1 + x2)3/2 )

This distribution yields more realistic rotation curves than the
isothermal models, as there is a peak at finite radius, R, ~ 2.920r
(e.g. Binney & Tremaine 1987, p. 39). However, the model is only
applicable in and near the core, otherwise it implies infinite radius,
mass, potential energy and moment of inertia. As » — oo we have
R, — oo,Ry, — oo,R;/r — 0 and Ry /r — 0. The density slope
radii are R, = +/2r, and R; = 0.

The model was extended to describe the X-ray emitting gas by as-
suming isothermality and local hydrostasis in cluster cores, e.g. Lea
et al. (1973) who assigned identical temperatures to gas and galax-
ies. Cavaliere & Fusco-Femiano (1976) assumed a galaxy/gas tem-
perature ratio of 8 = o} /o, deriving a gas density profile

IR (D13)

o (D14)

] —38/2

p=po [14/r) (D15)

and X-ray surface brightness profile

S =S [1 4+ b/by?] 2 (D16)
where b is the projected radius. This became a commonplace fitting
formula for X-ray imaging observations (e.g. Bahcall & Sarazin
1977; Gorenstein et al. 1978; Branduardi-Raymont et al. 1981;
Jones & Forman 1984; Neumann & Arnaud 1999). Shorn of the
original isothermal assumption, more recent studies adopt either
(D15) or (D16) as a conventional template, and seek to infer actual
radial variations of temperature from the data. It is worth empha-
sising that the B-model is a parametrization or an idealization of
the innermost observable regions. The ultimate outer density in-
dex is —3, and the implied asymptotic gas mass is infinite unless
B > 1 (according to D15). However, equation (D16) implies that
the luminosity is infinite if 1 < 8 < 2. This breakdown implies that
the density and/or temperature must attenuate even more steeply in
the outskirts of real clusters. Indeed, some observations show that 3
steepens (e.g. Vikhlinin, Forman & Jones 1999; Neumann 2005).

D6 Hernquist profile

Hernquist (1990) proposed an analytic model for galaxy spheroids,
with density profile that attenuates infinitely

- Moo (D17)
p= 2mx(1 + x)3rd
but none the less yielding a finite mass profile

%2

(1 +x)
The moment of inertia is infinite. The density slope passes integer
values at x, = 1/2, x3 = 2 and x4 = o0o. The rotation curve peaks at
the scale radius, x, = 1. The projected central brightness is infinite,

but the outskirts decline fast enough that R, is finite. Fig. D4 shows
the relation between virial radius and (ps, rs).

m(r)=m (D18)

D7 N-body simulacra

Dubinski & Carlberg (1991) found that collisionless structures
emerging in N-body cosmological simulations develop a cuspy,
power-law central density profile. The ‘NFW profile’ (Navarro,
Frenk & White 1996, 1997) is a popular empirical fit to such haloes,
with a density that follows

_ A
x(1+x)?’

where x = r/rg and (ps, 1) are fitting parameters of a particular halo.
These parameters follow trends in relation to the halo mass, which
depend on cosmology (e.g. Bullock et al. 2001; Dolag et al. 2004;
Shaw et al. 2006; Maccio et al. 2007). Physically, the scale radius
rs = Ry, the slope 2 radius. This radius defines a concentration, ¢ =
R, /rs. A halo truncated at some finite radius has a mass and moment
of inertia of

o (D19)

m = 4mpgr {m(wx)—L , (D20)
14+x
87 3 1 (x + D(x —5)
I=—pgd|= 31In(1 .(D21
3pn{2+l+x+ 2 +31In(1 +x)| .(D21)

There is not an outer surface, and both m and / are infinite as x — o0.
The inertial radius R; — oo at infinity, while its concentration ratio
vanishes (R;/r — 0), which means that the rotational properties
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depend on an ad hoc truncation radius. The gravitational potential
energy is finite,

W = —8m*Gp?r?. (D22)

Thus R, — oo and R, /r — 0 at large radii. The rotation curve
peaks at R, =~ 2.163r;. Using (D19) and (D20), the virial ra-
dius equation (D8) is transcendental. (See Fig. D4 for numerical
solutions.)

Moore et al. (1999b) and Zhao (1996) proposed variations and
generalizations to the NFW formula, consisting of a broken radial
power law again, but with different indices. Expressions for the
global quantities differ slightly from those above, but the models
are qualitatively similar: infinite in mass and radius, and ill-defined
rotational properties. More recent work (Merritt et al. 2005; Graham
et al. 2006) suggests that Sérsic profiles(Section D10) fit simulated
collisionless haloes better.

Density slopes of the simulacra are least certain on the outskirts
and near the origin, both places where mass resolution degrades.
Cuspy profiles emerge consistently from cosmological N-body sim-
ulations, but the causes of this shape still lack a comprehensive an-
alytic derivation. Possible causes may involve: cosmic expansion,
ongoing infall and accretion history; the simplifying assumption
of a collisionless medium; the approximation of discretized mass;
implicit low-pass filtration in numerical Poisson solvers; or perhaps
other less obvious computational and physical factors.

D8 Burkert profile

Burkert (1995) proposed an empirical halo model based on observed
rotation curves of halo-dominated galaxies,

Y . S
A +x)1+x?’

where we denote a normalized radius again, x = r/r. The density
index is -2 at R, & 1.521r,. The index ultimately approaches —3;
R; = oo. There is a flat density core, like in the non-singular poly-
tropic and King models (and unlike the cuspy NFW and Sérsic
profiles). The mass and inertial moment enclosed at x are

o (D23)

m = mpyr] [2In(1 4 x) + In(1 4 x*) — 2arctanx] , (D24)

2m ) (1 + x)?
I = —pgr] §2x° —4x + 2arctanx + In ,  (D25)
3000 1+ x2
and both are infinite as r — oo. As with NFW, the Burkert halo
mass is intensely centrally concentrated: R; /r — 0 as r — oco. The
gravitational potential energy is finite,

W = —4 In 2G p2r? (D26)

s's?
and R,,/r — O at large radii. The rotation curve peaks at R, ~

3.245r,. Like the NFW halo, the virial radius equation is transcen-
dental (Fig. D4 shows numerical solutions).

D9 King model

King (1966) presented a cored stellar dynamical model, derived
from first principles. Its basis is a phase-space density function,

Fr.v)=A [e*“@*”zﬂ) - e’“q"] , (D27)

assuming locally isotropic particle velocities, truncating at some
escape energy corresponding to the equipotential (®,) of a zero-
density outer surface at ‘tidal radius’, R = r,. The model is a self-
consistent description of a non-isolated, self-bound, collisionless
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Figure D5. Signature radii relative to the tidal surface, for King models
with various concentrations, ¢ = log 19(R/Rx). Lines and annotations are
the same as in Fig. D2. The signature radii span much of the halo volume
(unlike high-F polytropic haloes). Their ratios stay roughly steady as ¢
increases.

sphere. It was originally applied to globular clusters with escaping
stars. Firmani et al. (2001) reapplied it to cored, thermal, self-
interacting dark haloes. The mass, moment of inertia and gravita-
tional potential energy are all finite. The local density,

8 [ 2 peevier (24 (D28)
=/ 34" e = ,
P=3 Ve 2
depends on the dimensionless potential offset,
¥V =al[® — D], (D29)

and I' is the lower incomplete gamma function. At the outer bound-
ary, p = ¥ = 0. Radial coordinates for the equipotentials are ob-
tained by solving the Poisson equation, subject to the inner bound-
ary conditions ¥ > 0 and Vi = 0. The latter condition precludes
a central mass, m, = 0.

Like the F < 10 polytropes, the King model is radially finite.
Thus the slope radii (R, R3,R4) are also finite, and the density
index attains large negative values near the edge. Concentrations
are conventionally denoted by ¢ = logo(R/Rk). Fig. D5 shows the
variation of signature radii with c. Both R, /R and R, /R drop rapidly
with increasing ¢, and they are multivalued for highly concentrated
models, ¢ 2 2.7. The other main signature radii vary only within
factors of a few in the shown domain (0 < ¢ < 4.5).

D10 Sérsic profile

The Sérsic (1968) model is an empirical fit to the two-dimensional
projected starlight of spheroids such as elliptical galaxies and spiral
bulges:

T =3 exp[-b(x""=1)]. (D30)

The radial coordinate is scaled in terms of the half-light radius,
x = r/R.. The shape parameter n ~ 4 for elliptical galaxies (the
classic profile of de Vaucouleurs 1948) or n ~ 2 for galaxy clusters.
The parameter b depends on n implicitly, via lower incomplete and
complete gamma functions,

2T (2n, b) = T'(2n). (D31)

Ciotti & Bertin (1999) derived a series expansion, b =
2n — 1/3 + 4/405n + 46/255157> + 131/1148 1752 —
2194697/30690717 750n*. Sérsic profiles appear ubiquitous
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Figure D6. Signature radii (relative to R.) for Sérsic models with indices
n. The curves are marked as in Fig. D2. In these halo models, the signature
radii splay out enormously as 7 rises.

among stellar spheroids in nature, but the principal causes have
not yet been shown analytically.
The cuspy density profile of Prugniel & Simien (1997),

p=psx Pexp[—b (x'" —1)], (D32)

where x = r/r, and ry = R., fits the Sérsic light profile approx-
imately. The index of the inner cusp, p ~ 1.0 — 0.6097/n +
0.054 63 /n* (Lima Neto, Gerbal & Marquez 1999; Mdrquez et al.
2000). Expressed in terms of incomplete gamma functions, the mass
and moment of inertia within some radius are

m = 4rnb"Pe pr? T(n(3 — p), bx'/"] (D33)
and

8
/= % BP9 .13 Tln(S — p), bx']. (D34)

Evaluated as x — 00, the core lever radius is finite,

{ 5 TG - p }‘/2
R, = _ Ts.
302 T'[n(3 — p)]

For n = 2 we have R; ~ 3.421r,, and for n = 4 we have R; ~
7.418 r,. The gravitational radius is finite but needs some numeri-
cal integration; R,,/r, decreases with increasing n. The o2 profile
emerges from integration of a hydrostatic or Jeans equation, and it
can be shown that the King radius vanishes, Rx — 0 as r — 0. The
dependence of the virial radius on (ps, 1) is shown by grey curves
in Fig. D4.

The density index drops with radius. For all realistic n, R, exists
uniquely, along with all higher slope radii. In general, for index
—j, we have R;/R. = [n(j — p)/b]'. For n > 1 the consecutive
integer-slope radii spread apart (vertical distribution of bold lines in
Fig. D6). In contrast, finite polytropic haloes have slope radii spaced
at shrinking intervals, converging at the true surface R. For n 2 2,
the rotation curve peaks inside the effective radius, R, < R.. For
n 2 1.2 we have R, < R;. The lever radius and slope 4 radius are of
similar magnitude, R; ~ Ry, with R; > R, forn < 5. Forn > 1 we
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have R; > R;. These signature inequalities are potentially testable
by gravitational lensing and kinematic studies in halo outskirts.

D11 Comparisons

Theoretical, numerical and observational halo models are in prin-
ciple testable by measuring enough of their signature radii, derived
from three-dimensional and projected quantities. Table D1 charac-
terizes gasless polytropic halo models with various F values, and
compares them to other models from the literature.

The density slope radii are the major discriminants between halo
models. Isothermal and pseudo-isothermal models have no R; ra-
dius, while the Hubble, NFW and Burkert models have R; = oo.
Galaxy densities in clusters appear to drop at least as steeply as r—>
in the outskirts (Carlberg et al. 1997; Adami et al. 2001). If this
trend persists infinitely then it would fit NFW or Burkert interpreta-
tions. However, the detection of steeper slopes (by any technique)
would call for more sophisticated models. All of the polytropic,
King and Sérsic models have finite R, and R3, set in ratios depend-
ing on F,c and n, respectively. In Sérsic models, the consecutive
slope radii spread widely apart, but in the polytropes and King
models these radii converge. Low-concentration King models have
somewhat evenly spread values of {Ry,R3,Ry,...} but for high
concentrations R, < R; ~ R., and so the halo could be mistaken
for an isothermal or NFW shape if it were probed at intermediate
radii only. For finite polytropic haloes, R, /R, R3 /R, R+/R, R, /R and
R, /R remain similar to each other in order of magnitude (even as
F — 10), while the projection scales Ry /R and R, /R shrink slower
with increasing F.

As their I and R; /R values show, the concentrations and rota-
tional properties of Hubble, NFW, Burkert and Hernquist models
are hard to define. In one sense the mass is centrally concentrated.
On the other hand, the outskirts dominate /. Therefore the ability
to spin such a halo up or down (e.g. in tidal interactions between
unbound neighbours) depends on an ad hoc truncation. The un-
physical inability of simulacra to self-truncate may be part of the
‘angular momentum problem’ of simulated galaxy formation. The
polytropic, King and Sérsic models are finite and consistent with
respect to /.

Any real, isolated halo detaches from the Hubble flow possessing
finite mass and energy. Its radius may also become finite, either
due to intrinsic self-truncation (e.g. of a polytrope) or extrinsic
harassment and evaporation (e.g. King models). Infinite models
cannot be a final or comprehensive description of any real halo.
They must be regarded as provisional approximations only. The best
physically motivated, consistent and plausible models are the King,
Sérsic and general polytropic descriptions. It is unclear how a Sérsic
model should adapt in a potential shared with other components,
so it was unsuitable as the basis for our present study. We chose
the polytropic scenario, although a generalized King model has
scope to represent a halo suffering surface evaporation or tidal
truncation.
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