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Abstract. Non-verbal communication, or “body language”, is a criti-
cal component in constructing believable virtual characters. Most often,
body language is implemented by a set of ad-hoc rules. We propose a new
method for authors to specify and refine their character’s body-language
responses. Using our method, the author watches the character acting
in a situation, and provides simple feedback on-line. The character then
learns to use its body language to maximize the rewards, based on a
reinforcement learning algorithm.

1 Introduction

Social interaction is a core part of human life, and social behavior has become
a key research area in Intelligent Virtual Agents (IVAs). Non-Verbal Commu-
nication (NVC) is vital to social interaction; it consists of all the signals sent
between people that are not contained in language utterances. NVC is respon-
sible for many aspects of social interaction: expressing emotion; regulating turn
taking in conversation, and defining and expressing social relationships. These
signals are often picked up subconsciously, without being explicitly noticed or
understood. NVC varies greatly between people and can be an extremely useful
method of making virtual agents that have their own individuality and person-
ality. In addition, there is a large variation in NVC across cultures. For these
reasons the generation of NVC has become one of the main challenges and one of
the most active areas of IVA research. In this paper we suggest a new approach
based on the ability of humans to judge NVC, and we present first results from
our work in progress.

The typical approach for constructing characters with NVC relies on results
from psychology, complemented by empirical data. This approach has been ex-
tremely fruitful, a prime example being the work of Cassell and her group [1,2],
and was also used by one of the present authors [3,4]. However, there are lim-
itations to this approach. First, our theoretical understanding of NVC is still
incomplete. Second, and possibly more important, obtaining and analyzing data
can be extremely time consuming and costly. We thus propose a new approach
that tries to leverage the human capacity for evaluating NVC, without explicitly
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being able to define it. This is done by allowing humans to watch a character act
in a specific context and provide a simple feedback, every few seconds: whether
the character’s NVC is appropriate to the situation or not.

In this paper we discuss the first steps in this work in progress. First, we
devised a method that combines exploration and generalization to allow the
user to quickly prune and evaluate a large space of states and actions. Next,
we have adapted a reinforcement learning (RL) [5,6] algorithm that allows the
character to acquire a policy for making the right NVC actions to achieve a
long-term reward.

Our focus in this paper is on the adaptation of RL to the domain of virtual
characters with NVC-related behavior. We provide a description of our meth-
ods and the insights we have gained throughout their construction and initial
evaluation.

2 Related Work

Machine learning has been adopted to train believable agents in virtual environ-
ments. Blumberg et al. [7] have trained an autonomous animated dog based on a
real dog trianing technique called “clicker training”. They demonstrate that the
autonomous dogs can recognize and use acoustic patterns as cues for actions, as
well as synthesize new actions from novel paths through its motion space. Isbell
et al. [8] report on a software agent with RL capabilities inhabiting a multi-user
text-based virtual environment. The agent was trained to proactively take ac-
tions in a social context by receiving rewards from other users in the VE. Conde,
Tambellini, and Thalmann [9] demonstrate how agents can learn, using RL, to
explore a virtual environment in an efficient yet flexible way.

Our research is aimed at using RL to learn non-verbal communication. There
have been a number of general computational models of NVC. These include:
Cassell et al.’s various systems, and particularly their virtual real-estate agent,
Rea [1]. Guye-Vuillème et al. [10] have demonstrated avatars with a wide range
of controllable expressive behavior. The Affective Presentation Markup Lan-
guage (APML) is an XML-based language for defining the expressive behavior
of characters [11].

Non-verbal behavior is generally divided into a number of modalities, many of
which have been studied by virtual characters researchers. These include: facial
expression(Pelachaud and Poggi [12]), eye gaze (Cassel et. al. [1], Rickel and
Johnson [13], Garau et al. [14], and Gillies and Dodgson [3]), and style of motion
(Chi et. al. [15]). In this paper we use the modalities of proxemics (or personal
distance1), which has been little studied for virtual characters, in addition to
posture and gesture.

Among research on posture, Cassell et al. [17] have investigated shifts of pos-
tures and their relationship to speech. Bécheiraz and Thalmann [18] use posture
to display social closeness or distance between characters.
1 The term ”proxemics” was coined by the researcher E.T. Hall [16] when he investi-

gated people’s use of personal space.
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The generation of gestures has been studied by a number of researchers. For
example, Cassell et al. [1] have produced a character capable of extensive non-
verbal behavior including sophisticated gestures. Chi et al. [15] present a way
of generating expressive movements, similar to gestures using Laban notation.
Gestures are closely related to speech and should be closely synchronized with
it. Cassell, Vilhjálmsson, and Bickmore [2] present a system that parse text and
suggests appropriate gestures to accompany it.

3 The Approach: Training Characters

NVC includes eye gaze, head motion, whole body movement, arm gestures, fa-
cial expressions, etc. A character acting in a virtual environment can have any
combination (Cartesian product) of these elements in every moment. This al-
lows for a rich possibility of expression. The question is: what combination of
body-language elements should the character display at any given moment?

For simplicity we assume that the character’s behavior occurs in discrete
steps. In each such step the system needs to select a combination of body-
language elements. This combination will typically be different from the previous
one, so every step will typically involve a combination of basic animations. We
will refer to such set of body-language elements, or to the set of basic animations,
as an action; this use is also consistent with RL terminology.

Our experience indicates that the most difficult problem is context depen-
dence, i.e., how to choose the right action in a given situation. Our idea is to
allow the author of a virtual character to introduce the character into a situation,
observe its behavior, and train it in real-time, by giving it a simple feedback. The
author may provide feedback at any moment during watching the scenario. The
feedback is a grade on a five point scale ranging from “very good” to “very bad”.
Figure 1 displays our simple interface and a scenario involving two characters.

We have by now implemented a basic system and have evaluated it with
a simple scenario. Assume we want to train Alice who is in conversation with
Bob2. Bob, whom we call the partner, uses NVC based on a pre-defined behav-
ior mapping. Alice performs NVC behavior based on inputs from the learning
component.

3.1 Animation Generation

We use the Demeanour architecture [19] to generate the non-verbal behavior of
our characters. Demeanour is a general toolkit for creating character behavior.
It is based around mappings from a number of inputs to output behaviors. A
declarative language is provided for defining these mappings. In Bob’s case the
input is the state of the character and the output behavior consists of body
movement (posture and gesture) and proxemics. The body movement engine
uses a set of 33 pre-existing base motions (posture changes and gestures) to
generate the behavior of the character. A number of these base motions are
2 The conversation did not include actual speech.
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Fig. 1. A snapshot: the users watch the Dive window with the interacting characters,
and are encouraged to hit one of the five rating buttons whenever they have an opinion
on the recent NVC action performed by the female character

chosen based on the output of Demeanour and these are blended together to
create a new motion. The proxemics engine works by choosing one of a set of
simple motions (step forward/backard, turn left/right) to control the distance
to another character to that character.

For the learning character, Demeanor divides the NVC components into five
classes depending on the part of the body used and the type of motion:

Arm gestures: conversational (beat) gestures, crossing arms, scratching head
Body postures: e.g., leaning forward or backward, being hunched over
Head postures: holding the head high, low or to the side
Head gestures: nodding or shaking the head
Distance: moving forward or backward

At each time step, one of each class is chosen (an empty motion can be chosen
for each class), and the resulting animation is performed simultaneously.

Demeanor was implemented on top of Dive [20,21]. The RL component was
implemented in Matlab3; this allows rapid prototyping. Our configuration allows
running the animation and the learning components on different machines, which
communicate using the network protocol VRPN4. This, together with the fact
that we use Dive, will allow us to evaluate the system in immersive virtual reality
(VR), and in multi-user settings.
3 http://www.mathworks.com
4 http://www.cs.unc.edu/Research/vrpn
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3.2 Defining the Learning Problem

In RL, problems of decision-making by agents interacting with uncertain en-
vironments are usually modelled as Markov decision processes (MDPs). In the
MDP framework, at each time step the agent senses the state of the environ-
ment, and chooses and executes an action from the set of actions available to it in
that state. The agent’s action (and perhaps other uncontrolled external events)
cause a stochastic change in the state of the environment. The agent receives a
scalar reward from the environment. The agent’s goal is to choose actions so as
to maximize the expected sum of rewards over some time horizon. An optimal
policy is a mapping from states to actions that achieves the agent’s goal.

In our case, the state space is comprised of a combination of four factors that
we call classes:

1. partner conversation state — speaking, listening, or none,
2. partner mood — neutral or unhappy,
3. learning character conversation state — speaking, listening, or none; and
4. proximity — five categories from very near to very far.

If the classes are denoted by C1, C2, C3, and C4, then each state is a tuple
< c1, c2, c3, c4 > such that c1 ∈ C1, c2 ∈ C2, c3 ∈ C3, and c4 ∈ C4.

The actions are similarly arranged in five classes, which correspond to the
animations as described in Section 3.1. The reward, in our case, is an integer
number between 1 (negative reward) and 5 (positive reward).

We have started with a simple approach for quickly exploring the space, and
have then extended it to use policy learning; the next two sections describe these
two approaches.

3.3 Exploration with Generalization

First, we recognize that we rely on human feedback to learn the space, and in
such context the space is quite large.5 We want to quickly explore it and find
the right actions, or the right NVC behavior, for every state.

In the first instance we are only concerned with immediate reward, and we
assume a stationary environment. Thus, we assume there is an optimal value
function that assigns a value to each state-action pair, Q :: S×A→ R, where S
is the set of all states, A is the set of all actions, and R denotes the real numbers.

Fortunately, our space is a combinatoric product of what we have called
classes. Given a reward for an action, which is a combination of gestures and
postures in different classes, we want to reward each class accordingly. This is
sometimes referred to as the structural credit-assignment problem.

Our method is based on two principles. Given the n-dimensional space of state
and action classes6, we want to sample it in a smart way, and then generalize
from our samples, using assumptions from our domain.
5 The number of states is 120, the number of actions is 4275, so the space is comprised

of 513,000 values.
6 In our case n = 9.
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Sampling may be done in several ways. A greedy approach would always pick
the action with the highest Q value for the current state. In order to encour-
age some exploration of the space, it is possible to use an ε-greedy approach;
this selects the optimal action with probability 1− ε and a random action with
probability ε. The parameter ε can be tuned to balance exploration versus ex-
ploitation. We have also tested Boltzmann exploration [5], which is popular in
the context of RL. Using simulations we have found the ε-greedy exploration to
work best, when ε is small and is gradually decreased. Since, in this stage, we
are only interested in exploring the space, we do not repeat a combination of
space-action more than once.

The second principle involves generalizing from the samples. The underlying
assumption is that we can generalize a specific instance by extrapolating into
the different dimensions of the space.

Typically, RL uses function approximation for generalization. This is nec-
essary in the case of continuous or very large spaces. In our case we want to
generalize because the space is large relative to the sample size, but it is dis-
crete, and is not large in terms of the number of computations required. In
addition, we want to take advantage of our knowledge about the combinatoric
nature of the space. Note that we cannot assume that the space is continuous;
our generalization principle is weaker. This will become clear below as we explain
our method for generalization.

We define a and a′ to be similar if a and a′ have equal value for at least four
out of five classes, or, more generally, we say that a and a′ are k − similar if
they are equal in at least n− k out of the total n number of classes.

For generalization, we assume that similar actions have similar value, or that
there is some small enough K for which:

if a and a′ are similar then ∀s ∈ S : |Q(s, a)−Q(s, a′)| < K

We expect that this correlation might have exceptions, but we use it as a
heuristic to try to find good candidate actions, which will then be rated by the
user.

The same similarity heuristic holds for states. We define s and s′ to be k −
similar if they are equal in at least n− k out of the total n number of classes.

if s and s′ are similar then ∀a ∈ A : |Q(s, a)−Q(s′, a)| < K

Generalizing for states, in our domain, is more risky than generalizing for
actions. For example, if the character is required to be submissive we would
prefer her head to be low, regardless of whether she is speaking or listening.
However, it is quite possible that we would want our character to respond to a
happy partner in a very different way than to an unhappy character.

Such distinctions are much easier handled by knowledge-based approaches
than by statical approaches such as RL. Although it is not impossible to in-
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troduce such domain knowledge into the RL algorithm, we have used an easier
resort: we assigned a smaller weight to state similarity.

Our algorithm is as follows. First we initialize Q(s, a) to be the average
reward for all s, a. The training includes a continuous iteration where we sample
actions as explained earlier. The parameter ε is slowly decreased to slightly
reduce exploration. Q is updated as follows: If the user provides a reward r to
action a when in state s, then:

Q(s, a) = r
∀s′ similar to s and a′ similar to a : Q(s′, a′) = Q(s′, a′) + α[r −Q(s′, a′)]

The constant α determines the rate of generalization7. In our case, we found
that the update described above, together with a 2− similar generalization for
actions only, result in covering 0.5% of the space per each user rate. This is
enough to ensure learning with a reasonable feedback of a few hundred feedback
data points. We can terminate the learning process when most of the space is
covered.8

By the end of the training phase, we are left with a table that is assumed to
be a good approximation of the value function Q. Based on this table a policy
may be defined and used in real-time to drive the virtual characters. Such a
policy would pick up, for each state, from the actions with a relatively high Q
value.

3.4 Learning a Behavior Policy

In our initial evaluation of the exploration and generalization method we have
found that it is possible to quickly learn that some gestures are better than
others, in a given situation. However, we realized one of the limitations of this
method: very often the facts that the agent needs to learn are reflected in the
states rather than in the actions.

The main reason that this happens is that our domain requires learning with
delayed reward. For example, say we want to encourage Alice to keep her head
low. Assume Alice lowered down her head, and kept it low for a while. In this
case she will probably get a relatively high reward for the whole duration that
her head was lowered, and not only for the action that included lowering the
head. Another example involves encouraging Alice to get farther away from the
partner. Getting farther away might result in a large reward when she is far
away, rather than an immediate reward for every backwards step.

This leads us to the more general problem involving IVAs that need to learn a
behavior policy with delayed rewards. While some mappings can be learned using
traditional supervised learning, such as immediate rewards and state transitions,
7 We actually use different values for state generalization and for action generalization;

since we want to be more careful with state generalization we use smaller values of
α.

8 If the space has larger dimensionality, we can update for k − similar actions and
states with higher k values.
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policies cannot be learned this way. The RL framework is specifically intended
for learning good policies in such conditions. While feedback is given by the user
to the last state-action, it is “backed-up” to other state-action pairs by the RL
algorithm.

RL may be best regarded as a framework of problems and approaches, and
includes many specific techniques. We have selected Sarsa [5,6], which allows
learning directly from raw experience, without having a model of the environ-
ment’s state dynamics.

In this section we are interested in learning a policy: Π :: S × A → [0, 1],
i.e., we want to learn to choose the right actions in a given state with higher
probabilities. In Sarsa we look at quintuple of events (st, at, rt+1, st+1, at+1),
which makes up a transition from one state-action pair to the next. The update
rule is:

Q(st, at)← Q(st, at) + α[rt + 1 + γQ(st+1, at+1)−Q(st, at)]

We use generalization, similar to the exploration and generalization as ex-
plained in Section 3.3. For the generalization to similar states and actions, we
use the same formula, but instead of rt we use rt

k where k > 1 reflects the rate
of generalization.

We terminate the training phase when the user is satisfied with the learned
policy. This policy may then be used in real time to control the character’s
behavior.

4 Discussion and Future Work

Using simulations we have validated the methods and found out the optimal
values for the learning parameters. At this stage we are evaluating our approach
using empirical experiments; we let users train characters and evaluate their
perceived NVC capabilities, as compared with characters with random NVC,
and with characters with hard-coded NVC behavior. This will eventually be
done in a highly-immersive Cave-like [22] system, as part of our research on the
sense of presence [23]. The results will be reported in a full paper.

Body language is, we believe, a good starting point to evaluate our method.
Our animation platform includes other aspects of body language, which we in-
tend to incorporate into the framework described here; this includes gaze direc-
tion and facial expressions. A more ambitious extension that we hope to explore
is learning blending parameters for fine tuning of motions. This will entail learn-
ing in a continuous space, rather than a discrete combinatoric space.

Clearly, we need to train the characters and evaluate our system in the con-
text of more complex scenarios. We see this as gradually leading to the con-
struction of tools for authoring characters for non-linear narratives. Eventually,
our method needs to be evaluated in the context of a complete application. This
means we will need to extend our method to much larger state-action spaces,
which means that our methods will need to be refined. Specifically, we intend
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to further investigate our generalization principle and base it on more formal
grounds.

While our work is in its early stages we can already draw some conclusions.
We believe the general approach, that of letting humans provide high-level feed-
back to train character NVC, to be promising. We believe our approach as de-
scribed here can be extended to cover a wide variety of situations and scenarios.

A second conclusion is that standard machine-learning algorithms need to
be carefully adapted to the problem. We explained why purely symbolic ap-
proaches are not adequate for NVC, but we have still learned that domain knowl-
edge should be integrated into the algorithm. This calls for the development of
specialized algorithms, and for an approach that relies more heavily on empir-
ical evaluation. In general, there is interest in the RL research community in
knowledge-based methods for using domain knowledge in the learning process;
such research needs to be adapted to our domain.
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