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The theory of the spin-lattice relaxation of 
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Abstract. A calculation of the relaxation of Cu2 + in potassium zmc Tutton salt 
has been made on a crystal field model. The magnitude and anisotropy predicted 
are in good agreement with experiment. The results imply that the tetragonal 
field splitting 6 is about 7700 cm-l and the cubic field sphtting A0 about 8700 cm-l. 

1. Introduction 

Experimental and theoretical studies of the spin-lattice relaxation of magnetically 
dilute systems of transition series ions in non-magnetic host lattices suggest that the 
processes involved are not yet fully understood. One of the purposes of the present 
calculation was to see how well the commonly accepted relaxation mechanisms worked 
n one particular situation. 

Cupric ions enter substitutionally for zinc in potassium zinc Tutton salt, and the 
experimental advantages of this system will be discussed in the following paper (Gill 
1964). There is a further advantage that Cu2+, having an isolated Kramers doublet 
lowest, may shed some light on the two similar systems Ti3+ and Co2+, which relax at 
helium temperatures between three and five orders of magnitude faster than expected 
(Van Vleck 1940, Foglio and Pryce, to be published). 

The Hamiltonian of Cu2+ in a static crystal field may be written 

2Pc7J = =%o + =%cr + 2Pso + Z z  + X I  

where the terms are in order of importance. The free-ion Hamiltonian Zo gives rise 
to a 2D ground state. Zcp describes the interaction of the crystal with the ion, and will 
be taken to the crystal field approximation. It is assumed that Zcr is entirely due to 
the distorted octahedron of water molecules surrounding the ion, whose effect is re- 
presented by an appropriate electrostatic potential. Overlap of the 3d electron wave 
functions of the Cu2+ ion and the ligands will be neglected, as is the possibility of 
electron transfer between the ion and the ligands. The spin-orbit interaction Zso is 
L. S within the 3d configuration for a hole in the 3d shell described by L, S. Aiz is the 

electronic Zeeman energy. The nuclear Zeeman energy, together with terms arising 
from the interaction of the nuclear magnetic moment with the electronic moment, the 
anomalous s-electron contribution and quadripolar interactions, are contained in SI. 
Although 2PI introduces extra terms in the relaxation rate, these prove to be small and 
Will not be discussed. 
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2. The Cu(H20):+ complex 
The cupric 3d shell contains nine electrons, and can be treated as a hole in a closed 

3d1° shell. The orbitals for the hole are labelled E,  0, E, 7 ,  5, and transform under the 
cubic group as x2-y2, 2 z 2 - 2 - y 2 ,  yz, xz and xy respectively. In a static strictly 
cubic field, 5, 7, 5 are degenerate, as are E, 0 which form the degenerate grqund state. 
A lower energy configuration may be obtained by a tetragonal distortion of the complex 
of the six ligands and the Cu2+ ion. This follows from the theorem of Jahn and Teller, 
and is illustrated in figures 1 and 2. The terms quadratic in the distortion arise from the 
usual forces which maintain the equilibrium of the crystal, and are the same for all the 
energy levels. The terms linear in the distortion are seen most clearly by subtracting off 
the common quadratic terms as in figure 2(b) and are the terms whose existence follows 
from the theorem cited. 

Figure 1. The energy levels of Cu2 + in crystal fields of cubic and lower symmetry. 

Centre o f  gravity 

( a  1 ( b  1 

Figure 2. The effect of a tetragonal distortion on the energy levels of Cu2 +. The 
distortion from an octahedral arrangement of ligands is positive when two ligands 
move away from and four towards the Cu2 + ion. The curves for [, 7, 5 lie close to 
that of their centre of gravity. In (b) a common quadratic term has been substracted 

from all energy levels. 

In a rhombic field all degeneracy except Kramers’ degeneracy is lost. The members 
of the orbital triplet (E, 7 ,  5 )  are still nearly degenerate in the case of dilute deuterated 
potassium copper Tutton salt (Bleaney, Bowers and Pryce 1955) and their splitting will 
be neglected in this calculation. The splitting of the orbital doublet ( E ,  0) by the tetragonal 
field is not altered by small rhombic components, so the result 

A = A,+@ or A, = A  1-- i 2 2  
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which can be seen from figure 2 (b) for the tetragonal case, is still valid. A, A, and 6 are 
defined in the figure and d = A/& The rhombic term alters the wave functions of the 
doublet E ,  0, giving 

IE)+’) = le)cosa+/O)sina 
lO)+lO’) = lO)cosa-lc)sina. 

can be estimated from the g values, as 

2x 
A 

8,-2 N - - (co~a+2/3s ina)~  

2x 
h 

8,-2 N - - - ( c o s a - d 3 ~ i n a ) ~  

8h 
A 

8,-2 2: -- cos2 a. 

(Abragam and Pryce 1951) 

Using g, = 2-16, g, = 2.04 and g, = 2-42, we find a = 9” 22‘ and A/A N 0.054. The 
average over all angles of g is 2.21. The matrix elements of orbital angular momentum, 
given in table 1, are zero within the sub-space E, 8. Thus, as A/A is so small, it is adequate 
to treat Xso and smaller terms to an appropriate order of perturbation theory, whereas 
Zo and Xc$ must be diagonalized to the extent indicated above. X Cro is the value of 
ZPCr for the ligands in their static equilibrium positions. 

XCr is modulated by thermal and zero point vibrations, giving the spin-lattice 
interaction 

where R represents the nuclear coordinates of the complex, R, their static equilibrium 
values and r the coordinates of all the electrons of the Cu2 + ion. As R -R, will be small 
compared with R, an appropriate Cu2+ -H20 separation, a Taylor expansion can be 
made : 

X‘  = Xcr(r, R) - Ro) 

3 

where the Q, are the normal coordinates of the complex. X’ is invariant under operations 
of the symmetry group of the complex, including the inversion operator. Thus W, has 
the same parity as Qu, and will have non-zero matrix elements within 3d9 only if Qu has 
even parity. The Qu of odd parity can contribute pairwise in the second term of X’,  
but are negligible as the intermediate states are about 70 000 cm-l away. 

The Wu and Qa will be taken to be those for a complex with complete cubic sym- 
metry. The W,/R are then the Vu defined by Van Vleck (1939), and the Q, are linear 
combinations of distortions of the complex which transform according to irreducible 
representations under the cubic group. The neglect of non-cubicity may be excused in 
several ways. Firstly, it is hard to improve on the approximation with the available 
information, for the environment of the Cu2+ ion is not well known; probably it consists 
of a rhombically distorted octahedron of water molecules whose dipole moments are not 
necessarily parallel to the octahedron axes. Secondly, other simplifications are needed 
in this calculation, such as the use later of the approximation of plane waves for the 
normal coordinates of the crystal. An exact solution for these for a crystal as complex 
as a Tutton salt is extremely difficult, yet it would be unrealistic to include non-cubicity 
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but to use this simplification. Thirdly, it will appear later that Qz is largely responsible 
for the relaxation. This only involves motion of the ligands in the plane normal to the 
tetragonal axis, and the configuration of these molecules is altered only in size by the 
static tetragonal distortion. The correct W2 is that for the cubic case, using a value of R 
appropriate to the ligands involved. As the way the W, transforms under operations of 
the cubic group is known, their matrix elements between the orbitals E, 8, f ,  71, 5, whose 
wave functions transform like those of d orbitals, are proportional to the elements of 
known matrices (Grfith 1961, 5 8.7 and A.20). The proportionality constants can be 
calculated and a transformation made to the orbitals which diagonalize So+ SC,. 
The result appears as table 2. 

The W ,  form bases for the representations A, (z = 1, breathing mode), E (a = 2,3, 
pumping mode), TI (a = 19,20,21, rotations) and T2 (a = 4,5,6, shearing mode) of 
the cubic group. There are seven non-zero proportionality constants G, corresponding 
to the elements of cc = 1 and a = 2, 3 in the (E, e) sub-space of M. = 1, M. = 2, 3 and 
U = 4,5,6 within the ( f ,  7, 5 )  sub-space, and of a = 4, 5, 6 and a = 19,20,21 between 
the two sub-spaces. They can be expressed, in the approximation that the ligands give 
an isotropic field of force p/x2 at distance x from the ligand, in terms of p, R, e (the 
magnitude of the electronic charge) and (r"), the expectation value of the nth power 
of the mean distance of a 3d electron from the nucleus. (Y") is assumed to be the same 
for all d orbitals. To  this approximation, 

where 
pn = ( r n  )/Rn, and if y, = G,/Gl 

24p2 
yz=  -- 1+- I+- : ( :;:, ( 25J 

4 

y5 = --(l+-) 21 
24p2 -' 

2543 25p4 

1 5 d 2  ( 25p) 
7 24p2 

YS = - 1+- 

y,= --(I+-) 14 24p2 . 
45d2 25p, 

uskg a value for pz/p4 obtained from the calculation for CUI+ by Hartree and Hartree 
(1936) and R = 2.05 8, 

GI = -3'40Ao 
y2 = -0.304 
y3 = $0.350 

y5 = -0.106 
y6 = t0.072 (3) 
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ys, y7 will be dropped from now on. Their contribution to the relaxation rate is a further 
order of magnitude smaller than (3) suggests, for equation (4) shows that this contribution 
is reduced by the fifth power of the ratio of the velocities of transverse to longitudinal 
waves. 

The distortions Qa of the complex can be related to the normal coordinates of the 
crystal. It is necessary to make a number of approximations, in particular that the 
crystal may be assumed isotropic, that the mean square displacements are independent of 
the site in the unit cell and that the long wave limit may be used. These should be r,eason- 
able at temperatures much less than the Debye temperature. The isotropy assumption 
means that the acoustic phonons (which are almost exclusively responsible for relaxation 
at low temperatures) can be described in terms of one longitudinal and two transverse 
modes, and together with the homogeneity assumption means that the normal coordinates 
of the crystal can be taken as standing plane waves. From the long wave limit it follows 
that, for phonons of wave vector f and polarization s, If IR g 1 and that wfs = If 10,. 
Here U,, is the corresponding angular frequency and v, the relevant velocity of sound, 
Then 

where M, is the crystal mass, and a,,, a,,+ phonon annihilation and creation operators, 
with matrix elements 

(n fsb fs  b f s  + 1 > = ( nf, + 1 I%+ In,,) = (%, + 1)1'2. 

a,, is the phonon occupation number of the mode f, s in thermal equilibrium and is 
(exp (hwfs/KT)- 1}-l. $,, is a phase which appears because the nodes of (f, s) have 
some distribution with respect to the Cu2+ ion. For a random distribution the expecta- 
tion value of sin2 $,, is +. The # a  transform under the cubic group in the same way as 
the Qa and are functions of the phonon polarization vector with components (Xfs, Yfs,Zfs) 
and the unit wave vector f/]fl with components (L, M ,  N ) .  For each phonon (f, s) 

1 
$2 = X L - M Y  $3 = - (22"-XL- Y M )  

d3 

For later use we need the two summations 

. .  
t'/f',f/f 

where 
I f 1  = f and *a = *$, s), *a' = *a(f, s'). 

By transforming C,, into an integral JlndQf and using the transformation properties 
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of the #a under the cubic group, we obtain 

i 

Apart from some obvious permutations, all other &(E, ,B, y, 6) are zero. 
The different veIocity factor for rotations can be simply included by multiplying 

G5 by (5/et5) ( 2 / v , 5 + 3 / ~ ~ ~ ~ ) - ~ .  For vl/vt = 1.5, y5 becomes -0.131, and it is this which 
is used in all subsequent stages. As the contribution from rotations is not large, the 
estimate of vl/nt is not of critical importance. 

3. Transition probabilities 

We write the Hamiltonian for a crystal containing a single Cu2+ ion 

26 = 26cu i- L@lQttlCe + 26' 
where 

in the harmonic approximation, and, omitting X I  which proves to be unimportant, 

$ifcu = (L@0+26"Cro+2~S.H)+(XL.S+~L.H) = / f A + P .  

Mattuck and Strandberg's method (1960, to be referred to as MS) is adopted. Like the 
method of Van Vleck (1940), zlattlCe and L@* are treated exactly, and 2' as a pertur- 
bation, but whereas Van Vleck also treats P as a perturbation, P i s  diagonalized in MS to 
an appropriate order by Lowdin's method. These two cases differ least when P (which 
has no diagonal elements between eigenstates of 8") is small compared with the 
separation of the ground states from the nearest excited states to which P connects it. 
Here P N h < 1000 cm-l is much less than A > lo4 cm-l. For the Raman process, the 
important terms are easier to pick out in the Van Vleck case, and this helps the selection 
of the important terms for the approach of MS. 

The excited electronic states of the complex are lo3 to lo4 cm-l above the ground 
state, so at most temperatures only the ground ( E ' )  Kramers doublet is populated. It is 
therefore convenient to write a Hamiltonian which gives the transition probability for 
the direct or the Raman process in terms of a,,, a f s+ and spin operators which operate 
between the eigenstates of a spin Hamiltonian of effective spin 4 describing the behaviour 
of the lowest Kramers doublet. 

Let the doublet be 1 +), 1 -) and E+ -E-  = fiwo. Then 

8 
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PS, 

a4 x sin r$ft,. (q,+ qs+)(q,s, +q,,,+)Sf~p' SI. 
The tensors 9," and 9,3a are defined in equation (45) of MS, and is the first term 
in MS, equation (57). The Raman process has contributions from the first term in fl 
taken to second order, or the second term to first order. These terms are proportional to 
factors of order ( W2/S)f,, Wf2, where W N W, N We, and f, N RT, f 2  - kwo = g,$H 
appear because the contributions to the Raman process vanish in the limit of zerof,, fi 
respectively. At all temperatures of interest the first term dominates, and the other will 
not be discussed further. The spin components SI ,  referred to the axes of the complex, 
are related to the spin components G,, referred to axes in which the z axis is parallel to 
the applied magnetic field of magnitude H, by 

= 2 ' 1 I G j  

3 

which also defines the Z,,. For simplicity we can write 

%direct = F z S , + F y S y + F z S ,  = @zoz+ @gOy+ C'Zb, 

yeaaman = P z S z + p $ y + P d ' . z  = 14 2 P j ( ~ j z - i ~ j g ) b +  

+{i c p 3 ( ~ 3 z + i l l Y ) ) Q -  +{  c ~ I ~ Y Z b Z .  

3 

3 3 

The transformation of coordinates is simpler in the Raman case as the P,, unlike the F,, 
do not involve the I,,. Replacing the summations over phonons by integrals over a 
sphere containing the same number of phonons as the first Brillouin zone, the direct 
process transition probability is 

where V is the volume of the crystal. In detail, the relevant integrals over angles are 
given in (4). The relaxation time is equal to (Wy2zt+ WFfte",")-I and is given 
bv 

The 8, are complicated functions of the I,,, Ais, the rhombicity and the y,. The ap- 
proximation 

kwo  2kT 
2kT kwo  

2nwo + 1 = coth- N 

has beenused, as kw0/2KT< lj8 for all the experiments. As wo = gpH/&, the direct process 
relaxation time is proportional to H e 4  T - l .  Similarly 
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There are no cross terms in PJ’,+l because none of the factors $:& - $&‘ occurs for 
more than one value of i. Ultimately 

1 
-= 

where 

tends to unity as XD tends to infinity. 0, is the Debye temperature and I&) has been 
given by Ziman (1954). The W, represent the contribution of the corresponding P, and 
(1, m, n) are the direction cosines of the magnetic field with respect to the axes of the 
complex. In this case W, # Wy # W, so that the relaxation is anisotropic, but independent 
of the magnitude of the applied field. This contrasts with the case of a cubic environ- 
ment when W, = W, = W,, and the Raman process is independent of the direction of 
the applied field. The W, are complicated functions of A/6, the y1 and the rhombicity. Hill 
and Smith (1953) have measured the specific heat of (NH,)Zn Tutton salt, from which 
one can derive oN, where oN-3 = (+vl-3+$ot-3). In calculating 6K9-5 = +1-5 + % 5 t  -5  

for (K)Zn Tutton salt, it is assumed that gK = vw This should not lead to a large error 
and gives = 1.0 x loz7 cm5 sec-5. Tutton (1916) quotes pKZn = 2.246. The 
remaining factors in ( 5 )  and (6) are h/A which was derived from the g values in (Z), and 
Gl/A = (Gl/Ao) (1 - 1/2d) which is given in (3). It is not necessary to know A, A,, or Gl 
separately at any stage, which is very convenient in view of the lack of optical data. The 
one unknown parameter is d = A/S, and both relaxation rates can be written in terms of 
this. U,, is 0-9455 x 277 x 1O1O rad sec-l. 

1 2.21 2 

-= 0.72 x 10-3(F) (1 -;) {A+Bn2 + Cn4 +D(14+ m4 +n4)  
TTdVBCt 

+ E(12 -m2) +Fn2(Z2 -m2))) deg-l sec-l. 

D = -(9*95d2+7-90d+0*99) 
A = 9.95d2+7*90d+31.24 B = -(8.62d2+6*90d+80.02) 
C = 8*62d2+6-90d+79*91 
E = +7*72 F = 15*82d2+ 10.86d-35.0 

T = 3*017d4+2*677d3+ 1.783d2+0*512d+0-981 
U = 0-200d4 + 0*863d3+ 0 e41 ld2+ 0.048d - 0.181 
V = 0.247d4+ 1.946d3+ 1.118d2+0*378d-0*532. 

When the magnetic field is parallel to one of the axes of the complex (one of 1, m, n = l), 
the dependence of the direct process on d disappears except for (1 - 1/2d)’, where the 
terms in d correspond to energy denominators 6 = Ee.-Eer rather than A. In the 
sub-space IC’), [e’) L has zero elements and there are only non-zero elements of Q2 

and Q3, which transform under the cubic group like x2-y2, Z Z ~ - X ~ - Y ~ .  AS X’, 
which is linear in spin and magnetic field components, is invariant under these trans- 
formations, it will contain terms 
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where the axes are those of the complex. When H is parallel to one of these axes, the 
only non-zero terms are proportional to HS, E Ha;. This has no off-diagonal elements, 
so the contributions of Q2, Q3, and hence the terms in d, will vanish for these orientations. 

4. Discussion of experimental results 

A detailed comparison of equations (7) and (8) with experiment is given in the follow- 
ing paper. The Tutton salts contain two types of Cu2f site, which are related by a 
translation plus a reflection and whose tetragonal axes are nearly perpendicular. As, for 
most of the orientations considered their magnetic resonance lines overlap, it is 
expected that cross relaxation will be important. By assuming that the cross relaxation 
occurs much more rapidly than the spin-lattice relaxation and conserves the total 
Zeeman energy, rather good agreement results. The direct process relaxation rate when 
the magnetic field is parallel to the axes of the complex enables one to estimate the 
accuracy of the terms in (7) which involve d only in the factor (1 - 1/2d)2. The predicted 
rate is about 0.67( 1 - of that observed, which is very reasonable considering the 
assumptions made, particularly those concerning the lattice system. A change in 
velocity of sound of about 25% would correct the terms, and would probably correspond 
to the inhomogeneity of the lattice. Correspondingly, the Raman process was corrected 
by a factor (067)2 x (1 - 1/2d)4 before being used to estimate d. The question of cross 
relaxation is not so clear-cut here, as the cross-relaxation rate is temperature independent 
and will be more important at low temperatures. It appears that the estimate of d = 1.64 
is not sensitive to the extent of the cross relaxation, and so this value was used to predict 
the orientation dependence of the direct process. 

This estimate of d is compatible with optical data given by Grf i th  (1961). In 
aqueous solution 4 appears to be 12 600 cm-l, which, with d = 1.64 and equation (l), 
gives 6 N 7700 cm-l and A, N 8700 cm-l. This is consistent with the values for 
hexaquo-complexes of adjacent divalent ions as 40 N 7900 cm-l for Co2+ (3d') and 
4, N 8500 cm-l for Ni2+ (3d8). 

Measurements of the relaxation time above 90 OK were made by Bagguley and 
Griffiths (1952) and by Bleaney et al. (1951). The most important phonons will be those 
with energies near to A@,, where OD N 105". For these very few of the assumptions 
made are valid-in particular the neglect of optical modes. Simply using an appropriate 
value of I'(x,) gives a rate slower than that observed by about an order of magnitude. 
Further reasons for the discrepancy lie in the change in g values with temperature, and 
the interpretation of this phenomenon by Abragam and Pryce (1950). There was 
evidence before starting this calculation that the Van Vleck mechanism was responsible 
for the relaxation, as in the dilute specimens the observed relaxation times were long, 
independent of concentration, and had the temperature dependence expected. The only 
significant feature which has not yet been confirmed in detail is the frequency dependence. 
This situation contrasts with that of Co2+ in MgO at liquid helium temperatures (Foglio 
and Pryce 1964) for which the Co2 + relaxation time depends strongly on the concentra- 
tions of Co2+ and other iron group impurities, and the relaxation rate is inconsistent 
with a calculation similar to the one described here, and with acoustic and uniaxial stress 
measurements. It is, of course, considerably harder to prepare impurity-free crystals of 
MgO, which must be grown from the melt, than to prepare pure crystals of the water 
soluble Tutton salts. One feature of spin-lattice relaxation phenomena is that systems 
so dilute as to be essentially free from the effects of pairs or larger clusters of paramagnetic 
ions can be greatly influenced by low concentrations of impurities. 
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