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Abstract

Calculations of the optical properties of defects in semiconductors or multiphonon transition rates presently make far
more severe approximations than standard electronic structure calculations. One major challenge is how one can handle
realistically the lattice vibrations, including quantum nuclear dynamics when those are necessary. The semi-classical
frozen Gaussian technique allows us to calculate the line shapes of electronic transitions at defects using molecular
dynamic simulation data from the initial and "nal states. Approximate nuclear wave functions are constructed from
classical trajectories on nuclear potential energy surfaces for the two states. The method expands the system initial and
"nal states (functions of position and momentum), as a sum of Gaussians, whose centres evolve classically on the relevant
potential surface. An expression for the transition probability is then derived from the time-dependent overlap of the two
wave functions. The frozen Gaussian method has been tested on the core exciton in diamond. The potential energy
surfaces are calculated using an approximate but self-consistent molecular orbital technique, while simultaneously
performing molecular dynamics. The results of our calculations show a Stokes shift of 3.64 eV, similar to the value of `up
to 5 eVa obtained experimentally. We predict a "ne structure with much narrower lines than those observable in the
(low-resolution) experimental spectra. ( 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

The advances made in computational modelling of
condensed matter systems in the last decade make it
possible to predict many quantities, such as electronic
energy levels, wave functions, charge densities and vibra-
tional modes of defects in crystals, reliably and accurate-
ly. Yet, while there is much experimental data available
for optical line shapes and non-radiative transitions, it
can only currently be compared with the most approxim-
ate theoretical models (typically single-frequency models
or weak coupling models). For these line shapes and
rates, a key quantity is the line-shape function.
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Here, a new method is proposed to calculate the
line-shape function, namely the frozen Gaussian approxi-
mation [1,2]. The approach does not make the usual
analysis of the motion into normal modes, and can ex-
ploit the more #exible tool of molecular dynamics. The
frozen Gaussian approximation (FGA) is a mathematical
device whereby an approximate nuclear wave function is
constructed from ensembles of classical nuclear trajecto-
ries on excited and ground state electronic potential
energy surfaces (PES). The line-shape function is given by
the Fourier transform of the time-dependent overlap of
the excited and ground state phonon wave functions. The
method is described in detail in Section 2. The principal
advantage of the method over previous techniques is that
it is not limited to a harmonic description of the nuclear
motion, nor to one or just a few phonon modes. The
problems encountered when applying this technique are
discussed in Section 3, and a simple illustration of the
method shown in Section 4.
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2. The calculation of transition rates

A transition between two states can be described to
"rst order in time-dependent perturbation theory, using
Fermi's Golden Rule. The initial and "nal states of the
system, W

*
and W

&
(with energies E

*
and E

&
, respectively),

are assumed to be eigenstates of the system Hamiltonian
H

0
. The transition is driven by the perturbation

H
I
which can impart energy E to the system. The result-

ant expression for the transition rate is
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In the Born Oppenheimer approximation, the eigenstates
of H

0
, W

*k are separated into products of electronic states
t
*
and phonon states s

*k , where the electronic states are
eigenstates of the Hamiltonian for a given instantaneous
nuclear con"guration and the phonon states are eigen-
states of the nuclear kinetic energy operator and the
potential "eld provided by the electrons. To evaluate the
transition between electronic levels i and f it is therefore
necessary to average over the initial distribution of
phonon states and sum over all "nal phonon states,
arriving at the following expression for the rate:
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where
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For allowed optical transitions, we make the standard
Condon approximation that the transition operator H

I
is

independent of the nuclear con"guration [3]. Eq. (2) is
then simpli"ed by replacing the delta function by its
Fourier transform, expressing the phonon state sk at
time t propagated on potential energy surface i as
e~*H* t@+Dsk (0)T"Dsk (t)T*

, and replacing the complete sum
over "nal phonon states by unity. Hence the transition
rate reduces to thermal average of the Fourier transform
of the overlap of the phonon state sk propagated on the
initial, i, and "nal, f, potential energy surfaces:
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Eq. (3) is still di$cult to evaluate because it depends upon
the phonon state as a function of time. The frozen Gaus-
sian approach can be used to construct an approximate

nuclear wave function rendering the above expression
tractable. The mathematical derivation of the method is
given elsewhere [4}8], but the essentials for its use on
condensed matter systems follow.

The initial state of the system is approximated by a
product of Gaussians, each one describing one of the 3N
coordinates of the system, whether normal modes or
components of individual atomic displacements.
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where R
j
and P

j
are the initial positions and momenta of

the atoms (or normal mode coordinates). The product is
over the 3N atom coordinates (or normal modes) of a
system containing N atoms, and c is the Gaussian width,
which will be discussed later. Then it can be shown that
at later times, t, the nuclear wave function becomes:
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where S(t)":t
0
¸ dt, where ¸ closely related to the Lag-

rangian of the system: ¸"KE!PE#zero point
energy for the oscillators. The expressions for the absorp-
tion and emission spectra for the transition are propor-
tional to the line-shape function G

*&
(E) [3]:
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The sum is over all possible starting con"gurations,
k. The sum is approximated by selecting a number of
starting con"gurations with random displacements
of the atoms about their initial state equilibrium
positions.

This treatment has made a number of assumptions,
which have been explored in more detail elsewhere
[4}10]:

1. The expansion of each degree of freedom in the exact
wave function into an overcomplete set of Gaussians
is replaced by a single Gaussian per degree of freedom
[7,8,10].

2. The nuclear overlap is independent of the Gaussian's
width, c [9]. There proves to be a weak dependence,
because of the "nite number of starting con"gurations,
but the results are largely independent of c.

3. A complex function of the momenta and positions of
the atoms (or normal modes) (C(R

i
, P

i
, t) of Ref. [9])

arising in the exact propagation of the Gaussians has
been approximated by a constant. This is examined
and partially justi"ed in Refs. [2,7,10].
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To summarise, one must calculate the positions and
momenta of the atoms near the excitation position, both
in the excited state of the transition and in its ground
state, as functions of time. For each pair of dynamic runs,
which start with the same initial positions, the overlap
between the Gaussians is calculated as a function of time.
For "nite temperatures, either the normal mode phonons
of the atoms concerned are excited, or su$cient di!erent
random displacements of the atoms around their equilib-
rium positions are included. The number of dynamic
runs required before the line-shape function converges
depends upon the system. In this case less than ten runs
were required.

3. Using the frozen Gaussian method

In the past, the frozen Gaussian method has only been
used for a very limited set of systems, but it has huge
potential in the "eld of condensed matter physics. Much
information on the structure and properties of defects is
contained in the vibronic line shapes of their transitions,
and they have only been interpreted by simple weak-
coupling or single-frequency models.

Blake and Metiu [8] have studied the absorption
lineshape for electrons solvated in halo-sodalites. A mix-
ture of the more sophisticated Herman and Kluk ap-
proach [2] and the original frozen Gaussian method [1]
has been implemented by Ovchinnikov and Apkarian
[10] to study Cl

2
in solid Ar clusters.

The implementation of the method has the following
requirements:

f A number of long dynamic runs (of the order of
picoseconds) is required to obtain su$cient resolution
in the spectra,

f short time steps must be used in the dynamics, to
obtain su$cient accuracy in the numerical integration
of the action, S,

f reasonably accurate electronic and vibrational states
must be modelled,

f the ground state and the excited state must be
modelled simultaneously,

f neither calculation must diverge (many methods that
force convergence also damp the nuclear motion, and
this would not be acceptable).

Many of the familiar state-of-the-art methods are unsuit-
able for these calculations. Any of the calculation
methods based on density functional theory (DFT) can
calculate the properties of the ground state, but they are
not designed for excited state calculations. Many of the
calculation methods based on Hartree}Fock (HF) ap-
proximations, although capable in principle of calculat-
ing excited states, have severe convergence problems
when these are attempted. At present, these consider-

ations severely limit the classes of problems and the
methods of calculation that can be treated by this theory.
Fortunately, it is possible to use simpler self-consistent
methods based on HF and LDA approaches.

4. An illustration of the use of the frozen Gaussian method

A core exciton is created in diamond when an X-ray of
approximately 285 eV is absorbed by a 1 s electron, pro-
moting it to the conduction band [11]. The excited state
is therefore very similar to a nitrogen substitutional atom
in diamond [12]* a very deep donor which has a very
large trigonal distortion. Hence, one would expect the
core exciton to have a substantial Stokes shift; it is
estimated to be as large as 5 eV [13].

The core exciton in diamond has been modelled using
the molecular dynamics code CHEMOS [14] in which
the nuclei follow classical trajectories on adiabatic poten-
tial energy surfaces calculated self-consistently within the
CNDO approximation. The diamond cluster we use con-
sists of 65 carbon atoms of which the central 29 are free to
move and the outer 36 are "xed. The creation of the core
exciton is modelled by introducing an extra electron into
the conduction band and replacing the C core by N. The
runs were started from di!erent initial nuclear con"gura-
tions in order to perform the classical average over nu-
clear phase space.

An approximate nuclear wave function s(t, R) was
constructed consisting of the product of Gaussians of the
form of Eq. (5). We used one Gaussian per atomic degree
of freedom. The sum over starting con"gurations was
made by selecting a number of sets of atomic positions.
For the absorption spectra, these con"gurations were
produced by displacing each atom a random, but small
distance from its equilibrium in the ground state and
introducing a small random momentum to each atom.
For the emission spectra the atoms were displaced from
their excited state equilibrium positions.

The time dependence of the overlap of the Gaussian
wave functions on the initial and "nal state potential
energy surfaces depends upon the widths of the Gaus-
sians and the relaxation of the system upon excitation.
We have chosen a width consistent with the frequency of
the dominant mode in the cluster namely 60 meV for
both the ground and excited states. We selected several
values for the Gaussian width to verify that this choice
has little e!ect upon the lineshape function.

To obtain an accurate Fourier transform of the cor-
relation function care must be taken to have a su$ciently
long simulation. In this work the period of the oscillatory
component was about 60 fs, whereas data was collected
every 0.25 fs so that the numerical integration of the
action integral was su$ciently accurate. The simulations
ran for 0.5 ps, to give a resolution in the Fourier trans-
form, and hence in the spectra, of 8.3 meV.

B. McKinnon et al. / Physica B 273}274 (1999) 987}990 989



Fig. 1. The spectra calculated by the FGA technique, associated
with the creation and destruction of a core exciton in diamond.

5. Results

Fig. 1 illustrates the spectrum corresponding to (a) the
creation and (b) subsequent destruction of a core exciton.
The absorption peak is obtained from the average over
"ve runs and the emission peak from the average over
four runs, where each run has a di!erent set of initial
positions and momenta.

The important features of the spectrum are the separ-
ation of the absorption and emission spectrum, the exist-
ence and position of the side bands on each peak and the
origin of the "nite width of the peaks. The separation of
the peaks should correspond to the Stokes' shift, which is
de"ned as the di!erence between the absorption and
emission energies from the relaxed ground and excited
states, respectively. The Stokes' shift as measured from
the simulation data is 3.64 eV. This is in fully satisfactory
accord with experimental estimates of `up to 5 eVa [13].
The spacing of the side bands seen in Fig. 1 correspond to
about 70 meV and are the harmonic overtones associated
with the breathing mode-like vibration. Experimentally,
these would need special methods to detect.

6. Discussion and conclusion

The frozen Gaussian technique has been applied to
obtain the line shapes corresponding to the creation and

destruction of the core exciton in diamond. To judge the
quality of the result it is necessary to compare it with
experimental spectra. However, the experimental spectra
have insu$cient resolution for any but the most crude
comparisons to be possible. The Stokes shift agrees well,
but the "ner structure that are predicted by this simula-
tion are not resolved in the experimental spectra.

There are no numerical di$culties in implementing the
FGA for a system of this size; it should prove to be
extremely suitable for application to condensed matter
problems. The problem is that most of the methods of
calculating PES are not, at present, suitable for dynamic
runs on excited states. The method used here, based on
a particular form of self-consistent molecular dynamics,
is fully adequate for demonstration purposes, or for scop-
ing a problem, but does not achieve the accuracy of
which the frozen Gaussian method is capable.
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