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Abstract: According to Moore’s law, increases in computing power are roughly 

exponential over time. As a consequence, the application of computational 

methods to old and new problems becomes ever more possible, even with 

desktop computing. Such methods, and in particular computer simulation, have 

considerable potential in the study of crime but their application is relatively novel 

at this time. Consequently, the aim of this chapter is to consider the possibilities 

with a particular focus on how they might be used to inform the evaluation of 

crime reduction activity. A number of different types of computational methods 

will be discussed and examples of the types of policy-related questions for which 

they might be used considered. The strengths and weaknesses of the 

approaches described will also be discussed. 

 
 

INTRODUCTION 
Computational methods, and in particular computer simulation (e.g., Liang et al., 

2001; Groff, 2007a), have considerable potential in the study of crime. The aim of 

this chapter is to discuss some of the possibilities with a particular focus on the 

evaluation of crime reduction activity. In writing this chapter, two possibilities 

regarding the scope and direction of the material to be covered suggested 

themselves: 1) to focus on a particular type of simulation and provide a detailed 

exposition of that method; or, 2) to discuss a number of different types of 

computational method to provide the reader with a more general understanding 

of the possibilities. As the use of simulation for the evaluation of crime reduction 

activity is novel, I chose the latter. In addition to illustrating the benefits of the 
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methods discussed, some of the issues that need to be addressed before their 

potential may be realised will also be considered. 

The chapter is divided into four sections, each considering different 

research questions that should inform the various stages of policy decision 

making. In the first, a concrete example of a technique used to evaluate the 

effect and sustainability of a situational crime prevention measure implemented 

at the individual household level is discussed. The method used differs from 

traditional approaches in that a Monte Carlo simulation re-sampling procedure is 

used to estimate what would have been expected in the absence of intervention 

and to estimate the statistical significance of observed effects. This type of 

approach is very different from the simulation methods discussed in the 

remainder of the chapter, and is used to provide an example of a type of analysis 

used to answer a very simple “what if” question. 

In the second section, discussion moves to the evaluation of area (rather 

than individual) level interventions. The potential use of microanalytical-

simulation in the estimation of expected area-level crime rates (in the absence of 

intervention) is discussed, with a particular focus on how this type of simulation 

can be used to model data-generating processes not explicitly considered in 

traditional types of analysis. The aim of this section is to discuss some of the 

relevant issues rather than to present the results of an actual evaluation. 

However, an empirical illustration is provided to show how levels of crime may 

vary in an area even in the absence of intervention under different “what if” 

conditions.  

In the third section, issues regarding the implementation of interventions 

are considered.  Evaluations of place-based crime reduction initiatives generally 

indicate that implementation is gradual rather than abrupt, and that for successful 

interventions there is a relationship between the timing and intensity of 

implementation and the volume of crime prevented (e.g., Bowers et al., 2004). 

However, rarely are the likely effects of different implementation schedules 

explicitly considered prior to implementation. Consequently, in this section, using 

an extension of the methodology discussed in section two, examples are 
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provided of how simulations might be used to estimate the possible effects of 

different implementation plans prior to the inception of crime reduction activity. 

In the final section, the potential use of computer simulation to test 

theoretical models of crime reduction strategies before they are piloted in an 

operational context will be discussed. A simple example is provided to illustrate 

some of the concepts and to provide a focus for discussion.  

The material covered in the different sections varies in a number of ways. 

First, the examples selected consider different units of analysis. In the initial 

section, the research discussed concerns a micro-level analysis of an 

intervention implemented at the individual household level.  In the second and 

third, the discussion moves to the evaluation of area-based interventions, and in 

the final section, the example considered focuses on more general policies that 

may have no specific geographical boundaries.  

Second, the computational methods considered are quite different. I start with 

a simple example similar to the types of methods with which most readers will be 

familiar and that can be applied right now. The discussion then moves to 

methods of simulation that are yet to be used in the evaluation of interventions, 

or in the testing of crime prevention models but that with a little work could be 

used at this time. I conclude with a discussion of simulation methods that could 

possibly be used in the future but that require considerable development before 

that possibility becomes a reality. To make the chapter as accessible as possible, 

the use of equations and technical vocabulary is avoided where possible.  

 
1. ESTIMATING THE IMPACT AND SUSTAINABILITY OF INTERVENTION 

 
The first example considers how one might evaluate the impact on domestic 

burglary risk of a traditional target hardening scheme, where individual 

households (rather than areas) most at risk of victimisation are targeted for 

intervention. This particular example is used to illustrate a series of issues 

associated with this type of evaluation and how the flexibility afforded by 
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computational methods can help reduce threats to internal validity (i.e., rule out 

other explanations for observed changes). 

This type of situational crime prevention intervention usually involves the 

upgrading of physical security measures at households with identified 

vulnerabilities (e.g., Forrester et al., 1988). Implementation strategies for this type 

of intervention vary. For example, individual household surveys may be 

conducted within high crime neighbourhoods to identify homes with inadequate 

physical security features which may be vulnerable to victimisation.  Alternatively, 

vulnerability may be identified through an analysis of recorded crime data; 

research consistently demonstrates that prior victimisation is an excellent 

predictor of future risk (e.g., Budd, 1999) and thus the prevention of repeat 

victimisation may represent an efficient burglary reduction strategy (e.g., Farrell, 

2005; Pease,1998). In the example discussed below, I consider how one might 

evaluate an intervention for which the latter strategy is adopted, but this will be 

discussed only so far as it serves current purposes. A full discussion of the data 

used and the implications of the findings of this type of evaluation are provided 

elsewhere (Bowers, Lab and Johnson, 2008) and so only the main points will be 

covered here. 

Approaches to Evaluation 

If implemented in a particular area, one approach to evaluation would be to 

examine changes observed at the area level using an experimental or quasi-

experimental design. For both types of design, the counterfactual – what is likely 

to have happened in the absence of intervention – is estimated by contrasting the 

crime rates before and after intervention for a treatment and control group, the 

latter being matched as closely as possible with the former (for an overview of 

evaluation methods, see Campbell and Stanley, 1963). Where the change 

observed for the treatment group is preferable to and different from that 

experienced by the control group by a meaningful amount, the intervention is 

deemed to have been a success. Some form of statistical significance testing is 
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also typically used to establish whether the size of the effect could have occurred 

on a chance basis, or is more likely to be attributable to intervention. 

Experimental designs allocate target units (people, places or whatever is 

being studied) randomly to treatment and control groups. This approach is 

generally preferred because as well as producing matched samples,1 it 

eliminates any selection bias2 that might result from the use of other allocation 

strategies (Campbell and Stanley, 1963; Shadish et al., 2002). However, when 

an intervention is implemented in only one or two areas – which is often the case 

for new types of intervention – (complete) randomization may not produce 

adequately matched samples. In such cases, either block randomisation3 or a 

quasi-experimental design – whereby the control group is selected because of its 

similarity to the treatment group in as many respects as possible apart from the 

assignment to the treatment condition (for a further discussion, see the chapter 

by Henry in this volume) – will be more appropriate. 

While this may seem fitting, for an intervention such as target hardening, 

attempting to estimate the effect of intervention at the area level would be 

insensitive to the unit of analysis at which implementation occurs. This is so for at 

least two reasons. First, how does the evaluator define what the geographic area 

of intervention actually is? One approach would be to use an existing 

administrative boundary (such as a police beat) which generally encapsulated 

the area of interest. Even better, a bespoke boundary could be generated using a 

Geographical Information System (GIS). However, in both cases modifying the 

boundary used could lead to different results. Referred to as the Modifiable Areal 

Unit Problem (MAUP; Openshaw, 1984), this is a well documented problem 

which occurs when data are aggregated at the area level. 

                                                
1 Matched samples may not be generated using random allocation where the sample sizes are small or 
where the population is non-homogenous. 
2 Where a selection bias exists, the treatment effect may be confounded with the allocation strategy 
employed. 
3 Block randomisation is a two-stage process.  In the first stage, pairs of candidates (e.g. areas for 
intervention) are identified that are matched on a range of variables that might influence the dependent 
variable.  In the second stage, one member of each pair is randomly allocated to the treatment condition.  
For an example in a criminological context, see Braga and Bond, 2008. 
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Second, unless all homes receive intervention, the evaluation design will 

be insensitive to expected variation in the change in crime risk to homes that do 

and do not receive intervention. That is, if measured at the area level, any 

observable effect of intervention may be diluted as the effect will be measured 

using data aggregated across two different populations (those that did and did 

not receive treatment) with different expected outcomes. The extent to which this 

is a problem will, of course, depend on the dosage of intervention; being more of 

a problem when relatively few homes receive the intervention. In any event, by 

not taking account of this, even for an intervention that actually works, the 

evaluator may underestimate the size of the effect of intervention or make a type 

II statistical error by assuming that there was no effect where in fact this was 

simply lost in the aggregation. 

Aggregation of the kind discussed also applies to the dimension of time. In 

the current context, a simple but generally invalid assumption would be that all 

homes in receipt of intervention were treated on the same day (e.g., the first day 

of the “after period”). Rarely will this be the case, and implementation may take 

weeks or even years to complete. However, for the standard before and after 

design discussed above, the evaluator essentially makes this assumption as 

crime rates are aggregated for the periods before and after intervention and the 

effect of intervention is estimated by dividing one by the other.4 Assuming that 

the effect of intervention is cumulative, such a design is likely to underestimate 

any treatment effect. 

Additionally, such analysis provides no indication of the longevity of the effect of 

intervention. Understanding the sustainability of an intervention’s effect is 

important for at least two reasons. First, from a cost effectiveness perspective, 

the best interventions are those that have a lasting impact on crime. Second, if 

the probable lifetime of an intervention effect is known, then crime reduction 

                                                
4 Time series analyses (e.g. Bowers et al., 2005) do not suffer from this problem.  However, such analysis 
will only be appropriate where data are available for an interval of time which allows adequate diagnosis of 
ARIMA model parameters and where the volume of crime per unit time satisfies basic requirements.  For 
example, it would be inappropriate to analyse time series data for a small area for which many of the 
observations (e.g. monthly crime counts) were zero values (a statistical floor effect).   
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agencies can plan accordingly, timetabling further activity to reinforce 

intervention.  
Survival Analysis 

An alternative method would be to see how the risk of crime varies for homes 

that do and do not receive the treatment before and after intervention. If the 

intervention is successful then relative to those that do not receive it (the control 

group), the burglary rate for the treatment group should reduce over time. 

However, while this approach would deal with the problem of spatial aggregation 

discussed, it would not address the temporal aggregation problem. 

A different approach that could be used, and one that is used frequently in 

research concerned with recidivism (e.g., Visher and Linster, 1990), is survival 

analysis. For this type of analysis, the question of interest concerns the typical 

time to failure, however defined. In the context of studies of recidivism, this is the 

elapsed time between the start of a rehabilitation programme (for example) and 

the first offence committed following the start of treatment. For a situational crime 

prevention intervention, this would be the elapsed time between the treatment 

and the first victimisation post-intervention. A problem may arise with this type of 

analysis when the evaluation period covers an insufficient interval of time to allow 

the time to failure to be identified for all experimental units. For example, 

consider a household that received an intervention just before the end of the 

evaluation period. In this case, the likelihood of estimating the true survival time 

for that home would be low as the data set would essentially be truncated. 

However, as this problem of what is known as censoring is well understood 

(Tabachnick and Fidell, 2001) and can be corrected for it will be discussed no 

further here. 

The usual approach taken to analysis is to compute a survival distribution 

(presented as a curve) for those in receipt of treatment and to compare this with 

those for a suitably matched control group, controlling for the problem of 

censoring discussed above. In the case of offender rehabilitation, assignment to 

conditions can often (though not always) be achieved using random allocation. 

For other types of intervention, random allocation to treatment and control groups 
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is not always possible or even appropriate (for a general discussion, see 

Sherman, 2007), and hence an alternative matching procedure will be required. 

Despite its popularity in the evaluation of medical treatments and offender 

based programs, hitherto survival analysis has not been used for the evaluation 

of situational crime prevention measures and so an example of how this method 

could be used for this type of intervention will be presented along with a 

discussion of how a suitable control group might be constructed when random 

allocation is not possible. 

Monte Carlo Simulation  
As discussed, in the case of survival analysis, the approach to analysis is very 

similar to the experimental logic discussed at the beginning of this section. 

Survival curves, which show the cumulative percentage of households 

unvictimised per unit of elapsed time, are computed for both the treatment and 

control groups and the patterns compared. To identify a control group, the basic 

approach would be to describe the treatment group and identify a control group 

which comprises a set of homes with similar characteristics.  

However, for the example discussed here it is possible that for some 

homes subject to intervention, there will be more than one household that could 

serve as a control, meaning that the sample sizes would vary across groups if all 

possible controls were used in the analysis. This may not be problem and one 

could include all of the potential control households in the analysis. However, as 

there may be more potential control households for some homes than others, this 

could lead to a control group for which the overall profile is quite dissimilar to that 

for the treatment group. The implications of such an aggregation effect for causal 

inference should require no articulation. 

An alternative approach would be to pick a random sample of control 

households from those available, one for each home in receipt of treatment. The 

survival curves for the two groups could then be compared and the statistical 

significance of any differences tested in the usual way. However, the problem 

with this approach is that any differences observed could be due to the control 

sample selected: a control sample selection effect.  
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A different solution is to use a Monte Carlo (MC) re-sampling technique. 

Here, rather than selecting one control group, a sample of control groups – with 

each home matched with a treatment household on a one-to-one basis – may be 

drawn from all permutations possible. For each sample selected, a comparison 

can be made with the results for the treatment group. Where a large number of 

samples are drawn (say 99), the average survival curve may be computed along 

with the standard error. The statistical significance of any observed differences 

can also be easily estimated, either using the standard errors computed, or more 

directly by counting for how many of the control samples the survival curve 

exceeds that for the treatment group (see North, 2002).  

An Empirical Example 

To illustrate the approach in a more concrete way, the results presented in a 

recent paper are summarised (Bowers et al., 2008) here. In that study, the 

effectiveness of the target hardening of individual households was examined for 

one area on Merseyside (U.K.). The treatment group consisted of 318 

households for which intervention had been triggered as a consequence of 

victimisation experience. 

The data available for analysis included the following: 

 

a) The location of all homes within the area that had received target 

hardening (see Bowers et al., 2008); 

b) recorded burglary data for a six year interval; and, 

c) Ordnance Survey (OS) data that indicated the address points of every 

house in the area. 

 

Software was written to identify every home within the area (of which there were 

71,500) that did not receive the intervention but that had a similar victimisation 

profile to those that did. In so doing, the potential problem of regression to the 

mean (RTM) was reduced (see Campbell and Stanley, 1963). To elaborate, the 

problem of RTM would occur if homes were assigned to the treatment condition 

on the basis of an extreme score on a variable (e.g., the number of victimisations 
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experienced in the recent past) that was atypical for that household. The issue is 

that even in the absence of intervention, over time the risk to such homes would 

be expected to regress back to the “normal” level generally experienced by them. 

Where such homes are allocated to the treatment group this may create the 

illusion of a treatment effect. However, for the current methodology, as homes 

were matched on the very variables that could lead to RTM being mistaken for 

something more than it is, the patterns observed for both groups are equally 

likely to be caused by RTM. Thus, any difference observed between groups 

should be attributable to an intervention effect (or at the very least something 

other than RTM). 

On average, for each treatment household, there were around 97 homes 

that fitted the criteria applied, meaning that a large number of control groups 

could be identified. A MC simulation was used to (re)sample from the universe of 

control groups possible, and a distribution of survival curves generated.  Figure 1 

shows the results of the analysis and indicates that relative to the control 

group(s), homes that received target hardening were typically less likely to be 

victimised for a period of around two years. The dotted lines shown in Figure 1 

show the 5th and 95th percentiles of the MC simulation. Where the observed 

values exceed the upper dotted line, this indicates that the treatment group 

exceeded chance expectation for that point in time. The maximum value on the 

x-axis is 150 weeks which represents the maximum interval of time for which any 

of the households were protected by target hardening for the period of time for 

which data were available. 

For the current analysis, the results show that the difference in the survival 

curves was statistically significant for a period of about 18 months. Thereafter, 

the proportion of homes victimised was roughly equivalent between groups. 

Thus, for these data at least, target hardening appears to have an immediate 

crime reductive effect that was sustained for around two years.  

 

INSERT FIGURE 1 ABOUT HERE 

Observations and Limitations 
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Re-sampling from all households using a computational approach and recorded 

crime data has the clear advantage that unlike other research designs that use 

surveys, the time frame for analysis need not be limited; analyses can be 

conducted using as many or as few homes as necessary; construction of the 

control sample is inexpensive; and, the criteria used to identify the control 

group(s) can be varied in as many ways as the data permit. Thus, the researcher 

can ask whether the result obtained is likely to be statistically significant for 

control groups configured in different ways. In the current example, only simple 

criteria were used but other specifications are possible. Such flexibility would be 

impossible to achieve without intensive computation for anything other than very 

small sample sizes, and data collection would be expensive where surveys were 

required. 

However, it is important to note that the approach will only be as good as 

the data available. For example, one disadvantage with the data used above is 

that only limited information was available about each home. For those 

victimised, information may be available regarding the type of home, who owns it 

(and so on), but such data are unlikely to be found in police data for the 

remainder of the population. This may pose a problem if one wishes to match 

households (treatment and controls) on a range of characteristics that may be 

observable to the would-be offender.  

It is possible that this issue may be minimised by using alternative data 

such as those collected as part of a government census. For example, in the UK, 

although unavailable at the individual household level, data are available at a 

fairly high level of resolution, the most precise being the census Output Area 

(OA). Each OA contains around 125 homes, and areas are defined to maximise 

within area homogeneity; that is, as far as possible the geographical boundaries 

derived delineate areas that maximise the likelihood that similar people live within 

the same OAs. Thus, although this would not completely resolve the issue, using 

the OA geography it would be possible to estimate the probability that any 

particular household shared characteristics with those with which they are to be 

matched.  
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As further issue that re-sampling does not entirely resolve is that of 

selection bias and the related omitted variable problem. For example, in the 

current example it is possible that there was something systematically different 

about those homes that did and did not receive treatment, but that this was not 

apparent from the available data. It may be that this difference explains the 

variation in the survival curves. This is difficult to overcome in the absence of 

random allocation or where the data required to more precisely match the two 

groups – treatment and control – are unavailable. Where more extensive data 

are available it would be possible to refine the procedure using the propensity 

score matching approach to sample construction. The aim of the approach would 

be to ensure that the homes in the two conditions would both be equally likely to 

have been assigned to the treatment group based on the inclusion criteria 

adopted (for more details, see the chapter by Henry in this volume). In this case, 

any observed differences between groups could be attributed to the intervention 

with increased confidence. 

For these reasons, the results generated by techniques such as that 

described should be interpreted in a sensitive way and used in studies that are 

carefully designed to minimise as many threats to internal validity as possible. 

However, it is also important to recapitulate the advantage of using a re-sampling 

methodology and how this can help to minimise bias. First, as the construction of 

the control groups is iterative, any observed effects are unlikely to be attributable 

to peculiarities in the samples identified. Second, as this approach to hypothesis 

testing enables p-values to be calculated directly using the re-sampling 

methodology, the data need not conform to a particular statistical distribution, 

which is a requirement of most statistical tests. Finally, as the approach 

essentially involves the use of many control groups, there is no risk of making 

errors of inference that could arise from using only one control group. Consider 

that if one control group were selected from all those possible, the conclusions 

drawn would be affected by this selection. If the control group used represented 

an extreme case (e.g., if it was below the 5th percentile of MC Simulation) and 

standard statistical tests were used this would lead to an error of inference. 
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2. ESTIMATING THE IMPACT OF INTERVENTION AT THE AREA LEVEL 
 
There are at least three types of policy question for which computer simulation 

may be useful. First, simulation may be used to estimate what patterns of crime 

would be expected in a given area (or for a given population) in the absence of 

intervention. These estimates may then be compared to patterns observed to 

determine if an intervention is likely to have had any effect. Second, simulation 

may be used as a tool for testing the likely effects of an intervention for a range 

of implementation scenarios in which the timing and intensity of activity is varied. 

Third, simulation may be used to systematically test theoretical models of 

interventions before expensive field trials are conducted. In this section the first 

possibility will be discussed, while the others will be considered in subsequent 

sections. 

Before continuing it is worth outlining some of the main differences 

between simulation as method and more traditional approaches. Many analytic 

approaches to theory testing employ a top-down methodology; patterns are 

observed in the real world and the data generating processes or mechanisms for 

them inferred. Using simulation, a bottom-up approach is adopted. That is, a data 

generating process is specified a-priori and the simulated phenomena that 

emerge (e.g., simulated patterns of crime) observed. Put another way, a 

computer simulation is an implementation of a theory. Thus, much like a thought 

experiment, one can ask simple “what if” questions under conditions where 

variables of interest can be manipulated and their effects – along with those of 

chance – assessed.  

A range of simulation methodologies exist (for a general review, see 

Gilbert and Troitzsch, 2003) and some of these have already been applied to the 

study of crime (for a review, see Alimadad et al., 2008; and for a collection of 

examples, Liu and Eck, 2008; Groff and Mazzerole, 2008). For example, 

McAllister et al. (1991) use a Queing simulation model to examine case 

processing within the court system in the US and estimate the impact of policy 



14 
 

changes on the efficiency of the system. Johnson (2008) uses microanalyitcal-

simulation to test theories of crime concentration. A number of researchers (e.g., 

Groff, 2007a; Birks et al., 2008) have used agent-based models to examine 

routine activity theory (Cohen and Felson, 1979) and the effects of police patrols 

on offender activity (e.g., Dray et al., 2008). However, before getting too excited 

about advanced methods of simulation, I will discuss a simple example that uses 

microanalytical-simulation.  

 

INSERT BOX 1 ABOUT HERE 

Estimating the Counterfactual 
Techniques for estimating the statistical significance of experimental 

manipulations conducted in the laboratory (or medical trials) are quite simple. In 

the simplest case, a group of people may be randomly assigned to one of two 

different conditions (experimental and control), and their performance on a test 

observed. As already discussed, random allocation to conditions will generally 

lead to the formation of two groups with similar characteristics. This minimises 

the problem of selection bias, meaning that the results obtained are unlikely to be 

due to the way in which participants were allocated to conditions.  

The types of statistical tests used to determine whether between group 

differences observed are meaningful generally involve the estimation and 

consideration of the standard error of the sample means. The larger the sample 

sizes, the more reliable the estimates. The difficulties of using this paradigm and 

these types of statistical test in studies of crime prevention implemented at the 

area- (rather than person or household-) level are numerous, but three of the 

main points are listed below: 

 

• The randomization of allocation of areas to conditions will rarely be 

possible or, given the highly skewed distribution of crime risk (e.g., 

Sherman, 2007)  and the variation in context across locations (e.g., Tilley, 

1993), even appropriate.  

 



15 
 

• Many studies involve only one treatment and control group and these will 

often be implemented across geographic areas (e.g., studies of street 

lighting) rather than targeting particular individuals or buildings. 

 
• And, for problem-oriented policing projects, the crime reduction strategy 

should be designed to interfere with the specific conditions that facilitate 

crime in the area selected for intervention. It is assumed that these 

conditions will vary across locations and so the same solution would not 

be expected to work across all or any conditions. Thus, for problem-

oriented projects, the random allocation of areas to conditions would be 

incongruent with the philosophy of the approach. 

 

A number of alternative approaches have thus been used for the evaluation of 

area-based interventions (Ekblom and Pease, 1995; Johnson et al., 2004; for a 

classic overview, see Campbell and Stanley, 1963). For most, the basic 

assumption is that the crime rate in an area post-intervention will be a function of 

the crime rate before intervention multiplied by a coefficient of expected change 

plus some degree of chance fluctuation. The expected change is usually 

estimated by examining observed changes in similar areas (e.g., Farrington and 

Welsh, 2006), or the wider area within which the intervention area is located. The 

statistical significance of a result obtained is then estimated by computing a 

standard error for the estimate derived. Thus, where a change is observed in an 

intervention area, the evaluator attempts to rule out threats to internal validity 

(alternative explanations) for the change by seeing how things changed in similar 

areas not subject to intervention. Where the change in the intervention area 

exceeds those in other areas by a substantial amount, the change observed may 

be attributed to the intervention with more confidence.  

In addition, if the evaluator wants to understand how the intervention may 

(or may not) have worked, and to strengthen conclusion validity, he will usually 

want to identify the likely crime reduction mechanisms (see Pawson and Tilley, 

1997) through which the intervention could have worked and, through the 
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collection of the relevant data regarding intermediate outcomes (e.g., change in 

the number of residents that have noticed new street lighting), see if these 

mechanisms were triggered. Where they are not, causal inferences will be 

challenged or at the very least the mechanisms through which the intervention 

may have had an impact will need to be revised. The importance of conducting 

such hypothesis testing and identifying signatures that bespeak mechanism is 

difficult to overstate (for a detailed discussion, see Pawson and Tilley, 1997 and 

the chapter by Eck and Madenson in this volume), but for reasons of space will 

not be discussed further here. 

Returning to the estimation of the impact of intervention, using the basic 

logic discussed above, one simple statistic that may be calculated is the odds 

ratio (see Farrington and Welsh, 2004). This is computed by comparing the ratio 

of change (before versus after) in an intervention area to that in a comparator. An 

odds ratio of 1 so derived would indicate that the changes observed were 

equivalent across areas. A value above one would indicate a reduction in the 

treatment area relative to that observed in the comparator. The standard error of 

the estimate is computed by assuming that the number of crimes in an area 

conforms to a Poisson distribution, and hence that the variance will be equal to 

the mean.  A potential problem with this approach is that Poisson models are 

susceptible to the problem of overdispersion whereby estimates so computed 

may underestimate the variability observed in the real world (e.g., see Agresti, 

2002).  

Reasons for simple Poisson models underestimating variability relate to 

the fact that they do not model all of the processes likely to affect the dependent 

variable. The assumption of independence of events is potentially problematic 

(see Marchant, 2005; but see Farrington and Welsh, 2004). For example, 

research demonstrates a dependency in the timing and location of crime events 

such as burglary (Townsley et al.,2003; Johnson and Bowers, 2004ab; Bowers 

and Johnson, 2005; Johnson et al., 2007), vehicle crime (Johnson et al., 2008) 

and gun crime (Ratcliffe and Rengert, 2007). Theoretical (e.g., Johnson and 

Bowers, 2004b) and empirical work (Bernasco, 2008; Johnson et al., 2008) 
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suggests that the reason crimes cluster in space and time in this way, and do so 

more than would be expected on the basis of area-level variation in risk, is that 

the patterns observed reflect the use of optimal foraging strategies by offenders. 

Simply put, analyses of crimes detected by the police (Bernasco, 2008; Johnson 

et al., 2008) demonstrate that having victimized one home, offenders often target 

the same home again and others nearby within a short space of time. There is 

dependency in the data. 

A potential advantage of microanalytical-simulation over standard 

statistical methods is that space-time processes (where they are known to the 

researcher and can be formally expressed) can be incorporated into the models 

enabling their effects on the dependent variable to be estimated. The need to do 

this was actually discussed some time ago by Barr and Pease (1992) who 

highlighted the importance of understanding and taking into account normal 

patterns of crime placement in evaluation research. However, as far as I am 

aware, such models have not been developed or discussed in any detail hitherto. 

 

An Earlier Experiment Conducted Using Microanalytical-Simulation  
 

To illustrate how this might be done, an example of a microanalytical-simulation 

model will be discussed and the results of a simulation experiment presented. 

The model was originally developed (see Johnson, 2008) for the purposes of 

theory testing and falsification, with a focus on patterns of repeat burglary 

victimisation. Over three decades of research demonstrate that prior victimisation 

is an excellent predictor of future risk for all crime types so far studied (for 

reviews, see Pease, 1998; Farrell, 2005). However, while the ubiquity of such 

findings is largely uncontested, debate still exists regarding the theoretical 

mechanisms that generate the phenomenon. Some argue that patterns of repeat 

victimisation may be explained by enduring heterogeneity of crime risk across 

homes; some homes are simply more vulnerable than others and consequently 

are repeatedly victimised. Others (e.g., Pease, 1998) suggest that a first offence 

increases the probability of future victimisation, either because the victim’s 
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behaviour changes in response to the first offence, or because the offender’s 

newly acquired knowledge of that home increases the attractiveness of it relative 

to those that remain unknown. 

I will not rehearse the findings of the substantial research literature 

concerned with repeat victimisation any further, but instead discuss how the 

model was developed to test the two theories, and how it could be used for the 

purposes of estimating the counterfactual. In the earlier study, patterns of crime 

were simulated for a virtual population of homes under a range of conditions. The 

central question was whether patterns of repeat victimization as observed in the 

real world could be generated by a microanalytical-simulation where the risk to 

individual homes was the product of time-stable risk factors and the roll of a 

virtual dice, or whether a further mechanism was required.  

To test the first question, every home in the simulation, generated using 

point data for a whole county in the U.K., was allocated a particular risk of 

victimization. The latter was estimated using police recorded burglary data for a 

period of four years. Over a simulated interval of four years, on each virtual day 

some homes were selected as burglary victims while others were not. The 

selection of which homes were victimized each day was determined by the risk 

allocated to each home and the output of a uniform random number generator 

(RNG). Homes with the highest risks were selected more frequently than those 

with the lowest, but the model was not deterministic and as would be expected 

the results varied across runs.  

In addition to modeling time-stable risks, an element of what I will refer to 

(for the sake of simplicity) as “contagion”5 was included in some of the models 

whereby the probability of victimization at each home increased as a function of 

the (virtual) burglaries experienced at that home. In addition to modeling these 

factors, seasonality was included in the models by varying the risk of crime 

according to the variation observed in the police recorded crime data.  

                                                
5 There is no suggestion here that changes in the risk of victimisation are likely to be the 
consequence of a biological or similar mechanism. The simile is merely useful as a mental 
shortcut. 
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More precise details of the model and the procedures used will not be 

discussed here (see, Johnson, 2008), but it is worth noting that the risk to each 

home was estimated using the police recorded crime data and the U.K.OA 

census geography discussed above. Other methods of deriving the estimates of 

risk exist, and the use of a particular method may, of course, affect any results 

generated. In this case, the most significant threat to ecological validity is the 

Modifiable Areal Unit Problem (Openshaw, 1984), whereby changing the 

boundaries used in the analysis may affect the estimates derived (for a 

discussion of other issues, see Johnson, 2008). 

Model Validation 

An important aspect of simulation research concerns model validation. Townsley 

and Johnson (2008) discuss a framework for analysis which draws upon the 

validity typology conceived by Campbell (1957).  A lengthy discussion will be 

avoided here, but some of the questions to be asked include whether constructs 

formalized as part of the model accurately reflect the intended definition; if 

threats to internal validity could have evolved from coding or other errors; and 

whether the results approximate those in the real world (empirical validity). 

Threats to validity are likely to increase with the complexity of the simulation.  

In the case of the Johnson (2008) study, the model was very simple and so only 

the results generated will be discussed. Simply put, these suggested that whilst 

area-level crime rates explain some of the variance in crime concentration at the 

household level, they far from exhaust it. Indeed, only when an element of 

contagion was introduced did the models generate patterns of victimization that 

resemble those to be found in police data. A particularly important finding was 

that time-stable population heterogeneity failed to explain the ubiquitous time 

course of repeat victimization whereby the risk of revictimization decays 

exponentially with elapsed time (e.g., Polvi et al., 1991). 

For those particularly interested in this type of simulation and how varying 

the model parameters may affect the results, a variant of it was produced for this 

chapter. The model was developed in the NetLogo programming language 

(Wilensky, 1999) which is a cross-platform multi-agent programmable modeling 
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environment which readers can download (http://ccl.northwestern.edu/netlogo/) 

free of charge.6  

Using Microanalytical-Simulation to Estimate the Counterfactual 
If computer simulations can be developed that represent reasonable 

approximations of how patterns of crime vary in the absence of particular 

interventions, then such models could be used to estimate the counterfactual. To 

illustrate, the model described above was here used to explore the potential 

effects of the space-time dependency of crime placement on the estimation of 

the counterfactual. To do this, a geographic area was selected from the virtual 

world at random, and estimates of the volume of crime expected in it generated 

for a fictional one year period. The area selected, shown as Figure 2, had a total 

of 5,583 homes within it.  

INSERT FIGURE 2 ABOUT HERE 

Estimates of the expected volume of crime in the selected area and the 

associated variance were computed for three conditions, as follows: 

1) Where the occurrence of crime at each home depended only on an 

estimate of time-stable risk at the neighbourhood level for a notional pre-

intervention period. The period used to calibrate the model was the same 

four-year interval used by Johnson (2008). 

 

2) As per model #1, but with a contagious repeat victimisation process; the 

risk of victimisation at each victimised home was elevated by a factor of 5 

for a period of 1-16 weeks (selected using a uniform RNG). The 

contribution of time-stable area-level variation in risk was scaled to ensure 

that the mean count was equal to that for model #1. 

 

                                                
6 To use the model, the reader should first open the NetLogo program. Once running, the user 

can load the simulation model using the File command. Details of what the simulation does and 

how to use it can be found in the “information” tab.  The simulation model may be downloaded 

from: http://www.jdi.ucl.ac.uk/british_academy_network/history/index.php 
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3) And, as per model #2, but with the inclusion of a more general space-time 

process, whereby the risk to homes within 50 meters of previously 

victimised locations was temporarily elevated by a factor of 1.1 and for 

those within 50-100m, by 1.05. As with model 2) the elevation in risk was 

temporary. 

 

For each model, the simulation was run 100 times. For the purposes of 

illustration, hotspot maps produced from the data generated by the first two 

realisations of model #3 (for the wider area within which the study area was 

located) are shown in Figure 3. It should be evident that similarities exist between 

the two maps but the precise patterns vary. As the patterns are generated for a 

fictional period, differences in the patterns observed reflect only the effects of the 

data generating processes specified, nothing more.  

 

INSERT FIGURE 3 ABOUT HERE 

 

Table 1 shows the average volume of crime for the study area for each 

model. The results indicate that the variance of the estimates is a function of the 

processes modelled. This suggests that modelling the factors which influence 

crime placement is important in the evaluation of crime prevention schemes. 

Failing to do so will mean that the expected variance will be underestimated and 

errors of inference will be more likely. A further advantage of using simple 

simulation models is that where hypotheses are tested, p-values can be 

calculated directly without the use of statistical tables, meaning that there is no 

requirement that the data fit a particular distribution (see above). 

  

INSERT TABLE 1 ABOUT HERE 

 

In addition to estimating the direct effect of intervention, a simulation of this kind 

could be used to estimate the extent of any geographic displacement or diffusion 

of benefit (see Eck, 1993) that may have occurred. The advantage of so doing is 
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that where Space-Time processes are modeled, these would be less likely to be 

mistaken for spatial displacement, or target switch. 

A final benefit of using simulation in this context is that the possible 

influences of other changes that may occur at the area-level can be modelled. 

For example, it is possible that during an intervention period the population at risk 

may change. New homes may be built or old ones demolished. This too can be 

modelled by adding or removing homes from the simulation. It is also possible 

that the residential population may change in a way that might be expected to 

affect area-level crime rates. For instance, over the period of intervention, the 

population of residents aged 13-17 years – the peak age in offending (Farrington 

et al., 2006) – may increase. The model could be calibrated to estimate the effect 

of this, but with the understanding that results obtained would be dependent 

upon the assumptions made. Other possibilities exist. 

Before getting too excited, a note of caution is necessary. In the above 

examples, models (2) and (3) were a combination of a mixed Poisson and space-

time process. Before these types of model can be used for the purposes of 

evaluation, we need to better understand the influence of the two processes on 

area- (and individual household-) level crime rates. What should the contribution 

of each process be?  Does this vary by area? How do we calibrate the models?  

These are questions that require answers. At the very least, the use of the 

simulation model highlights the need to identify the relevant parameter values 

and how these might be modeled and validated. Again this requirement of 

specificity is a benefit of simulation in that it helps to inform the agenda for basic 

research and understanding.  

It is worth noting that for the models tested, the difference in the variance 

observed across the models tested is perhaps not as dramatic as one might 

expect. It may be that this is will not be true for other models in which the Space-

Time (or other) processes are more accentuated (or other factors modelled), but 

one interpretation of this finding is that simple approaches such as the odds ratio 

method (particularly where conservative estimates are used, e.g., Farrington and 

Welsh, 2006) may not be as problematic as has been suggested (Marchant, 
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2005). It is beyond the scope (and aim) of this chapter to explore this further, but 

this could be investigated more systematically using simulation models. 

 

3. EXAMINING THE LIKELY EFFECTS OF DIFFERENT IMPLEMENTATION 
STRATEGIES 

A second type of question that the above simulation may be useful in helping to 

address concerns the dosage of an intervention and the timing of implementation 

required to deliver a desired effect.  Consider a scenario where an intervention 

has been selected for implementation and there is a desire to achieve a 

particular reduction in crime by a given date. Simulation might be used to help 

determine whether this degree of reduction is plausible and to determine what 

model of implementation would be required to achieve it.  

For a burglary reduction intervention, some of the factors that will 

influence the impact on crime are the effect of the intervention at the individual 

household level and the dosage of implementation; the more homes that are 

treated the greater the expected effect (e.g., Ekblom et al., 1996). Simulation 

may be used to model different scenarios for a variety of assumptions. For 

example, if we believe that an intervention will reduce the risk of crime by 20% 

(or within some range of it) for those in receipt of treatment then this effect can 

be modelled for different levels of implementation, and the effect on area-level 

crime rates observed.  

Implementation can vary in ways other than dosage. For example, homes 

could be selected for intervention randomly, or those with the highest risks could 

be given priority; implementation could be done relatively abruptly within a short 

space of time, or it could be more gradual, taking months or even years to 

complete. Simulations could be used to examine the potential impact on crime of 

a range of models of implementation. Assumptions would need to be made, but 

across a series of runs, parameters of the model could be varied to examine the 

effect of intervention for different sets of assumptions.  

To illustrate the potential use of this method, two simulation experiments 

were conducted. In the first, the dosage of intervention was varied and, in the 
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second, the timing of intervention considered.  For both experiments, as the aim 

was one of illustration alone, the simplest model of crime placement discussed 

above (model 1) was used as a baseline model. 

Modeling the Effect of Varying the Dosage of Intervention 

In the first simulation experiment, different fractions of homes located within the 

area used above were selected for intervention on the first day of the simulation. 

Two different levels of dosage are considered: 50 and 100%. Where the dosage 

is 50%, two different models of allocation were used to identify homes that 

received the “intervention.” In the first, homes with the highest “pre-intervention” 

risk were selected. In the second, those with the lowest risks were chosen.  

At the individual household level, for the sake of simplicity the intervention 

is assumed to reduce the risk of crime to those selected by a factor of 50%. 

Varying this parameter will, of course, affect the results considerably and it is 

possible that in the real world the effect of intervention (or even the precise 

intervention implemented) will vary across homes. However, for simplicity a fixed 

effect is assumed. 

Table 2 shows the results observed across 20 runs of the simulation. The 

first column shows the average effect of changing the risk to a given fraction of 

homes by 50%. This is derived by dividing the average count of crime in the 

treatment area for the intervention model by that for the baseline model (for 

which the effect of intervention is excluded). The second column shows the worst 

case scenario. To calculate this, the maximum count of crime generated for the 

intervention model is divided by the mean for the baseline model. This is not 

strictly the worst case scenario of course.7 The final column shows the best case 

scenario for which the lowest count of crime for the intervention model is 

compared with the mean count of crime for the baseline model.  

Thus, where 100% of homes are selected for intervention this reduces the 

risk to them by 50%. The results of the simulation suggest that average effect of 
                                                
7 We could divide the highest count of crime for the treatment area by the lowest count for the 
baseline model. However, the mean represents what would be typically expected in the absence 
of intervention and is thus the denominator used here. For the estimation of the treatment effect, 
in reality time only flows one way and so we will observe only one outcome.  For this reason, I 
use the highest and lowest estimates in this case (there will actually be no average in reality). 
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so doing is a reduction in crime of around 49%.8 However, when we take account 

of random fluctuation (excluding Space-Time processes), the results suggest that 

the effect measured could actually vary between 38-63%. Thus, on the basis of 

the simulation results, it is plausible that in the real world if the risk to homes was 

actually reduced by 50%, the effect observed could be as low as 38%, or as high 

as 63%.  

The minimum and maximum effect sizes vary considerably, particularly 

when only 50% of homes are selected for intervention. This is due to the fact that 

there is considerable variation in risk across the area. Thus, if a practitioner were 

to assume that randomly selecting homes for intervention was as good a strategy 

as any, he would commit the ecological fallacy (e.g., Bowers et al., 2005) by 

assuming that all homes within the area experience the same risk of 

victimization. If the assumptions of the model tested are correct, the outcome of 

such a strategy would be a smaller reduction than could be achieved, and in the 

worst case, no effect at all. 

INSERT TABLE 2 ABOUT HERE 

Estimating the Effect of Using Different Implementation Timelines 
 
In the second experiment, the dosage of intervention is held constant at 50% 

across simulations, but the timing of intervention varied. For the first model, the 

simulated implementation phase was abrupt with all homes being treated on day 

1. The results for this model are the same as those shown in row 1 of Table 2. 

For the second model, the rate of implementation was decreased to 17 homes 

per day, which generated an implementation period of one year. 

Unsurprisingly, the results shown in Table 2 indicate that a smaller crime 

reductive effect is likely to be observed in the one year period when a gradual 

implementation schedule is used. Of course, the value of the simulation 

approach is that it can provide an idea of exactly what the effect of intervention 

might be for a range of different implementation schedules (and assumptions).  A 

                                                
8 This is an estimate of the mean effect, generated over 20 simulations. The true value of 50% 
would be observed if a larger number of simulation runs was used. 
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simulation of this kind could also be used to estimate how many homes would 

need to be treated if an effect of X% was required, but only one particular 

implementation schedule possible (e.g., gradual implementation). 

This general approach could also be used to try to better understand the 

impact of an intervention where an observable effect is produced. For example, if 

an intervention is believed to reduce crime, and the timing and dosage of 

intervention are known, then the parameters of a simulation model could be 

tuned using this information and the other parameters of the model (e.g., the size 

and sustainability of the effect, possible diffusion of benefit and so on) varied until 

the model produced results similar to those observed at the area level in the real 

world. If the results of the model approximate (or do not) those observed, this 

could help the evaluator test a range of hypotheses. 

Additionally, simulation models might be produced to generate 

“signatures” that bespeak mechanism so that the emergent patterns could be 

looked for in real world data. For example, instead of assuming that the effect of 

intervention is permanent, models could be produced to estimate the effect of 

intervention where the effect decays over time. Models could be produced to 

show the impact of intervention where a diffusion of benefit occurs, reducing the 

risk of crime to homes nearby not subject to treatment. 

One obvious limitation of the approach described is that it applies to 

crimes committed at individual properties. Consequently, the application of the 

approach will be meaningful for some crimes such as burglary (domestic and 

commercial), shoplifting, and possibly criminal damage, but may be of less utility 

for crimes such as street robbery. For the latter it is possible that the same 

approach could be used if a different unit of analysis were employed. For 

example, in an analysis of police recorded crime data which included a range of 

crime types, Weisburd et al. (2004) illustrate the value of using street segments 

as the unit of analysis. Thus, instead of using homes, other simulations could use 

street segments. 

A further limitation of the approach is that the results are only of value if the 

assumptions made are valid. This is a general issue with evaluation research 
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where the impact of intervention is to be estimated, but something to which I will 

return in the next section. 

4. SIMULATION FOR POLICY THEORY TESTING 

.... consider  the scenario of a child at the beach letting sand trickle down to form 

a pile. In the beginning, the pile is flat, and the individual grains remain close to 

where they land. Their motion can be understood in terms of their physical 

properties. As the process continues, the pile becomes steeper, and there will be 

little sand slides. As time goes on, the sand slides become bigger and bigger. 

Eventually, some of the sand slides may even span all or most of the pile. At 

some point, the system is far out of balance, and its behavior can no longer be 

understood in terms of the behavior of the individual grains. The avalanches form 

a dynamic of their own, which can be understood only from a holistic description 

of the properties of the entire pile rather than a reductionist description of the 

individual grains: the sandpile is a complex system.  

(Per Bak, 1997, p. 2). 

 

Some of the complexity associated with patterns of crime was alluded to in a 

previous section in our discussion of offender as forager (see also, the chapter 

by Ekblom in this volume). In this section, the ecology9 of crime (for an extended 

discussion, see Felson, 2005) is considered in more detail and one form of 

simulation method that may be used to capture the associated complexity and 

how this might inform policy decisions discussed. 

When thinking about solutions to crime problems, the general approach is 

to consider the problem as currently conceived and attempt to identify points for 

intervention that might interrupt the cycle. Ideas may focus on different 

approaches including forms of offender rehabilitation, sentencing policy, changes 

in the number of police on the street, or situational crime prevention measures. 

Whatever the approach considered, those involved in making decisions typically 

do so by reviewing the available evidence (where it exists), and contemplating 

                                                
9 Although the use of simulation is relatively new in the field of criminology, it has been used for decades 
in the field of ecology to study behaviour not dissimilar to that discussed here. For example, Pyke (1981) 
describes a computer simulation used to test theories of optimal foraging in Honeyeaters. 
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the crime reduction mechanisms (Pawson and Tilley, 1997) through which a 

particular intervention might work. Where a particular intervention is likely to have 

a fairly simple crime reduction mechanism, this approach may work well, helping 

policy makers to sift through contending approaches to crime reduction.  

However, where the effect of an intervention may be influenced by the 

reactions of a variety of interacting actors (e.g., offenders, police, and victims) 

thought experiments may be insufficient. Moreover, because the behaviour of the 

system may not be understood in reductionist terms, thought experiments may 

be prone to error. To illustrate, consider the example of police patrols. Changes 

in the location and timing of police patrols may affect offender targeting choices; 

offenders may prefer to avoid areas when police patrols are visible (or 

anticipated), or they may simply wait for patrols to leave before resuming their 

activities. Whatever their decisions, the actions of offenders may influence the 

plans made by the police and vice versa. This process is iterative and the 

patterns that emerge may quickly become too complex for a simple thought 

experiment. Now imagine what happens when other actors who might influence 

the probability of crime occurrence are considered, and what happens when we 

acknowledge that the different actors (offenders, victims and guardians) may not 

represent mutually exclusive populations.  

The modelling of complexity of this kind requires a different kind of 

simulation than has been so far discussed. Agent based methods generally 

describe simulations in which “agents” are represented by self-contained 

programs that control how they perceive their “world”, what actions they will take 

and how they interact with their environment and each other (for a discussion, 

see Gilbert and Troitzsch, 2003).  Agents are usually autonomous so that their 

“decisions” are not directed by others, but they may communicate with other 

agents and their interactions with them may influence their behaviour. Different 

classes of agents can be used to represent a range of populations (e.g., 

offenders and victims), and models can easily be programmed to incorporate 

population heterogeneity (e.g., offenders with different rates of offending, victims 

with different risks). 
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INSERT BOX 2 ABOUT HERE 

 

 Returning to our crime prevention example, rather than simply trying to 

think through what might happen under a given set of conditions (which will 

require considerable mental gymnastics), agent-based simulations may be 

implemented to systematically test possible outcomes. Simulations may be run 

many times to see if the results vary as a consequence of chance effects or 

starting conditions, and to help identify the conditions under which and the 

mechanisms through which (optimum) impacts are most probable, and where 

little or no impact is likely to be observed, or where intervention might lead to 

unintended consequences (positive or negative).  

 Of course, to do this the simulator needs to have a fairly good model of 

how the world works in the absence of intervention (but so too does the 

practitioner who relies on the thought experiment). This illustrates an important 

possible limitation of simulation at this time; the utility of the simulation will be a 

function of how well the model is specified and the extent to which this reflects 

the way the world might be. Ecological theories of crime (Cohen and Felson, 

1979; Ekblom, 2000) provide a useful framework for analysis but, as will be 

discussed below, more empirical work is required before simulation models can 

be sufficiently specified. 

Nevertheless, simulation offers the potential to improve upon the thought 

experiment considerably, and to generate results concerning what an 

intervention might achieve, given a set of clearly specified assumptions. Rather 

than a weakness this may be considered a further benefit of simulation. That is, 

the requirement to precisely specify a computer model, which incorporates the 

decision making processes of all agents, requires the researcher to carefully 

define the theoretical model used, and to specify the crime reduction 

mechanisms or logic of the intervention, something that they should always do. 

The algorithms used in agent based models are mathematical formalisms 

intended to mimic or “model” human decision making processes. The basic idea 
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of studying offender decision making is not new. It is central to rational choice 

theory (Clarke and Cornish, 1985) and has been explored in detail in the context 

of crime scripts (e.g., Cornish and Clarke, 2003; Lacoste and Tremblay, 2003; 

see also, Brantingham and Brantingham, 1993). In the case of the latter, the 

generation of crime scripts involves the identification of templates of behaviour 

that describe the individual actions (and their sequence) of the various actors 

(offenders, victims, guardians and so on) involved in crime events. The difference 

between the approaches is that agent based models can be used to see what 

patterns emerge when these types of model are implemented in-silico. The 

generation of crime scripts is a top down analysis, whereas agent based 

simulation is a bottom-up form of analysis for which crime scripts, or their 

mathematical analogues define a data generating process. 

It is important to note that the algorithms used in agent based simulation 

are not intended to represent a general theory of cognition, but are instead used 

to focus on a limited set of decision making processes thought to be important in 

the behaviour to be understood. While it has limitations, agent based simulation 

offers the potential to examine models of crime causation and prevention in a 

more systematic and flexible way than has been possible hitherto.  

An Example of an Agent Based Simulation Model 
To illustrate some of the issues with agent based simulation, both positive and 

negative, a concrete example is provided. The example concerns the potential 

impact of different police patrol strategies on the crime of burglary (see also Birks 

et al., 2008; Groff and Birks, 2008). Burglary is chosen as an example for two 

reasons. First, with Henk Elffers and other members of an international 

collaboration, I am currently developing and testing models of burglar targeting 

strategies. One of the simpler models under development is used as an example 

here.  

Second, for the crime of burglary the targets are fixed and hence the 

model is simpler than it would be for crimes such as robbery. For robbery, 

victimisation occurs when a victim and offender converge in space and time, in 

the absence of a capable guardian (Cohen and Felson, 1979). Thus, to model 
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patterns of robbery, not only must the behaviour of offenders and guardians 

against crime be simulated, but we must also model the routine activities of the 

remainder of the population. To generate such a simulation that has an 

acceptable level of ecological validity will require considerable work. Thus, a 

simple model is used here to illustrate the points of central importance. 

A picture tells a thousand words. Watching and playing with a simulation 

tells considerably more. Thus, rather than just describing the model developed 

and the results generated, the simulation was developed in the NetLogo 

programming language (Wilensky, 1999) discussed above to allow readers to 

download and play with it. The model developed for this section is also free to 

download.10 

The simulation is made up of two basic elements; the world and two 

classes of agents (police and offenders) that move around it. The virtual world is 

made up of a grid of regular sized cells or, to use the nomenclature of NetLogo, 

patches which represent crime opportunities; homes in this model. Each home is 

assigned a crime attractiveness value to represent its risk of victimisation. A 

choice of different models are available that simulate different patterns in the 

variation in risk across homes. These range from a homogeneous surface where 

every home has the same risk; a binary risk surface where homes in the East 

and West side of the grid have different risks; a quad in which risk varies in the 

four corners of the surface; and, a surface over which the variation in risk is 

generated using a combination of a uniform RNG and a smoothing function. 

Figure 4 shows examples of two of the types of surface discussed. The user with 

a little programming knowledge can easily generate more, and real data on the 

spatial variation in crime risk could be imported. 

INSERT FIGURE 4 ABOUT HERE 

Agents are used to model the activity of offenders and police officers. 

Each agent can traverse the virtual world according to a set of predefined rules. 

For example, agents have vision for up to n cells ahead (this parameter is 

currently homogeneous within each agent set and selected by the user). Where 

                                                
10 http://www.jdi.ucl.ac.uk/british_academy_network/history/index.php. 
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an agent is at the edge of the grid, they see only as many cells ahead as exist. 

The number of agents, the number of time steps, how far the agents can see and 

many other variables can be varied. In the following sections a little more detail is 

provided about each class of agent.  

Offender Agents 

For every time step, each offender agent turns in the optimal direction, moves 

and then decides whether or not to commit an offence. The decision to commit a 

crime is a function of a number of factors which will be discussed below but also 

of the proximity of police agents. If a police agent is within five cells (this may of 

course be varied but is held constant here) of an offender agent, the offender 

agent will not commit a crime. This is used to model the preventive effect of 

police patrols.  

 

Offender agent movement is determined in the following way: 

 

1. Each agent looks directly ahead in all directions in its Von Neuman 

neighbourhood (North, East, South and West) and calculates a value to 

represent the cumulative opportunities in that direction. For example, 

when looking North, the agent will look at the n cells North of it, and add 

the attractiveness values for each cell together.  

 

This evaluation has two important additional features. First, every agent’s 

vision is locally weighted so that greater importance is given to proximate 

locations. Second, rather than being a purely objective calculation, to 

generate a degree of bounded rationality (see Cornish and Clarke, 1985), 

a random number is added (or subtracted) to the cumulative value for 

each direction considered. The maximum value of the random number 

generated is a function of the risk ahead; the random number will tend to 

be largest when the attractiveness of the opportunities ahead is greatest. 
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2. The agent also considers how much crime has been committed in each 

direction with a view to avoiding areas that have been over-foraged (see 

Johnson and Bowers et al., 2008) and hence may be subject to police 

attention. 

 

3. To determine the vector of travel, the agent turns in the direction that 

offers the optimal balance between the highest estimated cumulative 

opportunity value and the risk of encountering a police patrol at that time.  

 

The agent then moves one cell and decides whether or not to commit a crime at 

that location. This is a two stage process, as follows: 

 

a) The agent’s state of readiness to offend (e.g., Clarke and Cornish,1985) at 

each moment is modelled as a function of an RNG and the individual 

offending rate for that offender (lambda). For the current model the value 

of lambda is held constant across agents and time, but this may be varied 

to examine the effect(s) of population heterogeneity or desistance 

decisions (Clarke and Cornish, 1985). 

 

b) If the agent is in a state of readiness to offend, and there are no police 

agents nearby, the attractiveness of the cell in which the agent is located 

is evaluated. The higher the attractiveness of the particular cell, the higher 

the likelihood that the agent will offend at that location. Whether an 

offence occurs or not is thus determined by the attractiveness of the 

location, the output of an RNG and the agent’s interaction with the police 

agents. When an offence takes place at a particular location, the number 

of crimes recorded at that cell is updated. 

 
Thus, the offender agents’ behaviour is a function of a series of simple rules. As 

discussed, the model here used is deliberately simple to illustrate the main 

points. However, the interesting thing is that the emergent behaviour need not be 
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so simple and the local interactions between the different classes of agents and 

their environment can generate patterns that readers may expect would require 

more complex models.  

Police Agents 

Two types of patrolling strategy are modelled. For the first, police agents move 

randomly. In this case, for each time step, every police agent randomly selects a 

direction of travel from its Von Neuman neighbourhood and then (on the basis of 

the output of an RNG) moves one or two cells in that direction. The police agents 

could of course be limited to moving only one cell per time cycle, but they are not 

in this model.  

In the second model, police agents decide where to patrol based on the 

volume of crime they “see” in front of them. This is essentially a hotspot policing 

model. Each police agent looks m cells ahead in each direction of its Von 

Neuman neighbourhood and evaluates the volume of crime in every direction. 

The value of m is selected by the user. Different values are likely to affect the 

performance of the model but here m is set to a constant value of 40 across 

simulations. The parameter m was set in this way so that the police agents would 

be able to “see” further than the offender agents. This was to reflect the fact that 

in the real world, the police may be advised about crime locations by other 

officers or by a command and control centre. Having evaluated the volume of 

crime in each direction, the police agent moves one or two cells in the direction in 

which most crime has occurred. The agents act independently and do not 

communicate with each other. Nor do they attempt to avoid directions where 

there are other police agents. 

Initial Conditions 

At the start of the simulation, each agent is placed at a random location on the 

grid. For the offenders this may thought of as their home location. Considering 

the variation in victimisation risk across homes, for the current model, the grid is 

divided into four quadrants across which (but not within) the attractiveness of 

targets vary. 
Results of the Policing Simulation 
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The results of a simulation may be analysed in much the same way as data 

generated in the real world. For example, Figure 5 shows an example of a 

hotspot map generated by one run of a simulation. 

 

INSERT FIGURE 5 ABOUT HERE 

 

To provide a more systematic analysis, for each model described, the effect of 

increasing the number of police agents is tested on the dependent variable – the 

volume of offences committed. Specifically, models are tested with 0, 10, 20, 40 

and 80 police agents. Every model is executed 20 times and for 1,000 time 

steps. The reason for running the model a number of times is that the initial 

conditions of the model (where the agents are initially located) will influence the 

outcome of the simulation. 

Figure 6 shows the mean number of crimes committed for each model 

tested. With the exception of the model for which there are zero police agents 

(p=0.79), less crime is committed for the hotspot policing model (all ps<0.01). For 

the hotspot policing model, increasing the number of police officers has a roughly 

linear effect on the volume of crime committed. For the random patrol model, the 

effect is more variable. 

INSERT FIGURE 6 ABOUT HERE 

Assumptions and Parameter Sweeps 

It should be obvious from the above discussion that many decisions regarding 

parameter settings and the formalisation of decision rules are required to 

produce a working simulation. On the one hand, this is useful as it forces the 

researcher to explicitly formalise rules and consider issues that they otherwise 

might not. On the other, this reminds us of one of the potential problems with 

simulation. When so many parameters can be manipulated and processes 

implemented in a range of ways, each permutation will require evaluation if 

conclusion validity is to be established in any meaningful way. 

Fortunately, modelling platforms such as Netlogo have tools which enable 

the testing of different permutations of parameter values. Running each 
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configuration of parameter settings also enables the effects of chance and initial 

conditions to be examined on the output of a model.  

For the above results, the findings are of course only of any utility if the 

underlying model reflects the way the world is. There is no suggestion here that 

the model does. However, whilst considerable caution is clearly necessary 

regarding the ecological validity of simulation models, the promise is equally 

exciting. Even at this stage of maturity, simulation can be used for theory testing 

and falsification and, in the context of policy simulation, could (with some degree 

of caution) be used to identify those conditions under which certain types of 

intervention –with simple crime reduction mechanisms – might work. Thus, 

simulation models could be used as tools to help researchers and practitioners 

think through how an intervention might work in a systematic way. 

 
What Else Might be Included in the Simulation Model? 
The simulation described above was quite simple. Further models could easily be 

developed to generate a more realistic simulation. The possibilities are 

considerable, but some examples include: 

 

1) The incorporation of a street network which would affect agent mobility in 

different directions (Birks et al., 2008; Groff, 2007ab);  

2) The inclusion of an algorithm to allow the agents to navigate the world in a 

more deliberate way (see, Groff, 2008). This could draw on findings from 

research concerned with space syntax (e.g., Hiller, 2004) which suggest 

that the geometry of the street network can affect navigation in subtle ways. 

For example, as a consequence of variation in sight lines due to street 

network configuration, the route taken from two locations A and B, is often 

different from the route taken from B to A by the same person; 

3) Barriers to offender movement, physical or social (e.g., Bernasco and 

Nieuwbeerta, 2005), could be included;  
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4) Offenders could form individual mental maps of their world based on their  

learning experiences in it, and perhaps choose to offend with a higher 

probability in those areas they know best;  

5) A range of routine activity nodes (e.g., home, friends homes, shops) could 

be generated for each agent (e.g., Groff, 2007a) and they could be 

encouraged to travel to them on certain days and at particular times. More 

detailed insights into human mobility patterns, routine activities and the 

anisotropy of human movement could also be incorporated into the models 

(Gonzalez et al., 2008);  

6) A form of gravity could be used to encourage offender agents to avoid 

travelling too far from their home location or routine activity nodes;  

7) The offender agent’s readiness to offend could be varied over time, perhaps 

as a function of recent success; and,   

8) The activity and visibility of the police could be modelled in a more realistic 

way, drawing upon research extant (e.g., Clarke and Hough, 1984).  

Other Types of Intervention? 
This type of approach could, of course, be used to look at other types of crime 

prevention strategies, such as street lighting. However, in some cases there may 

be a risk of producing models that generate nothing more than pre-supposed 

emergence. To illustrate, consider that if we produce a model in which we say 

that street lighting reduces the risk of victimization by 20% and then run the 

model and examine the impact of intervention, the problem will be that the model 

is tautological. The results of the simulation will only tell us what we put into it; it 

will not test a causal mechanism. 

As an alternative, we could test the effects of increased illumination on 

crime reduction mechanisms. For example, we could see what the effect of 

increasing an offender’s visible range has on their foraging strategies and rate of 

offending given the possible changes in attendant risks. Likewise, the effects of 

increased illumination on the potential victims’ visible range, and hence potential 

avoidance strategies, could be tested. However, it is worth noting that such a 

mechanism assumes that the effect of street lighting is produced as a 
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consequence of the increase in luminescence generated. In relation to this, an 

illuminating finding is provided by Farrington and Welsh (2002, p. 36) who 

examined the effects of street lighting on crime during the day and night.  Similar 

effects were observed at both times of the day, suggesting that the mechanism of 

change was not simply the change in illumination. 	
  

 
CONCLUSION 

The potential benefits of using computational methods for theory testing and 

evaluation are numerous. The examples provided in this chapter were intended 

to illustrate some of the possibilities and how they might be used to inform the 

sequenced decision making processes that policy actors routinely engage in.  It 

is important to realize that other types of simulation methodology exist and that 

the types of questions considered here represent the tip of the iceberg. However, 

it is also important to remember that care needs to be taken when using 

simulations. The results of a model do not tell us what will happen in the real 

world, only what might happen if the assumptions of the model are valid. They 

may not be, but numbers can be seductive and so one risk is that the output of 

simulation models may inspire confidence where caution would be more 

appropriate. Before policy simulation is pursued in earnest, the way forward 

requires considerable effort in testing and maximizing the validity of models 

designed to simulate normal patterns of crime, perhaps along the lines 

suggested by Townsley and Johnson (2008).  For individual studies, it will be 

important to conduct sensitivity analyses by sweeping the parameter space of 

models used and summarizing the effect of changes made on the outcomes 

generated. Moreover, replication is the cornerstone of good science and so the 

independent verification of findings from research which involves simulation will 

be important (Townsley and Johnson, 2008).  

Despite the obvious need for caution, as other authors have concluded 

(e.g., Groff and Birks, 2008) simulation methods offer researchers exciting new 

tools for research. If appropriately specified, simulations could allow the 
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systematic testing of ideas before fieldwork begins, as well as providing tools to 

help decision makers better understand the likely impacts of tested interventions. 
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Table 1. Estimates of the Volume of Crime for Three Different Models 

(Generated from 100 Iterations of the Simulation) 

 

  

Mean 
 

Variance 
 

SD 
 

Area-level model (1) 
 

218.9 
 

229.6 
 

15.2 

RV model (2) 218.2 279.0 16.7 

Space-Time model (3) 218.3 371.9 19.3 
 

(1) Mixed Poisson model. 
(2) As for (1) but the risk to victimised homes is temporarily elevated.  
(3) As for (2) but the risk to nearby homes is also temporarily elevated. 
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Table 2. Simulated Effects of Using Different Dosages of Implementation 

Assuming a 50% Crime Reductive Effect at the Individual Level and Only Chance 

Variation in Risk Over Time (Generated from 100 Iterations of the Simulation) 

 

  

Mean % 

Reduction  

 

Min % 

Reduction 

 

Max % 

Reduction 
 

Abrupt Implementation 
100% of homes 

 

 

49.0 

 

 

38.5 

 

 

63.3 

50% of homes - Low Risk 14.6 -3.6 28.9 

50% of homes - High Risk 34.5 22.0 47.7 

    

Gradual Implementation    

100% of homes 30.6 16.9 44.0 
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Figure 1. Survival Times for Target Hardened and Non-Target Hardened Homes 

(Adapted from Bowers et al., 2008) 
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Figure 2. Area Selected for Microanalytical-Simulation Experiment (Ordnance 
Survey © Crown Copyright. All Rights reserved) 
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Figure 3. Examples of Kernel Density Maps to Show the Patterns Generated for 
a Fragment of the Virtual World for Two Realisations of the Simulation 
Experiment (Ordnance Survey © Crown Copyright. All Rights reserved) 
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Figure 4. Example Risk Surfaces (Left: binary surface, Right: Random variation)  
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Figure 5. An Example of a Kernel Density Map Generated by an Agent Based 

Simulation. 
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Figure 6. Impact on Crime of two Patrolling Strategies and Changes in the 

Number of Police Agents (20 simulations per model, 1000 time cycles per 

simulation). 
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Box 1 – Microanalytical Simulation 
 
Microanalytical simulation is used to model how the characteristics of a 
population might change over time under different conditions.  Gilbert and 
Troitzsch (2003) provide a number of examples of how this approach may 
be used to answer different types of policy questions.  One example 
considers how a researcher might estimate the likely future demands on the 
nursing sector by computing the likely population of those aged 60 or more 
with and without support networks (e.g. close relatives).  For example, for a 
given (real) population, this type of model can be used to simulate how the 
composition of the overall population, and people’s support networks, will 
change when one takes account of factors such as likely variation in rates of 
births, deaths, divorce, the effects of chance, and so on. 
 
For this type of model, patterns can be measured at the level of the 
individual or at the aggregate level of the population.  This approach 
requires detailed data on the population considered as well as the 
specification of those processes that may affect the population concerned. 
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Box 2 - Agent Based Simulation 
 
Agent based models (sometimes also referred to as Individual based 
models) have been used to study a range of phenomenon including the 
spread of epidemics, consumer behavior, and pedestrian movement.  For 
social science applications, agents, which may be thought of simple 
representations of people (or whatever is being simulated), are programmed 
with simple rules about how to behave in a simulated environment.  When a 
simulation is running, agents make decisions based on the rules specified 
but their choices are not pre-determined, and are instead influenced by the 
decisions of other agents as well as the effects of chance.  Thus, even 
though the rules provided may be simple, when agents interact with each 
other or adapt to the impacts that other agents have had on the 
environment, the behaviour that emerges can be complex and unanticipated 
by the researcher.  Such complexity cannot easily be modeled (if at all) 
using other methods. 
 
Those interested in playing with a range of agent based models may do so 
by downloading the NetLogo program, available at: 
http://ccl.northwestern.edu/netlogo/.   
 
For those interested in reading about how such models can be used in a 
policy context, Batty (2007) provides a fascinating example of how an Agent 
based simulation was used to examine the likely influence of changes in 
pedestrian routes on levels of over-crowding at the Notting Hill carnival in 
London.   


