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on. For example, Kazanovich and Borisyuk (1994; 1999) studied
oscillatory networks with a central element and the applications of
this network to modelling attention focus formation. The mecha-
nism for controlling the system dynamics is based on synchroni-
sation of neural activity. It has been shown that the regime of par-
tial synchronisation is very promising for the description of
neurodynamics. In this regime, some oscillators work synchro-
nously with a central element forming a temporally existing at-
tractor. Makarenko and Llinas (1998) have applied the synchroni-
sation principle to study phase synchronisation of chaotic systems
and model the activity of inferior olivary neurons.

Conclusion: The chaotic neurodynamics seems a very intriguing
and promising mathematical technique. Further research should
be done in mathematics and neuroscience to understand the
meaning of chaotic dynamics for modelling of information pro-
cessing in the brain.
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Abstract: Tsuda examines the potential contribution of nonlinear dynam-
ical systems, with many degrees of freedom, to understanding brain func-
tion. We offer suggestions concerning symmetry and transients to
strengthen the physiological motivation and theoretical consistency of this
novel research direction: Symmetry plays a fundamental role, theoretically
and in relation to real brains. We also highlight a distinction between
chaotic “transience” and “itineracy.”

Attractor networks and brain-like neural systems: Symmetry
is the missing link. Symmetry has been central to the conceptual
development of the dynamics of high dimensional nonlinear sys-
tems, but is a notable absentee from Tsuda’s target article. Basin
riddling was first described in the context of dynamical systems
with symmetry (Alexander et al. 1992, not Grebogi et al. 1987).
Symmetrical systems remain the focus of research into basin rid-
dling (e.g., Heagy et al. 1994) and attractor networks (Buono 2000;
Kaneko 1997). Symmetries play the crucial role of enforcing the
dynamical invariance of low-dimensional linear manifolds. When
these manifolds support chaotic sets, Milnor attractors and basin
riddling can arise naturally (unlike the “exceptional” examples that
originally motivated Milnor [1985] such as depicted in Fig. 5).
Basin riddling occurs when these sets also contain a dense set of
periodic orbits which are repelling in the transverse direction.
However, typical orbits (of full measure) are transversely attract-
ing. Hence, the “natural” transverse Lyapunov exponent associ-
ated with the chaotic set is negative (not positive as erroneously
stated in para. 6 of sect. 3.4). It is only low-order periodic orbits
(that have zero measure) that are associated with positive Lya-
punov exponents (and hence “connections” to other attractors).
Approaching high dimensional systems from the perspective of
symmetry thus permits a clear understanding of the mechanisms
of “weak” instability. In addition, it is possible to exploit the differ-
ent degrees of symmetry exhibited by the attractors to construct a
rigorous classification and ordering of the network (e.g., Ashwin
et al. 1992). This permits an improvement on the vague notion of
attractors arbitrarily distributed throughout phase space, as de-
picted in Figure 4.

Symmetries arise naturally in systems of coupled nonlinear os-
cillators (Field et al. 1996). Brain-like neural systems are charac-
terised by networks of coupled nonlinear oscillators – from the
scale of the neuron, up to the scale of the macrocolumn. In these

systems dense local excitatory and inhibitory interconnections
construct individual “nodes,” which are coupled into larger en-
sembles by sparser long-range excitatory connections. Thus, the
organisation of the brain motivates a study of coupled nonlinear
systems and, hence, symmetry. Moreover, the attractors of sym-
metrical systems represent synchronous oscillations among clus-
ters of nodes of different sizes (Kaneko 1997) which strengthens
this motivation. Attractor networks in symmetrical systems have
been used to model normal olfactory perception (Breakspear
2000), visual hallucinations (Bressloff 2001) and animal gaits
(Buono et al. 2000). In contrast, systems with skew-product struc-
ture (as considered by Tsuda) are not well motivated, because
nearly all brain interactions are reciprocal (even the LGN of the
thalamus sends many projections to the retina). Symmetry con-
siderations may strengthen the relevance of Tsuda’s interesting
and original proposals.

Saddles, chaotic transients, and noise: The need for clarity.
Tsuda is correct in pointing out that it may be more relevant to
study transient or itinerant behaviour rather than attractors in dy-
namic systems where inputs and parameters change relentlessly
(Friston 1997). However, it is important to ensure clarity and con-
sistency in the use of the terms “transience” and “itineracy.” Tra-
ditionally, the term “chaotic transience” was applied in the fol-
lowing way (Greborgi et al. 1983): A chaotic attractor (A), subject
to some parameter perturbation, “collides” with its own basin
boundary. Subsequently, orbits on the attractor are mapped into
another basin and subsequently onto another attractor. Put an-
other way, A is no longer an invariant of the dynamic. However, a
large set of initial conditions will still approach the region of A
(now an attractor “ruin”) and transiently mimic the behaviour of
the former attractor, before collapsing onto the alternative attrac-
tor. After this collapse, the transient is not seen again unless the
system’s parameters are tuned back in the opposite direction. If
this is the case, attractors may constantly be “ruined” and then “re-
built.” Such relatively rapid changes in attractors may be effected
by NMDA-receptor mediated changes in the underlying control
parameters (Friston 1997).

On the other hand, the process of chaotic itineracy – which
Tsuda exploits – occurs by a different mechanism. A chaotic at-
tractor, A, is subject to a parameter perturbation that weakens its
transverse stability. At some critical point (the blowout bifurca-
tion), the transverse Lyapunov exponent for the attractor (the nat-
ural measure) becomes positive (Ashwin et al. 1996). A is then a
saddle, not an attractor ruin. Note that A is still an invariant of the
dynamic, but will attract only a zero measure set of initial condi-
tions. However, if the phase space contains many such saddles, it
may be that typical orbits relentlessly shadow these saddles.
Hence the evolution of the system is characterised by irregular
switching between different types of itinerant chaos correspond-
ing to the shadowing of different saddles. This tuning of the dy-
namics into a regime of saddle networks may be achieved by en-
during monoamine-mediated changes in functional synaptic
coupling (Breakspear 2000).

In summary, there are two types of “transient chaos” with po-
tentially distinct neurophysiological mechanisms. “Chaotic tran-
sience” induced by dynamically changing control parameters and
“Chaotic itineracy” due to an invariant but complex manifold (dis-
cussed as engendering type 1 and type 2 complexity in Friston
2000). As brain science calls more upon dynamical systems theory,
it is important to keep such distinctions clear.

Summary. The progression from autonomous, low-dimensional
strange attractors to systems with noise and many degrees of free-
dom represents an important advance in the theory of neural sys-
tems (Wright 2000). The present paper by Tsuda outlines many
potential computational benefits of this progression. Yet, it is crit-
ically important that due respect is paid to both neurophysiology
and nonlinear theory, before another magic “man in the machine”
in cognitive neuroscience research takes shape.

Commentary/Tsuda: Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems

BEHAVIORAL AND BRAIN SCIENCES (2001) 24:5 813


