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Abstract 

The understanding of the processes occurring on the target in pulsed laser deposition (PLD) is crucial for a fast optimisation 
of the deposition parameters in order to obtain high quality thin films. 

Phenomenon occurring in the target like the ejection of large particulates that deposit on the substrate or the formation 
of a rough cone shaped morphology that affect the deposition process cannot be understood in the framework of atomistic 
simulations, since the processes involve very large volumes. Integration of the heat equations does not seem to be the 
appropriate approach for the study of PLD, since it ignores the actual ways by which the energy is transferred to the target 
and transported through it. 

Mesoscopic modelling provide solutions in an intermediate scale where both results from atomistic studies and methods 
characteristic of macroscopic modelling are used. We are developing a mesoscopic model for PLD. In this paper, we show the 
results for the evaporation of a transparent material in which, only structural defects can absorb light. The preliminary results 
show that the generated electric fields play a dramatic role in the process. Copyright 0 1998 Elsevier Science B.V. 
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1. Introduction 

The evaporation of materials using a nanosecond 
pulsed laser in the near UV (PLD, pulsed laser deposi- 
tion) is a promising technique for thin film deposition 
of high technological materials [ 11. Our work concerns 
the understanding of the role of the target microstruc- 
tum in the process of pulsed laser ablation. Here we 
limited the problem to the UV regime and to pulse 
duration of 30 ns (which include the excimer lasers). 
The reason is that different wavelengths, pulse dura- 
tions and other deposition regimes will lead to very 
different results and physical phenomena, and would 
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therefore compromise our objective of understanding 
PLD. We are interested in laser ablation for evapora- 
tion in order to produce thin films, and so we will study 
the process for fluences above laser ablation threshold, 
which usually is in the range of a few J/cm’. 

In PLD, there are specific problems that need to be 
solved or controlled. The main problem of this tech- 
nique is that it is frequent that some aggregates of 
particles, typically of submicronic size, deposit on the 
film, invalidating some of the possible applications. A 
good quality target [2] and a careful choice of the de- 
position parameters minimises this problem, but fre- 
quently some other system is needed, like a chopper 
that cuts the low velocity particles [3]. 

Another important problem is the variation in the 
morphology of the target as the evaporation proceeds 
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[4], which can lead to a change in the deposition rate 

and an increase in the number of large particulates 

deposited on the substrate [5]. 

Here, we shall look at the beginning of the process, 

studying the interaction of the laser beam with the 

target, the processes of absorption and energy transfer 

and the removal of the material. 

Typically, these problems have been studied by two 

different approaches: an atomistic one, where an atom 

by atom evaporation process is considered; the mech- 

anism can be as sophisticated as quantum molecular 

dynamics (MD) calculations [6], in a cluster frame- 

work or as a Monte Carlo (MC) calculation [7]. The 

other approach, more generally employed, is to inte- 

grate the diffusion equations of heat, leading to a tem- 

perature distribution in the target [8], or to make some 

energy balance calculations [9] in order to estimate 

the amount of material removed. 

In both approaches, the problem is studied from a 

limited point of view that ignores the other: atomistic 

calculations cannot be performed on a large amount 

of material; on the other hand, heat or energy balance 

equations cover the description and understanding of 

the physical microscopic phenomena, like energy con- 

version, transfer and accumulation, as well as the ac- 

tual mechanisms of particle and aggregate ejection. 

which are important for the global understanding of 

the process. 

We believe that a better understanding of PLD will 

come from mesoscopic modelling, like the one we 

present here. The conceptual idea is that one should 

start from the results obtained in atomistic models, 

see what is relevant in, them for our specific problem 

and use these results (not repeat the calculations) in a 

larger scale, including microscopic features that can- 

not be included in an atomistic model, like micron size 

surface morphologies and grains. 

2. Description of the model 

In this model, we consider four types of particles: 

atoms, neutral defects, ionised defects and electrons. 

We simulated a transparent target like MgO, that typ- 

ically has a high density of absorbing defect centres 

in places like dislocations [lo] and where the surface 

atoms absorb radiation with energy of 5 eV [ 1 l] which 

we consider here as the photon energy. Defects are 

considered the only radiation absorbents, ionising and 

emitting electrons. At the beginning, we assumed that 

the target only has a small density of defects except in 

very tiny regions as the surface and some dislocations, 

where the density of defects is high. 

The electrons are assumed nearly free (in the con- 

duction band) and, if their density is high enough, they 

can absorb laser radiation collectively. Electrons are 

free to move and can transport energy to other target 

places. The only means of energy transfer to the lattice 

is by the recombination of the nearly free electrons 

with ionised defects. In this case, all the energy of the 

electron plus the recombination energy is given to the 

lattice. We do not consider any other heat diffusion 

process explicitly, which means that phonon diffusion 

is not considered, for instance. 

The model can trace as a function of time the total 

energy of the electrons and the lattice, the density of 

electrons, neutral defects and ionised defects, as well 

as the number of evaporated species. The sample is 

divided in cubic elements in which calculations are 

performed. The number of atoms in each element is 

calculated by substracting from the initial value the 

number of evaporated atoms in each time step. The 

atoms have a binding energy. If their energy is higher 

than the binding energy, they are assumed to evaporate. 

We have the lattice energy for each element and we 

consider a Maxwell-Boltzmann energy distribution to 

know the number of atoms evaporated in each time 

step. 

To calculate the number of electrons we take into 

account: the number of electrons in the previous time 

step; the number of generated electrons by defect ion- 

isation; the number of electrons diffusing to the ele- 

ment considered; the number of electrons drifting to 

the element, considered driven by the electric fields 

generated when the number of electrons is not equal 

to the number of ionised defects, somewhere in the 

ensemble; the number of evaporated electrons from 

the element considered and the number of electrons 

in the element considered recombining with ionised 

defects. 
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The number of electrons generated by defect ioni- 
sation is proportional to the defect cross-section, the 
density of defects and the number of photons per unit 
area. Diffusion and drift are calculated using a fi- 
nite element method. For diffusion we adopt periodic 
boundary conditions; for the calculation of the elec- 
tric field we use periodic boundary conditions, but 
assume that the surface and the bulk are uncharged. 
Electrons can evaporate only from the elements at the 
surface, and are assumed to evaporate if their energy 
is higher than the work function, including the gener- 
ated electric fields. To know how many electrons have 
sufficient energy to evaporate, we assume a Maxwell- 
Boltzmann distribution of energies in each element. 

The neutral and ionised defects are treated similarly 
to the electrons, except that they are not allowed to 
diffuse nor drift, and they are assumed to evaporate at 
the same rate as the atoms (they belong to the lattice) 
and so the actual density of ionised defects is different 
from the density of electrons; this generates an elec- 
tric field which changes the work function and makes 
electrons drift. 

3. The numerical implementation 

A plane set of 15 x 15 cubic elements 5 nm size 
is considered (Fig. 1). The atom density is equal to 
5.35 x lo** atoms/cm3 everywhere. In the calculations 
described here, the density of defects varies from el- 
ement to element, in the following way: the surface 
elements (region C) are assumed to have a density of 
defects which is 1% that of the atoms. The bulk ele- 
ments have 0.01% defects (region F). The central col- 
umn (region E) is considered to be a grain boundary, 
and so the density of defects there is 100 times that of 
adjacent material, including the surface element (re- 
gion A). The two columns near the grain boundary 
(region D) are considered to have 10 times the density 
of defects of the material, in order to allow a softer de- 
crease in the density of defects. So, in region B, 10% 
of the atoms are defects, and in region A 100% are 
defects. 

The initial density of electrons, ionised defects and 
the initial temperature are set to zero. Other parameters 
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Fig. 1. Schematic of the ensemble; letters identify regions of 
different defect concentration (see text). 

are listed in Table 1. The electron mobility is very low, 
as is expected for a material like MgO. 

4. Results and discussion 

The calculations were performed for the first 3 ns 
of the laser pulse, assuming a square profile of the 
pulse. The electrons that are generated by the ionisa- 
tion of defects are the first to evaporate (Fig. 2), be- 
cause their concentration increases fast and they start 
absorbing radiation strongly. The electron evaporation 
rate is limited by the positive electric field they leave 
behind (Fig. 3). 

This positive electric field increases until the atoms 
start evaporating, taking with them the ionised de- 
fects. The electric field limits the evaporation rate of 
the electrons and keeps their density high in region 
A, where most of them are generated. The electron 
energy increases as they absorb the laser radiation 
and this energy is rapidly transferred to the lattice 
through the recombination with the ionised defects. 



36 

Table 1 
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Some of the parameters used in the computer calculations 

Parameter Value 

Laser fluence 2.0 J/cm2 
Laser wavelength 248 nm 
Laser pulse duration 30 ns 
Work function 3.25 eV 

Parameter 

Atom binding energy 
Excitation energy 
Defect cross section 
Electron mobility 

Value 

15.625 eV 
5.0eV 

1 O-t7 cm2 
8.78 x 10e4 m2 /V s 

Fig. 

This recombination process is stronger where the de- 

fects are more abundant, and so the increase in the en- 

ergy released is very localised to these places (Fig. 4). 
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Fig. 2. Number of evaporated atoms and electrons as a function of time. 

su 
/ 

rlkcce 

3. The electric potential 1 ns after the beginning of the 
pulse. 

Fig. 4. Mean atomic energy in each element after 3 ns (log 
scale). 

In fact, the material starts to evaporate in the grain 

boundary and around it. 

Using this assumption, we have studied the effect 

of the absorption of laser radiation by a target with a 



R.M. Ribeim et al./Computational Materials Science 10 (1998) 33-37 37 

specific grain structure [ 121. As the target evaporates, 
some surface roughness shows up as a consequence of 
preferential evaporation at the grain boundaries. The 
target with wide grain boundaries develops a cone 
morphology as observed in laser ablation experiments. 

The electric potential plays an important role in this 
model. It keeps electrons in the target, allowing their 
density to increase and so they can absorb laser ra- 
diation more strongly. It also drives electrons gener- 
ated in the bulk towards the surface. This effect is 
counterbalanced by diffusion of electrons, which tends 
to reduce the concentration of electrons where it is 
higher. 

The generated electric field is very high and may 
nucleate dislocations, increasing the number of de- 
fects. This effect is not included in this model, but 
will be soon. We expect that this effect will lead to 
an increase in the heated volume and so to a wider 
evaporation. 

We studied the influence of the work function on the 
qualitative behaviour of the model, and it does not af- 
fect significantly. This is because the electric potential 
generated by evaporation of electrons increases very 
soon to values that are much greater than the work 
function, and this determines the subsequent evolution. 

5. Conclusions 

A new type of mesoscopic modelling of pulsed 
laser ablation is introduced. A key point of this model 
is to consider a variety of physical processes taking 
place in the target, namely a specific absorption pro- 
cess (in this case, absorption by defects and electrons), 
as well as diffusion and drift by charge carriers, in 
a large scale. This model is readily scaled to larger 
volumes. 

In transparent targets, the absorption of the laser 
radiation occurs mainly in places of high defect con- 
centration, such as grain boundaries and dislocations, 

and material evaporation starts preferentially at those 
places. We believe that this preferential evaporation 
at grain boundaries (where the defect concentration is 
higher) may be a plausible explanation for target cone 
formation during laser ablation, and is a factor in par- 
ticulate generation. 
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