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Abstract. It is shown that the random electric fields of charged dislocations in insulators 
should cause appreciable broadening of sharp resonance lines such as spin-resonance 
signals. The degree of broadening is very sensitive to the screening of the dislocations by 
charged point defects. Since the shape of the inhomogeneously broadened resonance line 
monitors the distribution of the internal fields, the lineshape can be used to deduce proper- 
ties of the charged dislocations, like their charge per unit length and the degree of screening. 
Quantitative calculations are presented which suggest that spectroscopic methods, notably 
spin resonance, should provide a convenient method of investigating charged dislocations. 

1. Introduction 

Dislocations in insulators or semiconductors may be electrically charged. In insulators 
the charge is associated with jogs and bound vacancies (for a recent survey see Whitworth 
1973); in semiconductors, trapped carriers and impurities may play a r61e. 

The measurement of the charge on the dislocation and of the effects of screening has 
always caused technical problems in the past. Here we discuss the application of methods 
used widely in related areas, namely the use of point defects with sharp resonance lines 
to monitor the random internal fields from the dislocation charges. The general area of 
inhomogeneous broadening of this sort has been reviewed recently (Stoneham 1969, 
1971). Applications to the strain fields of dislocations (Stoneham 1966, 1970) and to the 
electric fields of charged point defects (Mims and Gillen 1966) are among those par- 
ticularly closely related to the present work. Roitsin (1972) has recently reviewed much 
work on electric fields in solids. In the present paper we derive expressions for the effects 
of interest, and show that measurements of this sort are potentially ofmore than adequate 
sensitivity to give useful information, and should be easy to apply. 

2. Theory of internal fields of charged dislocations 

The basic ideas are very simple. An array of charged dislocations, plus their screening 
clouds, produce electric fields which vary from place to place in the crystal. Suppose 
there is a point defect present which has a sharp resonance line, such as an electron-spin 
resonance or an optical zero-phonon line, whose energy is changed by an electric field. 
Therr the observed, inhomogeneously-broadened, line monitors the distribution of the 
internal electric fields. The lineshape and width then contain information about the 
sources of the electric field, their distribution and charges. 
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2.1. Basic theory 

This approach can be made quantitative (see, for example, Stoneham 1969). Suppose the 
point defects whose resonance lines are observed have a transition energy hw which 
shifts linearly with applied field E :  

E = 1 ajEi/E,. 
i = x, y ,  z 

Here E ,  is some arbitrary characteristic field, and the hw,ai are coupling coefficienrs 
determined from separate experiments using a uniform external field, The lineshape 
observed measures the distribution of E in the crystal. We shall assume that E is the sum 
of contributions E(ZJ from each dislocation. Here zi denotes the relative position Y, 

Burgers vector b, charge per unit length Z, etc, of the ith charged dislocation. 
The lineshape depends on E(Z) and on the distribution and density of the charged 

dislocations. The distribution is described by a function p ( z )  related to the pair distribu- 
tion function of the dislocation relative to the point defects. The charged-dislocation 
density, p, is conveniently defined as the limiting value of the total number of charged 
dislocations divided by jdzp(z). Apart from a numerical factor of order unity, p is just 
the dislocation length L per unit volume. Explicit expressions for E(z),  p(z) and p are 
given in 8 3. 

In terms of p(z ) ,  p and E ( Z )  the distribution of E is given by: 

dx exp (ixe) exp [ - pJ(x)] 

J ( x )  = dzp(z){ 1 - exp [ - ixc(z)]}. 

We shall consider explicit expressions later. For the present, we merely note that there 
are three essential assumptions. First, there is a linear Stark effect: hw is linear in E. 

Secondly, the contributions E(Z) of different charged dislocations to E are simply additive. 
And thirdly, the charged dislocations are assumed uncorrelated in position. This puts 
limits on the concentrations which can be used, normally at a few per cent for point 
defects, but this restriction is not serious in practice. 

2.2. Approximate results 

In several cases, (2.3) and (2.4) are too complicated for analytic solution. It is then an 
advantage to have an approximate method of estimating the linewidth caused by the 
charged defects. A suitable method has been given by Schofield (1966) whose results 
have been expressed in a form appropriate to the present case in 83.3.2 of Stoneham 
(1969). If the full width at half intensity of the line is A, and if U is E(z)/A, then 

1 = p dzp(z)u2F(u) r 
F(u) = 2(u2 + 6)/[(u4 + 4)(u2 + I)] 
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is an integral equation for A, and 

e 
(2.7) 

gives the peak intensity. Equation (2.5) is readily solved numerically. 
Other approaches give the asymptotic limits and moments of the distribution. The 

asymptotic form of Z(E) can also be found at large E ,  when the centre contributing to the 
resonance line is strongly perturbed by a single nearby charged defect. For example, 
if r is the separation of the centre and the defect, and if p(z) - r" and E(Z) - r-"', then 
(Stoneham 1969,94.5) 

I(€ + a) N 1 / & + ( " + 1 ) / m J ,  (2.8) 
Moment methods (eg Stoneham 1969 53.3.1) can give exact values for expressions 

such as 

MN = dEENZ(E) del(€). (2.9) c /l 
A finite number of moments given only limited information about the lineshape. Further, 
there are technical difficulties for dislocations. The moments have a divergence because 
of the form of E(Z) at small separations. The special treatment needed causes problems 
because E(Z) is not known in detail in this range. The difficulties may be contrasted with 
the minor problems at large separations discussed in $4.1, where the finite crystal size 
is important. 

The approximate results (2.5H2.8) and the moment methods will be necessary when 
we discuss screened charge dislocations, since Z(E) can be obtained analytically only in 
the unscreened case appropriate to freshly-produced dislocations. 

3. Explicit forms for e(z),  p ( z )  and p 

We consider a cubic crystal containing only straight uniformly-charged dislocations. 
Non-cubic crystals can be treated similarly, with an increase in complexity because their 
dielectric tensors E are not isotropic. The variables z which describe charged dislocations 
are r ,  2, 0 and 6. Here r is the distance from the origin (at which the electric field is being 
monitored), Z the charge per unit length in units I e 1, and tl and q5 define the dislocation 
axis. The Burgers vector needs additional variables to define it, but for present purposes 
these can be ignored provided we choose a suitable average value of 2. 

3.1. Form ofp(z) 

If we assume a random distribution of dislocations, that is, one which is homogeneous 
throughout the crystal and where there are no preferred orientations for the dislocation 
axes, then (Stoneham 1969, 54.2): 

p(z) dz = dtl sin B dtl drr. (3.1) 
An additional weight factorf(B,q5, r) can be added to take account of obvious generaliza- 
tions. Examples might be functions f(tl,q5) which ensure only dislocations with axes 
along specific crystallographic directions occur, or functionsf(r) which take into account 
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correlations in position of the monitoring point defects with the charged dislocations. 
With this definition of p(z), p is related to the total dislocation density, L, by 

p = L/2. (3.2) 
No account is taken here of the differences in screw and edge dislocations. 

3.2. Form of E(Z) 

For a freshly-produced dislocation, the electric field at distance r is readily found from 
Gauss's theorem. With charge 2 I e I per unit length 

E = (2 y) (i). (3.3) 

This equation is modified by screening by charged defects present in the crystal. 
Normally there will be far more charges present as point defects than in the dislocations. 
Thus for lo6 cm/cm3 of dislocations with 2 1 e I charges every 5 A, there is a charge of 
4 x 1013\el/cm3, whereas there will be 10'6-10'7~e~/cm3 of charged point defects 
even in the purest alkali halides. Thus, only a very small fraction of the charged point 
defects need actually be involved in screening. A satisfactory description of the effect 
of all the charged defects, including screened charged dislocations, can be obtained by 
assuming that there are two independent types of charged defect: point defects uncor- 
related with the dislocations, and line defects with an electric field 

E = ?!?-!!! (:) exp ( - r/R,). 
Er 

Here R,, the screening radius, will be adequately given by the Debye-Huckel form : 
R - 2  = h e 2  

S - C Q:Pi EkT species 

(3.4) 

(3.5) 

for point defects with charge Qll e I and density pi per unit volume. Whenever appropriate, 
we shall regard vacancy-impurity pairs as distinct species from vacancies and impurities 
in the sum in (3.5) and in the later discussion of broadening by point defects. 

As a rule the screening lengths, R,, are much smaller than the typical separations 
1/& of the dislocations. For a few parts per million of isolated charged defects in an 
alkali halide, Rs is of order 100 A, whereas l/$is usually in the 104-105 8, range. Thus 
the screened dislocations can be considered distinct line defects and their mutual overlap 
ignored. 

The contributions to E of the electric fields E still involve additional coupling 
coefficients (a,ko,/E,) which depend on the details of the point defects monitoring the 
internal fields. As well as giving a proportionality constant, the ai ensure that we consider 
the projection of E onto a specific direction, rather than 1 E I itself. If this direction is 
given by the unit vector a,  and if d is the unit vector along Y, then 

where A(r) is given by 

A(r) = - 2 Z t e l  ho, (a: + ay" + exp ( - r /R , ) ;  
E E O  

(3.7) 

R ,  is infinite for unscreened dislocations. 
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4. The distribution of internal fields 
We now calculate the distribution of the dimensionless parameter, E, which is related 
to the observed lineshape by a simple scaling. 

4.1. Lineshape for unscreened dislocations 

The theory in this case is almost identical with that for dislocation strain fields given by 
Stoneham (1966, 1969 84.2 and Appendix 1). Tn consequence, we leave out most of the 
algebraic details. There are, however, simplifications over the earlier case. The expres- 
sions for E(Z)  are much simpler, and the integrals over functions of $(e, 4) can be per- 
formed analytically. Collecting terms, 

pJ(x) = AZLxZ(A  - B In 1 x 1) 
A = i{[0-9228 + In ( R J A ) ] I ,  + I,} 

where 

B = L l  4 1  (4.3) 
R,  is the radius of the crystal, assumed spherical, and is introduced to avoid the usual 
logarithmic divergence frequently found in dislocation problems. I ,  and I ,  are the 
integrals over 8 and I$ of 1 $ 1  and of - 1 $ 1  In 1 $ 1  respectively. Tf we ignore any differ- 
ences in Z between edge and screw dislocations, appropriate values are 471/3 for I ,  
and 47119 for I,. A and B become 

A = 1.316 + 1.048 In (RJA), B = 1.048 (4.4) 
The main effect of the B term is to give a slight deviation from a gaussian shape. The 
effect on the linewidth can be obtained by direct Fourier transformation, using (2.3) 
and (4.1). Alternatively, one can exploit the slow variation of lnlxl over the important 
part of the integrand in (2.3). We merely note here that, when B is zero, the full width at 
half intensity of the line, A, has the value 

A. = A$4@ a. (4.5) 

Z = 0.4 electrons/& E = 4 and L = lo6 cm/cm3. (4.6) 

Expressed as an electric field by omitting the coupling coefficient (ha ,  Io! I /Eo)  in 
A, A. corresponds to a field of half width 0.96 (A)'12 lo4 V cm-' for the values: 

Since L can be raised to lo8 cm/cm3 and ,,h proves to be about 3, very substantial 
internal fields are expected. 

Under common experimental conditions for the alkali halides, the majority of the 
charged dislocations have axes parallel to a single cube axis. If this is [0, 0,1], then A 
and B can be obtained in terms of the unit vector (ax, a,,, a,) describing the response of 
the monitoring centres, Specifically we have for the coefficients in (4.1): 

The most important change in the A and B values is the [U; + u:]1/2 factor. This enters 
because there are no field components parallel to the dislocation axes. 

4.2. Approximate methods 

We shall use almost exclusively the solutions of the integral equation (2.5) in discussing 
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the linewidth. Solution is straightforward by a combination of analytic and numerical 
integration using standard methods. 

Three cases are usefully distinguished, depending on the relative values of the crystal 
size R,, mean dislocation separation l/<L, and screening length R,. 

4.2.1. N o  screening. In this limit the charged point defects are completely uncorrelated 
with the dislocations, although the crystal will be electrically neutral overall. A value 
of Rc<L is needed, and we assume the value lo4 typical of many of the systems studied. 
The linewidth is then : 

With the parameters (4.6) the internal field distribution has a width 1.7 x lo4 V cm-’. 
The results are only weakly dependent on Rc&. If this parameter is reduced by an 
order of magnitude, the linewidth is reduced by just over 10%. Indeed, to halve the 
linewidth, R,& must be reduced to less than 10, and this would correspond to a 
crystal which is almost dislocation-free. 

The value of A should be compared with the broadening produced by the random 
point defects present. For one charged defect per lo6 sites this other contribution is 
about 3.2 x lo4 V cm-’, increasing as (CipiQi3i2)2’3 (Mims and Gillen 1966). Thus 
the point-defect and charged dislocation contributions are comparable. . 

4.2.2. Weak screening. This artificial limit corresponds to a screening radius larger than 
I/& yet smaller than the crystal dimensions. Both the moment methods and the 
asymptotic expressions agree in predicting that the main effect of weak screening is to 
narrow the centre of the line, with a smaller immediate effect on its wings. Thus the line 
moves towards lorentzian from gaussian. Quantitatively, the line is reduced from the 
value for no screening. The reduction is negligible for R , r L  - lo4, about 23% for 
R,JL - IO3 and about 40% for R , r L  - 100. Even modest screening substantially 
reduces the width. 

4.2.3. Strong screening. In this case the integral equation (2.5) has no solutions. This 
happens for two reasons: the lineshape is of such a nature that the approximations used 
in deriving the integral equation are invalid, and the assumptions which lead to (2.3) 
and (2.4) fail because most of the monitoring centres lie outside the screening clouds 
and are negligibly perturbed by the screened, charged, dislocations. Fortunately, the 
physics is reasonably clear: when the dislocations are fully screened, they do not have 
any significant effect on the observed lineshape. For this to be true, the centres monitored 
must not be trapped close to the dislocations, nor must the dislocations enhance sig- 
nificantly the intensity contribution of nearby monitoring centres. These criteria hold 
for most systems discussed in the next section. In such cases, with strong screening, the 
observed shape will be determined by the charged point defects and by a variety of 
residual mechanisms. 

5. Discussion 

The use of spectroscopic methods to probe the properties of charged dislocations has 
several clear advantages. The distribution of internal fields can be found, rather than 
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some mean square value, and the details involve both the dislocation charges and screen- 
ing charges. The method should be sensitive too, so that the dynamics of screening 
should be observable as a reduction in linewidth as charged ions move to screen freshly- 
produced dislocations. Further, one can do equilibrium experiments as well as ones in 
which the equilibrium has been perturbed. 

The practical success of the method does depend, however, on the choice of system 
used. One has a good deal of freedom in selecting the defect whose transition is to be 
monitored, and it would be disappointing if some suitable example could be found in 
any given host. 

There are several important criteria to be used, namely: 
(i) The transition must show a linear Stark effect. The larger the effect, the more 

suitable is the system chosen. This criterion eliminates defects with inversion sym- 
metry. Useful information may be obtained when nonlinear corrections are important, 
but data will be harder to analyse quantitatively. 

(ii) The transition must be more strongly affected by the dislocation charge than by 
the dislocation strain field. In practice this means that, for the transition energy: 

(Shift in eV per unit strain) 
(Shift in eV per lo4 V cm- l) 

Q 2 m 4  V cm-'. 

(iii) The monitoring defect must not be attracted or repelled by the dislocations to 
such an extent that p ( z )  differs significantly from a random distribution. Thus the defect 
should not have a net charge, nor a large elastic misfit. 

(iv) The resonance observed should be narrow in the absence of electric-field broaden- 
ing. Thus emission lines with large spontaneous probabilities and spin-resonance 
centres with fast spin-lattice relaxation are eliminated. 

(v) Since the screening cloud can be established in a matter of minutes at room 
temperature, it is an advantage to use a rapid method, so avoiding low-temperature 
work. 

Examples of possible systems in alkali halides are these : 
(i) Spin resonance of transition metal ions, charge-compensated by adjacent vacan- 

cies. Mn2+ is a good candidate, since it is readily observed, is relatively insensitive to 
strain, has slow spin-lattice relaxation, and its hyperfine structure allows easy identifica- 
tion of the inhomogeneous part of the line broadening. Indeed, Kawamura and Okubo 
(1962) have already reported the influence of dislocations on Mn2+ vacancy systems in 
NaCl, and show clearly measurable effects can be obtained. Their analysis assumed that 
rotation of the defect axes was the main source of inhomogeneous broadening, and their 
conclusion was that quantitative agreement was only possible if the Mn2+ ions were 
trapped close to the dislocations. In fact, rotation effects are probably negligible. 
Unfortunately, there are insufficient data to re-analyse the results in terms of electric 
field or strain effects. In order of magnitude, spin-resonance methods should be able to 
detect fields of order lo4 V cm-' (see Ludwig and Ham 1963, Royce and Bloembergen 
1963, Mims and Gillen 1966). 

(ii) ENDOR measurements on nuclei adjacent to F centres (eg Reichert 1967) are 
possible, although harder technically and less sensitive; fields of order lo5 V cm-l are 
needed in KCl. 

(iii) Optical measurements on F aggregate colour centres, like the R centres. 
Again, the method seems less sensitive than spin resonance; the results of Davis (1970) 
show that fields of order 10' V cm-' are needed. 
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(iv) Centres which can re-orient but which respond more to electric fields than strains. 
Unfortunately the obvious choices-OH- and CN-, or the off-centre Li+ ion in 
alkali halides-seem to respond comparably to the electric and strain fields of charged 
dislocations (see eg the review of Narayanamurti and Pohl 1970). 

Clearly, the most favourable systems in this list are the Mn2+-vacancy complexes, 
although there may be other better cases. The natural experiments to begin with are, 
first, a measurement of the effect of an external electric field on the spin resonance lines 
to determine the coupling coefficients. Then, should the results prove satisfactory, the 
natural next stage would be to observe the changes in lineshape both immediately after 
the creation of fresh (unscreened) dislocations, and again after allowing a screening 
charge to develop. 
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