
From a Formal User Model to Design Rules

Paul Curzon1 and Ann Blandford2

1Middlesex University, Interaction Design Centre, Bramley Road, London N14 4YZ
2University College London Interaction Centre, 26 Bedford Way, London WC1H 0AP

p.curzon@mdx.ac.uk, a.blandford@ucl.ac.uk

Abstract. Design rules sometimes seem to contradict. We examine how
a formal description of user behaviour can help explain the context when
such rules are, or are not, applicable. We describe how they can be jus-
ti�ed from a formally speci�ed generic user model. This model was de-
veloped by formalising cognitively plausible behaviour, based on results
from cognitive psychology. We examine how various classes of erroneous
actions emerge from the underlying model. Our lightweight semi-formal
reasoning from the user model makes predictions that could be used as
the basis for further usability studies. Although the user model is very
simple, a range of error patterns and design principles emerge.

1 Introduction

With the increasing ubiquity of interactive computer systems, usability becomes
increasingly important. Minor usability problems can scale to having major eco-
nomic and social consequences. Usability of interactive designs has many aspects.
In this paper, we focus on design principles that reduce the potential for \user er-
ror" occurring. We examine how, from the behaviour speci�ed by a simple formal
model of cognition, various potential erroneous actions emerge with poorly de-
signed systems. Furthermore, we derive well-known design rules from the model.
We use the fact that the rules are grounded in a formal model of cognition to
explore the scope of application of the rules. Formal speci�cation allows preci-
sion about the meaning of that which is formalised. Providing such precision
to ensure di�erent people have the same understanding of a concept has been
suggested as the major bene�t of formal models in interaction design [1]. One
approach would be to formalise the design rules themselves (see [1, 14]). Here, we
semi-formally derive design rules from a formal model rather than just asserting
them. In principle, formal derivations could also be done. By \semi-formal" we
mean that we use informal high-level argument (about a fully formal model), as
opposed to the explicit application of inference rules of the underlying logic.

We �rst de�ne simple principles of cognition. These are principles that
generalise the way humans act in terms of the mental attributes of knowledge,
tasks and goals. The principles considered do not cover the full range of hu-
man cognition. Rather they focus on particular aspects of cognitive behaviour.
They are each backed up by evidence from HCI and psychology studies. Those
presented are not intended to be complete but to demonstrate the approach.



We have developed a formal model of these principles written in higher-
order logic. This description is a generic formal user model. By \generic" we
mean that it can be targeted to di�erent tasks and interactive systems. The
underlying principles of cognition are formalised once in the model, rather than
having to be re-formalised for each new task or system of interest. Whilst higher-
order logic is not essential for this, its use makes the formal speci�cations simpler
and more natural than the use of a �rst-order logic would. Here we use it to make
precise the general principles considered, to allow us to then reason about their
consequences with respect to user error. Combining the principles of cognition
into a single model rather than formalising them separately allows reasoning
about their interaction, and about how multiple minor errors might interact.

The principles, and more formally the user model, specify cognitively plau-
sible behaviour (see [5]). That is, they specify possible traces of user actions
that can be justi�ed in terms of the speci�c principles. Of course users might
also act outside this behaviour, about which situations the model says nothing.
Its predictive power is bounded by the situations where people act according
to the principles speci�ed. That does not preclude useful results from being ob-
tained, provided their scope is remembered. The model allows us to investigate
what happens if a person does act in such plausible ways. The behaviour de-
�ned is neither \correct" nor \incorrect". It could be either depending on the
environment and task in question. It is, rather, \likely" behaviour.

We show how cognitively plausible behaviour can in speci�c circumstances
be considered as resulting in erroneous actions. We discuss the circumstances
in which such erroneous actions can result, reasoning from the formal model. In
particular, we relate them to Hollnagel's error phenotypes [11]. In doing so, we
identify cognitively plausible ways in which the erroneous actions could arise.
We show that a wide variety are covered from even a minimal formal de�nition
of cognitively plausible behaviour, demonstrating the generality of the approach.

Finally, we semi-formally derive design rules from the formal model that,
if followed, ensure that the erroneous actions identi�ed will not be made for the
speci�c cognitive reasons embodied by the principles of cognition. Even though
the user model is capable of making the errors, the rules ensure that the envi-
ronments in which they would emerge do not occur. Other errors are, of course,
still possible. The design rules are well known and our contribution is not the
rules themselves, but rather the demonstration that they can be justi�ed from
a formalisation of a small set of principles. Because the design rules are derived,
we can be precise about their scope of applicability, for example unpacking the
situations where di�erent design rules appear at �rst sight to be contradictory.

We use railway ticket vending machines to illustrate the points. They are
ubiquitous and are increasingly replacing manned ticket o�ces. However, exist-
ing designs continue to exhibit design problems that encourage user error [16].
Previous work explored how the user model considered here could be used to
analyse interactive system designs by treating it as a component of that system
with a �xed design [7, 8], proving that a speci�c task will always be completed
eventually. This was done using an interactive proof system, HOL [10]. Here we



use the user model as the basis of reasoning about interactive systems in gen-
eral. The process of doing so also acts, in part, to validate the model for formal
veri�cation. Our approach is similar to that of [2] in that we are working from
a (albeit di�erent and more formal) model of user behaviour to high level guid-
ance. There the emphasis is on a semi-formal basis underpinning the craft skill
in spotting when a design has usability problems. In contrast, we are concerned
with guidance for a designer rather than for a usability analyst.

2 Formalising Cognitively Plausible Behaviour

Our user model was developed by formally modelling principles of cognitively
plausible behaviour. We do not model erroneous actions explicitly (as is done
for example in [9]). Instead, they emerge from an abstract description of cogni-
tively plausible behaviour. The behaviour described could correspond to correct
or incorrect actions being taken depending on the circumstances. The principles
considered are: non-determinism; goal-based termination; task-based termina-
tion; reactive behaviour; communication goals; mental triggers; no-option-based
termination; and relevance. This list is not intended to be exhaustive, but to
cover a variety of classes of cognitive principles, based on the motor system,
simple knowledge based cognition, goal-based cognition, etc. Also, some of the
principles are formalised in a simple way, our intention at this stage being to test
the approach, rather than modelling the full richness of the principles. In future
work we will increase the richness of the descriptions. In subsequent sections
we refer to cognitively plausible behaviour when strictly meaning the subset of
cognitively plausible behaviour embedded in the current version of our model.

By modelling the principles we are giving a knowledge level description in the
terms of Newell [12]. We do not attempt to model underlying neural architecture
nor the higher level cognitive architecture such as working memory units. Instead
our model is that of an abstract speci�cation, intended for ease of reasoning. The
focus of the description is in terms of internal goals and knowledge of a user.
This contrasts with a description of a user's actions as, say, a �nite state machine
that makes no mention of such cognitive attributes.

The user model is based on a series of non-deterministic temporally guarded
action rules. Each describes an action that a user could rationally make. The rules
are grouped corresponding to the user performing actions for speci�c cognitively
related reasons. Each such group then has a single generic description. Each rule
has a guard-action form. They state that if the guard holds at some point then
the NEXT action taken by the user is that given. By next in this context we mean
the �rst action of interest taken by the user after the current point in time. The
rules each have the form: guard t AND NEXT actions action t, stating that
a guard is true at time t and the NEXT action performed from the list of actions
relevant to the interaction (given by the list actions) is action. The action is
identi�ed by its position in the list of all actions. Here we give an overview; the
formalisation is given in more detail in [8].



Non-determinism: In any situation, any one of several behaviours that are
plausible might be taken. The separate behaviours are speci�ed as rules. Each
rule is formalised in the user model non-deterministically. That is, it is one of
a series of options, any of which could be taken. The model does not assert
that a rule will be followed, just that it may be followed. Below, we present the
formalisation of several such rules. They form the core of the user model. By
combining them, the model asserts that the behaviour of any rule whose guards
are true at a point in time is cognitively plausible at that time. It cannot be
assumed that any speci�c rule will be the one that the person will follow.

Goal-based termination behaviour: Cognitive psychology studies have
shown that users intermittently, but persistently, terminate interactions as soon
as their goal has been achieved [6]. It is formalised as a guarded rule as de-
scribed above. We must supply a relation to the user model that indicates over
time whether the goal is achieved or not. This is referred to as a special signal,
goalachieved, in the formal de�nitions. We also use a special signal, finished,
to indicate whether the user considers the interaction to be over. With a ticket
machine this may correspond to the person walking away, starting a new interac-
tion (perhaps by hitting a reset button), etc. Both goalachieved and finished

are signals that, given a time, return a boolean value indicating whether the
goal is achieved or the interaction terminated (respectively) at that time. If the
goal is achieved at a time then the user model terminates the interaction next:
goalachieved t AND NEXT actions finished t. Note that goalachieved is
a higher-order function and can as such represent an arbitrarily complex condi-
tion. It might, for example, be that the user has a particular object, that the
count of some series of objects is greater than some number or a combination
of such atomic conditions. In specifying the user model we just state that it
is a boolean function whose value may vary over time. This makes use of the
higher-order nature of the speci�cation language.

Task-based termination behaviour: For the purposes of analysis, the
model speci�es that a user will terminate an interaction when their whole task
is achieved. In achieving a goal, subsidiary tasks are often generated. For the
user to complete the task associated with their goal they must also complete all
subsidiary tasks. Examples of such tasks with respect to a ticket machine include
taking back a credit card or taking change [6]. One way to specify these tasks
would be to explicitly describe each such task. Instead we use the more general
concept of an interaction invariant [8]. The underlying reason why these tasks
must be performed is that in interacting with the system some part of the state
must be temporarily perturbed in order to achieve the desired task. Before the
interaction is completed such perturbations must be undone. For example, to pay
at a ticket machine using a credit card requires the card being inserted and later
returned. A condition on the state that holds at the start of the interaction {
that the user has the card { must be restored by the end. We specify the need to
perform these completion tasks indirectly by supplying the interaction invariant
as a higher-order argument to the user model. The interaction invariant is an
invariant in a similar sense to a loop invariant in program veri�cation. It is an



invariant at the level of abstraction of whole interactions. Full task completion
involves not only completing the user's goal, but also restoring the invariant by
completing all the subsidiary tasks generated in the process. For a ticket machine
the invariant might specify that the value of a person's possessions at the end is
at least as high as it was at the start of the interaction.

We assume that on completing the task in this sense of goal achieved and
invariant restored, the interaction will be considered terminated by the user,
irrespective of any other possible actions apart from actions already mentally
triggered (discussed below). This is modelled using an if construct rather than
disjunction to give it priority. If both the goal has been achieved and the invariant
restored then the user will terminate the interaction, irrespective of what other
non-deterministic rules may potentially be active. Otherwise one of the non-
deterministic rules will be �red.

IF (invariant t) AND (goalachieved t) THEN NEXT actions finished t

ELSE non-deterministic rules

Reactive behaviour: A user may react to a stimulus or message from a
device, doing the action suggested by the stimulus. For example, if a 
ashing
light comes on next to the coin slot of a ticket vending machine, a user might, if
the light is noticed, react by inserting coins if it appears to help the user achieve
their goal. Reactive behaviour is speci�ed as a general class of behaviour: in a
given interaction there may be many di�erent stimuli to react to. Rather than
specify this class of behaviour for each, we de�ne the behaviour generically.
REACT gives the rule de�ning what it means to react to a given stimulus.

REACT as stimulus action t = stimulus t AND NEXT as action t

If at time t, the speci�ed stimulus is active, the NEXT action taken by
the user out of the possible actions, actions, at an unspeci�ed later time, may
be action. As there may be a range of signals designed to be reactive, the user
model is supplied with a list of stimulus-action pairs: [(s1, a1); . . . (sn, an)]. A list
recursive relation, given a list of such pairs, extracts the components and asserts
the above rule about them. They are combined using disjunction in the recursive
de�nition, so are non-deterministic choices, and this de�nition is combined with
the other non-deterministic rules. Grd and Act extract a pair's components. \s
:: st" refers to the list with �rst element s and remainder of list st.

(REACTS as [] t = FALSE) AND

(REACTS as (s :: st) t =

((REACTS as st t) OR (REACT as (Grd s) (Act s) t)))

Communication goal behaviour: A user enters an interaction with knowl-
edge of task dependent sub-goals that must be discharged. Given the opportu-
nity, they may attempt to discharge any such communication goals [3]. The
precise nature of the action associated with the communication goal may not
be known in advance. A communication goal speci�cation is a task level partial



plan. It is a pre-determined plan that has arisen from knowledge of the task in
hand independent of the environment in which that task will be accomplished. It
is not a fully speci�ed plan, in that no order of the corresponding actions may be
speci�ed. In the sense of [3] a communication goal is purely about information
communication. Here we use the idea more generally to include other actions
that are known to be necessary to complete a task. For example, when purchas-
ing a ticket, in some way the destination and ticket type must be speci�ed as
well as payment made. The way that these must be done and their order may
not be known in advance. However, a person enters an interaction with the aim
of purchasing a ticket primed for these communication goals to be addressed. If
the person sees an apparent opportunity to discharge a communication goal they
may do so. Once they have done so they will not expect to need to do so again.
No �xed order is assumed over how communication goals will be discharged if
their discharge is apparently possible. For example, if a \return ticket" button is
visible then the person may press that �rst if that is what they see �rst. If a but-
ton with their destination is visible then they may press it �rst. Communication
goals are a reason why people do not just follow instructions.

Communication goals are modelled as guard-action pairs as for reactive sig-
nals. The guard describes the situation under which the discharge of the commu-
nication goal appears possible. It will include a label signal indicating that the
input exists and that it corresponds to the desired action. In the current version
of the model, the use of a special label signal is not built into the generic model
but is included as part of the guard by convention. As for reactive behaviour,
a list of (guard, action) pairs is supplied to correspond to each communication
goal. A similar recursive de�nition to REACTIVE above is de�ned and included
as a disjunct with the non-deterministic rules. This determines when a commu-
nication goal may be discharged. However, unlike the reactive signal list that
does not change through an interaction, communication goals are discharged.
This corresponds to them disappearing from the user's mental list of intentions.
We model this by removing them from the communication goal list when done.
A daemon, separate from the non-deterministic rules, does this. It monitors the
actions taken by the user on each cycle, removing any from the list used for
the subsequent cycle. The action removed may be taken for some reason other
than it being a communication goal, such as due to reactive behaviour. All that
matters to the daemon is that it is taken. The communication goal list that a
user enters the interaction with initially is provided as an argument to the user
model.

Mental triggers: A user commits to taking an action in a way that cannot
be revoked after a certain point. Once a signal has been sent from the brain to the
motor system to take an action, the signal cannot be stopped even if the person
becomes aware that it is wrong before the action is taken. Rather than associate
an external stimulus directly with an external action using the disjunctive rules,
we associate them with mental \actions" that trigger the process of taking the
actual action. Thus the actions in each of the rules described so far will not be
externally visible actions, but internal mental actions. For example, on deciding



to press a button labelled with the destination \Liverpool", at the point when
the decision is made the mental trigger action takes place and after a very short
delay, the actual action takes place. A further category of trigger rules is then
introduced that links the mental decision to the actual action. If one of the
mental actions is taken on a cycle then the next action will be the externally
visible action it triggers. There is always at least a one-cycle delay between the
trigger and external action. A recursive function combines a list of triggers into
a series of choices as with the reactive rules. The user model must be supplied
with a guard-action pair list linking mental triggers with external actions. As
with task-based termination, mental triggers are given a higher priority than
the non-deterministic rules. If a trigger is �red then it will be the next action
taken. Only if no �red trigger is outstanding do the other rules come into play,
including task-based termination.

No-option-based termination behaviour: A user may terminate an in-
teraction when there is no apparent action they can take that would help com-
plete the task. For example, if on a touch screen ticket machine, the user wishes
to buy a weekly season ticket, but the options presented include nothing about
season tickets, then the person might give up, assuming their goal is not achiev-
able. The model includes a �nal default non-deterministic rule that models this
case. The guard to this rule is constructed automatically in the model from
the information supplied to create the other rules. In practice, in this situation,
people could behave in a range of ways including pressing buttons at random.
Our model treats a situation where no \rational" action is available as resulting
in the interaction terminating { even if a possible action may become possible
in the future. Note that a possible action that a person could take is to wait.
However, they will only do so given some reason { that is, it must be an action in
an explicit reactive rule. For example, a ticket machine might display a message
\Please Wait". If they see it, the person reacts by waiting.

Relevance: A user will only take an action if there is something to suggest
it corresponds to the desired e�ect. We do not currently model this explicitly:
however, it is implicit in most of the rules. For example, communication goals
and the termination rules are by de�nition only �red when relevant. In partic-
ular, the \label" signals referred to above are intended to address aspects of
relevance. A button for the destination \Liverpool" is modelled by one signal
representing whether the button is visible/relevant at a given time and a second
about whether the button is pressed at each time instance.

Putting it together: The core rules are combined with other house keeping
rules (most notably, the communication goal �ltering daemon) and a model of
possessions that speci�es, for example, that a user ceases to have a possession if
it is given up. We omit the details here due to space constraints. A further clause
added to the model is the initial conditions { notably the initial communication
goal list. These are all combined using conjunction into a single relation USER

that models the full user model. It takes as arguments the various pieces of
information such as the goal, interaction invariant, list of actions, etc. referred
to in the description above.



3 The Erroneous Actions that Emerge

Erroneous actions are the proximate cause of failure attributed to human error
in the sense that it was a particular action (or inaction) that immediately caused
the problem: users pressing a button at the wrong time, for example. However,
to understand the problem, and so ensure it does not happen again, approaches
that consider the proximate causes alone are insu�cient. It is important to con-
sider why the person took that action. The ultimate causes can have many
sources. Here we consider situations where the ultimate causes of an error are
that limitations of human cognition have not been addressed in the design. An
example might be that the person pressed the button at that moment because
their knowledge of the task suggested it sensible. Hollnagel [11] distinguishes
between human error phenotypes (classes of erroneous actions) and genotypes

(the underlying psychological cause). He identi�es a range of simple phenotypes:
repetition of an action, reversing the order of actions, omission of actions, late
actions, early actions, replacement of one action by another, insertion of an ad-
ditional action from elsewhere in the task, and intrusion of an additional action
unrelated to the task. These are single deviations from required behaviour.

In practical designs it is generally infeasible to make erroneous actions impos-
sible. Fields [9] uses model-checking to identify errors by introducing the above
problems explicitly into task speci�cations. A problem with this approach is that
it gives many false negatives: few tasks are possible if such errors are arbitrarily
made. The veri�er must determine which are real problems. A de�nition of what
is cognitively plausible is one way to make this judgement. A more appropriate
aim is therefore to ensure that cognitively plausible erroneous actions are not
made. To ensure this, it is necessary to consider the genotypes of the possible
erroneous actions. We examine how our simple user model can exhibit behaviour
corresponding to these errors. We thus show, based on reasoning about the for-
mal model, that, from the minimal principles we started with, a wide range of
classes of erroneous actions in the form of phenotypes occur.

We now look at each simple phenotype and at the situations where they
are cognitively plausible. We do not claim to model all cognitively plausible
phenotypical actions. There are other ways each could occur for reasons we do
not consider. However, not all errors that result from the model were explicitly
considered when the principles were de�ned. The scope of the model in terms of
erroneous actions is wider than those it was originally expected to encompass.

Repetition of actions: The �rst class of erroneous action is to repeat an
action already performed. There are situations where this is cognitively plausible
according to our user model. The current user model will repeat actions if guided
to do so by the device in a reactive manner. If the guards of an action remain
true then the user model may follow those instructions a second time since there
is nothing in the model to prevent this. If the guidance is erroneous then the
user model will make an erroneous action. Occasions where an interactive device
asks erroneously for an action that has already been performed are perhaps rare
(and it might be argued that in this situation the action was correct but the
device incorrect). However, one way it could occur is due to a lack of feedback to



indicate the action was performed successfully. The current user model would do
this if reactive signals guided the action and continued to do so after the action
had been completed. In particular, with a ticket machine, if a light next to a coin
slot continued to 
ash for a period after the correct money had been inserted
a person might assume they had not inserted enough and start to insert more.
An action originally performed as a communication goal could be repeated if a
reactive prompt to do so later appeared (though not the other way round since
once performed reactively the action is removed as a communication goal). For
example, if a person pressed the button for \Liverpool" and was later presented
with a screen asking them to select a destination they might do so again.

Reversing the order of actions: A second class of error is to reverse the
order of two actions. This pattern of behaviour can arise from our model as a re-
sult of the way communication goals are modelled. In particular, communication
goals can be discharged by the user model in any order. Therefore, if an inter-
active system requires a particular sequence, then the order may be erroneously
reversed by the user model if the actions correspond to communication goals. A
person might insert money and then press the destination button when a par-
ticular ticket machine requires the money to be inserted second. This does not
apply to non-communication goal actions, however. For example, two actions
that are device dependent (pressing a con�rmation button and one to release
change, for example) will not be reversed by the user model.

Omission of actions: The user model may omit actions at the end of a
sequence. In particular, it may terminate the interaction at any point once the
goal has been achieved. For example, once the person is holding the ticket they
intended to buy, they may walk away from the machine, leaving their change,
credit card or even return portion of their ticket. Whatever other rules are active,
once the goal is achieved, the completion rule is active, so could be �red. The
user model may also omit trailing actions if there is no apparent action possible.
If at any time instance the guard of no other rule is active, then the guard of the
termination rule becomes active and so the user model terminates. There must
always be some action possible. This could be to pause but only if given reactive
guidance to do so. For example, if there is a period when the ticket machine
prints the ticket, where the person must do nothing, then with no feedback
they may abort. In this respect the user model does not quite re
ect the way
people behave. If there is no action possible the user model is guaranteed to
terminate, whereas in reality a person might pause before giving up. However, if
the concern is user error, this is not critical as either way termination is possible
so task completion is not guaranteed. If the user model took an action early
due to it corresponding to a communication goal (e.g. selecting a destination
�rst instead of ticket type) then the model would assume that the action had
had the desired e�ect. The action (selecting a destination) would be removed
from the communication goal list: the model \believes" it has been performed.
It then would not be done at the appropriate point in the interaction i.e., a
second (omission) error would occur. In this situation the correct action would
be a repetition of the earlier action { repetition is not an error in this situation.



Late actions: The user model does not put any time bounds on actions. All
rules simply assert that once an action is selected then it will eventually occur.
If any action must be done in a time critical manner, then the user model will
be capable of failing to do so. In practice this is too restrictive { it means the
current user model will always be able to fail with a device that resets after some
time interval, for example, as would be normal for a ticket machine. Where such
time criticality is inherent in a design, extra assumptions that deadlines are met
would need to be added explicitly.

Early actions: If there are periods when an action can apparently be per-
formed, but if performed is ignored by the computer system, then in some cir-
cumstances the user model would take the next action early. In particular, if
the user has outstanding communication goals then the corresponding actions
may be taken early. This will potentially occur even if the device gives explicit
guidance that the user must wait. This corresponds to the situation where a
person does not notice the guidance but takes the action because they know
they have to and have seen the opportunity. Similarly, if the device is presenting
an apparent opportunity for reactive behaviour before it is ready to accept that
action then the user model could react to it.

Replacement of one action by another: Replacement can occur due to
communication goals if the device requires a speci�c action to be taken but its
interface suggests that a communication goal can be discharged. For example,
if the coin slot is visible but a destination selection required �rst, the person
may insert money as discussed earlier. The user model may make the commu-
nication goal action rather than the required one, even if instructions are being
displayed. Similarly, if reactive signals give incorrect guidance that suggests an
action should be taken then that guidance may be followed. It can also occur
due to trigger rules and environmental changes. In particular, if a change of state
in the computer system can occur, not in response to a user action, then if the
user model has already committed to some action (such as pressing a button),
but its e�ect changes between the commitment being made and the action ac-
tually being taken, then the wrong e�ect will occur. This can lead to a person
doing something they know is wrong. The change could occur due to a machine
time-out or an environmental change (e.g. the time changing to o�-peak travel).

Insertion of actions from elsewhere in the task: Insertion of an action
can occur with communication goals. They can be attempted by the user model
at any point in the interaction where the opportunity to discharge them appar-
ently presents itself. With reactive tasks, it will occur only if the device gives a
reactive signal to suggest it can be done when it cannot.

Intrusion of actions unrelated to the task: Actions unrelated to the task
can intrude with the user model as a result of reactive signals on the device. If
a device supports multiple tasks and uses reactive signals that signal an action
to be performed that is not part of the task, such an action may be taken.

In summary, the principles of cognition implemented in the model generate
behaviours that account for Hollnagel's various phenotypes. Similarly, those same
principles of cognition can be used to derive and reason about design principles.



4 Design Rules

We now examine some usability design rules and how they solve the problems
identi�ed. Ad-hoc lists of design rules can easily appear to be contradictory
or only apply in certain situations. By basing them on cognitively plausible
principles, we can reason about their scope and make this scope more precise.
For example, should systems always be permissive [15], allowing any action to be
taken, or only under certain circumstances? Permissiveness appears to contradict
forcing functions [13] when only certain actions are made possible. By reasoning
from cognitive principles we can untangle these surface contradictions.

Completion actions: The user model contains a rule to terminate if the goal
is achieved. Whatever other rules are active, this one could be activated due to
the non-deterministic nature of the rules. The user model can therefore terminate
the moment its goal is achieved. Furthermore, no output from the device can
prevent this as it would just result in additional rules being active which cannot
preclude some other action being taken. For the user model to guarantee to not
terminate early for this reason it must only be possible for a user to terminate
once the task is completed. Thus for our user model the task must be completed
no later than the goal. Any design that requires the user model to perform extra
completion tasks must ensure they are done before the goal is achieved. The rule
will then only be active precisely when the task termination rule will be active,
so that termination does not occur before the task rule is achieved. In practice
(e.g. when termination involves logging out from a system) it may not always be
possible to satisfy this design rule; in such situations, another means of restoring
the invariant needs to be found. An attempted veri�cation of a design that did
not follow this design rule would fail because there would be a path where the
goal was achieved and so termination would occur on that path, when the task
was not achieved. In particular, as noted above, providing extra information is
not su�cient. For a ticket machine, taking the ticket must be the last action
of the user. They must by then have taken change or hold their credit card, or
these must be returned in the same place and at the same time as the ticket.
Multiple ticket parts (e.g. the return ticket) must also be dispensed together.

Provide information about what to do: Actions that are not communi-
cation goals can only be triggered in the model if they are a response to reactive
signals { information indicating that the given rule is the next to be performed
to achieve the given task. Therefore, if an action must be performed that does
not correspond to a communication goal then information in the form of clear
reactive guidance needs to be provided to tell the user to take the action. In
the case of a ticket machine, if a button must be pressed to con�rm the ticket
selected is the one required, then instructions to do this must be provided. For
communication goal actions, reactive information is not needed, though informa-
tion linking the communication goal to the speci�c action is needed: something
(such as the presence of a visible coin slot for inserting money) must make it
clear that the communication goal can be discharged.

Providing information is not enough: The above design rule concerned
always providing information. This one is that that is not good enough { so



might appear to be contradictory. However, it depends on the situation. A sim-
ple design rule might be to clearly indicate the order that actions should be
taken. This approach is often used where, for example, a panel gives instructions
or lights 
ash to indicate the next button to press. However, the user model is
non-deterministic. There may be several rules active and therefore several pos-
sible actions that could be taken. Reactive signals are not modelled as having
higher priority than any other signal. Other possible actions are, for example,
to terminate the interaction (if the goal is achieved), or discharge a communica-
tion goal. If the guards of such rules are active then they are possible actions.
Making other signals true cannot make such a guard false; it can only make false
guards true, so increasing the range of possible actions. Therefore, just providing

ashing lights or beeps or other reactive signals is not enough to ensure correct
operation. An attempted veri�cation of such a design would fail because it would
not be possible to prove that the correct action was taken. Some other action
would be possible which could ultimately lead to the user aborting the interac-
tion. If any possible path leads to abortion before the goal is achieved then the
correctness statement will be unprovable as it states that the goal is achieved
on all paths. Is providing information ever enough? According to the model {
yes. It is su�cient if the user has nothing else to do and the action clearly takes
them towards their goal. Thus (for our principles) if all communication goals are
discharged (the ticket has been speci�ed and money inserted) and the goal is not
achieved (no ticket is held) then providing information is useful and necessary.

Forcing functions: The fact that the user model is capable of taking several
di�erent options and that giving reactive signals and messages is not enough
means that some other way is needed to ensure the options are narrowed down
to only the correct ones. As Norman [13] suggests, in good design, only correct
actions for the range of tasks supported at a point should be possible. This
suggests the use of forcing functions. Somehow the design must ensure that the
only cognitively plausible actions are correct ones. This does not mean there must
only be one button to press at any time, but only one button that can possibly
be of use. Within the limits of the model, this means that if communication goals
are not yet discharged, and should not yet be discharged, then there should be
no apparent opportunity to discharge them. For example, a soft screen might
be used so that the only buttons pressable correspond to ones that can now
correctly be pressed. If money cannot be inserted then the coin slot should be
closed. Similarly, the solution to post-completion errors is to not allow the goal
to be achieved until the task is completed { forcing the user to complete other
completion tasks �rst (where possible), as discussed above.

Permissiveness: Forcing functions follow the design principle that the op-
tions available to the user should be reduced. An alternative way of solving the
same problem is to do the opposite and make the design permissive [15]: that is,
it does not force a particular ordering of events. In this case, the design should be
such that each of the actions that can be taken by the user model are accepted
by the design and lead to the task being achieved. With our user model, per-
missiveness cannot be used universally, however. For example, it is not su�cient



with completion tasks to allow them to be done in any order. As we have seen,
if the goal is achieved before the task is completed then the user model leaves
open the possibility of termination. There is no way the design can recover {
once the user model terminates it does not re-start the task. Therefore, in this
situation, being permissive does not work. The ticket must be released last. That
action corresponds to the goal so cannot be permissive. At times in an interac-
tion when communication goals are outstanding, the user model could discharge
them if the opportunity is present. Thus permissiveness is a useful design rule to
apply to communication goals. In particular, permissiveness should be applied if
forcing functions are not used when communication goals are active. A commu-
nication goal that appears dischargable should be dischargable. For example, a
ticket machine could allow destination and ticket type to be chosen in any order.

Visibility: The user model provides for both reactive behaviour and directly
goal-based behaviour. All user model actions are guarded by a signal indicating
the presence of information suggesting it is an appropriate action. If a control is
not labelled then the user model will not take the action. Thus all controls must
be labelled if the user model is to use them. This does not mean that labels must
be written. The form of a control may be considered su�cient to warrant the
signal being asserted. For example, a coin slot advertises by its form that it is for
the insertion of coins. This would need to be decided by a usability expert using
complementary techniques. Also, it only needs to be visible at the point where
the user model must take the action. Thus visibility need not be universal.

Give immediate feedback: If there is no possible action apparent to the
model then it will abort. If a user must wait while a ticket is printed, then feed-
back to wait should appear immediately with nothing else apparently possible
(e.g. no other buttons visible). One possible reactive action can always be to
pause provided it is guarded by the existence of a \please wait" message.

Do not change the interface under the user's feet: The existence of
trigger behaviour, where there is a delay between the user making a decision
and acting on it, but after which they cannot stop themselves, leads to a de-
sign rule that the interface should not change except in response to user action.
More speci�cally, a possible design rule is that no input to the computer system
should change its meaning spontaneously. This is quite restrictive, however. Less
restrictive design possibilities are available to overcome the problems. For exam-
ple, most ticket machines have timeouts { if no action is made in some period
then the machine resets to some initial state. The user model does not strictly
support such behaviour at present. However, one possibility with the current
limited user model, and as used by some cash points, is to ask the user if they
want more time after some delay. However, this means the buttons change their
meanings. What did mean \I want to go to Liverpool" suddenly means \I do
not want more time", for example. Such problems can be overcome, provided
the old buttons all mean \I want more time", and the one that means no more
time previously was not linked to any action { or with a soft-button interface did
not exist at all. Such a design would only work with the user model if reactive
signals were being used, as if the action were taken as a result of a communica-



tion goal, then that communication goal would have been discharged. The user
model would only take the action again if prompted reactively to.

Where possible, determine the user's task early: The user model can
take reactive actions intended for other tasks. This can be overcome if multiple
task devices determine the task to be performed at the �rst point of divergence
between the tasks. For example, a ticket machine that can also be used as a cash
point may have a common initial sequence inserting a credit card. However, once
the tasks diverge, the next device action should be to determine the task the
user is engaged in, in a way that makes no other actions (speci�cally commu-
nication goals for any of the tasks) apparently possible. From then on actions
from other tasks will not need to intrude in the design. This is important since a
communication goal can be discharged at any point where apparently possible.
In complex situations this will be di�cult to achieve.

5 Conclusions and Further Work

We have outlined a formal description of a very simple user model. The user
model describes fallible behaviour. However, rather than explicitly describing
erroneous behaviour, it is based on cognitively plausible behaviour. Despite this
we show that a wide variety of erroneous actions can occur from the behaviour
described in appropriate circumstances. We have considered how devices (soft-
ware, hardware or even everyday objects) must be designed if a person acting as
speci�ed by the user model would be able to successfully use the device. We have
shown how well-known design rules, if followed, would allow this to occur. Each
of these rules removes potential sources of user error that would prevent the ver-
i�cation of a design against the user model using the techniques described in [7].
We thus provide a theoretically based set of design rules, built upon a formal
model. This model has very precise semantics that are open to inspection. Of
course our reasoning is about what the user model might do rather than about
any real person. As such, the results should be treated with care. However, errors
that the user model could make are cognitively plausible and so worth attention.

One of our aims was to demonstrate a lightweight use of formal methods. As
such, we have started with a formal description of user behaviour and used it
as the basis for semi-formal reasoning about what erroneous behaviours emerge,
and the design principles that would prevent behaviours emerging. Such semi-
formal reasoning could contain errors. We also intend to explore the formal,
machine-checked derivation of the design principles. Using HOL (the proof sys-
tem the user model is de�ned within), this would involve giving formal descrip-
tions of design rules and proving that { under the assumptions of the user model
{ particular erroneous situations would not occur.

Our model is intended to demonstrate the principles of the approach and
covers only a small subset of cognitively plausible behaviour. As we develop it, it
will give a more accurate description of what is cognitively plausible. We intend
to extend it in a variety of ways. As this is done, more erroneous behaviour
will be possible. For example, habitual behaviour is currently not modelled.



Also many aspects of an interactive systems are parameters of the user model.
However, generally a user actually determines this information by observation of
the machine's interface. The model could be modi�ed so that such information
is an input in the model (i.e. collected as part of the interaction) rather than
supplied by the veri�er. We have essentially made predictions about the e�ects of
following design rules. In broad scope these are well known and based on usability
experiments. However, one of our arguments is that more detailed predictions
can be made about the scope of the design rules, relating them back to concepts
such as communication goals. The predictions resulting from the model could
be used as the basis for designing further experiments to validate the model, or
further re�ne it. We have also suggested there are tasks where it might be very
di�cult or even impossible to produce a design that satis�es all the underlying
principles, so that some may need to be sacri�ced in particular situations. We
intend to explore this issue further.

References

1. A.E. Blandford, P.J. Barnard and M.D. Harrison. Using Interaction Framework to
guide the design of interactive systems. International Journal of Human Computer

Studies, 43:101-130, Academic Press 1995.
2. A. Blandford, R. Butterworth and P. Curzon, Puma Footprints: Linking Theory

and Craft Skill in Usability Evaluation. Proc. Interact 2001, pp577-584, IOS 2001.
3. A. Blandford and R. Young, The role of communication goals in interaction. In

Adjunct Proceedings of HCI98, 1998.
4. R. Butterworth, A. Blandford and D. Duke. Using formal models to explore display

based usability issues. J. of Visual Languages and Computing, 10:455{479, 1999.
5. R. Butterworth, A. Blandford and D. Duke. Demonstrating the cognitive plausi-

bility of interactive system speci�cations, FACS, 12:237{259 2000.
6. M. Byrne and S. Bovair. A working memory model of a common procedural error.

Cognitive Science, 21 (1):31{61, 1997.
7. P. Curzon and A. Blandford, Detecting Multiple Classes of User Errors, Eng. for

Human-Computer Interaction, M. Little and L. Nigay (Eds) pp57{71, LNCS 2254,
Springer 2001.

8. P. Curzon and A. Blandford, A User Model for Avoiding Design Induced Errors in
Soft-Key Interactive Systems, TPHOLs 2001: Supplementary Procs., R.J. Bolton
and P.B. Jackson (eds), U. of Edinburgh, ED-INF-RR-0046, pp33{48, 2001.

9. R.E. Fields. Analysis of erroneous actions in the design of critical systems. PhD
Thesis. U. of York, Dept. of Computer Science, Tech. Report YCST 2001/09. 2001.

10. M.J.C. Gordon and T.F. Melham. Introduction to HOL: A Theorem Proving En-

vironment for Higher-Order Logic. Cambridge University Press, U.K., 1993.
11. E. Hollnagel. Cognitive Reliability & Error Analysis Method. Elsevier 1998.
12. A. Newell. Uni�ed Theories of Cognition. Harvard University Press, 1990.
13. D.A. Norman. The Design of Everyday Things. MIT Press 1998.
14. C.R. Roast. Modelling Unwanted Commitment in Information Artifacts, S. Chatty

and P. Dewan (eds) Eng. for Human-Computer Interaction, pp77{90, Kluwer, 1998.
15. H. Thimbleby. Permissive User Interfaces, International Journal of Human-

Computer Studies, (54)3:333{350, 2001.
16. H. Thimbleby, A. Blandford, P. Cairns, P. Curzon and M. Jones. User Interface

Design as Systems Design. To appear in the Proceedings of HCI 2002, Sept. 2002.


