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Abstract

The process of nucleation is normally described using rate equations for the
mean populations of molecular clusters. This approach can be justified for cases
where these mean populations are large. However, it may be unsuitable in the
case of heterogeneous nucleation on small particles if the mean populations are
of the order of unity or less. In such a case, considering the average populations

might be erroneous since the statistical fluctuations in the molecular



populations should be taken into account. Here a stochastic treatment of
heterogeneous nucleation kinetics is presented that is described by a set of
master equations, and a modified expression for the nucleation rate has been
deduced. Furthermore, a numerical method for solving the stochastic system
has been examined, and the results show that the rate of nucleation can differ

greatly from that obtained with the traditional kinetics.

PACS numbers: 64.60.Qb, 82.20.-w, 82.65.4r, 02.50.-r

1 INTRODUCTION

Transformations of the phase of substances are very common; dramatic examples can
be found in the atmosphere, where the condensation of water vapour, driven below its
dew point, gives rise to the formation of water and ice clouds of great variety and
beauty [1]. Similar processes on a grander scale are believed to take place in the
vicinity of stars, giving rise to equally beautiful dusty nebulae. Domestic examples
are also familiar, and processes such as melting, freezing, boiling or condensation are
common in industry. However, the rate at which these processes occur is not easy to

predict.

Most of these phase transformations are first order, which is to say that a latent
heat is transferred during the process, and a surface tension exists between the two

phases at equilibrium. The transformation usually involves the emergence of



assemblages, or clusters, of molecules with characteristics (density, symmetry, etc) of
the new phase. However, these clusters are not necessarily all thermodynamically
more stable than the original phase. Small clusters, with high proportions of
‘surface’, tend to be unstable. For moderate degrees of metastability of the original
phase, there exists a ‘bottleneck’ in the process, corresponding to the need to form a
so-called critical molecular cluster. Once one has been formed, further growth is
thermodynamically favourable. This is the process of nucleation, driven
fundamentally by thermal fluctuations. However, for greater degrees of metastability
of the original phase, the phase transformation can become deterministic, with no

thermodynamic bottleneck. The process then becomes spinodal decomposition [2].

Most research into nucleation is concerned with the homogeneous process, where
the metastability of the original phase is overcome without the presence of special
nucleation sites in the system. The critical clusters form in the absence of foreign
bodies and container surfaces. However this is not the process responsible for most of
the familiar phase transformations described earlier. The atmosphere is not entirely
free of suspended matter, and cloud formation, for example, takes place by a process
of so-called heterogeneous nucleation. The water clusters, and ultimately the cloud
droplets, form on the surfaces of suspended particles called cloud condensation nuclei
(CCN), since it is far easier thermodynamically to do this than to form a critical
cluster homogeneously [3]-[6]. Heterogeneous nucleation has been previously

investigated via free energy calculation approach [7, 8].



Cloud condensation nuclei are solid or liquid aerosols, often only a fraction of a
micrometre in diameter. Now, the metastability of a vapour is measured in terms of
its supersaturation S, defined as the ratio of the vapour pressure to the saturated
vapour pressure, and the critical supersaturation required to drive nucleation at a
given rate is a measure of the ease with which critical clusters can be formed. While
a value of S of order 10 might be necessary in some circumstances to drive
homogeneous nucleation, only S ~ 0.01 is sufficient to drive the heterogeneous
process if CCN surfaces are present [9]. In the atmosphere, supersaturations are

usually limited to these values, so heterogeneous nucleation is the dominant process.

It is generally considered that the kinetics of nucleation were correctly described
by Becker and Déring [10] almost 70 years ago. This solution applies to the formation
of clusters of a single molecular species, by a process of single molecule attachment
and loss. Usually, the slightly unrealistic steady state situation is assumed, where the
supersaturation of the original phase is held constant in spite of the consumption of
material in the formation of new phase. Nevertheless, this is a reasonable
approximation when the rate of consumption is low, and so the processes of
homogeneous and heterogeneous nucleation are considered to be well represented by

the formula for the nucleation rate:
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where [; is the rate at which monomers attach to cluster of size 4, ; is the rate at

which they detach from the same cluster and i,y is the maximum cluster size



allowed in the system. The growth rates (; are proportional to the monomer

population nq, since they represent monomeric attachment.

The Becker-Déring expression, Equation (1),is obtained by solving a basic set, of
rate equations describing the difference between (;n;, the number of growth events

from size i to (i + 1), and 7;,1, the number of decays from size (i + 1) to

J = Bini — Yip1Nit1, (2)

where n; is the steady state population of clusters of size 7. These equations are held
to apply for ¢ from unity up to ¢max — 1. The Becker-Doring solution applies when the
growth ladder is terminated by the assumption that clusters at size iy, + 1 do not
decay, hence J = 3, . n; . . For many realistic situations, the solution is insensitive

to the choice of i, as long as it is large enough.

However, the Becker-Doring approach makes an assumption about the kinetics
which may not be valid. The rate equations are what we might call classical in that
the number of growth transitions from size i to (i + 1), for example, is taken to be the
population of i-clusters n; multiplied by a rate coefficient §; proportional to n;. If n;
were a precise constant, then this assumption would be valid, but in fact all cluster
populations in the problem, including n,, display fluctuations about a mean value,
since the processes of growth and decay occur as stochastic events. As we shall show
in the next section, the growth rate actually requires us to evaluate the mean of the
product of the populations of monomers and ¢-clusters, rather than the product of

the mean.



The error involved by the neglect of fluctuations is small when the populations of
clusters are large, by the usual statistical arguments. This is almost always the case
in practical cases of homogeneous nucleation: the system is a sample of vapour, say,
in macroscopic container, so that the number of monomers present in the system is
huge. However, when the process under consideration is heterogeneous nucleation
taking place on the surface of a microscopic particle, the possibility arises that
populations could be small. An experiment involving vapour condensation could be
conducted in a macroscopic container, but the actual ‘reaction vessel’ would be the
surface of one of the many particles suspended inside the container. In experiments
involving heterogeneous nucleation, therefore, it is possible for the Becker-Déring

kinetics to be inappropriate.

It is this possibility that we investigate in this study. There have been some
attempts at considering the discrete nature of the nucleating molecules with the aid
of stochastic arguments. In particular, Ebeling et al. have examined a master
equation approach in dealing with the nucleation kinetics [11]. To a limited extent, it
is similar to what we propose in the next section of this paper, but the theory of
Ebeling et al. gives only a general picture of the kinetics, and is not intended for
treating small systems with tiny mean populations of molecules. The possibility of
low mean populations encountered in precipitation in small droplets has been
considered by Manjunath et al., through stochastic simulations involving a series of

the so-called product density equations [12]. Dimer formation taking place on the



surface of tiny dust particles in low density conditions of interstellar medium and thin

atmospheres has also been previously studied [13].

In this paper, we consider the complete solution to the heterogeneous nucleation
kinetics of growth and decay of clusters of various sizes, where the possibility of
fluctuations is properly taken into account. This requires us to set up and solve
master equations for the probability distributions of cluster populations. We consider
a simple set of rate coefficients which allow us to perform the computational tasks in
an efficient manner, and contrast the resulting nucleation rate with the Becker-Doring
solution. We expose the conditions necessary for large differences to exist between the
‘classical’ Becker-Doring solution and the more appropriate ‘stochastic’ solution to

the master equations.

2 KINETICS OF HETEROGENEOUS

NUCLEATION

2.1 Classical Rate Equations

Consider a host particle surrounded by gas phase molecules (monomers) that
occasionally strike and stick to the particle. Once adsorbed, such a monomer may
move around the particle. It may encounter another monomer and the two may form

a dimer. The growth of the adsorbed molecular cluster may progress further due to



attachments of more monomers. The cluster may also decay by loss of monomers,
induced, perhaps, by energy input from the substrate. Clusters need to reach a
critical size ¢* before they will, on average, be able to grow further. In other words,
for clusters consisting of ¢ molecules, with ¢ < ¢*, the probability per unit time for a
cluster to grow, divided by the probability for it to lose a molecule (decay) is less
than unity. For sizes greater than the critical size, the ratio of growth to decay
probabilities is greater than unity. Most clusters tend to languish in the sub-critical
size region, and only occasionally do they manage, by a lucky sequence of growth

steps, to reach the critical size, and thereafter grow.

Traditionally, such a system is modelled using the rate equations

dni
dt

= Biimi—1 — Yini — Bing + Yig1 it (3)

for ¢+ > 2, where n; is the mean population of clusters of size i in the system. f; is the
rate at which molecules attach themselves to clusters of size i, and ~; is the rate at
which molecules are lost from clusters of size i. The growth rates (3; are proportional

to the number of monomers n; in the system, so that we can write

Bi = 52”1- (4)

For + = 1 the dynamics are expressed by

dn _
d_tl = j— g —2B1im1 + 279ma — (Bane — 13m3) — (B3m3 — Yana) = = Bipax Nimmax
imax_l
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=2



where j is the source rate of monomers attaching themselves to the surface from the
surrounding medium and A is the evaporation rate of monomers from the particle

surface.

When fluctuations in populations about mean values are taken into account, it

would seem reasonable that the rate equations (3) should be replaced by something

like

= B 1 (NINi 1) — 7% Ni) — BUNING) + i1 (Niga), (6)

where the angled brackets represent an averaging over the fluctuations and the cluster
populations are written in upper case NN; to remind us that they are fluctuating
stochastic variables. Equation (5) would similarly be replaced. We shall see in the
next section how such equations can be derived from a stochastic treatment of the

populations, and how the averages can be evaluated.

2.2 Stochastic Approach

In the stochastic approach we consider a probability distribution that describes the
state of the system in terms of the exact populations of all the allowed cluster sizes.

Let the probability that the system contains Ny monomers, Ny dimers, and in general

N; i-clusters at time ¢ be W(Ny, Ny, ..., N;, ..., N,

i 1) = W ({N;};t). In order to

limit the number of elements in this array, we introduce a maximum cluster size iy ax.

We also limit each N; to be less than or equal to N/***. The rate of change of this



probability is then given by

aw
dt
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tmax

Yo vNW(. ). (7)

=2

On the right hand side of the above equation, £ has been omitted for simplicity. The

dots represent values of the N; that are the same as on the left hand side.

The processes considered are the growth transitions 1+ (i — 1) — ¢ and

1+1i— (i + 1) due to monomer attachment, as well as the decay processes

i—(i—1)+1and (i +1) = i+ 1 due to monomer detachment from the cluster. The

attachment and detachment of dimers, trimers and higher size clusters are neglected.

The first two terms (the j terms) describe the addition of a monomer from the

surroundings, leading to a monomer population change N; — N; + 1. The third and

fourth terms represent loss of a monomer from the particle surface due to the

10



population jump Ny — N; — 1. The rest of the terms are constructed using similar
arguments for monomeric attachment and detachment to and from dimers, trimers
and in general i-clusters. There is a term for 5;_, , but no term involving ~; 1
since clusters at size iy, may grow, but the population at this size receives no
additions from the decay of the next larger cluster. This acts as the boundary

condition of the problem.

The classical limit corresponds to the probability distribution W being unity for
only one set of possible populations of the i-clusters, that is the mean populations.
That is, W (ny, na, ...n;...) = 1 and all other elements are zero. Formally, this is

represented, using the Kronecker delta, as

W(Nl,NQ,...) == H 5]\717% (8)
i=1
In the steady state and this classical limit, solving equation (7) would be

equivalent to solving equations (3), (5) and (1), as shown in the Appendix.

If Equation (7) can be solved by some means, knowledge of W would allows us to

generate probability distributions P;(N;) for the population of i-clusters:

Nmax

J
PNy =% ¥ W(Ny,...,Nj,.. Ni,. ). 9)
(j#i) Nj=0

The P; are likely to look like gaussian distributions for large n;, or Poisson
distributions for small n;. Ideally, the values of all the N*** ought to be infinity for a
‘perfect’ evaluation of P;(NN;). However in practice, as we shall see in Section 3.3,

satisfactory results may be obtained when the N;"** are limited to reasonably small

11



values.

It is also possible to calculate joint probabilities, such as P;(V;, N;), which is the
probability that we find N; [-clusters and N; i-clusters in the system. These

distributions are given by

Nmax
J

Pi(N,N) =S S W(Ny, .. Ny oo Ny N, ). (10)

j#1i Nj=0

If the steady state W are known, it is possible to calculate the nucleation rate.
This is done by summing all the probabilities of growth from any size ¢ to size ¢ + 1

and subtract those for decay in the opposite direction:

J = {Z} (BN N;W ({N;}) = Yt Nid W ({N;})) (11)

which by introducing the notation

(N;) = > N;Pi(N;) (12)
N;
and
Ny, N;
allows us to write
BIUNINGY — Yig1 (Nig1) ifi>2
/= (14)

Bi{N1(Ni = 1)) = vip1(Niy1)  if 0= 1.
Any value of 7 > 2 in the first of the above expressions would give the same result in
the steady state as the nucleation current should be independent of cluster size. If
one uses ¢ = 1 to compute the nucleation rate, a slight modification is required as in

12



the second expression in Equation (14), since having just a single monomer in the
system cannot give rise to a nucleation current towards the critical size. In contrast,
the nucleation rate given in equation (2) according to the standard rate equation (3),

in the same notation, reads

J4% = BUNIY(N:) — Vi1 (Nip1) (15)

One would expect relative fluctuations in the populations to become negligible when
the populations are large, so that a mean of a product becomes the product of the
means. It is therefore evident from the comparison of Equations (14) and (15) that
the standard rate equations are valid in the large population limit. It is also possible
to visualise how the standard result for the nucleation rate must be modified for

small systems. By writing
BiNIN;) = (1 + &) Bi(N1)(Ni), (16)

the expression for the rate given in equation (1) can be used to see that, to a good

approximation,

¥

Jsmall = Jlarge H (1 + 6i) ) (17)

i=1

where ¢* is the critical size, where the rate coefficients for growth and decay are equal

(B; = ;). We are interested in calculating the modification factor.

13



3 CALCULATIONS

3.1 Parameterisation

The master equations (7) are driven by the input parameters j, A, 8/ and 7;. In order
to investigate the problem of heterogeneous nucleation in small systems, we must
carefully choose the input parameters that are likely to lead to small cluster

populations.

Let us introduce a size parameter £, which may be taken to be proportional to
the surface area of the host particle. The coefficients A and ~; are the decay rates of
monomers (i = 1) and i-mers (i > 2) respectively and hence may be taken as
independent of the system size. The attachment rate ;7 of monomers onto the particle
surface, however, should increase linearly with &. It is useful to consider temporarily
the dynamics in the absence of any dimer production, in which case the mean
monomer population would be given by a balance between 7 and A, namely,

(N7) ~ j/A. If jg is the value of j at £ = 1 then we can write

i = & o, (18)
so that
(M) ~ 2 (19)

For convenience, let us postulate that & =1 is the system with a nominal mean
monomer population of unity. This imposes the condition j, = A.

14



For simplicity, we assume the growth rate g to be independent of the cluster size
i,ie., B =By =---= ;.. On the other hand, §; will be inversely proportional to &
since it measures the likelihood that an adsorbed monomer will encounter an
adsorbed i-mer. As the system gets bigger, this likelihood would diminish.
Furthermore, we may fix 8/ such that at £ = 1 the mean growth rate of an i-mer is
unity. Remembering from Eq. (4) that §; = (/Ny}, this means that g/ =1 at £ =1,

and in general

51‘ =7 (20)

The choice of the parameters 7; must satisfy the requirement that at the critical
size i*, a cluster is as likely to decay as it is likely to grow, i.e., 7 = 5L (V7). With
the above stated choice of 5 and (Ny), this means that v = 1 at £ = 1. Indeed, this
should be true for any value of £ as the decay rates are independent of the system
size. The i-dependence of +; may be chosen on the grounds that small clusters are

more likely to decay than large clusters. We therefore choose

w=(5) 21

1

where p is some constant to be decided. Entirely for computational convenience, and
without suggesting that the model should represent a real system, we shall choose

p =2 and i* = 2. This form of ~; ensures that a cluster below the critical size (i < i*)
has a high probability of decay, whereas those above the critical size (i > i*) will find

it easier to grow.

The relative values of j, (and \) and 3! control the degree to which the mean

15



monomer population is close to the estimate (19). We shall explore cases where

jo > 1 and j, = 1 in Section 3.3.

3.2 Classical Solution

The most convenient way of deducing the classical nucleation rate for a given set of
parameters jo, A, &, §; and ~; is through the expression (1). However the ny
appearing in that equation still needs to be known. Although in the large jo limit
expression (19) for (IV;) may provide a reasonable estimate, this is not guaranteed to

be true in general. A better method of finding n; is as follows.
Equation (5) in the steady state may be written, with the help of Eq. (2), as
0 = jo&— g —2J — (imax — 2)J — J
= Jjo§ — M — (imax + 1), (22)
where J is given by Eq. (1). Let us assign a function
F(ni) = jo& — Ang — (imax + 1)J. (23)

This function falls with increasing n;. As an initial approximation, we provide

n1 = jo&/A, which in all practical cases is at least a slight overestimation of the actual
value of n;. We then iteratively search for a zero of the function F(n;) by subtracting
a very small amount (typically ~ 107%) from the trial value of n; and evaluating a

new value of F(n;). This process is continued until a solution is found within a very

16



small tolerance. The final value of n; that corresponds to F(n;) = 0 can then be

utilised in Eq. (1) to find the classical value of the nucleation rate.

3.3 Solving the Master Equation

Given all the necessary parameters given in Section 3.1, we are in a position to solve
the master equations (7) which should ultimately render the stochastic solution to
the system. Solving Eq. (7) analytically does not appear to be a feasible task. We

therefore look for an appropriate numerical technique to act as a substitute.

Computationally, we discretise time ¢, and replace the dt by a very small but
finite At in Equation (7). The dWW(¢) may then be replaced by W (t + At) — W (t),
thus allowing Eq. (7) to be solved iteratively. As an initial condition, we set
W(0,0,0,...,0;¢ =0) =1 with all the remaining elements of the array W ({N;}) set
to zero, specifying an empty system to start with. The system thereafter evolves in

time until a steady state is reached.

Equations (7) represent a set of coupled differential equations. i« is the largest
size of cluster that can form on the particle, and needs to be specified explicitly at
the beginning. In principle, it should be large enough so that the contribution due to

terms with i, + 1 in the series appearing in Equation (1) is negligible.

Strictly speaking, the multidimensional array W ({N;}) consists of an infinite

number of elements, but for computational purpose we may set an upper limit on the

17



maximum number of i-clusters the system can possess at any time. In other words

the array W ({N;}) takes the form W (O s NP# 0 N0 N;“jf) These values
NN N2 should be decided by educated guess such that all of the iy
probability distributions in Eq. (9) die down to negligible levels at N; = N™* at the

end of the iterations.

Steady state is considered to have been reached when all the elements of
W ({N;}) have converged within a very small tolerance. The nucleation rates .J with
different values of i in Equation (14) will normally evolve differently with time, but
eventually they will all converge upon a common value. This convergence of J with
different values of ¢ in fact serves as a ‘double check’ for ensuring that a steady state

has indeed been achieved.

In Figure 1 we plot the classical as well as the stochastic nucleation rates
obtained under different values of i,,,,, with fixed values of ©* = 2, jo = A =1 and
& = 1. As can be seen, the nucleation rate .J is not very sensitive to ¢y.c. The
stochastic J decreases slightly with increasing ¢,,5, but the essential message is that
a value of i,,x = 4 may be trusted in order to demonstrate at least the qualitative

behaviour of the system.

An example of the probability distributions P;(V;), as defined in Equation (9)
and calculated once the steady state has been reached, is shown in Figure 2. P;(N;)
is the probability distribution for the monomer population, P(N3) is the same for

dimmers, and so on.

18



Figure 3 shows the stochastic and classical nucleation rates as a function of the
particle size parameter £ for jo = A = 100. The calculation has been performed with
1* = 2 and iy = 4. Figure 4 shows the mean monomer population for the same
system as predicted by the two models. There is a good agreement between the two
models for the monomer population in this limit of j, > 1. The nucleation rates in
Fig. 3 according to the two models, however, start diverging as £ falls below 0.1. It is
interesting to note that the monomer population between £ = 0.1 and £ = 1 is below
unity and yet the stochastic nucleation rate does not differ considerably from its

classical counterpart in this range, and for these parameters.

In Figure 5 the nucleation rate is plotted again as a function of &, but this time
with jo = A = 1, the rest of the parameters being the same as in Fig. 3. The mean
monomer population for the same system is plotted in Figure 6, and now we see that
the stochastic (N7) does differ from classical (N7) once £ goes below unity.
Approximately below the size £ = 1, where the mean monomer population is below
unity, visible difference between the classical and stochastic nucleation rates is again
evident in Figure 5. The linear dependence of .J with respect to £ exhibited in the
classical theory is lost when one deals with very small particle sizes. Note that the
stochastic model gives a smaller nucleation rate, but a higher mean population of
monomers than the classical prediction, since a higher nucleation rate would leave

fewer monomers on the surface.

The ratios Jeassical/ Jstochastic derived from both cases, jo = A = 100 and

19



jo = A =1, have been plotted in Figure 7. This is simply the factor by which the
classical Becker-Doring kinetics overestimates the nucleation rate as compared with
the stochastic model presented here. The overestimation grows as we look at ever
smaller sizes (§) of the host particle. Also, the ratio is larger for the jo =\ =1
calculations, compared with the jo = A = 100 case. This is due partly to the fact that
a large value of j, produces a mean monomer population closer to the classical

prediction as discussed in Section 3.1.

The classical treatment requires there to be a large population of the nucleating
species so as to be able to use a mean value of the populations in treating the
kinetics. However, when the mean monomer population is below unity, there are
instances when there are no monomers present on the surface and only by a lucky
chance are there more than one monomers present. Since the classical kinetics ignores
this discrete nature of the molecular species, it assumes a higher reaction rate

between the molecules, hence yielding an overestimated nucleation rate.

4 CONCLUSIONS

We have studied the problem of heterogeneous nucleation under conditions where the
mean populations of the nucleating clusters may be of the order of unity. The
traditional rate equation approach, which treats the kinetics in terms of the mean

cluster populations, is likely to fail in such limit. To investigate this, we have
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proposed a new master equation approach that takes into account the stochastic

fluctuations in cluster populations, and replaces the classical rate equations.

A method for solving the master equation numerically has been explored. The
results of the model calculations performed here indicate a large difference in the
nucleation rates as predicted by the stochastic and classical treatments as the
nucleation site becomes very small. However, if the system is large, the stochastic

treatment reproduces the classical Becker-Doring kinetics.

For simplicity, only monomer attachment and detachment to the nucleating
cluster has been allowed in the stochastic model here. The master equation can
nevertheless be extended easily to include the loss and gain of dimers, trimers etc.,

solving which would clearly require a much greater deal of computational power.

ACKNOWLEDGEMENTS

This work was funded by the U.K. Engineering and Physical Science Research

Council (EPSRC).

APPENDIX

It is possible to show that the master equations (7) do indeed reduce to the rate

equations (3) and (5) in the classical limit of relatively large populations. To do this,
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let us define an operator O such that

O-f= 3% Nf, (24)
{Ni}=0
i.e., we multiply the given term f by N; (where | =1,..., imax) and sum the result

over all the {N;}. Let us perform this operation on both sides of Eq. (7). This makes

the left hand side read as

= AWHNY)  d(N)
{%:ON‘ dt— dt (25)

which is equivalent to the L.H.S. of Equations (3) and (5). Now consider the
consequence of this operation on the right hand side of Eq. (7). On the R.H.S., one
needs to treat separately the cases of £ =1 and ¢ > 1 since there are different rate
equations for the two cases of Ny and N, (¢ > 1) in the classical picture. Let us
consider terms proportional to the parameters j, A, 8! and ~; one by one and try to

compare them with those found in the rate equations (3) and (5).

The j terms:

Operating the first term in Eq. (7) by O along with ¢ = 1 will render
S N W(N —1,...).
{Ni}=0
In order to bring the probability W in the same form as on the left hand side, that is

W(Ny, N, ..., N,

tmax

), we can make the substitution N; — Nj + 1, which is what

22



happens to the monomer population due to the j term. The above notation will then

turn into

SN DN, ) = (N + 1), (26)
{N:}=0

The sum over this new N; label should run from —1 to oo, but clearly the unphysical

first term in the series vanishes, so that the lower limit is indeed zero.

Operating upon the second term in Eq. (7) with O will give

LS N = (N, (27)
{Ni}=0

In the classical limit, the upper case N; together with angled brackets is replaced
by n1, so from Equations (26) and (27), the net result of applying O on both the j
terms in Eq. (7) is
Jn g —jni = J. (28)
This is precisely what we have as the ‘j term’ in the rate equation (5), which was

written down explicitly for the monomeric (¢ = 1) population.

f>1

If ¢ is not equal to 1, then the operation due to O will make the first term in Eq.
(7) read

Z JNeW(Ny —1,...),
{N:i}=0

where ¢ # 1. This time the substitution N; — Ny 4+ 1 will lead to

o

> N W(Ny,...) = j(Ny). (29)

{Ni}=0
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The second term of the master equation under the operation of O will be similar to

the expression (27):

S S N = iV, (30)
{Ni}=0

Hence the sum of Equations (29) and (30) will be zero, and indeed, there is no j term

in the rate equations (3).

The A\ terms:

If we apply the operator O to the third term of the master equation (7), we have

i AN (Ny 4+ 1) W(Ny +1,...).

{Ni}=0
This time we make the substitution Ny — N; — 1 so that the above expression is
converted into

{Ni}=0

The lower limit for the sum over the shifted variable N; should be +1, but we can

extend this to zero without changing the result of the summation.

Performing the operation O on the fourth term of the master equation will give us

LS AN (L) = —A(N). (32)
{N;}=0

Once again, to see the correspondence with the classical model, we replace the angled

brackets and the upper case N; with the lower case ni, so we are left with the net

24



result

An? —ny) — AnT = —An,. (33)

This is the A term found in the monomeric rate equation (5).

{>1

The third term of Eq. (7) under the influence of O will this time become

Z AN(Ni + 1) W(Ny +1,...),
{Ni}=0

and the substitution Ny — N; — 1 will make it

Z AN Ny W(Ny,...) = NN Ny). (34)
{Ni}=0

The operation due to O on the fourth term of Eq. (7) will give us —A(N;N;). Hence
the lambda term will vanish for the ¢ > 1 case, and is absent in the rate equation (3)

also.

The 3] terms:

If we operate on the fifth term in the master equation (7) with @, using { =1, we
get

Z BiN1 (N1 +2)(Ny + 1) W(N; + 2, Ny — 1,..),
{Ni}=0

which with substitutions N; — N; — 2 and Ny — N, + 1 becomes

{Nl}:()
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where we have used the fact that 8; = 5//N;. The sixth term can be operated on

without having to do any re-labelling of N:

i BININ (N, — 1) W(...) = =B1{N (N, — 1)). (36)
{Ni}=0

The seventh term will however require re-labelling in order to bring the W in the

desired form. We first operate on it with O to get

Tmax—1
Z Z 6N1N1+1)(N+1)W(N1+177Nz+17Nz+1_1>)7
{N;}=0 =2

and then use the substitutions Ny - Ny — 1, N; = N; — 1 and N;;; — N;;1 + 1 in

order to obtain

Tmax—1 Tmax—1
Z Z N1 —1 NlN W(Nl,...,Ni,Ni+1,...) e 52<(N1_1)Nz> (37)
{N;}=0 =2 =2

With some thought, it is possible to realise that result (37) will hold true for any
value of i in the Y!5~! series. A similar procedure on the eighth term of Eq. (7) will
give us

Bimar (N1 = 1) Ni ), (38)

which essentially completes the series in Equation (37) from i = 2 to ipax. Finally, we

operate on the ninth term with O and obtain

-y ZﬁNlNlN wi(. Zﬁz (NIN, (39)
{N;}=0 i=2

which again holds no matter what value of i is chosen in the /"5 series.

Hence the sum of all the 3] terms in Equations (35), (36), (37), (38) and (39) will
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be

tmax tmax

> Bil{(Ny = 1)N;) = D7 Bi(Ni V) + 51[<(N1 —2)(N1 — 1)) = (N1 — 1)N1>]- (40)

=2 i=2
If we now replace the upper case N with its lower case counterpart, discarding the

angled brackets to reflect the classical limit, expression (40) is easily reduced to

Tmax

It can be seen that these are the 8 terms in the rate equation (5) provided that
ny — 1 &~ ny in the above expression. This is a fair approximation in the classical limit

where the monomeric population is high.

f>1

Additional care is required when one deals with the case of £ # 1 in the 3] terms.
This is due to the series 22“:“;‘ involved and unlike the / = 1 case, contributions due

to different values of ¢ need to be examined explicitly.
Consider the fifth term in Eq. (7) first. With the operator O applied, it will read

Z BiNe(Ny +2)(N1 + 1) W(N; +2, Ny — 1,..),
{Ni}=0
and the substitutions Ny — N; — 2 and Ny — Ny + 1 will make it
{Ni}=0
and
Z BiN1(Ny — 1)(Na+ 1) W(...) =B ((Ny — 1)(Ny+ 1)) if £=2. (43)

{Ni}=0
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The sixth term in Eq. (7) will not require any re-labelling of N after being

operated on by O and regardless of the value of ¢ it will become

S BNN(N — D) W(..) = AN — )N, (44)
{N:}=0

Hence for ¢ > 3 the sum of the positive and negative ; terms, given in expression
(42) and (44), is zero. The rate equation (3) written down for ¢ > 3 will surely have
no 31 terms. For the special case of ¢ = 2, the sum of expressions (43) and (44) will
leave 51(n; — 1) in the classical language. Considering the rate equation (3) for i = 2
case, one would find the term [;nq, which is approximately equal to the stochastic
result §;(ny — 1), provided that ny > 1. This is a valid assumption in the classical
limit, and so the (] terms in the stochastic master equation are reducible to those in

the classical rate equations when the mean populations are large.

Let us now consider the seventh term in Eq. (7). With operator O acting on it, it

would read
tmax—1
Z > BIN(N:+ D)(N;+ 1) W(N +1,...,N;+ 1, Ny — 1,..).
{N;}=0 =2

Consider the expansion of the second summation here:

> BANe(Ni+1)(Ny+1) W(N; + 1, N+ 1, N3 — 1,..)

{Ni}=0
+ > BN(Ni+1)(Ns+1)W(Ny +1,...,Ns+1,Ny—1,...)
{Ni}=0
+ > BINe((Ni+1D)(Ny+ 1) W(Ny +1,...,Ny+1,Ns = 1,...) + ---
{Ni}=0
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With appropriate re-labelling as done before, and remembering that ; = 5Ny, it is

possible to show that the this term reduces to

tmax

Beo1(Ne—1(Ne + 1)) 4+ Be(Ne(Ne = 1))+ D Bi(I;Ny). (45)

=2
iEl—1,0

The operator O will reduce the eighth term of Eq. (7) into

o B NNy + 1) ( Ny + D) W(Ny+ 1, N+ 1),
{Ni}=0
and with the re-labelling Ny =+ N; —1 and N;_, — N;,... — 1 will give us
> B NeNiN; o W) = Binae (Ninau Ny i £ =2, i — 1
{Ni}=0
x (46)

Z 62111ax (Nimax - 1)N1Nimax W( . ) = 67;1113,}{ <Nimax (Nimax - 1)) 1f E = imax-
{Ni}=0

A similar argument applies to the ninth term of Eq. (7). The operator O will

reduce this term to

— Z Z BINyNI{N; W(...) = — Z Bi{N; Ny) (47)
{N;}=0 =2 =2

regardless of the value of /. Hence summing the seventh, eighth and ninth terms of
the master equation, given here as expressions (45), (46) and (47), and replacing the
upper case N with the lower case n in the classical picture will give us 8y _1ms 1 — Ben,

where £ = 2, ... ima. These are the f5; terms in the classical rate equation (3).

The ~v; terms:

I
I
—_
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The effect of the operator O, with ¢ = 1, on the tenth term in the master
equation (7) will be
Z ’)/QNl(NQ + 1)W(N1 - 2, N2 + 1, .. .),
{Ni}=0
and the re-labelling Ny — N; + 2 and Ny — Ny, — 1 will give us

{Ni}=0

The eleventh term of Equation (7), under the operation due to O will become

Z Z’VZNl(NZ_Fl)W(Nl_L7szl_1>Nz+17)7

{N,‘}:O 1=3

which with the re-labelling Ny — N; +1, N,y — N;_; + 1, N; = N; — 1 becomes

{N;}=0 i=3 =3

The last term in Equation (7) is more straight forward and does not require any
re-labelling, so the operator O will make it

tmax tmax

- i D NIN,W(.) = =) %), (50)

{N;}=0 i=2 i=2

Replacing the angled brackets and the upper case N with the lower case n in the

classical limit, the sum of all the v; terms expressed in (48), (49) and (50) will be

imax imaxf1
299m0 + > ini = 2%N2 4+ D YiriNiil- (51)
=3 i—2

These are precisely the v; terms appearing in the monomeric rate equation (5).
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If we operate on the tenth term of Equation (7) with O, we get
Z ’)/QNZ(NQ + 1)W(N1 - 2, N2 + 1, .. .),
{Ni}=0
and with the re-labelling Ny — N; +2 and Ny — Ny, — 1 it becomes

> 1NN W(.) = 7a(Nelo). (52)
{Ni}=0

If operated upon by O, the eleventh term of Equation (7) will read
Z Z ’)/ZNZ(NZ + 1)W(N1 - 1, ceey Nifl - 1, Nz + 1, .. )
{Ni}:o =3

With suitable substitutions, it can be shown that this expression is equivalent to

tmax

’)/4<N4(Ng — 1) + ’}/g+1<Ng+1(Ng —+ 1)> —+ E Yi <NZNZ> (53)
i=3
i 0,041

Finally, the last term in Equation (7) under the operation due to O will appear as

tmax tmax

- i DoNNN; W(..) = - EMNM), (54)

{N;}=0 i=2
where £ = 2, ..., in.. Hence the sum of the all the v; terms given in (52), (53) and

(54) will be

Yo(Ne(Ne — 1)) + e 1 (New 1 (Ne + 1)) — o{NeNp) — Yo 1{Ney1 Ne),

which under the classical limit can be simplified as v,y1ns:1 — ¢ 1. These are the ;
terms found in the classical rate equation (3), except that here the subscript ¢ is used
for labelling purpose.
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We therefore conclude that the set of stochastic master equations (7) are
reducible to the set of classical rate equations given in (3) and (5) when the mean
populations are large. Furthermore, it is possible to justify the stochastic expression

for the nucleation rate, given in Equation (14).
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Figure 1 Nucleation rate as a function of i,,,, with i* =2, jp=A=1and £ = 1.
It is reasonably safe to choose i, = 4, since the results obtained with a

higher i.,,x = 6, for instance, are approximately the same.

Figure 2 A typical example of probability distributions P;(V;). Only values
plotted at integer N are physical; the curves have been fitted as a guide to
the eye. In this example, N{** = 16, NJ"** = 12 etc. were sufficient to give

satisfactorily smooth probability distributions for the mean populations.

Figure 3 Nucleation rate as a function of the size parameter £ for the jo = A = 100
model. The prediction of rate equation approach is shown with cross signs,

and the squares are the results of the stochastic model presented here.

Figure 4 Stochastic and classical mean monomer population, (Ny), as a function
of £ for the jo = A = 100 model. Both models predict essentially the same

mean populations for this choice of parameters.

Figure 5 Nucleation rate as a function of £ for the jo = A = 1 model. Difference

between the stochastic and classical models emerges below £ = 1.

Figure 6 Stochastic and classical mean monomer population, (N}, as a function
of £ for the jo = A = 1 case. Unlike the j5 = A = 100 case, some difference
can be seen here between the mean populations according to the two

models.

Figure 7 The ratio of classical versus stochastic nucleation rate calculated as a
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function of ¢ for the jo = A = 100 and j, = A = 1 models.
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