
Distributed Objects

Wolfgang Emmerich
Dept. of Computer Science
University College London

London WC1E 6BT,UK
w.emmerich@cs.ucl.ac.uk

Neil Roodyn
Cognitech Ltd

City Cloisters, 188-194 Old Street
London EC1V 9FR, UK

neil@cognitech.co.uk

ABSTRACT
This tutorial motivates the need for, and discusses the prin-
ciples of object-oriented distribution middleware. We will
give an overview how these principles are supported by the
major incarnations of object-oriented middleware, the Ob-
ject Management Group’s Common Object Request Broker
Architecture (CORBA), Microsoft’s Distributed Component
Object Model (DCOM) and Java’s Remote Method Invoca-
tion (RMI). We will discuss common design problems that
occur when building applications using distributed objects
and present techniques for their solution.

1 INTRODUCTION
In a number of domains, such as the financial and telecom-
munications sector, applications have to be adapted to evolv-
ing market conditions so quickly that it is no longer fea-
sible to develop and maintain large, centralised applica-
tions. Applications are now “down-sized” into manageable
components, which can be developed and maintained au-
tonomously and be distributed over an enterprise network.

Components are rarely used in isolation. They rather have to
be integrated into enterprise application infrastructures. This
often involves the integration of legacy applications that can-
not be changed and ported to new platforms. Again, this de-
mands integration of new components with legacy systems
that are distributed over the network of the enterprise.

Building a distributed system is more complicated than
building a centralized system; distribution imposes several
challenges to any application development. Autonomously
implemented application components tend to be heteroge-
neous as they are usually implemented in different program-
ming languages and are targeted for different hardware and
operating system platforms. If application components are
distributed over a network, problems such as component
location and re-location, asynchronous communication be-
tween components, security and concurrency control, must

be addressed. In addition, any distributed application must
be tolerant of failures, such as temporarily unreachable com-
ponents or network time-outs. Dealing with these issues at
the network operating system layer is overly complicated for
an application engineer.

Distribution middleware is layered between network operat-
ing systems and distributed applications in order to bridge
this gap. Middleware provides the application designer with
a higher-level of abstraction. Middleware systems imple-
ment this higher level of abstraction based on primitives that
are provided by network operating systems. While doing so
they hide the complexity of using a network operating sys-
tem from application designers. The idea of middleware is
not new. Many different types of middleware have been sug-
gested, been built and are being used in industrial practice.
This tutorial provides an overview of object-oriented middle-
ware approaches. They all have in common that they imple-
ment the communication between distributed and possibly
heterogeneous objects.

2 TUTORIAL CONTENTS
Principles
All object-oriented middlewares implementobject requests,
that is they enable a client object to request an operation ex-
ecution from a server object. Object-oriented middlewares
generally have aninterface definition languagethat is used
to define the interfaces of server objects. Interface definitions
may be programming language independent. In this case,
they haveprogramming language bindingsthat are defined
to map programming languages used for client or server ob-
ject implementation to the interface.

Object requests are generally executed synchronously; the
client object is made to wait for the operation to execute.
Client objects can be located on different machines as server
objects. To implement remote requests, middlewares there-
fore have to utilize network protocols. We discuss how mid-
dleware implement the session and presentation layers of the
ISO/OSI reference model. We reviewobject identification
andobject activationthat are part of the session layer imple-
mentation. We then discuss presentation layer implementa-
tion techniques formarshallingandunmarshalling. These
are used to transmit complex request parameters across the
network and to resolve data heterogeneity.



OO Middleware Systems
The tutorial uses three examples to show how the above prin-
ciples are applied in practice. We discuss the Object Man-
agement Group’sCommon Object Request Broker Architec-
ture (CORBA) [4, 5], which was the first object-oriented
middleware. While CORBA is an open specification that is
implemented by a different object request broker, Microsoft
pursues a proprietary middleware approach. Microsoft’s
Component Object Model (COM) [1] supports distributed
communication using a specification known asDistributed
COM (DCOM) [2]. We then presentRemote Method Invo-
cation(RMI) in Java [3]. Java/RMI is the latest middleware
that implement requests between Java objects that reside in
different virtual machines. We finally compare CORBA,
DCOM and Java/RMI.

Genericity
Object requests can be definedstaticallyat the time when a
client object is compiled, ordynamicallywhen a client ob-
ject is executed. We compare these two approaches and de-
lineate how they are implemented using CORBA, DCOM
and Java/RMI. We suggest when to use static or dynamic re-
quests. To be able to define requests dynamically requires
access torun-time type information. We review the CORBA
interface repository, DCOM’s Type Library and Java’s re-
flexivity API and demonstrate how type information that is
needed for dynamic requests can be obtained.

Non-Synchronous Communication
By default, one client object requests the synchronous execu-
tion of one operation from one server object. Object-oriented
middlewares, however, support giving up any of these as-
sumptions. Firstly, they provide non-synchronous forms of
communication. We discussoneway requestsanddeferred
synchronous executionsin CORBA. We show how asyn-
chronous requests can be executed in any object-oriented
middleware using multi-threading. Secondly, some middle-
ware supportsrequest multiplicity. We show how dynamic
requests in CORBA can be used to request execution of
multiple operations at once. Finally, we discuss thegroup
communicationprimitives that in CORBA, DCOM and Java.
These primitives enable requests between more than two ob-
jects.

Distributed Object Life Cycle
The life cycle of distributed objects is considerably more
complicated than the life cycle of local objects. Object cre-
ation has to determine in addition to how the object is initial-
ized also where the object is to be created. This is supported
by all middleware systems using the concept offactoriesand
factory finders. Server objects might have to be migrated
from one machine to another and we discuss how this object
mobility is achieved in CORBA, DCOM and Java. Finally,
deleting objects is more complicated in a distributed set-
ting than in a local run-time environment. Finally, we com-
pare the different approaches to object deletion of CORBA,
DCOm and Java.

Persistence
Distributed objects that have an internal state often have
to save that state on persistent storage before they are de-
activated. We discuss different techniques for implementing
persistence. We discuss serialization and externalization that
are available in Java. We review the structured storage inter-
faces for COM and analyze persistence that may be achieved
through integration with object databases.

Object Transactions
Sometimes it is necessary to cluster multiple object requests
into units called transactions whose execution is atomic, con-
sistency preserving, isolated and durable. We discuss the
two-phase commit protocol that is the basic mechanism to
implement transactions that span across multiple distributed
objects. We present the X/Open Distributed Transaction
Processing standard that standardizes an API for two-phase
commit and that is implemented by most database manage-
ment systems. We then review how the CORBA Object
transaction service and Microsoft’s Transaction Server prod-
uct implement these two-phase transactions.

Security
The fact that publict networks may be used for the communi-
cation between distributed objects make them volatile for se-
curity attacks. We discuss different forms of security attacks,
such as eavesdropping, message tampering and masquarad-
ing. We discuss security mechanisms that are available to
avoid these attacks including authentication, access control,
auditing, non-repudiation. We review how these primitives
are provided in CORBA, DCOM and Java.

3 AUDIENCE
The tutorial is designed for an audience with intermediate ex-
perience level. It is intended for software engineering practi-
tioners and researchers, who have basic knowledge of object-
oriented design and programming languages, such as C++
and Java, and want to learn how object-orientation can be
used to build distributed and heterogeneous software appli-
cations.

REFERENCES

[1] D. Box. Essential COM. Addison Wesley Longman,
1998.

[2] R. Grimes.DCOM Programming. Wrox, 1997.

[3] Javasoft.Java Remote Method Invocation Specification,
revision 1.50, jdk 1.2 edition, Oct. 1998.

[4] The Common Object Request Broker: Architecture and
Specification Revision 2.0. 492 Old Connecticut Path,
Framingham, MA 01701, USA, July 1995.

[5] CORBAservices: Common Object Services Specifica-
tion, Revised Edition. 492 Old Connecticut Path, Fram-
ingham, MA 01701, USA, March 1996.


