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(Re
eived

Abstra
t

The pro
ess of nu
leation is normally des
ribed using rate equations for the

mean populations of mole
ular 
lusters. This approa
h 
an be justi�ed for 
ases

where these mean populations are large. However, it may be unsuitable in the


ase of heterogeneous nu
leation on small parti
les if the mean populations are

of the order of unity or less. In su
h a 
ase, 
onsidering the average populations

might be erroneous sin
e the statisti
al 
u
tuations in the mole
ular
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populations should be taken into a

ount. Here a sto
hasti
 treatment of

heterogeneous nu
leation kineti
s is presented that is des
ribed by a set of

master equations, and a modi�ed expression for the nu
leation rate has been

dedu
ed. Furthermore, a numeri
al method for solving the sto
hasti
 system

has been examined, and the results show that the rate of nu
leation 
an di�er

greatly from that obtained with the traditional kineti
s.

PACS numbers: 64.60.Qb, 82.20.-w, 82.65.+r, 02.50.-r

1 INTRODUCTION

Transformations of the phase of substan
es are very 
ommon; dramati
 examples 
an

be found in the atmosphere, where the 
ondensation of water vapour, driven below its

dew point, gives rise to the formation of water and i
e 
louds of great variety and

beauty [1℄. Similar pro
esses on a grander s
ale are believed to take pla
e in the

vi
inity of stars, giving rise to equally beautiful dusty nebulae. Domesti
 examples

are also familiar, and pro
esses su
h as melting, freezing, boiling or 
ondensation are


ommon in industry. However, the rate at whi
h these pro
esses o

ur is not easy to

predi
t.

Most of these phase transformations are �rst order, whi
h is to say that a latent

heat is transferred during the pro
ess, and a surfa
e tension exists between the two

phases at equilibrium. The transformation usually involves the emergen
e of
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assemblages, or 
lusters, of mole
ules with 
hara
teristi
s (density, symmetry, et
) of

the new phase. However, these 
lusters are not ne
essarily all thermodynami
ally

more stable than the original phase. Small 
lusters, with high proportions of

`surfa
e', tend to be unstable. For moderate degrees of metastability of the original

phase, there exists a `bottlene
k' in the pro
ess, 
orresponding to the need to form a

so-
alled 
riti
al mole
ular 
luster. On
e one has been formed, further growth is

thermodynami
ally favourable. This is the pro
ess of nu
leation, driven

fundamentally by thermal 
u
tuations. However, for greater degrees of metastability

of the original phase, the phase transformation 
an be
ome deterministi
, with no

thermodynami
 bottlene
k. The pro
ess then be
omes spinodal de
omposition [2℄.

Most resear
h into nu
leation is 
on
erned with the homogeneous pro
ess, where

the metastability of the original phase is over
ome without the presen
e of spe
ial

nu
leation sites in the system. The 
riti
al 
lusters form in the absen
e of foreign

bodies and 
ontainer surfa
es. However this is not the pro
ess responsible for most of

the familiar phase transformations des
ribed earlier. The atmosphere is not entirely

free of suspended matter, and 
loud formation, for example, takes pla
e by a pro
ess

of so-
alled heterogeneous nu
leation. The water 
lusters, and ultimately the 
loud

droplets, form on the surfa
es of suspended parti
les 
alled 
loud 
ondensation nu
lei

(CCN), sin
e it is far easier thermodynami
ally to do this than to form a 
riti
al


luster homogeneously [3℄-[6℄. Heterogeneous nu
leation has been previously

investigated via free energy 
al
ulation approa
h [7, 8℄.
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Cloud 
ondensation nu
lei are solid or liquid aerosols, often only a fra
tion of a

mi
rometre in diameter. Now, the metastability of a vapour is measured in terms of

its supersaturation S, de�ned as the ratio of the vapour pressure to the saturated

vapour pressure, and the 
riti
al supersaturation required to drive nu
leation at a

given rate is a measure of the ease with whi
h 
riti
al 
lusters 
an be formed. While

a value of S of order 10 might be ne
essary in some 
ir
umstan
es to drive

homogeneous nu
leation, only S � 0:01 is suÆ
ient to drive the heterogeneous

pro
ess if CCN surfa
es are present [9℄. In the atmosphere, supersaturations are

usually limited to these values, so heterogeneous nu
leation is the dominant pro
ess.

It is generally 
onsidered that the kineti
s of nu
leation were 
orre
tly des
ribed

by Be
ker and D�oring [10℄ almost 70 years ago. This solution applies to the formation

of 
lusters of a single mole
ular spe
ies, by a pro
ess of single mole
ule atta
hment

and loss. Usually, the slightly unrealisti
 steady state situation is assumed, where the

supersaturation of the original phase is held 
onstant in spite of the 
onsumption of

material in the formation of new phase. Nevertheless, this is a reasonable

approximation when the rate of 
onsumption is low, and so the pro
esses of

homogeneous and heterogeneous nu
leation are 
onsidered to be well represented by

the formula for the nu
leation rate:

J =

�

1

n

1

1 +

P

i

max

i=2

Q

i

j=2

(


j

=�

j

)

; (1)

where �

i

is the rate at whi
h monomers atta
h to 
luster of size i, 


i

is the rate at

whi
h they deta
h from the same 
luster and i

max

is the maximum 
luster size
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allowed in the system. The growth rates �

i

are proportional to the monomer

population n

1

, sin
e they represent monomeri
 atta
hment.

The Be
ker-D�oring expression, Equation (1),is obtained by solving a basi
 set of

rate equations des
ribing the di�eren
e between �

i

n

i

, the number of growth events

from size i to (i + 1), and 


i+1

, the number of de
ays from size (i+ 1) to i:

J = �

i

n

i

� 


i+1

n

i+1

; (2)

where n

i

is the steady state population of 
lusters of size i. These equations are held

to apply for i from unity up to i

max

� 1. The Be
ker-D�oring solution applies when the

growth ladder is terminated by the assumption that 
lusters at size i

max

+ 1 do not

de
ay, hen
e J = �

i

max

n

i

max

. For many realisti
 situations, the solution is insensitive

to the 
hoi
e of i

max

, as long as it is large enough.

However, the Be
ker-D�oring approa
h makes an assumption about the kineti
s

whi
h may not be valid. The rate equations are what we might 
all 
lassi
al in that

the number of growth transitions from size i to (i+ 1), for example, is taken to be the

population of i-
lusters n

i

multiplied by a rate 
oeÆ
ient �

i

proportional to n

1

. If n

1

were a pre
ise 
onstant, then this assumption would be valid, but in fa
t all 
luster

populations in the problem, in
luding n

1

, display 
u
tuations about a mean value,

sin
e the pro
esses of growth and de
ay o

ur as sto
hasti
 events. As we shall show

in the next se
tion, the growth rate a
tually requires us to evaluate the mean of the

produ
t of the populations of monomers and i-
lusters, rather than the produ
t of

the mean.
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The error involved by the negle
t of 
u
tuations is small when the populations of


lusters are large, by the usual statisti
al arguments. This is almost always the 
ase

in pra
ti
al 
ases of homogeneous nu
leation: the system is a sample of vapour, say,

in ma
ros
opi
 
ontainer, so that the number of monomers present in the system is

huge. However, when the pro
ess under 
onsideration is heterogeneous nu
leation

taking pla
e on the surfa
e of a mi
ros
opi
 parti
le, the possibility arises that

populations 
ould be small. An experiment involving vapour 
ondensation 
ould be


ondu
ted in a ma
ros
opi
 
ontainer, but the a
tual `rea
tion vessel' would be the

surfa
e of one of the many parti
les suspended inside the 
ontainer. In experiments

involving heterogeneous nu
leation, therefore, it is possible for the Be
ker-D�oring

kineti
s to be inappropriate.

It is this possibility that we investigate in this study. There have been some

attempts at 
onsidering the dis
rete nature of the nu
leating mole
ules with the aid

of sto
hasti
 arguments. In parti
ular, Ebeling et al. have examined a master

equation approa
h in dealing with the nu
leation kineti
s [11℄. To a limited extent, it

is similar to what we propose in the next se
tion of this paper, but the theory of

Ebeling et al. gives only a general pi
ture of the kineti
s, and is not intended for

treating small systems with tiny mean populations of mole
ules. The possibility of

low mean populations en
ountered in pre
ipitation in small droplets has been


onsidered by Manjunath et al., through sto
hasti
 simulations involving a series of

the so-
alled produ
t density equations [12℄. Dimer formation taking pla
e on the

6



surfa
e of tiny dust parti
les in low density 
onditions of interstellar medium and thin

atmospheres has also been previously studied [13℄.

In this paper, we 
onsider the 
omplete solution to the heterogeneous nu
leation

kineti
s of growth and de
ay of 
lusters of various sizes, where the possibility of


u
tuations is properly taken into a

ount. This requires us to set up and solve

master equations for the probability distributions of 
luster populations. We 
onsider

a simple set of rate 
oeÆ
ients whi
h allow us to perform the 
omputational tasks in

an eÆ
ient manner, and 
ontrast the resulting nu
leation rate with the Be
ker-D�oring

solution. We expose the 
onditions ne
essary for large di�eren
es to exist between the

`
lassi
al' Be
ker-D�oring solution and the more appropriate `sto
hasti
' solution to

the master equations.

2 KINETICS OF HETEROGENEOUS

NUCLEATION

2.1 Classi
al Rate Equations

Consider a host parti
le surrounded by gas phase mole
ules (monomers) that

o

asionally strike and sti
k to the parti
le. On
e adsorbed, su
h a monomer may

move around the parti
le. It may en
ounter another monomer and the two may form

a dimer. The growth of the adsorbed mole
ular 
luster may progress further due to
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atta
hments of more monomers. The 
luster may also de
ay by loss of monomers,

indu
ed, perhaps, by energy input from the substrate. Clusters need to rea
h a


riti
al size i

�

before they will, on average, be able to grow further. In other words,

for 
lusters 
onsisting of i mole
ules, with i < i

�

, the probability per unit time for a


luster to grow, divided by the probability for it to lose a mole
ule (de
ay) is less

than unity. For sizes greater than the 
riti
al size, the ratio of growth to de
ay

probabilities is greater than unity. Most 
lusters tend to languish in the sub-
riti
al

size region, and only o

asionally do they manage, by a lu
ky sequen
e of growth

steps, to rea
h the 
riti
al size, and thereafter grow.

Traditionally, su
h a system is modelled using the rate equations

dn

i

dt

= �

i�1

n

i�1

� 


i

n

i

� �

i

n

i

+ 


i+1

n

i+1

(3)

for i � 2, where n

i

is the mean population of 
lusters of size i in the system. �

i

is the

rate at whi
h mole
ules atta
h themselves to 
lusters of size i, and 


i

is the rate at

whi
h mole
ules are lost from 
lusters of size i. The growth rates �

i

are proportional

to the number of monomers n

1

in the system, so that we 
an write

�

i

= �

0

i

n

1

: (4)

For i = 1 the dynami
s are expressed by

dn

1

dt

= j � �n

1

� 2�

1

n

1

+ 2


2

n

2

� (�

2

n

2

� 


3

n

3

)� (�

3

n

3

� 


4

n

4

)� � � � � �

i

max

n

i

max

= j � �n

1

� 2(�

1

n

1

� 


2

n

2

)�

i

max

�1

X

i=2

(�

i

n

i

� 


i+1

n

i+1

)� �

i

max

n

i

max

; (5)
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where j is the sour
e rate of monomers atta
hing themselves to the surfa
e from the

surrounding medium and � is the evaporation rate of monomers from the parti
le

surfa
e.

When 
u
tuations in populations about mean values are taken into a

ount, it

would seem reasonable that the rate equations (3) should be repla
ed by something

like

dhN

i

i

dt

= �

0

i�1

hN

1

N

i�1

i � 


i

hN

i

i � �

0

i

hN

1

N

i

i+ 


i+1

hN

i+1

i; (6)

where the angled bra
kets represent an averaging over the 
u
tuations and the 
luster

populations are written in upper 
ase N

i

to remind us that they are 
u
tuating

sto
hasti
 variables. Equation (5) would similarly be repla
ed. We shall see in the

next se
tion how su
h equations 
an be derived from a sto
hasti
 treatment of the

populations, and how the averages 
an be evaluated.

2.2 Sto
hasti
 Approa
h

In the sto
hasti
 approa
h we 
onsider a probability distribution that des
ribes the

state of the system in terms of the exa
t populations of all the allowed 
luster sizes.

Let the probability that the system 
ontains N

1

monomers, N

2

dimers, and in general

N

i

i-
lusters at time t be W (N

1

; N

2

; : : : ; N

i

; : : : ; N

i

max

; t) � W (fN

i

g; t). In order to

limit the number of elements in this array, we introdu
e a maximum 
luster size i

max

.

We also limit ea
h N

i

to be less than or equal to N

max

i

. The rate of 
hange of this
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probability is then given by

dW

dt

= jW (N

1

� 1; : : :)� jW (: : :)

+ �(N

1

+ 1)W (N

1

+ 1; : : :)� �N

1

W (: : :)

+ �

0

1

(N

1

+ 2)(N

1

+ 1)W (N

1

+ 2; N

2

� 1; : : :)

� �

0

1

N

1

(N

1

� 1)W (: : :)

+

i

max

�1

X

i=2

�

0

i

(N

1

+ 1)(N

i

+ 1)W (N

1

+ 1; : : : ; N

i

+ 1; N

i+1

� 1; : : :)

+ �

0

i

max

(N

1

+ 1)(N

i

max

+ 1)W (N

1

+ 1; : : : ; N

i

max

+ 1)

�

i

max

X

i=2

�

0

i

N

1

N

i

W (: : :)

+ 


2

(N

2

+ 1)W (N

1

� 2; N

2

+ 1; : : :)

+

i

max

X

i=3




i

(N

i

+ 1)W (N

1

� 1; : : : ; N

i�1

� 1; N

i

+ 1; : : :)

�

i

max

X

i=2




i

N

i

W (: : :): (7)

On the right hand side of the above equation, t has been omitted for simpli
ity. The

dots represent values of the N

j

that are the same as on the left hand side.

The pro
esses 
onsidered are the growth transitions 1 + (i� 1)! i and

1 + i! (i + 1) due to monomer atta
hment, as well as the de
ay pro
esses

i! (i� 1) + 1 and (i+1)! i+ 1 due to monomer deta
hment from the 
luster. The

atta
hment and deta
hment of dimers, trimers and higher size 
lusters are negle
ted.

The �rst two terms (the j terms) des
ribe the addition of a monomer from the

surroundings, leading to a monomer population 
hange N

1

! N

1

+ 1. The third and

fourth terms represent loss of a monomer from the parti
le surfa
e due to the
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population jump N

1

! N

1

� 1. The rest of the terms are 
onstru
ted using similar

arguments for monomeri
 atta
hment and deta
hment to and from dimers, trimers

and in general i-
lusters. There is a term for �

i

max

, but no term involving 


i

max

+1

sin
e 
lusters at size i

max

may grow, but the population at this size re
eives no

additions from the de
ay of the next larger 
luster. This a
ts as the boundary


ondition of the problem.

The 
lassi
al limit 
orresponds to the probability distribution W being unity for

only one set of possible populations of the i-
lusters, that is the mean populations.

That is, W (n

1

; n

2

; :::n

i

:::) = 1 and all other elements are zero. Formally, this is

represented, using the Krone
ker delta, as

W (N

1

; N

2

; : : :) =

i

max

Y

i=1

Æ

N

i

n

i

: (8)

In the steady state and this 
lassi
al limit, solving equation (7) would be

equivalent to solving equations (3), (5) and (1), as shown in the Appendix.

If Equation (7) 
an be solved by some means, knowledge of W would allows us to

generate probability distributions P

i

(N

i

) for the population of i-
lusters:

P

i

(N

i

) =

X

(j 6=i)

N

max

j

X

N

j

=0

W (N

1

; : : : ; N

j

; : : : ; N

i

; : : :): (9)

The P

i

are likely to look like gaussian distributions for large n

i

, or Poisson

distributions for small n

i

. Ideally, the values of all the N

max

j

ought to be in�nity for a

`perfe
t' evaluation of P

i

(N

i

). However in pra
ti
e, as we shall see in Se
tion 3.3,

satisfa
tory results may be obtained when the N

max

j

are limited to reasonably small
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values.

It is also possible to 
al
ulate joint probabilities, su
h as P

li

(N

l

; N

i

), whi
h is the

probability that we �nd N

l

l-
lusters and N

i

i-
lusters in the system. These

distributions are given by

P

li

(N

l

; N

i

) =

X

j 6=l;i

N

max

j

X

N

j

=0

W (N

1

; : : : ; N

j

; : : : ; N

l

; : : : ; N

i

; : : :): (10)

If the steady state W are known, it is possible to 
al
ulate the nu
leation rate.

This is done by summing all the probabilities of growth from any size i to size i+ 1

and subtra
t those for de
ay in the opposite dire
tion:

J =

X

fN

j

g

(�

0

i

N

1

N

i

W (fN

j

g)� 


i+1

N

i+1

W (fN

j

g)) ; (11)

whi
h by introdu
ing the notation

hN

i

i =

X

N

i

N

i

P

i

(N

i

) (12)

and

hN

l

N

i

i =

X

N

l

;N

i

N

l

N

i

P

li

(N

l

; N

i

); (13)

allows us to write

J =

8

>

>

>

<

>

>

>

:

�

0

i

hN

1

N

i

i � 


i+1

hN

i+1

i if i � 2

�

0

i

hN

1

(N

i

� 1)i � 


i+1

hN

i+1

i if i = 1:

(14)

Any value of i � 2 in the �rst of the above expressions would give the same result in

the steady state as the nu
leation 
urrent should be independent of 
luster size. If

one uses i = 1 to 
ompute the nu
leation rate, a slight modi�
ation is required as in
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the se
ond expression in Equation (14), sin
e having just a single monomer in the

system 
annot give rise to a nu
leation 
urrent towards the 
riti
al size. In 
ontrast,

the nu
leation rate given in equation (2) a

ording to the standard rate equation (3),

in the same notation, reads

J


las

= �

0

i

hN

1

ihN

i

i � 


i+1

hN

i+1

i: (15)

One would expe
t relative 
u
tuations in the populations to be
ome negligible when

the populations are large, so that a mean of a produ
t be
omes the produ
t of the

means. It is therefore evident from the 
omparison of Equations (14) and (15) that

the standard rate equations are valid in the large population limit. It is also possible

to visualise how the standard result for the nu
leation rate must be modi�ed for

small systems. By writing

�

0

i

hN

1

N

i

i = (1 + �

i

)�

0

i

hN

1

ihN

i

i; (16)

the expression for the rate given in equation (1) 
an be used to see that, to a good

approximation,

J

small

= J

large

i

�

Y

i=1

(1 + �

i

) ; (17)

where i

�

is the 
riti
al size, where the rate 
oeÆ
ients for growth and de
ay are equal

(�

i

= 


i

). We are interested in 
al
ulating the modi�
ation fa
tor.
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3 CALCULATIONS

3.1 Parameterisation

The master equations (7) are driven by the input parameters j, �, �

0

i

and 


i

. In order

to investigate the problem of heterogeneous nu
leation in small systems, we must


arefully 
hoose the input parameters that are likely to lead to small 
luster

populations.

Let us introdu
e a size parameter �, whi
h may be taken to be proportional to

the surfa
e area of the host parti
le. The 
oeÆ
ients � and 


i

are the de
ay rates of

monomers (i = 1) and i-mers (i � 2) respe
tively and hen
e may be taken as

independent of the system size. The atta
hment rate j of monomers onto the parti
le

surfa
e, however, should in
rease linearly with �. It is useful to 
onsider temporarily

the dynami
s in the absen
e of any dimer produ
tion, in whi
h 
ase the mean

monomer population would be given by a balan
e between j and �, namely,

hN

1

i ' j=�. If j

0

is the value of j at � = 1 then we 
an write

j = � j

0

; (18)

so that

hN

1

i '

j

0

�

�: (19)

For 
onvenien
e, let us postulate that � = 1 is the system with a nominal mean

monomer population of unity. This imposes the 
ondition j

0

= �.
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For simpli
ity, we assume the growth rate �

0

i

to be independent of the 
luster size

i, i.e., �

0

1

= �

0

2

= � � � = �

0

i

max

. On the other hand, �

0

i

will be inversely proportional to �

sin
e it measures the likelihood that an adsorbed monomer will en
ounter an

adsorbed i-mer. As the system gets bigger, this likelihood would diminish.

Furthermore, we may �x �

0

i

su
h that at � = 1 the mean growth rate of an i-mer is

unity. Remembering from Eq. (4) that �

i

= �

0

i

hN

1

i, this means that �

0

i

= 1 at � = 1,

and in general

�

0

i

=

1

�

: (20)

The 
hoi
e of the parameters 


i

must satisfy the requirement that at the 
riti
al

size i

�

, a 
luster is as likely to de
ay as it is likely to grow, i.e., 


i

�

= �

0

i

�

hN

1

i. With

the above stated 
hoi
e of �

0

i

and hN

1

i, this means that 


i

�

= 1 at � = 1. Indeed, this

should be true for any value of � as the de
ay rates are independent of the system

size. The i-dependen
e of 


i

may be 
hosen on the grounds that small 
lusters are

more likely to de
ay than large 
lusters. We therefore 
hoose




i

=

�

i

�

i

�

p

; (21)

where p is some 
onstant to be de
ided. Entirely for 
omputational 
onvenien
e, and

without suggesting that the model should represent a real system, we shall 
hoose

p = 2 and i

�

= 2. This form of 


i

ensures that a 
luster below the 
riti
al size (i < i

�

)

has a high probability of de
ay, whereas those above the 
riti
al size (i > i

�

) will �nd

it easier to grow.

The relative values of j

0

(and �) and �

0

i


ontrol the degree to whi
h the mean
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monomer population is 
lose to the estimate (19). We shall explore 
ases where

j

0

� 1 and j

0

= 1 in Se
tion 3.3.

3.2 Classi
al Solution

The most 
onvenient way of dedu
ing the 
lassi
al nu
leation rate for a given set of

parameters j

0

, �, �, �

i

and 


i

is through the expression (1). However the n

1

appearing in that equation still needs to be known. Although in the large j

0

limit

expression (19) for hN

1

i may provide a reasonable estimate, this is not guaranteed to

be true in general. A better method of �nding n

1

is as follows.

Equation (5) in the steady state may be written, with the help of Eq. (2), as

0 = j

0

� � �n

1

� 2J � (i

max

� 2)J � J

= j

0

� � �n

1

� (i

max

+ 1)J; (22)

where J is given by Eq. (1). Let us assign a fun
tion

F(n

1

) = j

0

� � �n

1

� (i

max

+ 1)J: (23)

This fun
tion falls with in
reasing n

1

. As an initial approximation, we provide

n

1

= j

0

�=�, whi
h in all pra
ti
al 
ases is at least a slight overestimation of the a
tual

value of n

1

. We then iteratively sear
h for a zero of the fun
tion F(n

1

) by subtra
ting

a very small amount (typi
ally � 10

�6

) from the trial value of n

1

and evaluating a

new value of F(n

1

). This pro
ess is 
ontinued until a solution is found within a very

16



small toleran
e. The �nal value of n

1

that 
orresponds to F(n

1

) = 0 
an then be

utilised in Eq. (1) to �nd the 
lassi
al value of the nu
leation rate.

3.3 Solving the Master Equation

Given all the ne
essary parameters given in Se
tion 3.1, we are in a position to solve

the master equations (7) whi
h should ultimately render the sto
hasti
 solution to

the system. Solving Eq. (7) analyti
ally does not appear to be a feasible task. We

therefore look for an appropriate numeri
al te
hnique to a
t as a substitute.

Computationally, we dis
retise time t, and repla
e the dt by a very small but

�nite �t in Equation (7). The dW (t) may then be repla
ed by W (t+�t)�W (t),

thus allowing Eq. (7) to be solved iteratively. As an initial 
ondition, we set

W (0; 0; 0; : : : ; 0; t = 0) = 1 with all the remaining elements of the array W (fN

i

g) set

to zero, spe
ifying an empty system to start with. The system thereafter evolves in

time until a steady state is rea
hed.

Equations (7) represent a set of 
oupled di�erential equations. i

max

is the largest

size of 
luster that 
an form on the parti
le, and needs to be spe
i�ed expli
itly at

the beginning. In prin
iple, it should be large enough so that the 
ontribution due to

terms with i

max

+ 1 in the series appearing in Equation (1) is negligible.

Stri
tly speaking, the multidimensional array W (fN

i

g) 
onsists of an in�nite

number of elements, but for 
omputational purpose we may set an upper limit on the

17



maximum number of i-
lusters the system 
an possess at any time. In other words

the array W (fN

i

g) takes the form W

�

0 : N

max

1

; 0 : N

max

2

; : : : ; 0 : N

max

i

max

�

. These values

N

max

1

; N

max

2

; : : : ; N

max

i

max

should be de
ided by edu
ated guess su
h that all of the i

max

probability distributions in Eq. (9) die down to negligible levels at N

i

= N

max

i

at the

end of the iterations.

Steady state is 
onsidered to have been rea
hed when all the elements of

W (fN

i

g) have 
onverged within a very small toleran
e. The nu
leation rates J with

di�erent values of i in Equation (14) will normally evolve di�erently with time, but

eventually they will all 
onverge upon a 
ommon value. This 
onvergen
e of J with

di�erent values of i in fa
t serves as a `double 
he
k' for ensuring that a steady state

has indeed been a
hieved.

In Figure 1 we plot the 
lassi
al as well as the sto
hasti
 nu
leation rates

obtained under di�erent values of i

max

, with �xed values of i

�

= 2, j

0

= � = 1 and

� = 1. As 
an be seen, the nu
leation rate J is not very sensitive to i

max

. The

sto
hasti
 J de
reases slightly with in
reasing i

max

, but the essential message is that

a value of i

max

= 4 may be trusted in order to demonstrate at least the qualitative

behaviour of the system.

An example of the probability distributions P

i

(N

i

), as de�ned in Equation (9)

and 
al
ulated on
e the steady state has been rea
hed, is shown in Figure 2. P

1

(N

1

)

is the probability distribution for the monomer population, P

2

(N

2

) is the same for

dimmers, and so on.
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Figure 3 shows the sto
hasti
 and 
lassi
al nu
leation rates as a fun
tion of the

parti
le size parameter � for j

0

= � = 100. The 
al
ulation has been performed with

i

�

= 2 and i

max

= 4. Figure 4 shows the mean monomer population for the same

system as predi
ted by the two models. There is a good agreement between the two

models for the monomer population in this limit of j

0

� 1. The nu
leation rates in

Fig. 3 a

ording to the two models, however, start diverging as � falls below 0.1. It is

interesting to note that the monomer population between � = 0:1 and � = 1 is below

unity and yet the sto
hasti
 nu
leation rate does not di�er 
onsiderably from its


lassi
al 
ounterpart in this range, and for these parameters.

In Figure 5 the nu
leation rate is plotted again as a fun
tion of �, but this time

with j

0

= � = 1, the rest of the parameters being the same as in Fig. 3. The mean

monomer population for the same system is plotted in Figure 6, and now we see that

the sto
hasti
 hN

1

i does di�er from 
lassi
al hN

1

i on
e � goes below unity.

Approximately below the size � = 1, where the mean monomer population is below

unity, visible di�eren
e between the 
lassi
al and sto
hasti
 nu
leation rates is again

evident in Figure 5. The linear dependen
e of J with respe
t to � exhibited in the


lassi
al theory is lost when one deals with very small parti
le sizes. Note that the

sto
hasti
 model gives a smaller nu
leation rate, but a higher mean population of

monomers than the 
lassi
al predi
tion, sin
e a higher nu
leation rate would leave

fewer monomers on the surfa
e.

The ratios J


lassi
al

=J

sto
hasti


derived from both 
ases, j

0

= � = 100 and
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j

0

= � = 1, have been plotted in Figure 7. This is simply the fa
tor by whi
h the


lassi
al Be
ker-D�oring kineti
s overestimates the nu
leation rate as 
ompared with

the sto
hasti
 model presented here. The overestimation grows as we look at ever

smaller sizes (�) of the host parti
le. Also, the ratio is larger for the j

0

= � = 1


al
ulations, 
ompared with the j

0

= � = 100 
ase. This is due partly to the fa
t that

a large value of j

0

produ
es a mean monomer population 
loser to the 
lassi
al

predi
tion as dis
ussed in Se
tion 3.1.

The 
lassi
al treatment requires there to be a large population of the nu
leating

spe
ies so as to be able to use a mean value of the populations in treating the

kineti
s. However, when the mean monomer population is below unity, there are

instan
es when there are no monomers present on the surfa
e and only by a lu
ky


han
e are there more than one monomers present. Sin
e the 
lassi
al kineti
s ignores

this dis
rete nature of the mole
ular spe
ies, it assumes a higher rea
tion rate

between the mole
ules, hen
e yielding an overestimated nu
leation rate.

4 CONCLUSIONS

We have studied the problem of heterogeneous nu
leation under 
onditions where the

mean populations of the nu
leating 
lusters may be of the order of unity. The

traditional rate equation approa
h, whi
h treats the kineti
s in terms of the mean


luster populations, is likely to fail in su
h limit. To investigate this, we have
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proposed a new master equation approa
h that takes into a

ount the sto
hasti



u
tuations in 
luster populations, and repla
es the 
lassi
al rate equations.

A method for solving the master equation numeri
ally has been explored. The

results of the model 
al
ulations performed here indi
ate a large di�eren
e in the

nu
leation rates as predi
ted by the sto
hasti
 and 
lassi
al treatments as the

nu
leation site be
omes very small. However, if the system is large, the sto
hasti


treatment reprodu
es the 
lassi
al Be
ker-D�oring kineti
s.

For simpli
ity, only monomer atta
hment and deta
hment to the nu
leating


luster has been allowed in the sto
hasti
 model here. The master equation 
an

nevertheless be extended easily to in
lude the loss and gain of dimers, trimers et
.,

solving whi
h would 
learly require a mu
h greater deal of 
omputational power.
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APPENDIX

It is possible to show that the master equations (7) do indeed redu
e to the rate

equations (3) and (5) in the 
lassi
al limit of relatively large populations. To do this,
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let us de�ne an operator

b

O su
h that

b

O � f =

1

X

fN

i

g=0

N

`

� f; (24)

i.e., we multiply the given term f by N

l

(where l = 1; : : : ; i

max

) and sum the result

over all the fN

i

g. Let us perform this operation on both sides of Eq. (7). This makes

the left hand side read as

1

X

fN

i

g=0

N

`

dW (fN

i

g)

dt

=

dhN

`

i

dt

; (25)

whi
h is equivalent to the L.H.S. of Equations (3) and (5). Now 
onsider the


onsequen
e of this operation on the right hand side of Eq. (7). On the R.H.S., one

needs to treat separately the 
ases of ` = 1 and ` > 1 sin
e there are di�erent rate

equations for the two 
ases of N

1

and N

`

(` > 1) in the 
lassi
al pi
ture. Let us


onsider terms proportional to the parameters j, �, �

0

i

and 


i

one by one and try to


ompare them with those found in the rate equations (3) and (5).

The j terms:

` = 1

Operating the �rst term in Eq. (7) by

b

O along with ` = 1 will render

1

X

fN

i

g=0

jN

1

W (N

1

� 1; : : :):

In order to bring the probability W in the same form as on the left hand side, that is

W (N

1

; N

2

; : : : ; N

i

max

), we 
an make the substitution N

1

! N

1

+ 1, whi
h is what
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happens to the monomer population due to the j term. The above notation will then

turn into

1

X

fN

i

g=0

j(N

1

+ 1)W (N

1

; : : :) = jhN

1

+ 1i: (26)

The sum over this new N

1

label should run from �1 to 1, but 
learly the unphysi
al

�rst term in the series vanishes, so that the lower limit is indeed zero.

Operating upon the se
ond term in Eq. (7) with

b

O will give

�

1

X

fN

i

g=0

jN

1

W (: : :) = �jhN

1

i: (27)

In the 
lassi
al limit, the upper 
ase N

1

together with angled bra
kets is repla
ed

by n

1

, so from Equations (26) and (27), the net result of applying

b

O on both the j

terms in Eq. (7) is

jn

1

+ j � jn

1

= j: (28)

This is pre
isely what we have as the `j term' in the rate equation (5), whi
h was

written down expli
itly for the monomeri
 (` = 1) population.

` > 1

If ` is not equal to 1, then the operation due to

b

O will make the �rst term in Eq.

(7) read

1

X

fN

i

g=0

jN

`

W (N

1

� 1; : : :);

where ` 6= 1. This time the substitution N

1

! N

1

+ 1 will lead to

1

X

fN

i

g=0

jN

`

W (N

1

; : : :) = jhN

`

i: (29)
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The se
ond term of the master equation under the operation of

b

O will be similar to

the expression (27):

�

1

X

fN

i

g=0

jN

`

W (: : :) = �jhN

`

i: (30)

Hen
e the sum of Equations (29) and (30) will be zero, and indeed, there is no j term

in the rate equations (3).

The � terms:

` = 1

If we apply the operator

b

O to the third term of the master equation (7), we have

1

X

fN

i

g=0

�N

1

(N

1

+ 1)W (N

1

+ 1; : : :):

This time we make the substitution N

1

! N

1

� 1 so that the above expression is


onverted into

1

X

fN

i

g=0

�(N

1

� 1)N

1

W (N

1

; : : :) = �h(N

1

� 1)N

1

i: (31)

The lower limit for the sum over the shifted variable N

1

should be +1, but we 
an

extend this to zero without 
hanging the result of the summation.

Performing the operation

b

O on the fourth term of the master equation will give us

�

1

X

fN

i

g=0

�N

1

N

1

W (: : :) = ��hN

2

1

i: (32)

On
e again, to see the 
orresponden
e with the 
lassi
al model, we repla
e the angled

bra
kets and the upper 
ase N

1

with the lower 
ase n

1

, so we are left with the net
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result

�(n

2

1

� n

1

)� �n

2

1

= ��n

1

: (33)

This is the � term found in the monomeri
 rate equation (5).

` > 1

The third term of Eq. (7) under the in
uen
e of

b

O will this time be
ome

1

X

fN

i

g=0

�N

`

(N

1

+ 1)W (N

1

+ 1; : : :);

and the substitution N

1

! N

1

� 1 will make it

1

X

fN

i

g=0

�N

`

N

1

W (N

1

; : : :) = �hN

`

N

1

i: (34)

The operation due to

b

O on the fourth term of Eq. (7) will give us ��hN

`

N

1

i. Hen
e

the lambda term will vanish for the ` > 1 
ase, and is absent in the rate equation (3)

also.

The �

0

i

terms:

` = 1

If we operate on the �fth term in the master equation (7) with

b

O, using ` = 1, we

get

1

X

fN

i

g=0

�

0

1

N

1

(N

1

+ 2)(N

1

+ 1)W (N

1

+ 2; N

2

� 1; : : :);

whi
h with substitutions N

1

! N

1

� 2 and N

2

! N

2

+ 1 be
omes

1

X

fN

i

g=0

�

0

1

(N

1

� 2)(N

1

� 1)N

1

W (N

1

; : : :) = �

1

h(N

1

� 2)(N

1

� 1)i: (35)
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where we have used the fa
t that �

i

= �

0

i

N

1

. The sixth term 
an be operated on

without having to do any re-labelling of N :

�

1

X

fN

i

g=0

�

0

1

N

1

N

1

(N

1

� 1)W (: : :) = ��

1

hN

1

(N

1

� 1)i: (36)

The seventh term will however require re-labelling in order to bring the W in the

desired form. We �rst operate on it with

b

O to get

1

X

fN

i

g=0

i

max

�1

X

i=2

�

0

i

N

1

(N

1

+ 1)(N

i

+ 1)W (N

1

+ 1; : : : ; N

i

+ 1; N

i+1

� 1; : : :);

and then use the substitutions N

1

! N

1

� 1, N

i

! N

i

� 1 and N

i+1

! N

i+1

+ 1 in

order to obtain

1

X

fN

i

g=0

i

max

�1

X

i=2

�

0

i

(N

1

� 1)N

1

N

i

W (N

1

; : : : ; N

i

; N

i+1

; : : :) =

i

max

�1

X

i=2

�

i

h(N

1

� 1)N

i

i: (37)

With some thought, it is possible to realise that result (37) will hold true for any

value of i in the

P

i

max

�1

i=2

series. A similar pro
edure on the eighth term of Eq. (7) will

give us

�

i

max

h(N

1

� 1)N

i

max

i; (38)

whi
h essentially 
ompletes the series in Equation (37) from i = 2 to i

max

. Finally, we

operate on the ninth term with

b

O and obtain

�

1

X

fN

i

g=0

i

max

X

i=2

�

0

i

N

1

N

1

N

i

W (: : :) = �

i

max

X

i=2

�

i

hN

1

N

i

i; (39)

whi
h again holds no matter what value of i is 
hosen in the

P

i

max

i=2

series.

Hen
e the sum of all the �

0

i

terms in Equations (35), (36), (37), (38) and (39) will
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be

i

max

X

i=2

�

i

h(N

1

� 1)N

i

i �

i

max

X

i=2

�

i

hN

1

N

i

i+ �

1

h

h(N

1

� 2)(N

1

� 1)i � h(N

1

� 1)N

1

i

i

: (40)

If we now repla
e the upper 
ase N with its lower 
ase 
ounterpart, dis
arding the

angled bra
kets to re
e
t the 
lassi
al limit, expression (40) is easily redu
ed to

�

i

max

X

i=2

�

i

n

i

� 2�

1

(n

1

� 1): (41)

It 
an be seen that these are the � terms in the rate equation (5) provided that

n

1

� 1 � n

1

in the above expression. This is a fair approximation in the 
lassi
al limit

where the monomeri
 population is high.

` > 1

Additional 
are is required when one deals with the 
ase of ` 6= 1 in the �

0

i

terms.

This is due to the series

P

i

max

i=2

involved and unlike the ` = 1 
ase, 
ontributions due

to di�erent values of i need to be examined expli
itly.

Consider the �fth term in Eq. (7) �rst. With the operator

b

O applied, it will read

1

X

fN

i

g=0

�

0

1

N

`

(N

1

+ 2)(N

1

+ 1)W (N

1

+ 2; N

2

� 1; : : :);

and the substitutions N

1

! N

1

� 2 and N

2

! N

2

+ 1 will make it

1

X

fN

i

g=0

�

0

1

N

`

N

1

(N

1

� 1)W (: : :) = �

1

h(N

1

� 1)N

`

i if ` � 3 (42)

and

1

X

fN

i

g=0

�

0

1

N

1

(N

1

� 1)(N

2

+ 1)W (: : :) = �

1

h(N

1

� 1)(N

2

+ 1)i if ` = 2: (43)
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The sixth term in Eq. (7) will not require any re-labelling of N after being

operated on by

b

O and regardless of the value of ` it will be
ome

�

1

X

fN

i

g=0

�

0

1

N

`

N

1

(N

1

� 1)W (: : :) = ��

1

h(N

1

� 1)N

`

i: (44)

Hen
e for ` � 3 the sum of the positive and negative �

1

terms, given in expression

(42) and (44), is zero. The rate equation (3) written down for i � 3 will surely have

no �

1

terms. For the spe
ial 
ase of ` = 2, the sum of expressions (43) and (44) will

leave �

1

(n

1

� 1) in the 
lassi
al language. Considering the rate equation (3) for i = 2


ase, one would �nd the term �

1

n

1

, whi
h is approximately equal to the sto
hasti


result �

1

(n

1

� 1), provided that n

1

� 1. This is a valid assumption in the 
lassi
al

limit, and so the �

0

1

terms in the sto
hasti
 master equation are redu
ible to those in

the 
lassi
al rate equations when the mean populations are large.

Let us now 
onsider the seventh term in Eq. (7). With operator

b

O a
ting on it, it

would read

1

X

fN

i

g=0

i

max

�1

X

i=2

�

0

i

N

`

(N

1

+ 1)(N

i

+ 1)W (N

1

+ 1; : : : ; N

i

+ 1; N

i+1

� 1; : : :):

Consider the expansion of the se
ond summation here:

1

X

fN

i

g=0

�

0

2

N

`

(N

1

+ 1)(N

2

+ 1)W (N

1

+ 1; N

2

+ 1; N

3

� 1; : : :)

+

1

X

fN

i

g=0

�

0

3

N

`

(N

1

+ 1)(N

3

+ 1)W (N

1

+ 1; : : : ; N

3

+ 1; N

4

� 1; : : :)

+

1

X

fN

i

g=0

�

0

4

N

`

(N

1

+ 1)(N

4

+ 1)W (N

1

+ 1; : : : ; N

4

+ 1; N

5

� 1; : : :) + � � �
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With appropriate re-labelling as done before, and remembering that �

i

= �

0

i

N

1

, it is

possible to show that the this term redu
es to

�

`�1

hN

`�1

(N

`

+ 1)i+ �

`

hN

`

(N

`

� 1)i+

i

max

X

i=2

i 6= `�1; `

�

i

hN

i

N

`

i: (45)

The operator

b

O will redu
e the eighth term of Eq. (7) into

1

X

fN

i

g=0

�

0

i

max

N

`

(N

1

+ 1)(N

i

max

+ 1)W (N

1

+ 1; : : : ; N

i

max

+ 1);

and with the re-labelling N

1

! N

1

� 1 and N

i

max

! N

i

max

� 1 will give us

1

X

fN

i

g=0

�

0

i

max

N

`

N

1

N

i

max

W (: : :) = �

i

max

hN

i

max

N

`

i if ` = 2; : : : ; i

max

� 1

1

X

fN

i

g=0

�

0

i

max

(N

i

max

� 1)N

1

N

i

max

W (: : :) = �

i

max

hN

i

max

(N

i

max

� 1)i if ` = i

max

:

(46)

A similar argument applies to the ninth term of Eq. (7). The operator

b

O will

redu
e this term to

�

1

X

fN

i

g=0

i

max

X

i=2

�

0

i

N

`

N

1

N

i

W (: : :) = �

i

max

X

i=2

�

i

hN

i

N

`

i (47)

regardless of the value of `. Hen
e summing the seventh, eighth and ninth terms of

the master equation, given here as expressions (45), (46) and (47), and repla
ing the

upper 
ase N with the lower 
ase n in the 
lassi
al pi
ture will give us �

`�1

n

`�1

��

`

n

`

,

where ` = 2; : : : ; i

max

. These are the �

i

terms in the 
lassi
al rate equation (3).

The 


i

terms:

` = 1
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The e�e
t of the operator

b

O, with ` = 1, on the tenth term in the master

equation (7) will be

1

X

fN

i

g=0




2

N

1

(N

2

+ 1)W (N

1

� 2; N

2

+ 1; : : :);

and the re-labelling N

1

! N

1

+ 2 and N

2

! N

2

� 1 will give us

1

X

fN

i

g=0




2

(N

1

+ 2)N

2

W (: : :) = 


2

h(N

1

+ 2)N

2

i: (48)

The eleventh term of Equation (7), under the operation due to

b

O will be
ome

1

X

fN

i

g=0

i

max

X

i=3




i

N

1

(N

i

+ 1)W (N

1

� 1; : : : ; N

i�1

� 1; N

i

+ 1; : : :);

whi
h with the re-labelling N

1

! N

1

+ 1, N

i�1

! N

i�1

+ 1, N

i

! N

i

� 1 be
omes

1

X

fN

i

g=0

i

max

X

i=3




i

(N

1

+ 1)N

i

W (: : :) =

i

max

X

i=3




i

h(N

1

+ 1)N

i

i: (49)

The last term in Equation (7) is more straight forward and does not require any

re-labelling, so the operator

b

O will make it

�

1

X

fN

i

g=0

i

max

X

i=2




i

N

1

N

i

W (: : :) = �

i

max

X

i=2




i

hN

1

N

i

i: (50)

Repla
ing the angled bra
kets and the upper 
ase N with the lower 
ase n in the


lassi
al limit, the sum of all the 


i

terms expressed in (48), (49) and (50) will be

2 


2

n

2

+

i

max

X

i=3




i

n

i

= 2 


2

n

2

+

i

max

�1

X

i=2




i+1

n

i+1

: (51)

These are pre
isely the 


i

terms appearing in the monomeri
 rate equation (5).
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` > 1

If we operate on the tenth term of Equation (7) with

b

O, we get

1

X

fN

i

g=0




2

N

`

(N

2

+ 1)W (N

1

� 2; N

2

+ 1; : : :);

and with the re-labelling N

1

! N

1

+ 2 and N

2

! N

2

� 1 it be
omes

1

X

fN

i

g=0




2

N

`

N

2

W (: : :) = 


2

hN

`

N

2

i: (52)

If operated upon by

b

O, the eleventh term of Equation (7) will read

1

X

fN

i

g=0

i

max

X

i=3




i

N

`

(N

i

+ 1)W (N

1

� 1; : : : ; N

i�1

� 1; N

i

+ 1; : : :):

With suitable substitutions, it 
an be shown that this expression is equivalent to




`

hN

`

(N

`

� 1) + 


`+1

hN

`+1

(N

`

+ 1)i+

i

max

X

i=3

i 6= `;`+1




i

hN

`

N

i

i: (53)

Finally, the last term in Equation (7) under the operation due to

b

O will appear as

�

1

X

fN

i

g=0

i

max

X

i=2




i

N

`

N

i

W (: : :) = �

i

max

X

i=2




i

hN

`

N

i

i; (54)

where ` = 2; : : : ; i

max

. Hen
e the sum of the all the 


i

terms given in (52), (53) and

(54) will be




`

hN

`

(N

`

� 1)i+ 


`+1

hN

`+1

(N

`

+ 1)i � 


`

hN

`

N

`

i � 


`+1

hN

`+1

N

`

i;

whi
h under the 
lassi
al limit 
an be simpli�ed as 


`+1

n

`+1

� 


`

n

`

. These are the 


i

terms found in the 
lassi
al rate equation (3), ex
ept that here the subs
ript ` is used

for labelling purpose.
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We therefore 
on
lude that the set of sto
hasti
 master equations (7) are

redu
ible to the set of 
lassi
al rate equations given in (3) and (5) when the mean

populations are large. Furthermore, it is possible to justify the sto
hasti
 expression

for the nu
leation rate, given in Equation (14).
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Figure 1 Nu
leation rate as a fun
tion of i

max

with i

�

= 2, j

0

= � = 1 and � = 1.

It is reasonably safe to 
hoose i

max

= 4, sin
e the results obtained with a

higher i

max

= 6, for instan
e, are approximately the same.

Figure 2 A typi
al example of probability distributions P

i

(N

i

). Only values

plotted at integer N are physi
al; the 
urves have been �tted as a guide to

the eye. In this example, N

max

1

= 16, N

max

2

= 12 et
. were suÆ
ient to give

satisfa
torily smooth probability distributions for the mean populations.

Figure 3 Nu
leation rate as a fun
tion of the size parameter � for the j

0

= � = 100

model. The predi
tion of rate equation approa
h is shown with 
ross signs,

and the squares are the results of the sto
hasti
 model presented here.

Figure 4 Sto
hasti
 and 
lassi
al mean monomer population, hN

1

i, as a fun
tion

of � for the j

0

= � = 100 model. Both models predi
t essentially the same

mean populations for this 
hoi
e of parameters.

Figure 5 Nu
leation rate as a fun
tion of � for the j

0

= � = 1 model. Di�eren
e

between the sto
hasti
 and 
lassi
al models emerges below � = 1.

Figure 6 Sto
hasti
 and 
lassi
al mean monomer population, hN

1

i, as a fun
tion

of � for the j

0

= � = 1 
ase. Unlike the j

0

= � = 100 
ase, some di�eren
e


an be seen here between the mean populations a

ording to the two

models.

Figure 7 The ratio of 
lassi
al versus sto
hasti
 nu
leation rate 
al
ulated as a
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fun
tion of � for the j

0

= � = 100 and j

0

= � = 1 models.
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