
Reasoning about Trust Groups
to Coordinate Mobile Ad-Hoc Systems

Licia Capra
Department of Computer Science

University College London
Gower Street, London WC1E 6BT, UK

L.Capra@cs.ucl.ac.uk

Abstract

The increasing popularity of mobile computing devices,
coupled with rapid advances in wireless networking tech-
nologies, have created the infrastructure needed to sup-
port the anywhere-anytime computing paradigm. Middle-
ware systems have started to appear that aim at facilitating
coordination among these devices, without the user even
thinking about it, thus receding technology into the back-
ground. However, faced with overwhelming choice, addi-
tional support is required for applications to decide who
can be trusted among this plethora of interacting peers. In
this paper we propose a coordination model that exploits
trust groups in order to promote safe interactions in the
ubiquitous environment. Trust groups are asymmetric, that
is, each device has its own view of the groups it belongs to,
and long-lived, that is, their lifetime spans an extended pe-
riod of time, despite group membership being dynamically
handled. The dynamics of trust group creation, evolution
and termination are described, based on the history of in-
teractions of the device and on the ontology used to encode
the context of trust. The programmer efforts required to rea-
son about trust groups when coordinating mobile ad-hoc
systems are discussed.

1 Introduction

Mobile computing devices, such as mobile phones, per-
sonal digital assistants, digital cameras and the like, are get-
ting increasingly ubiquitous. Their computing capabilities
are growing quickly, while their size is shrinking, so that
we rely on an everyday larger number of devices to ac-
complish any task at hand. Wireless networks of broader
bandwidth allow these mobile units to aggregate and form
complex distributed system structures, thus providing users
anytime-anywhere access to their personal information, as

well as public resources and services.

Coordinating these devices has been recognised as a ma-
jor challenge. Mobile ad-hoc networks form opportunis-
tically, with nodes entering and leaving the communica-
tion range dynamically. The execution context changes
quickly as well, and devices are required to react to vari-
ations in both local and remote resource availability. In
order to simplify application programming, new coordina-
tion paradigms that take into consideration the characteris-
tics of the mobile computing environment have emerged,
and middleware systems that support these paradigms have
been developed. For example, JEDI [12] offers a publish-
subscribe coordination paradigm that enables nodes to inter-
act, despite network disconnections, by exchanging events;
Lime [21] exploits tuple-space based primitives, together
with an abstraction of context as data, to facilitate coordi-
nation both among mobile devices and between devices and
their execution context.

However, one of the most difficult challenges of the mo-
bile ad-hoc environment has not received much attention
yet, that is, how to decide who to trust in this plethora of
opportunistically connected peers. Each time an interac-
tion takes place, we face an inherent risk as we can never
be certain of the trustworthiness of the entities we interact
with, or that mediate the interaction. The perceived risk is
much higher in mobile ad-hoc settings than in traditional
distributed systems, because of the lack of administrative
boundaries, the anonymity of the entities we interact with,
the speed at which new entities come into reach while others
disappear, and so on. In these circumstances, collaboration
may seriously be hindered and mobile devices may prefer
to shut down connectivity, unless they are provided with a
means to reduce the exposure to risky transactions.

A trust management framework (TMF) offers a solution
to the problem. It aims at reducing the uncertainty that char-
acterises mobile ad-hoc interactions by enabling devices to
form, exchange and evolve trust opinions about other agents

0-7803-9469-0/05/$20.00 ©2005 IEEE

in the system. Such a trust management model should not
be artificially imposed on the user, but rather perceived as
natural, thus making it ultimately invisible. In order to
achieve this goal, trust dynamics in the human society have
to be observed and captured into computer models. The
following two aspects of human trust are of particular rele-
vance:

We reason as individuals - Intuitively speaking, trust
can be defined as the degree of belief about the be-
haviour of another entity, or agent, upon which we de-
pend (for example, to have a service delivered). These
beliefs are usually based on our direct experiences with
the agent (i.e., our history of interactions), and on rec-
ommendations (i.e., advice) that other agents provide
us. Individuality of reasoning implies that the same
history of interactions and the same set of recommen-
dations may lead different people to form different be-
liefs about the trustworthiness of the same agent, be-
cause their natural disposition to trust (i.e., the way
they reason about past experiences and recommenda-
tions) may differ.

We behave in groups - The entities we most frequently
interact with form fairly stable groups; for example,
we often eat in the same restaurants, we buy books
from the same booksellers, and so on. Also, before
interacting with an agent for the first time, we seek the
advice of entities we know and trust: our family, our
friends, our colleagues at work, and, in general, fairly
stable communities of recommenders that share our in-
terests and opinions.

In order to support subjective reasoning, we have devel-
oped hTrust [9], a trust management model and framework
that relieves the application programmer from tedious tasks,
such as collecting and processing recommendations from
other agents in the network, while exporting a simple inter-
face that, given in input the pseudonym of an entity, returns
a trust prediction of the entity’s behaviour. To capture the
natural disposition to trust of the user of the device, and
thus support subjectivity of reasoning that is typical of hu-
man trust, users can customise a set of functions that hTrust
internally uses to compute trust.

We argue that supporting subjective reasoning is not
enough. The information each device has to manage to rea-
son about trust can be massive; for example, when asking
for recommendations about a particular agent, hundreds or
thousands of replies may be returned to the device for pro-
cessing. However, only a very small fraction of these rec-
ommendations are actually taken into consideration (those
coming from our acquaintances, that is, our trust groups),
as most of them will typically come from unknown, or
untrustworthy, recommenders. We argue that, besides en-
abling subjective reasoning, trust group modeling must be

supported, in order to achieve more efficient and effective
processing of trust information, as well as to foster a more
natural coordination paradigm.

In this paper, we present a novel coordination model for
mobile ad-hoc networks that reasons about trust groups to
decide who to interact with. In Section 2, we provide an
overview of hTrust, pointing out its limitations as far as co-
ordination of mobile ad-hoc systems is concerned1. Sec-
tion 3 characterises the trust groups we are interested in (i.e.,
long-lived groups that are asymmetrically defined by each
agent), and it formalises the dynamics of trust group cre-
ation, evolution and dissolution, based on an agent’s history
of interactions and on the ontology used to encode the con-
text of trust. In Section 4 we discuss a coordination middle-
ware that realises the trust group model previously defined.
Section 5 compares our work with others in the field and,
finally, Section 6 concludes the paper and examines future
directions of research.

2 hTrust Overview

hTrust promotes trust-aware collaborations in mobile ad-
hoc networks by enabling each trustor agent a to collect and
process trust information about a trustee agent b, so to form
a trust opinion before interaction takes place. Sources of
trust information are: direct experiences and recommenda-
tions.

Direct Experiences. The trustor’s history of interac-
tions with b is processed and kept locally in the form of a
single aggregated trust information tuple:

[a, b, l, s, k, t].

The meaning of the tuple is as follows: agent a trusts agent b
at level l ∈ [−1, 1] (−1 meaning total distrust, and 1 mean-
ing blind trust) to carry out service s. For example, we may
specify that Alice (a) trusts Bob’s eBookshop (b) at level 0.8
(l) to sell travel books (s). Because in mobile ad-hoc set-
tings agents can have only a partial knowledge of their sur-
roundings, their trust opinions contain a level of uncertainty.
In order to distinguish between ‘don’t trust’ (i.e., trust-based
decision) from ‘don’t know’ (i.e., lack of evidence), we ex-
plicitly model the degree of knowledge k ∈ [0, 1] in the trust
opinion expressed, with 0 meaning unknown, and 1 mean-
ing perfect knowledge. The higher the number of direct ex-
periences happened between the trustor and the trustee, the
higher the degree of knowledge. The trustor’s knowledge k
decays with time; we thus associate, to each tuple, a times-
tamp t indicating at which time the knowledge k refers to.
A service s of particular importance, provided by virtually

1Although we describe trust group reasoning on top of the trust man-
agement model we have previously developed, the concepts illustrated in
this paper can be applied to different TMFs.

Agent a

Social
Context

- Aggregated Trust Tuples
- Application-specific

Parameters

Trust Dissemination

Trust Formation

Trust Evolution

hTrust

Applications

Communication Middleware

Local

Environment

Recommendations

Figure 1. hTrust Overview.

every agent in the system, is the service of supplying the
recommendations themselves. In human interactions, we
tend to value more recommendations coming from people
who have given us good recommendations in the past (i.e.,
people with whom we shared opinions), while discarding
recommendations coming from unknown recommenders, or
from recommenders with whom we had divergence of opin-
ions. Agents are thus judged based on the quality of the rec-
ommendations they give, in the same way they are assessed
for any other service they provide.

Recommendations. When direct experiences are not
available (e.g., because no interaction has ever happened in
the past between the trustor and the trustee), the trustor may
ask other agents in the environment (what we call the social
context) for recommendations. For example, Alice may be
willing to buy books from Bob’s eBookshop provided that
it has been recommended by Clare (agent x). A recommen-
dation tuple sent by x about agent b looks like:

[x, b, l, s, k, t]SKx .

A recommendation is thus computed by signing the local
aggregated tuple; a signature is necessary to prove the rec-
ommendation’s authenticity. We refer to x as to the agent’s
pseudonym; it is the piece of information the agent is known
for in the system (e.g., its public key2).

Figure 1 shows hTrust model overview. The trust forma-
tion component is used whenever agent a is willing to make
a prediction about the trustworthiness of another agent b;
both a’s past opinion about b and recommendations are pro-
cessed (using customisable functions) to compute a range of
possible trust values. Intuitively, the lower the confidence in
the trust data (parameters k and t), the wider the predicted
range, and viceversa. Recommendations are collected by
the trust dissemination component. Upon completion of an
interaction between a and b, the trust evolution component
of agent a updates a’s local environment: the aggregated
trust information tuple that refers to b is updated based on
b’s just perceived trustworthiness; moreover, the tuples re-
ferring to agents that have sent a new recommendations

2We assume each agent has got a pair of public/private keys (perhaps
more than one), that is managed via an independent public-key manage-
ment system specifically developed for ad-hoc networks (e.g., [8, 18]).

about b are updated based on the difference between the
recommended and the perceived trust. Details about the al-
gorithms used to realise trust formation, dissemination and
evolution can be found in [9].

Although enabling subjective reasoning, the social net-
work model hTrust is based on, that is, a flat collection
of individual agents, is too simplistic and far from reality.
In human interactions, we view the social network as a set
of (possibly overlapping) communities, and we most fre-
quently coordinate with the communities we belong to. By
modeling the social network as a collection of communities
(or groups), rather than a collection of individuals, more ef-
fective and efficient trust reasoning can be achieved. For
example, when seeking for recommendations about a spe-
cific service provider, rather than querying the social net-
work at large, we may query only the community of people
that we know can provide us with useful information about
it, thus increasing the quality of the information received
(effectiveness), and reducing the number of recommenda-
tions that have to be processed (efficiency). In the following
section, we illustrate how to model groups on top of a flat
social network and how to exploit them to promote trust-
aware coordination.

3 Trust Group Coordination Model

Groups can be characterised using two orthogonal di-
mensions: symmetric versus asymmetric, and volatile ver-
sus long-lived. In a symmetric group, each member has
the same view of who the other members of the group are;
for example, the Mobile System Group at UCL is a sym-
metric group. Symmetric groups often have wide visibility,
and their existence is acknowledged even by non-members;
new members are usually accepted after explicit join re-
quests have been processed. In an asymmetric group in-
stead, each member has its own vision of who the members
of the group are; for example, the group of Ann’s friends
may include Bob, but Bob’s group of friends may not in-
clude Ann. Asymmetric groups have local visibility, and
their dynamics are entirely defined by the member whose
point of view is under consideration. Volatile groups have a
very short lifetime, that is, they are created, managed and
then destroyed rather quickly; for example, the group of
people on a train from London to Cambridge. Long-lived
groups have a longer lifetime instead, although member-
ship can be very dynamic; for example, the group of our
colleagues at work.

All combinations of these characteristics are plausible.
In this paper, we focus on asymmetric, long-lived groups,
as we believe they best suit our target scenario. To begin
with, because of the dynamicity of mobile ad-hoc settings,
symmetric groups cannot be efficiently maintained; even
simple issues, such as using a voting procedure to accept

a new member in a group, could become very difficult to
deal with, if current group members cannot be reached for
long periods of time. Second, as trust is subjective, it is
unlikely that all members of a group would reach a con-
sensus, further supporting our focus on asymmetric groups.
Finally, as trust opinions are strongly based on past experi-
ences, reasoning about volatile groups would do no better
than performing a random choice about who to trust and
who not to, as there would be no historical information to
rely on. While we argue that asymmetric, long-lived groups
are well-suited for the mobile environment, their applica-
bility is not constrained to this scenario. The concepts and
algorithms discussed in this paper can similarly be applied
to maintain trust groups of interest in traditional distributed
systems that do not exhibit mobility.

In the remainder of the paper, we illustrate how to reason
about asymmetric, long-lived trust groups to foster mobile
systems coordination.

3.1 Groups of Trust

The first question we need to answer is: who do we want
to include in a trust group (i.e., who are we willing to coor-
dinate with)? Usually, we want to include only those agents
that have been trustworthy in the past, and that we have
known long enough to give us confidence they will be trust-
worthy also in the future. Both information, that is, trust-
worthiness and confidence, can be found in the aggregated
trust information tuples.

Given a set I of aggregated trust tuples, the set of agents
we are willing to include in a trust group at a particular point
in time is defined as follows:

Aτ (tnow) = {x | x ∈ πtrustee(at ∈ I|fτ (at, tnow) ≥ τmin)},

where πtrustee projects a tuple onto the trustee field; fτ

is an agent’s specific function that computes the expected
minimum trust of agent x based on the aggregated trust
tuple at = [a, x, l, s, k, t] at a specific point in time; and
τmin ∈ [−1, 1] represents an agent specific threshold so
that, if the expected minimum trust is below τmin, the agent
is not included in the trust group. Different choices of fτ

are plausible, because of the subjective nature of trust. An
example of fτ is the following:

fτ : I × T → [−1, 1]
fτ ([a, x, l, s, k, t], tnow) = l − ∆l,

∆l = l − l ∗ k ∗ max
(
0,

T − (tnow − t)
T

)
,

where ∆l represents the potential loss of trust due to time
and knowledge uncertainty, and T is the time interval dur-
ing which interactions are observed. This function takes

into consideration the fact that trust information is time-
sensitive: the older the information, the higher the uncer-
tainty it embeds. For example, given the aggregated trust
tuple at = [a, b, 0.75, bookseller, 0.92, 1 ∗ t], parameter
τmin = 0.45, and T = 10 ∗ t for some time unit t, then b
would be included in a’s trust group at time tnow = 3 ∗ t as
the following holds: fτ (at, 3 ∗ t) = 0.75 − (0.75 − 0.75 ∗
0.92 ∗ 10∗t−(3∗t−1∗t)

10∗t) = 0.75 − 0.19 = 0.56 ≥ τmin.
The above definition causes a projection of all the ag-

gregated trust tuples an agent has collected over an arbi-
trary long history of interactions and recommendation pro-
cessing, onto the group of tuples whose trustees currently
have an expected minimum trustworthiness that is above an
agent’s defined threshold. By promoting an agent’s coor-
dination with the entities belonging to this group, the risks
inherent to interactions in uncertain environments are re-
duced. However, this first level of grouping is not enough
to support effective and efficient trust reasoning. For exam-
ple, when we are looking for a trustworthy electronic book-
seller, we would like to focus only the (trustworthy) agents
that provide such service, without processing the aggre-
gated trust information that refers to different services. We
argue that, as trust information is context-dependent (i.e.,
it refers to a specific service), context must be taken into
consideration when modeling trust groups. In the following
section, we illustrate how to identify groups of agents that
share the same interests (i.e., the same context).

3.2 Groups of Interest

As shown in Section 2, each aggregated trust tuple
[a, b, l, s, k, t] contains information about the context s to
which the trust information refers to. This context can be
simply defined as the type (or category) of service that the
trustee b provides; for example, the above tuple may ex-
press a’s trust in b as a s =‘book seller’, s =‘flight booker’,
s =‘restaurant advisor’, and so on. In this work, we assume
that context is represented by means of a shared ontology.
In its simplest instance, an ontology [13] includes a vocabu-
lary (i.e., the syntax), a taxonomy (i.e., the semantics - a tree
structure imposed over a vocabulary), and a set of relation-
ships among the elements of the taxonomy. Various ontolo-
gies (e.g., [2, 1, 3]) have been proposed to describe classes
of services, each with different expressive power and tar-
geted to different domains. In this paper, we are not inter-
ested in what particular ontology is used; we simply exploit
its tree structure, where each node represents a service cat-
egory, this being a sub-category of its parent node. We also
make the assumption that each mobile device has access to
(the portion of) the tree that defines services of interest to
him.

Given the group Aτ (tnow) of the agent’s most trusted
interacting peers at time tnow, we operate a partition based

recommending

books electronics

fiction biographytravel

thrillerhorror

Stable groups created
at time T’=5*T

G thriller (T’) = {e}

G horror (T’) = {b,d}

Trust tuples collected
at time T’=5*T

[a,b,0.8,horror,0.7,tb]

[a,c,0.7,horror,0.6,tc]

[a,d,0.9,horror,0.8,td]

[a,e,0.7,thriller,0.9,te]

[a,f,0.6,thriller,0.7,tf]

[a,g,0.4,thriller,0.3,tg]

[a,h,0.8,thriller,0.2,th]

(a) (b) (c)

Figure 2. Group Dynamics - Group Creation Example.

on different service categories, and define a set of groups of
interest, that is, groups whose members are providers of the
same type of service si (or its sub-categories) , as follows:

A(τ,si)(tnow) = {x | x ∈ πtrustee(at ∈ I|fτ (at, tnow) ≥ τmin

∧ πservice(at) = instanceOf(si))},
(1)

πservice being a function that projects a tuple onto the ser-
vice field, and si being a service category in the ontology in
use. As each A(τ,si)(t) contains a smaller number of mem-
bers than Aτ (t), the processing of trust information gains
in terms of efficiency, as fewer trust tuples have to be pro-
cessed to decide with whom to interact. However, to pro-
mote effectiveness of reasoning as well, our definition of
groups must be further refined; in particular, we aim at cap-
turing in our trust groups those agents that are fairly stable
over time, as these are more likely to provide us with useful
information in the future, as opposed to agents with whom
we share only very short and/or unstable periods of interac-
tions. In the next section, we illustrate how stable groups of
trustworthy agents that provide the same type of service can
be identified and maintained over time.

3.3 Group Dynamics

The lifecycle of agent a’s trust groups can be described
as follows.

Phase 0 - Knowledge Gathering. Let T be the
time interval during which a observes interactions in the
environment. During the first T ′ = p ∗ T time intervals, the
basic mechanisms of hTrust are used to allow agent a to
gather trust information about other agents in the system (in
the form of direct experiences and recommendations). This
information is maintained in the agent’s local environment
as aggregated trust tuples associated to the nodes of the
ontology tree in use, depending on the service category
they refer to.

Phase 1 - Group Initialisation. After p time intervals
have passed, and the local environment has been populated
with aggregated trust tuples, the bootstrapping phase com-
pletes and trust groups start to emerge. In particular, the on-

tology tree is traversed bottom-up with the aim of grouping
sparse trust tuples into stable trust communities with shared
interest. For each node in the ontology tree, a stable group
is created as follows:

G(τ,si)(p ∗ T) = { x | (2)

#{y ∈
p⊎

j=1

A(τ,si)(j ∗ T)|y = x} ≥ µ }

where µ ≤ p is an agent-defined parameter indicating the
minimum number of times an agent x must have been
considered trustworthy (according to definition 1) over
the last p observations to be included in the current group
of stable interacting peers. The closer the value of µ to
the number p of time intervals that have been observed,
the more stable the defined group. Let us consider, for
example, the ontology tree shown in Figure 2(b); for the
first p = 5 time intervals, a uses hTrust to maintain local
trust tuples, arriving at time 5 ∗T with the set of aggregated
tuples shown in Figure 2(a). Every T time units, formula 1
is used to compute a snapshot of trusted groups of interests.
For example, assuming A(τ,horror) to be ∅ at time T , {d} at
time 2T , {b, d} at time 3T , {b, d} at time 4T , and {b, c, d}
at time 5T , and assuming µ = 3, then a stable trust group
G(τ,horror)(5T) = {b, d} is created, as shown in Figure 2(c).

Phase 2 - Group Maintenance. Instead of querying
the social context at large to decide which agents to coordi-
nate with, the group associated to node s in the ontological
tree is considered whenever agents operating in context s
are needed. After initial stable trust groups have been cre-
ated using formula 2, they are maintained over time using
the following formula:

G(τ,si)((p + q) ∗ T) = {x| (3)

#{y ∈
p+q⊎

j=q+1

A(τ,si)(j ∗ T)| y = x} ≥ µ} ,

that is, a stable trust group of interest G(τ,si) at time p+ q is
computed as the set of agents that have proven to be trust-
worthy at least µ times in the last p observations (the first

Merge 1: horror/fiction
Gfiction(T’)={b,d} Ghorror(T’)={} Gthriller(T’)={e}

fiction

[a,b,0.8,horror,0.7,tb]

[a,d,0.9,horror,0.8,td]

[a,e,0.7,thriller,0.9,te]

Trust tuples before merging

G thriller (T’) = {e}

recommending

[a,b,0.53,horror,0.7,tb]

[a,d,0.6,horror,0.8,td]

[a,e,0.7,thriller,0.9,te]

books electronics

travel biography Merge 2: thriller/fiction
Gfiction(T’)={b,d,e} Ghorror(T’)=Gthriller(T’)={}

(b)

[a,b,0.8,horror,0.7,tb]

[a,d,0.9,horror,0.8,td]

[a,e,0.47,thriller,0.9,te]

G horror (T’) = {b,d}

horror thriller

(a)

Figure 3. Group Dynamics - Group Merging Example.

q observations are discarded instead, as they are now con-
sidered outdated). Note that each group G(τ,si) is computa-
tionally cheap to maintain, as calculations performed at the
previous maintenance step can now be reused. In particular,
G(τ,si)((p + q) ∗ T) is simply computed as:
[

p+q−1⊎
j=q

A(τ,si)(j∗T)

]
\A(τ,si)(q∗T)�A(τ,si)((p+q)∗T) ,

where the multi-union
⊎p+q−1

j=q A(τ,si)(j∗T) is ready avail-
able from the previous maintenance step. New direct in-
teractions of a with other agents in the system, as well
as newly received recommendations, are fed into the sys-
tem and accounted for in the computation of the last set
A(τ,si)((p + q) ∗ T) (see formula 1).

If a group of agents associated to service category s is
not found in the tree, the tree is traversed bottom-up until a
group is found; note that, the further up we move, the lower
the chances to find such a group, because loss of precision in
context definition implies lower trust values for the agents
(i.e., the chances for an agent’s trust to pass the threshold
τmin defined in formula 1 decrease). If a group is not found
either on node s or on the nodes on the path from s to the
root, hTrust basic mechanisms are used to gather fresh in-
formation about available providers of service s; a group
creation may follow. It may also happen that, although a
group exists, a is not satisfied with it, as it contains too
few members (this number sizemin being agent specific).
Consider, for example, the case where group cardinality is
exactly 1: in this situation, agent a would restrict its inter-
actions to a single other agent in the system, thus severely
restricting its coordination within the social context. How-
ever, many other agents may exist that a trusts in a very sim-
ilar, although not identical, context. For example, accord-
ing to Figure 2, agent a would consider recommendations
of thriller books only from agent e; however, there exists
another group of agents (i.e., b and d) that are trusted in a
similar (although not identical) context (i.e., recommenda-
tions of horror books). In these situations, it would be better
to merge similar, very small groups into a bigger one, thus
increasing the variety of trust information processed and,

consequently, the potential for coordination. Before defin-
ing the dynamics of group merging, a definition of similar-
ity of context is required.

Given two nodes s1 and s2 in the ontology tree, we de-
fine the distance of the two nodes d(s1, s2) as the least num-
ber of nodes for s1 to traverse to s2

3. For example, the
distance between ‘horror’ and ‘books’ in Figure 2(b) is 2.
Based on this definition, we can describe group merging as
follows. For simplicity, we focus on the merge of the sta-
ble group g1 of a child node s1, with the stable group g2

of a father node s2; the merging among n groups arbitrarily
placed in the ontology tree can be defined as a sequence of
this basic merge operation.

merge(g1, g2) = g2 ∪
{

x ∈ g1 | fτ (at′, tnow) ≥ τmin

with at = [a, x, l, s1, k, t]
→ at′ = [a, x, l′, s1, k, t],

l′ = l ∗
(
1 − h(s2 \ s1)

Dmax

) }
(4)

After merging, s1 is left without group, while s2 has an as-
sociated group that contains the union of g2 and g1. When
moving one level up in the ontology tree, the aggregated
trust tuples of the agents in g1 have to be adjusted, as
they now refer to a different (broader) context. In partic-
ular, given the aggregated tuple at = [a, x, l, s, k, t] for
an agent x in g1, the trust value l in at is replaced by
l′ = l ∗ (1 − h(s2\s1)

Dmax
), with Dmax being the maximum

distance between two arbitrary nodes in the ontology tree
(for a balanced ontology tree, Dmax would be 2 ∗ height,
height being the depth of the tree), and h(s2 \ s1) repre-
senting the maximum distance between s1 and any newly
acquired context (that is, the maximum distance between
the parent node s2 and any of its descendants not belonging
to the subtree rooted in s1). Intuitively, the broader the new

3The definition of distance we have provided may be enriched using
weights associated to the various nodes of the given ontology. For exam-
ple, assuming the existence of another leaf ‘romance’ being subnode of
‘fiction’, we may want our definition of distance to return a higher value
for the distance between ‘romance’ and ‘horror’, than the value returned
for the distance between ‘horror’ and ‘thriller’. In this paper, we do not
investigate this possibility.

Split 1: books/fiction
Gfiction(T’)={b,d,e} Gbooks(T’)={j}

recommending

books

fictiontravel

thrillerhorror

G books (T’) = {b,d,e,j}

Trust tuples before splitting

[a,b,0.35,horror,0.7,tb]
[a,b,0.53,horror,0.7,tb]

[a,d,0.6,horror,0.8,td]

[a,e,0.47,thriller,0.9,te]

[a,j,0.62,travel,0.8,tj]

[a,d,0.4,horror,0.8,td]
electronics[a,e,0.31,thriller,0.9,te]

[a,j,0.62,travel,0.8,tj]

biography
Split 2: fiction/horror
Ghorror(T’)={b,d} Gfiction(T’)={e} Gbooks(T’)= {j}

[a,b,0.8,horror,0.7,tb]

[a,d,0.9,horror,0.8,td]

[a,e,0.47,thriller,0.9,te]

[a,j,0.62,travel,0.8,tj]

(a) (b)

Figure 4. Group Dynamics - Group Splitting Example.

context to which agents in g1 refer to (that is, the deeper the
ontological subtree to which they are associated after merg-
ing), the higher the fading of the trust values to which they
are associated (because of lower precision in the definition
of the context of trust). Note that, when adjusting the trust
tuple values during merging, so to take into account the ad-
ditional uncertainty due to the loss of precision in the spec-
ification of context, an agent’s trust level fτ (at′, tnow) may
not reach the minimum value τmin required for that agent
to belong to a trust group (see formula 4). If this is the
case, the agent is not included in the newly formed group,
thus remaining an orphan: its trust tuple goes back to the
local environment knowledge database, with the trust value
restored to the context it originally referred to. Figure 3
shows an example of this process. On the left hand side
(a), the state before merging is shown: two stable groups
have been defined and associated to service categories ‘hor-
ror’ and ‘thriller’ respectively; the aggregated trust tuples
that refer to agents in these groups are also shown. Because
these groups contain very few members, they are merged in
two steps, as shown on the right-hand side (b): a merge be-
tween horror and fiction occurs first, leaving the group for
horror empty, while creating a new group for fiction and ad-
justing the trust values for agents b and d using the formula
l′ = l ∗ (1 − 1

3) (Dmax = d(recommending, horror) =
d(recommending, thriller) = 3, and h(fiction \
horror) = d(fiction, thriller) = 1); a second merge be-
tween thriller and fiction leaves the group for thriller empty
and enlarges group fiction, while adjusting the trust value
for agent e.

Group merging proceeds until either a group is created
with sufficient members, or the group is dissolved (because
the loss in context precision causes the agents’ trustworthi-
ness not to pass the minimum threshold). Viceversa, when
a accesses an intermediate node whose group is too highly
populated (this number sizemax > sizemin being agent’s
specific), a split procedure is started, to refine the originally
oversized group (oversizing may happen as a result of main-
taining groups originated from merge procedures, thus cov-
ering broad contexts). Group splitting requires symmetric

operations to be performed: given a stable group g1 of a
parent node s1, the agents in g1 whose context s belongs to
the subtree rooted in the node s2 (child of s1) are removed
from g1 to form an independent group g2 associated to s2

4.
Also, trust values are re-adjusted (in particular, increased),
as a consequence of precision gain in context definition.

split(g1) = (g′1, g2) | g′1 = g1 \ g2 ∧
g2 =

{
x ∈ g1 | πcontext(at) = instanceOf(s2)

with at = [a, x, l, s2, k, t]
→ at′ = [a, x, l′, s2, k, t],

l′ = l/
(
1 − h(s2 \ s1)

Dmax

) }
(5)

Figure 4 shows an example of this procedure. Before
splitting (a), a single group containing agents b, d, e, j is as-
sociated to node ‘books’. After a first split (b), a new group
is created and associated to ‘fiction’, and the trust values of
interested agents (i.e., b, d, e) are adjusted using the formula
l′ = l/(1 − 1

3) (Dmax = d(recommending, horror) =
d(recommending, thriller) = 3, and
h(books \ fiction) = d(books, travel) =
d(books, biography) = 1). A second split follows
that creates a group associated to service category ‘horror’,
while adjusting the trust values of agents b, d.

Groups are implicitly dissolved in three circumstances:
during a group merge (the child node group is dissolved),
during a group split (the parent node group may be dis-
solved if it does not contain further members), and during
group maintenance if no agents survive the pruning defined
by formula 3 (e.g., because of inactivity or loss of trust).

As shown, groups are dynamically managed by means of
both reactive and proactive operations: merging and split-
ting are reactively performed when anomalous situations
are detected by a upon accessing a trust group in the on-
tological tree, while maintenance is proactively repeated
at regular intervals of time on the currently defined trust

4Note that, during merging, the context specified in the trust informa-
tion tuples was not changed, so that the original context the tuples refer to
is not lost.

Communication Layer

Local Environment

Ontology Trust Tuples Trust GroupsAppl-spec Info

Trust Management
Framework (hTrust)

Group Management
Framework

Subjective Reasoning Group Reasoning

C
o

o
r
d

in
a

t
io

n
 M

id
d

le
w

a
r
e Application

Figure 5. Coordination Middleware.

groups. Also, hTrust basic mechanisms of querying the net-
work at large are used from time to time, to provide a with
fresh information, thus avoiding the risk of over-restricting
a’s knowledge of its surroundings.

4 Trust Group Coordination Middleware

The model described in the previous sections has been
realised by means of the coordination middleware depicted
in Figure 5 (components that are not the focus of the paper,
such as discovery, are not shown). The middleware pro-
vides the device (and its applications) with an image of the
mobile ad-hoc system as a collection of communities, each
focused on a specific service category, and populated by the
most trusted agents delivering that service (according to the
agent’s perspective); low-level and tedious tasks, such as
handling device connectivity, developing recommendation
exchange protocols, implementing group dynamics etc., are
not exposed to the applications. Application developers en-
gineer trust-based collaborations by means of two simple
interfaces: an interface that enables subjective reasoning
about individual agents, and an interface that enables group
reasoning. The former is provided by hTrust [9]: given an
agent’s pseudonym in input, the agent’s expected trust is
returned, based on the agent’s past behaviour and the col-
lected recommendations; maintenance of the agent’s history
of interactions in the form of aggregated trust tuples is per-
formed by hTrust, without the application having to care
about it. However, as argued before, subjective reasoning
is not enough, as mobile ad-hoc settings are populated by
large numbers of devices providing the same services, and
it would be highly inefficient to make a prediction about all
of them before deciding with whom to interact. The latter
interface, realised using the model described in this paper,
overcomes this limitation: given in input a service category,
the group of stable, most trusted agents delivering that ser-
vice is returned. In particular, our group management model
processes the information contained in the aggregated tu-
ples and, together with an ontology of service categories of

interest to the agent, dynamically maintains stable trusted
group of agents delivering the same service. As a result,
an agent can more efficiently and effectively decide who to
coordinate with.

We argue that the coordination model described in this
paper is well-suited for the mobile setting for the following
reasons: first, it is completely decentralised (i.e., each agent
is a self-contained unit of trust information, with groups
defined in a completely asymmetric way). Moreover, the
resource demands imposed by the implementation of the
framework are customisable, so that devices with different
computing capabilities can tune the amount of resources
devoted to trust management. For example, application-
specific parameters (e.g., minimum trust level τmin) can be
chosen so to cause different overheads. We acknowledge
the fact that a unique, optimal choice of these parameters
does not exist, as they are domain-dependent; it is our plan
for the future to tailor the framework to a specific applica-
tion domain, and to empirically evaluate the impact of dif-
ferent choices of these parameters both on resource usage,
and on efficiency and effectiveness gains over non group-
based trust coordination models.

5 Related Work

The need to coordinate a growing number of mobile de-
vices in scenarios dominated by uncertainty and high dy-
namicity, such as the mobile ad-hoc setting, has resulted
in a growing community of researchers investigating trust
management issues.

To date, most of the proposed solutions focus on provid-
ing support for subjective reasoning. In [4], a trust man-
agement model is proposed to give autonomous entities the
ability to reason about trust, without relying on a central
authority. Based on direct experiences and recommenda-
tions, each entity is able to derive trust measures, thus be-
ing responsible for its own fate. The approach relies on
the assumption that entities will behave socially, exchang-
ing recommendations when requested to do so, although no
incentives are provided for this to happen. Also, no mecha-
nism to dynamically re-evaluate trust decisions is discussed.
In [7], a mechanism to detect and isolate misbehaving nodes
at the network (routing and forwarding) level is proposed.
The main advantage of the mechanism is that it works even
without assuming the cooperativeness of the nodes; how-
ever, decisions about what nodes to isolate are performed in
a completely automatic and homogeneous way. While this
approach may work well at the network level, its lack of
subjectivity severely limits its applicability at the applica-
tion level, where the user’s disposition has to be accounted
for. As part of the SECURE project [14, 24], a trust man-
agement model has been defined that uses local trust poli-
cies to form and dynamically re-evaluate trust, based on past

personal observations and recommendations; the computed
trust values are then exploited to assess risks involved in
the transaction, and to determine what behaviour the en-
tity must adhere to. The model makes explicit, for the first
time, the distinction between trust and knowledge, although
the uncertainty that time brings in is not taken into con-
sideration; also, the issue of malicious behaviours has not
been explored. In [19], a mechanism for the management
of distributed reputation in mobile ad-hoc networks is pre-
sented, that is able to detect malicious recommenders based
on the idea of ‘recommendation reputation’, that is, agents
are judged based on the recommendations they have given
in the past (although trust and knowledge are still confused).
Social control mechanisms have been proposed to automat-
ically isolate malicious entities and exclude them from fu-
ture interactions, without having to rely on a trusted third
party (e.g., [23]). The underlying assumption is the view
of a mobile system as an ecologic system [20], where the
interaction of the participants determines the success of the
individual participant. Although sharing the same basic as-
sumption, approaches developed to date are fairly limited,
in that they do not capture a variety of aspects peculiar to
human trust; for example, ways to recover from a bad rep-
utation, and natural disposition to trust unknown entities.
In [22], a different approach to distributed reputation man-
agement is proposed, that prescribes the use of first-hand
experiences only, to circumvent the limitations of recom-
mendations. We believe it to be unfeasible to work with
first hand experiences only, as this would quickly saturate
the system.

While supporting subjective reasoning to different ex-
tents, none of the approaches outlined above attempts to
model trust group reasoning. Research in the area of group
management is mainly found in the multi-agent system
community. However, most of these works are funded on
completely different assumptions that limit their applicabil-
ity to our setting. For example, approaches such as the one
described in [25] focus on action coordination, that is, how
to distribute tasks rather than who to interact with. Other
approaches (e.g., [6]) tackle the issue of which other agents
to deal with; however, they assume that agents (and their
roles) are known within the boundaries of a certain organi-
sation, and thus cannot be applied to the mobile ad-hoc set-
ting. In [15], the formation of trusted coalitions of agents
is discussed; however, the paper presents very early work
and ideas, without details about how coalitions are actually
formed and how they evolve.

The model we proposed in this paper is a first attempt
to combine subjective trust reasoning with trust group man-
agement, in a framework where the context of trust is also
explicitly taken into account. We do so by means of an
ontology tree to represent trust context, as previously pro-
posed in [11]. More recently, the use of a dependency

graph to represent service categories has been suggested
instead [17], and proven to overcome some limitations
in which strict hierarchical categorisations incurred. It is
our plan to model the trust service ontology as a directed
weighted graph, and to extend the algortihms we have pro-
posed in this paper to deal with group dynamics on top of
this service categorisation.

In our work we are tackling the problem of trust man-
agement from an engineering point of view, providing an
operational model that programmers can actually exploit to
build trust-aware systems; it is worth mentioning that vari-
ous formalisms of trust have been proposed too, in order to
help reasoning about trust. In [16], an opinion model based
on subjective logic is discussed that can assign trust values
in the face of uncertainty; however, the approach does not
describe how to compute these values. In [10], a formal
model for trust formation/negotiation, evolution and propa-
gation is presented; however, the protocols for exchanging
recommendations and for dynamically re-evaluating trust
are not provided. Similar considerations hold for the formal
trust models described in [5] (based on probability theory)
and [26] (based on lattice, denotational semantics and fixed
point theory).

6 Conclusion and Future Work

Coordinating the large, always increasing number of de-
vices that populate mobile ad-hoc networks, has been recog-
nised as a major challenge. In order to simplify applica-
tion programming, this paper has presented a coordination
model that fosters the engineering of trust-based collabora-
tions, by means of long-lived, asymmetric, trusted groups of
interest. Trust information is gathered, in the form of aggre-
gated trust tuples, via a trust management framework, such
as hTrust. This flat, unorganised information is then pro-
cessed to identity fairly stable communities of an agent’s
most trusted interacting peers, based on an ontology that
describes the service categories an agent accesses; the dy-
namics of group creation, evolution and dissolution have
been defined. Although group management requires some
additional resource consumption over non group-based so-
lutions, it later simplifies an agent’s reasoning about which
other agents to deal with, thus actually achieving more effi-
cient and effective coordination.

Our plans for the future span various directions. In Sec-
tion 4, we discussed our intention to tailor the model to a
specific application domain, in order to analyse the impact
of different choices of application-specific parameters onto,
for example, resource usage. In particular, we are imple-
menting a trust-aware service discovery framework for mo-
bile systems, and plan to use it as a testbed to compare the
effectiveness and efficiency of our group-based trust model
vs. non group-based approaches (i.e., hTrust). Other issues

on our agenda include refinements of the ontological dimen-
sion of trust; in particular, we intend to provide a richer
definition of semantic distance, based on weights assigned
to different nodes in the graph. This would allow applica-
tions to influence the way merging and splitting operations
are performed. Also, at present, a unique minimum trust
threshold is defined for an entire ontological tree; in the
future, we plan to assign different thresholds to different
subtrees, thus enabling applications to differentiate the sen-
sitivity of different services. Finally, although we assumed
the existence of a single, universally accepted ontology, it
is very unlikely there will ever be one; it is our intention to
investigate techniques to perform probabilistic, on-the-fly
translations between different ontologies.

References

[1] OWL-based Web Service Ontology.
http://www.daml.org/services/owl-s/, 2004.

[2] Resource Description Framework (RDF).
www.w3.org/RDF/, 2004.

[3] Web Services Description Language (WSDL) Version 2.0
Part 1: Core Language. http://www.w3.org/TR/wsdl20/,
2004.

[4] A. Abdul-Rahman and S. Hailes. Using Recommendations
for Managing Trust in Distributed Systems. In Proc. of
IEEE Malaysia International Conference on Communication
(MICC’97), Kuala Lumpur, Malaysia, Nov. 1997.

[5] T. Beth, M. Borcherding, and B. Klein. Valuation of Trust in
Open Networks. In Proc. of the 3rd European Symposium on
Research in Computer Security (ESORICS ’94), pages 3–18,
Brighton, UK, Nov. 1994.

[6] C. Brooks and E. Durfee. Congregating and Market For-
mation. In Proc. of the First International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS),
pages 96–103, Bologna, Italy, July 2002. ACM Press.

[7] S. Buchegger and I. L. Boudec. The Effect of Rumor Spread-
ing in Reputation Systems for Mobile Ad-hoc Networks. In
Proc. of WiOpt 2003: Modeling and Optimization in Mobile,
Ad Hoc and Wireless Networks, Sophia-Antipolis, France,
Mar. 2003.

[8] S. Capkun, L. Buttyán, and J. Hubaux. Self-Organized
Public-Key Management for Mobile Ad Hoc Networks.
IEEE Trans. on Mobile Computing, 2(1):52–64, 2003.

[9] L. Capra. Engineering Human Trust in Mobile System
Collaborations. In Proc. of the 12th International Sympo-
sium on the Foundations of Software Engineering (SIGSOFT
2004/FSE-12), pages 107–116, Newport Beach, CA, USA,
Nov. 2004. ACM Press.

[10] M. Carbone, M. Nielsen, and V. Sassone. A Formal Model
for Trust in Dynamic Networks. In Proc. of First In-
ternational Conference on Software Engineering and For-
mal Methods (SEFM’03), pages 54–63, Brisbane, Australia,
Sept. 2003.

[11] M. Chen and J. Singh. Computing and Using Reputations
for Internet Ratings. In Proc. of the 3rd ACM Conference on
Electronic Commerce, pages 154–162. ACM Press, 2001.

[12] G. Cugola, E. D. Nitto, and A. Fuggetta. The JEDI event-
based infrastructure and its application to the development

of the OPSS WFMS. IEEE Transactions on Software Engi-
neering, 27(9):827–850, 2001.

[13] T. Edgington, B. Choi, K. Henson, T. Raghu, and A. Vinze.
Adopting ontology to facilitate knowledge sharing. Commu-
nications of the ACM, 47(11):85–90, 2004.

[14] V. C. et. al. Using Trust for Secure Collaboration in Uncer-
tain Environments. IEEE Pervasive Computing Mobile And
Ubiquitous Computing, 2(3):52–61, Aug. 2003.

[15] N. Griffiths and M. Luck. Coalition Formation through Mo-
tivation and Trust. In Proc. of the Second International Joint
Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS), pages 17–24, Melbourne, Australia, July 2003.
ACM Press.

[16] A. Jøsang. A Logic for Uncertain Probabilities. Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, 9(3):279–311, June 2001.

[17] M. Kinateder and K. Rothermel. Architecture and Algo-
rithms for a Distributed Reputation System. In Proc. of
1st International Conference on Trust Management, number
2692 in LNCS, pages 1–16, Heraklion, Crete, Greece, May
2003. Springer-Verlag.

[18] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang. Provid-
ing Robust and Ubiquitous Security Support for Mobile Ad-
Hoc Networks. In International Conference on Network Pro-
tocols (ICNP), pages 251–260, Riverside, California, Nov.
2001.

[19] J. Liu and V. Issarny. Enhanced Reputation Mechanism
for Mobile Ad Hoc Networks. In Proc. of the 2nd Inter-
national Conference on Trust Management (iTrust), volume
2995, pages 48–62, Oxford, UK, Mar. 2004. LNCS.

[20] M. S. Miller and K. E. Drexler. Markets and Computation:
Agoric Open Systems. In B. A. Huberman, editor, The Ecol-
ogy of Computation, pages 133–176. Elsevier Science Pub-
lishers, 1988.

[21] A. Murphy and G.-P. Picco. Using Coordination Middleware
for Location-Aware Computing: A Lime Case Study. In
Proc. of the 6th International Conference on Coordination
Models and Languages (Coordination 2004), volume 2949
of Lecture Notes in Computer Science, pages 263–278, Pisa,
Italy, February 2004. Springer-Verlag.

[22] P. Obreiter. A Case for Evidence-Aware Distributed Repu-
tation Systems - Overcoming the Limitations of Plausibility
Considerations. In Proc. of the 2nd International Conference
on Trust Management (iTrust), volume 2995, pages 33–47,
Oxford, UK, Mar. 2004. LNCS.

[23] L. Rasmusson and S. Janson. Simulated Social Control
for Secure Internet Commerce. In New Security Paradigms
Workshop, pages 18–26, Lake Arrowhead, CA, Sept. 1996.
ACM Press.

[24] B. Shand, N. Dimmock, and J. Bacon. Trust for Ubiquitous,
Transparent Collaboration. In First International Conference
on Pervasive Computing, pages 153–160, Dallas-Fort Worth,
Texas, Mar. 2003.

[25] O. Shehory and S. Kraus. Methods for task allocation via
agent coalition formation. Artificial Intelligence, 101:165–
200, 1998.

[26] S. Weeks. Understanding Trust Management Systems. In
Proc. IEEE Symposium on Security and Privacy, pages 94–
105, Oakland, CA, May 2001.

systems software. In Proceedings of IASTED Software En-
gineering and Applications (SEA’04), Cambridge, MA, Nov
2004.

[13] P. Dickson and J. Giglierano. Missing the boat and sink-
ing the boat: a conceptual model of entrepreneurial risk. J.
Mark, 50((July)):5870, 1986.

[14] N. Dimmock. How much is ’enough’? Risk in trust-based
access control. In IEEE International Workshops on En-
abling Technologies: Infrastructure for Collaborative En-
terprises: Enterprise Security (Special Session on Trust
Management), June 2003.

[15] N. Dimmock, J. Bacon, D. Ingram, and K. Moody. Risk
models for trust-based access control. In In Proceedings of
the Third Annual Conference on Trust Management (iTrust).
Volume 3477 of LNCS. Springer-Verlag, May 2005.

[16] C. English, S. Terzis, and W. Wagealla. Engineering trust
based collaborations in a global computing environment. In
To appear in Proceedings of the Second International Con-
ference on Trust Management, Oxford, UK, March 2004.

[17] E. Friedman and P. Resnick. The social cost of cheap
pseudonyms, 1998.

[18] M. R. Greene and J. S. Trieschmann. Risk and Insurance.
(Cincinnati, Ohio: College Division, South-Western Pub-
lishing Co), 1962.

[19] R. Harbird, S. Hailes, and C. Mascolo. Adaptive resource
discovery for ubiquitous computing. In Proceedings of
the 2nd workshop on Middleware for pervasive and ad-hoc
computing, pages 155–160, New York, NY, USA, 2004.
ACM Press.

[20] J. Hirshleifer and J. G. Riley. The Analytics of Uncertainty
and Information (Cambridge Surveys of Economic Litera-
ture). Cambridge University Press, September 1992.

[21] W. Jansen and T. Karygiannis. Mobile agent security. NIST
special publication 800-19. Technical report, National Insti-
tute of Standards and Technology, 1999.

[22] A. Jøsang and S. L. Presti. Analysing the relationship be-
tween risk and trust. In C. D. Jensen, S. Poslad, and T. Dim-
itrakos, editors, iTrust, volume 2995 of Lecture Notes in
Computer Science, pages 135–145. Springer, 2004.

[23] S. Kent and R. Atkinson. Security Architecture for the Inter-
net Protocol. Internet Engineering Task Force: RFC 2401,
November 1998.

[24] F. Knight. Risk, uncertainty and profit. Houghton Mifflin,
Boston, 1921.

[25] H. Levy and H. M. Markowtiz. Approximating ex-
pected utility by a function of mean and variance. Amer-
ican Economic Review, 69(3):308–17, 1979. avail-
able at http://ideas.repec.org/a/aea/aecrev/v69y1979i3p308-
17.html.

[26] S. Marsh. Formalising trust as a computational concept.
Ph.D. Thesis. Department of Mathematics and Computer
Science, University of Stirling, 1994.

[27] R. I. Mehr and E. Cammack. Principles of insurance.
(Homewood, IL: Richard D. Irwin), 1961.

[28] L. Mui, M. Mohtsahemi, and A. Halberstadt. A Compu-
tational Model of Trust and Reputation. In Proceedings of
the Thirty-Fifth Hawaii International Conference on System
Sciences. IEEE, 2002.

[29] J. V. Neumann and O. Morgenstern. Theory of games and
economic behavior. ([3d] ed.). New York,: Science Editions
J. Wiley, 1964.

[30] B. Patil and S. Das. Protocol for carrying authenti-
cation for network access (pana). http://www.ietf.org/
html.charters/pana-charter.html.

[31] A. Patrick. Building trustworthy software agents. IEEE In-
ternet Computing, 6(6):46–53, 2002.

[32] L. Savage. Foundations of Statistics. John Wiley & Sons,
New York, 1954.

[33] J.-M. Seigneur and C. D. Jensen. Trading privacy for trust.
In C. D. Jensen, S. Poslad, and T. Dimitrakos, editors, iTrust,
volume 2995 of Lecture Notes in Computer Science, pages
93–107. Springer, 2004.

[34] W. Wagealla, M. Carbone, C. English, S.Terzis, and
P. Nixon. A formal model of trust lifecycle management.
In Proceedings of the Workshop on Formal Aspects of Secu-
rity and Trust, 2003.

[35] T. Yamagishi and M. Yamagishi. Trust and commitment
in the united states and japan. Motivation and Emotion,
18(2):129–166, 1994.

[36] S. Zachariadis, C. Mascolo, and W. Emmerich. Satin: A
component model for mobile self organisation. In R. Meers-
man and Z. Tari, editors, CoopIS/DOA/ODBASE (2), volume
3291 of Lecture Notes in Computer Science, pages 1303–
1321. Springer, 2004.

