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Mean field models for martensitic and cooperative 
Jahn-Teller transformations 

Abstract. The validity of mean field models for phase transitions is discussed, and 
examples are given for dilute random systems of anisotropic defects interacting with 
long range elastic strain fields. The distribution of internal fields, and not merely the 
moments, is calculated. 

Isolated defects in cubic crystals may have point symmetry lower than cubic. We discuss 
cooperative phenomena in crystals containing a dilute random solution of such defects 
interacting through their long range elastic strain fields. There are thus substantial dif- 
ferences from the case of concentrated systems, where short range interactions dominate 
(Goodenough 1963, Wojtowicz 1959, Kanamori 1960, Sarfatt and Stoneham 1967, Novak 
1969, 1970 a, b). In particular we discuss the distribution of the internal fields tending to 
cause cooperative alignment, and the specific application of a mean field theory to the cubic 
to tetragonal transition. The theory provides a model for some martensitic and cooperative 
Jahn-Teller transitions in a form which is free from arbitrary parameters. 

To be specific, we assume the defects can be represented by x, y ,  or z force dipoles. 
Dynamical correlations are ignored, so we use an instantaneous, rather than retarded, 
interaction. Both this feature and the assumption that only discrete orientations are possible 
are good approximations in many cases; for the Jahn-Teller effect it means that we consider 
the static, rather than the dynamic, limit. In continuum elasticity the interaction of a 
defect at r = 0 in orientation i with one in orientationj at r = R can be written at large 
distances as 

where X ,  Y, Z are the direction cosines of the position vector R and R 3 \RI. The co- 
efficient M can be determined either from the properties of the isolated defect or by a 
measure of the cooperative distortion (Zener 1948). Here we relate M to the Jahn-Teller 
energy, A, of an isolated ion by calculating both M and A for a model system of force 
dipoles. If the force dipole at r = 0 consists of two antiparallel equal forces of magnitude 
F(t) a distance 2as apart and that at r = R consists of two analogous forces F(J) a distance 
2dJ) apart then M has the explicit form 
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where repeated indices are not summed, p is the shear modulus and v is Poisson’s ratio. 
The $ i j  are given by 

other $ t j  can be found by symmetry. 
We now calculate the distribution of Elk, the difference in energy for a defect in the 

i and k orientations, using the ‘statistical method’ (Stoneham 1969 reviews this approach). 
The method assumes that €dk is simply the sum of terms from each of the other defects in 
the crystal and that the distribution of defects in space and in orientation may be expressed 
in terms of a pair distribution function p(R, j ) .  A low concentration assumption is implicit 
since only one defect should occupy each site. If E W ( R , ~ )  Et#?) - &(R) and p is the 
total density of defects per unit volume, then the distribution of q k  is 

J(x) = C j d3R p @ , j )  (1 - exp ( - - - i x 4 W )  ( 5 )  
f 

These results simplify enormously if we assume that p(R, j )  = fj, the fraction of defects in 
statej. The degree of alignment along, say, the z axis is measured by ( f z  - Q) =J; and we 
may compute the distribution Zzz as a function of$ These results are directly relevant to the 
mean field theory. Specifically, Zzz is Lorentzian [Z N {az + (E - z)2}-1] in our approxi- 
mations, with a width 

= Mp (19.193 - 0.047f) (6) 
and a shift, which gives the mean field 

in which we use v = 5. It is clear that the fluctuations in the internal field are always much 
larger than the mean field, even when there is a high degree of alignmert (f N 8). 

For completeness we summarize the result of a mean field calculation, despite the 
limitations of its validity. We find that (a), the transition occurs at a temperature 
kT, = 0.9026 pM, linear in M and in the defect concentration, and that (b), a latent heat 
0.234 pMper defect, so that this is a first order transition in which f changes discontinuously 
in the transition. The defect ‘strength’ parameter M can be related to A, the Jahn- 
Teller energy per defect, in appropriate cases. If a is the nearest neighbour distance 
then M = +Aa3/(1 - v). In other cases, other definitions of M are appropriate. Thus 
Zener (1948) related the critical tempaerture to the difference between the instant- 
aneous and static compliances of the system. To give orders of magnitude, if 
A N 1 eV, v = 5, a = 2 A and a fraction 10-2 of sites are occupied then Tc N 10 K, and 
the latent heat -4 . IO5 erg cm-3. However, in view of the doubts about mean field theory, 
these results should be regarded with caution. Cooperative behaviour has been seen for 
electric dipoles in similar circumstances by Fiory (1969). However it is by no means clear, 
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either experimentally or from the preliminary calculations we have made, which attempt 
to include the fluctuations, that there is a sharp ordering transition in such dilute systems. 
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Axial ratios of hexagonal metals 

Abstract. Calculations of the equilibrium axial ratios of beryllium, magnesium, zinc 
and cadmium based on the optimized model potential are compared. The condition 
for a large axial ratio is examined. A recent empirically determined change in the nor- 
malized energy-wavenumber characteristic in the structure region for zinc and cad- 
mium helps to satisfy this condition and consequently improves the axial ratio predic- 
tion. 

This note is an addendum to a recent paper describing the calculation of the second order 
elastic shear constants of four hexagonal close-packed metals (Cousins 1970). The calcula- 
tions were based on the normalized energy-wavenumber characteristic G(y), where y = 
q/kF, of the optimized model potential (Shaw 1969, Shaw and Pynn 1969) and were success- 
ful for beryllium and magnesium but very poor for zinc and cadmium. It proved possible, 
nevertheless, to invert the shear constant data to produce an empirical G(y) valid in the 
structure region, which would accurately predict the shear constants. As expected the 
modifications were small for beryllium and magnesium, whilst those for zinc and cadmium 
were similar to each other and were limited to the vicinity of only the(l0.1) set of the three 
sets of reduced reciprocal lattice vectors that dominate the band structure contributions to 
the shear constants. 

Using the same model the structure dependent energy, US = UES + UBS, has been calcu- 
lated as a function of y (= c/u) at the observed atomic volume. Again only the first three 
sets of vectors in reciprocal space were considered for the band structure part, UBS, since 
these lie in the region where the slope of G(y) is greatest and are sufficient for locating the 
minimum. UBS is never more than 3 % of UES, the electrostatic part, yet it varies sufficiently 
strongly with y to move the resultant minimum of US away from y = 1.636, where UES is 
minimized (Cousins 1968). The results are given in table 1. NXC is Shaw’s calculation when 
G(y)  is computed in Hartree approximation, XC is based on the Shaw-Pynn calculation 
with correction for exchange and correlation and M is based on the empirical modification 
to G(y) mentioned above. Except for magnesium where the agreement with observation 


