
Engineering Runtime Requirements-Monitoring
Systems using MDA Technologies?

James Skene and Wolfgang Emmerich

Dept. of Computer Science, University College London
Gower St, London, WC1E 6BT, UK
{j.skene|w.emmerich}@cs.ucl.ac.uk

Abstract. The Model-Driven Architecture (MDA) technology toolset
includes a language for describing the structure of meta-data, the MOF,
and a language for describing consistency properties that data must ex-
hibit, the OCL. Off-the-shelf tools can generate meta-data repositories
and perform consistency checking over the data they contain. In this
paper we describe how these tools can be used to implement runtime re-
quirements monitoring of systems by modelling the required behaviour
of the system, implementing a meta-data repository to collect system
data, and consistency checking the repository to discover violations. We
evaluate the approach by implementing a contract checker for the SLAng
service-level agreement language, a language defined using a MOF meta-
model, and integrating the checker into an Enterprise JavaBeans appli-
cation. We discuss scalability issues resulting from immaturities in the
applied technologies, leading to recommendations for their future devel-
opment.

1 Introduction

Run-time monitoring of systems is useful in a variety of situations in which the
behaviour of a system cannot be guaranteed in advance. Such situations include
testing a system against its requirements if it cannot be proven to meet them
by construction, or monitoring the behaviour of a system where the actions of
external agents, such as its users, is the actual object of scrutiny. Such monitoring
can be used in conjunction with a contractual agreement to establish a strong
basis for trust in a system: the owners of the system agree that it will behave
in a particular way, and the system is monitored to ensure that deviations from
the desired behaviour are detected and properly compensated for.

In the past, several approaches to the automatic implementation of runtime
requirements-monitoring systems have been proposed. Such automatic imple-
mentation is intended to provide control over the specification of monitoring,
improve the accuracy of monitoring and reduce the cost of its implementation.
This paper presents a novel approach to runtime requirements monitoring that
has arisen out of work to develop a contract checker for a service-level agreement

? This work was partially funded by the TAPAS project, IST-2001-34069.



(SLA) language, SLAng. The approach relies on several standards published by
the Object Management Group (OMG), and appears to be particularly suitable
for comparing the behaviour of a system to sets of requirements that can be
selected dynamically at runtime from a range of possible options, as is typical
in SLAs.

The Model-Driven Architecture (MDA) technology toolset includes a lan-
guage for describing the structure of meta-data, the Meta-Object Facility (MOF),
and a language for describing consistency properties that data must exhibit, the
Object Constraint Language (OCL). The Java Meta-Data (JMI) standard pre-
scribes patterns for implementing programmatic access to MOF defined meta-
data repositories. These patterns can be implemented in a generative program-
ming tool to generate implementations of repositories, which can in turn be
integrated with off-the-shelf tools to perform consistency checking over the data
they contain.

The SLAng SLA language is defined using a MOF meta-model that mod-
els the required behaviour of electronic services governed by SLAs. The model
is divided into two parts, the first describing the syntactic structure of SLAng
contracts, the second describing the behaviour of the services that the contracts
govern. Associations and OCL constraints between the two parts serve to spec-
ify the semantics of the language, both by associating SLAs with the services to
which they apply, and by describing the restrictions on the behaviour of those
services that the SLAs imply. The original intent of this approach was to pro-
vide a precise definition of the language. However, in combination with the JMI
mapping and an OCL interpreter, the meta-model serves as a specification from
which a contract checker can be generated. This contract checker can be com-
bined with simple hand-implemented software instruments to form a complete
runtime monitoring system.

In this paper we describe the approach, critically discuss it as an alternative
to previous work on runtime monitoring, and report on our practical experience
with the technologies involved. The paper includes an overview of the approach
in Section 2. In Section 3 we briefly review the features of the SLAng language
and its specification. In Section 4 we discuss the design and implementation of
a tool for generating the checker. In Section 5 we describe the architecture of
the resulting checker. In Section 6 we describe the deployment of the checker to
monitor an Enterprise JavaBeans application, and evaluate the practicality of
the approach. In Section 7 we compare the approach to other work on run-time
monitoring. Finally, in Section 8 we make some concluding remarks, and discuss
future work.

2 Runtime requirements monitoring using MOF and
OCL

Runtime requirements monitoring systems typically consist of a set of software
instruments for gathering the raw event data pertinent to the properties of in-
terest, some logic for checking that this data meets requirements, and possibly a



repository for data if requirements checking requires data gathered over an ex-
tended period. In the approach outlined in this paper the requirements checking
logic and repository are implemented using a combination of automatic code gen-
eration from a MOF model and a reusable OCL checker component. Generating
software instruments is discussed below.

MOF models are very similar to UML class models [22]. They include sets of
classes, the data they contain, and their relationships. Constraints on the model
that cannot be represented graphically are expressed using the OCL. OCL is a
typed-expression language similar to the expressions parts of Java or C++, and
is used to describe class invariants in the model.

The classes in a MOF model can be interpreted as directly modelling objects
in the real world, as is the case in the SLAng meta-model which describes the
way that services should behave in the presence of SLAs. Requirements can
be expressed directly as constraints over the behaviour of services, which will
generally be modelled as classes of events arising during the execution of the
service. Alternatively they can be expressed in the context of a model of a
requirements language associated with the service. Instances of this model are
requirements that may be expressed in the language at runtime and associated
with services. Constraints between the model of the requirements language and
the model of the service describe how the service must act in the presence of
the requirements. In this manner the semantics of the SLAng SLA language are
defined in terms of constraints over the performance of services that only apply
when SLAs are present.

The meta-model can alternatively be interpreted as a model of data describ-
ing the world, and the set of conditions necessary for those data to meet some
set of requirements. If we interpret the meta-model in this way, then we can
produce a computer program capable of holding those data and checking them,
to see whether services are behaving in the way that we want them to.

This approach is shown in Figure 1 in which thick arrows represent code
generation, and thin arrows represent data flow. The figure represents the case in
which a requirements language is being used to specify requirements at runtime.

To implement the approach we found it necessary to develop a JMI generator.
(As discussed in Section 4, this was needed because previous generators did
not offer adequate flexibility over the type of code generated. However, this
component may be considered ‘off-the-shelf’ as it is a standard MDA component
independent of the particular application.) We combined the resulting generated
data structures with the OCL2 interpreter implemented at Kent University [12],
which features an extension allowing it to evaluate OCL constraints over plain
Java objects using Java reflection. The design of the JMI generator is discussed
in more detail in the next section. The design of the resulting checker is discussed
in detail in Section 5. The performance of the checker is described in 6.

A complete requirements monitoring system also includes software instru-
ments to gather the event data included in the service model. The implementa-
tion of these instruments requires the interpretation of the service model in the
context of the particular system being instrumented. If the service model is de-



Syntax model Semantic model

Constraints

Code
Generator

Java classes
for SLAs

Java classes
for events

OCL
interpreter

Fig. 1. Generating an SLA checker from the SLAng meta-model

scribed in the same terms as the system being monitored, for example in terms of
particular Java classes and operations present in the implementation, then it will
be possible to implement a generator for the instruments directly for the model.
However, it may be that the service model is at a higher level of abstraction,
and intended to apply to services with a range of designs and implementation
technologies, as is the case with the SLAng language used as an example in this
paper. In this case the instruments must be implemented manually, although
the explicit nature of the service model provides considerable guidance in this
process. In summary, the possibility of generating the instruments automatically
depends on the level of abstraction of the MOF model, although we have not
yet investigated the generation of instruments in practice.

3 The SLAng language

The SLAng language syntax and semantics are defined by a MOF (version 1.1)
model [20]. The model provides a formal definition of the structure of the syntax
of the language, and of the semantic domain in which SLAs apply. These are
modelled in terms of classes of objects with attributes and associations. Con-
straints in the model restrict the sets of objects described so that SLAs are only
ever associated with services that are consistent with their terms and which meet
their conditions. In this way the semantics of the language are formally defined.
This approach was inspired by the work of the Precise UML group (pUML), who
used the approach to define the semantics for their UML 2 submissions [13].

A view of the meta-model showing the syntax of the Electronic Service (ES)
SLA is shown in Figure 2. The SLA is divided into a section for defining terms,
and another for conditions. The conditions section is further subdivided between
conditions on the behaviour of the service provider, and conditions on the be-
haviour of the client.



E lectronicS erviceS LA

S LA

(from contracts )

+uniqueId:S tring

E lectronicS erviceT erms

E lectronicS erviceC onditions

OperationDefinition

+description:S tring

+failureC riteria:S tring

T erms

(from contracts )

C onditions

(from contracts )

sLA+ terms+

sLAT oT ermssLA+

conditions+

sLAT oC onditions

electronicS erviceS LA+

electronicS erviceT erms+

eS S LAT oE S T erms

electronicS erviceS LA+

electronicS erviceC onditions+

eS S LAT oE S C onditions

S erviceC lientDefinition

+description:S tring

C lientP erformanceC lause

+name:S tring

+maximumT hroughput:F requency

E lectronicS erviceDefinition

+description:S tring

terms+

electronicS erviceDefinition+

termsT oE S Def

terms+

serviceC lientDefinition+

termsT oC lientDef

terms+

operationDefinition+

1..*

termsT oOpDef

S cheduledC lause

(from contracts )

S erverP erformanceC lause

+name:S tring

+maximumLatency:Duration[0..1]

+reliability:P ercentage[0..1]

+maxT imeT oR epair:Duration[0..1]

conditions+

serverP erformanceC lause+

1..*E S S LAS erverC lauses

serverP erformanceC lause+

*

operation+

1..*

conditions+ clientP erformanceC lause+

1..*
E S S LAC lientC lauses clientP erformanceC lause+

*

operation+

1..*

Fig. 2. Model of the syntax of SLAng electronic-service contracts

The use of a MOF meta-model to define the syntax of SLAng confers the
advantages of the XML Metadata Interchange (XMI) [21] standard, a standard
for serialising MOF-defined metadata. The XMI mapping of the SLAng syntactic
model constitutes the concrete syntax of the language.

The semantic model of electronic service provision is shown in Figure 3.
Service usages are events, occurring over a period, with the possibility of failure.
They are associated with an operation, which forms part of an electronic service.
They are also associated with the client that caused the usage. The syntactic and
semantic models are co-located in a single model, and the terms in the syntactic
model are associated with elements in the semantic model in order to define
their meaning.

As stated above, the SLAng meta-model also includes OCL constraints that
give meaning to condition statements in the language. The following is the top-
level invariant defining the meaning of performance and reliability for Electronic
Service SLAs:
context contracts::es::ServerPerformanceClause inv:

operation→collect(o : contracts::asp::OperationDefinition |
o.operation

)→forAll(o : services::Operation |
observedDowntime(o) < (timeRemaining(-1) ? (1 - reliability)))

This expression is explained in detail in [23]1. It relies on a number of func-
tion definitions, such as observedDowntime defined in the specification. The total
amount of OCL for this constraint runs to about 50 lines.

1 The expression is slightly modified from [23] as a result of testing and developing the
meta-model and constraints using the generated SLA checker. However, its intent is
the same and its structure is quite similar.



S erviceUsage

+failed:B oolean

Operation

(from services)

+name:S tring

E lectronicS ervice

(from services)

P eriod

(from services)

+duration:Duration

S erviceC lient

(from services)

+name:S tring

E vent

(from services)

+date:Date
serviceC lient+

serviceUsage+

*

C lientUsage

electronicS ervice+

operation+

1..*OperationT oE S

serviceUsage+

*

operation+

UsageOperation

Fig. 3. Model of electronic service usage

In this section we have presented an overview of the SLAng language and
its specification. For a more detailed discussion of the language, including a
discussion of design decisions and objectives, and a comparison to other SLA
languages and technologies, please refer to [23].

4 A JMI Generator

The JMI generator is implemented in Java, and follows the design shown in
Figure 4. It is heavily dependent on the Velocity Template Engine (VTE) [11],
developed as part of the Apache project. Similar to Java Server Pages (JSP) [5],
or PHP [7], Velocity is a tool for generating text from predefined templates.
These templates are text files that include fields delimited using special char-
acters. The VTE is configured with these templates, and also extra data called
‘context’. The templates are parsed by the VTE: ordinary text is passed straight
through; the fields in the templates either control the order of parsing, for ex-
ample by specifying optional or repeated sections, or indicate that data from
the context should be inserted. By varying the context, several outputs can be
produced from the same template.

The templates in our implementation are taken from the JMI specification,
and translated into Velocity’s template syntax. The JMI specification requires
Java types to be produced corresponding to elements in the metamodel: for each
class, a ‘class proxy’ interface, for creating and finding instances of the class, and
an ‘instance’ interface, for editing properties and invoking operations of instances
of the class, are required; for associations, an ‘association proxy’ interface for
creating and querying pairs of associated instances; for each package, ‘package
proxy’ interface enabling the discovery of class proxies, association proxies and
subpackage proxies; for enumerations, an interface type for enumeration values
and a class containing static exemplars of enumeration values. The JMI standard
also specifies XMI reader and writer interfaces.

The generator includes a template for each of these types. Except in the
case of enumerations, the JMI specification only defines interfaces, but does not



SLAng
meta-
model

XMI

Velocity
templates

for JMI

Poseidon 
UML Editor

JMI
interfaces

and
implemen-

tations
JMI generator

Read
XMI

Create
Velocity
context
objects

Velocity
template

engine
XMI

reader/
writer/

DTD

Fig. 4. Design of the JMI generator

indicate how they are to be implemented. The generator therefore also includes
templates for implementations of each of the above elements. The generator also
has a template to produce an XMI DTD following the pattern described in the
XMI standard.

The context for each of these templates is drawn from the particular MOF
model for which a set of JMI interfaces is being generated. In our case this is the
SLAng meta-model. The meta-model is exported from a modelling tool in an
XMI format file. The first stage of the JMI generator reads this file and creates
an in-memory representation of it.

This initial in-memory representation of the API is not a suitable context for
the Velocity templates, as it reflects the structure of the XMI file, rather than
the structure of the templates. Velocity templates can only perform quite simple
data manipulation (they lack recursion, for example, which makes it difficult
to navigate data structures in the context). They must therefore be supplied
with their context data in a form that closely reflects the way it is used in the
template. The second stage of the generator creates a number of different context
objects, appropriate to the Java files that must be generated, using the data from
the in-memory representation of the XMI file.

In the third stage of its operation, the VTE is invoked using the generated
context objects and the JMI templates, in order to generate the requisite JMI
Java code. This is placed in the appropriate places in a package directory hier-
archy on the file system.

Generating program code from UML diagrams is an important step in the
Model Driven Architecture (MDA) methodology. A number of systems to achieve
this have been developed with varying degrees of flexibility in the specification of
their output. However, we found none to be ideal for our purposes, and elected
to implement a generator by hand instead. We evaluated a number of tools in
the autumn of 2003 before deciding on this course. These included the Netbeans
Meta-Data Repository (MDR) [10], the Eclipse Modelling Framework (EMF) [8],
and Novosoft’s NSUML [6]. The EMF was rejected because it generates non-
standard code from a non-standard meta-model (i.e. not JMI from MOF). The
MDR and Novosoft were rejected because at the time they manifested prob-



lems reading standard XMI as generated by our modelling tool of choice. We
also wished to reserve the possibility of modifying the JMI implementation code
generated by our system, and both of these systems require code-level modifica-
tions to alter the generated JMI implementations, reducing the benefits of reuse
considerably.

The architecture of the AndroMDA tool [1] is essentially identical to that
presented here. However, as stated above, Velocity templates do not have pow-
erful control structures and without the ability to modify the structure of the
context objects to preprocess model information it is impossible to generate some
outputs. We found the OCL-based approach of the Kent Modelling Framework,
version 3 [9] to be adequately expressive. However, the OCL expressions are
hard to write when a ‘generation state’ has to be maintained, containing things
like a list of unique identifiers used. For this reason we preferred to use more
conventional templates.

The decision not to reuse an existing modelling framework was an engineering
descision. In principle any of the systems mentioned above could be adapted to
our approach with some degree of effort. However, our requirement of flexibility
in the generation of the implementation of the system will probably turn out
to be a general requirement, because, as discussed in the evaluation section of
this paper, modelling frameworks of this kind will need be adaptable to meet
application-specific scalability requirements.

5 Architecture of the SLA checker

The SLA checker consists of three major components:

1. The automatically generated JMI interfaces and implementation for holding
SLAs and event data.

2. The Kent OCL implementation, with SLAng constraints loaded, for checking
whether SLAs have been violated.

3. An API wrapper, that allows checks to be requested, and returns lists of
violations that have been found. This part is hand-written in our imple-
mentation, because it is independent of the structure and semantics of the
SLAng language.

The checker may be incorporated in electronic service systems wherever SLAs
need to be monitored. It is used as follows:

1. The checker is instantiated.
2. The static elements from the semantic model are instantiated or loaded

from an XMI file. These elements, with types such as ElectronicService,
ServiceClient and Operation represent knowledge that the checker has about
the service or services being monitored. The model is manipulated using the
generated JMI interfaces.

3. One or more SLAs are instantiated or loaded from an XMI file, again using
the JMI interfaces.



4. Associations are established between the service components defined in the
SLAs and those components in the service model created in Step 2.

5. Monitoring data is provided to the component by invoking the various ‘cre-
ate’ methods found on the JMI API (e.g. createServiceUsage() on the
ServiceUsage class proxy interface). These data are associated with the rel-
evant static elements in the service model, created in Step 2.

6. Periodically, the check methods on the violations API may be invoked. These
return lists of violations, if any exist.

To demonstrate the SLA checker and to assist in the development of the
SLAng semantics, we have implemented a browser that allows the editing of
SLA and event data, via a tree-view of the model.

SLAng
JMI

Kent
OCL

inter-
preter

Reflective
browser

MOF
JMI

SLAs/
Service
models

SLAng
meta-
model

XMI

SLAng
Constraints

Violations
interface

Violations
reporting

User interface

Checker component

SLAng
XMI

reader

MOF
XMI

reader

Fig. 5. Design of the SLA checker

The user-interface also allows interactive editing and checking of the con-
straints over the SLAng model, possible because the OCL constraints are in-
terpreted at runtime, rather than compiled into the implementation language,
Java.. The design of the checker is shown in Figure 5. A screenshot of the user
interface is shown in Figure 6. The leftmost panel in the user interface contains
the tree representing the SLAng model (SLAs and events). The middle panel
lists the constraints over the model, and the rightmost panel allows the editing
of constraints.

6 Evaluation

6.1 Deployment of the SLA checker

We tested the SLA checker by deploying it to monitor the performance of an
EJB application. The application is an auction management system developed



Fig. 6. Screenshot of the SLA checker user interface

by an industrial collaborator. The application is deployed in the popular ap-
plication server JBoss, which implements the Java 2 Enterprise Edition (J2EE)
specification [4], using Apache Tomcat to serve the web front-end [2].

The architecture of JBoss is based on the Java Management eXtensions li-
brary (JMX). In this component-based architecture, all functionality is deployed
as ‘managed beans’ (MBeans), Java components that expose meta-data, config-
urable properties and lifecycle management methods. The JBoss distribution
and default configuration includes MBeans implementing EJB containers, JNDI
naming services, transactions, and many other services. We have deployed the
SLA checker as an MBean, meaning that it has one instance per instance of the
JBoss server. It is made available to other MBeans and to deployed EJBs via
the JNDI naming repository.

To provide external access to the SLA checker, we implemented a small J2EE
application called ‘The SLAng Control Panel’. This consists of a single JSP page
providing an interface to a stateless session bean. This bean in turn delegates
operations to the SLAng checker. The main operation provided by the checker
over this interface is checkAll(), which causes the component to evaluate the
SLAng constraints over its internal model of SLAs and service data, and return
a list of violations, if any exist.

Service performance information is passed to the SLAng service by a server-
side interceptor configured as an option of the JBoss container configuration.
JBoss remoting operates using a stack of interceptors on both the client and
server side. These allow different types of functionality to be added to the com-
munication channel independently, such as transaction management, security,
and the communication protocol itself, which is managed by the outermost in-
terceptor on client and server sides. For the purposes of evaluating the SLAng
component, we added an interceptor on the server side to measure time spent
processing EJB requests. The interceptor accesses the SLAng service using JNDI



Auction
Application

JSP

SLAng
Control
Panel

JSP

Tomcat JBoss

Apache
JMeter

Web
browser

HTTP

HTTP

Auction
Applica-
tion EJB

SLAng
Checker
Compo-
nent

SLAng
Control-
Panel
EJB

Client-side
proxies

Server-side
interceptors

TIm
er

Fig. 7. The SLA checker component deployed to monitor an EJB application

and invokes the createServiceUsage(), method on its JMI interface to record the
measured time. Apache JMeter was used to generate a variety of loads on the
service [3].

6.2 Results

In this section we evaluate the SLA checker on three points: The ease of imple-
mentation of the checker; the ease of deployment of the checker in its intended
context (in this case to monitor the auction application); and the performance
of the checker.

Implementation: Effort in implementing the checker falls into three categories:
implementing the JMI generator; implementing the SLAng language specifica-
tion that is the input to the generator; and implementing the remaining code
for the component, which mainly involves the integration of the OCL evaluator
component and the provision of an API for requesting checks and reporting vio-
lations. Of these three categories, the first two could be speciously discounted on
the grounds that they are separate efforts from the implementation of the actual
component. If this were the case, then implementing the component would have
taken around 1 man-week of labour. In fact, the total amount of labour has
been closer to 1 man-year, and JMI generator, language and component have
co-evolved to some extent. Indeed, as discussed below, the JMI generator, or at
least it’s templates will have to continue to adapt in the face of performance
requirements that are somewhat related to the domain of the application, i.e.
checking SLAng contracts. The SLA checker consists of approximately 115,000
lines of code (including blank lines and comments) outside of standard libraries
of which 77,000 were generated, 36,500 form the implementation of the OCL
evaluator and 1,500 were hand written.



Deployment: The checker was straightforward to deploy into the JBoss appli-
cation server. This is mainly because JBoss’s architecture is expressly designed
to support the deployment of new services and components. However, the JMI
interfaces also contribute by providing a clear API through which to deliver ser-
vice performance data, and the XMI reader interface and implementation makes
loading SLAs and service models into the component simple. Implementing the
SLAng control panel application and integrating the component into JBoss took
2 weeks for a programmer not previously intimate with the workings of JBoss.

Performance: The major problem with the SLA checker is its inability to scale.
This is manifest in two ways: Firstly, and most seriously, the time taken to
evaluate the OCL constraints is highly correlated to the size of the model, and is
far too long for models containing realistic amounts of service data. For a data set
of 1000 service usages, the client throughput constraint compares every pair of
usages to determine if they occur too closely together. If none do, this results in
a million comparisons, and takes 20 minutes on a PC with 1.7GHz Intel Pentium
4 processor. The evaluation is slow due to a combination of factors: The OCL
interpreter performs almost no optimisations, the interpretation of the OCL is
innately expensive, and the data model over which the expressions are evaluated
offers no shortcuts, such as indices.

The second issue is related. In our current implementation of the JMI in-
terfaces all data is represented as Java objects stored in main memory. Since
we have implemented no policy for removing or persisting old data, this leads
inevitably to memory exhaustion as the application continues to be used. The
amount of service usage data that can be checked is restricted by the amount
of main memory available to the virtual machine in which the component is
deployed.

To correct these issues without discarding the approach altogether requires
some reengineering. The data model needs to be backed by a database. This
could be either object oriented, or the translation to a more conventional model
could be managed by the generated Java code for a particular model. Clearly
not all data can be assumed to be in memory at the same time, and this may
need to be reflected in the interface to the model data. The evaluation speed
of the OCL constraints could be improved by translating it to Java, or possibly
SQL (with some reduction in expressive power), rather than interpreting it.
We gained some improvement in evaluation time by adding results caching to
the OCL interpreter. Further optimisation of evaluation is required, and if the
constraints are still to be evaluated across a generated interface, the generated
interface may have to provide indices to assist in evaluation, possibly resulting
in a closer coupling between interface standard and OCL evaluator.

Clearly these refinements should be the subject of further research.

7 Related work

In [23] we provide a detailed comparison of SLAng with previous SLA languages,
focusing on the extent to which these languages provide explicit definitions of



their terms and conditions. Our use of an explicit model for this seems to be
quite novel, and it is this feature of the language that allows us to generate the
checker automatically.

A similar approach has been proposed in [19], a position paper that begins
to elaborate the requirements for specifications supporting the use of contracts
in an MDA process. The paper proposes that contracts can be transformed into
one or more meta-models whose semantics are ultimately those of the Buisi-
ness Contract Language (BCL) [18], a very flexible contract definition language
based on the notion of ‘communities’, a kind of modelling template for collabo-
rations described in the RM-ODP. It is proposed that these models could then
be processed in various ways, including implementing monitors, by tools that
implement the BCL semantics. It is unclear how the transformation of contracts
into these metamodels provides a benefit over simply defining a contract in BCL
directly, since the expressiveness of the contract and the meta-models is likely
to be equivalent. However, it is correct to identify BCL as an alternative to
MOF/OCL to describe runtime requirements. In cases where requirements are
primarily related to the ordering of events, BCL provides considerable semantic
assistance. In more general cases, the contract-oriented nature of BCL may be
hinderance to the expression of the requirements.

Various other systems effectively define their own meta-models for require-
ments. Representative examples are: the Java-MaC system [16] which automati-
cally embeds monitors in Java code from a requirements specification written in
a language called PEDL/MEDL; Java PathExplorer [15] which does the same,
but allows requirements to be specified in any high-level logic compatible with
the Maude rewriting engine; and the KAOS-FLEA [14] system in which require-
ments specified using the KAOS methodology are monitored using the FLEA
monitoring system coupled with manually implemented event detectors. These
approaches are of comparable expressive power to the use of MOF/OCL to de-
scribe constraints on a system. JavaMaC and Java PathExplorer are examples
of systems capable of generating software instruments thanks to the fact that
their semantics are at least partially defined in terms of the structure of Java
programs.

MOF/OCL offers the possibility to defer the specification of some require-
ments until runtime, by specifying requirements in terms of consistency rela-
tionships between the system and a model of a requirements language. In this
way, the approach can be used to engineer a range of monitoring solutions, each
with a language appropriate to their particular needs. This is in contrast to the
approaches mentioned above, which prescribe a language for requirements, with
the exception of Java PathExplorer which prescribes that a logic be used.

Choosing between systems for runtime requirements management requires
at least two questions to be answered: in what form do I wish to represent my
requirements? and, which monitoring technology will be practical? In compar-
ison to other approaches, the use of MOF/OCL is very general, but also quite
well aligned with conventional software engineering practice in that it is very
similar to the use of UML. It is practical in the sense that it can be imple-



mented using off-the-shelf technologies, but impractical in the sense that those
technologies currently do not scale well (they may do in the future). In contrast,
the approaches listed above assume the existence of a bespoke module imple-
menting the logic for checking for violations. Engineering this module seperately
may assist in scalability, although a more efficient OCL interpreter could equally
easily be assumed. In terms of investigating the run-time performance of per-
formance monitors, useful work has been done in [17], which demonstrates that
the evaluation of requirements can be intractable, depending on the type of the
requirement. A more comprehensive survey of the performance and practicality
of available technologies would be desirable future work.

8 Conclusion

This paper has described the use of MDA technologies (although not necessarily
an MDA approach) to produce runtime requirements monitoring systems. This
has been exemplified by our implementation of an SLA checker, automatically,
from the specification of our SLA language, SLAng.

In situations in which systems must be monitored against requirements spec-
ified at runtime designers may wish to consider adopting the approach as it offers
the possibility to generate all or part of an interpreter for a requirements spec-
ification language (such as an SLA language) automatically. Where an explicit
representation of the semantic primitives of such a language is practical, an OCL
interpreter can be employed to check that these semantic elements are consis-
tent with statements in the language, thereby implementing the logical part of a
runtime requirements monitoring system. The approach is equally applicable in
cases in which the requirements are invariant at runtime – the constraints in the
model of the service are simply specified independently of any language model.

Our evaluation of the checker revealed some serious practical issues arising
from immaturities in the technologies employed. Although for restricted num-
bers of objects the implementation serves its purpose, it seems that to achieve
scalability both the mapping to implementation and the implementation of off-
the-shelf components such as the OCL interpreter must be considerably more
sophisticated. This is a consideration beyond SLA checking, as it is reasonable to
assume that large software development efforts will wish to maintain and check
consistency within large repositories of models. Future research should investi-
gate this mapping further to produce implementation prescriptions to comple-
ment interface standards such as the JMI.2

References

1. AndroMDA code generation tool. http://www.andromda.org/.

2 Thanks to Werner Beckmann and Addesso, Inc. for the auction application. Also
thanks to our TAPAS partners for their input into this work, and to Marc Fleury
for his advice concerning JBoss.



2. Apache Jakarta Tomcat servlet container. http://jakarta.apache.org/tomcat/.
3. Apache JMeter. http://jakarta.apache.org/jmeter/.
4. Java 2 Enterprise Edition. http://java.sun.com/j2ee/index.jsp.
5. Java Server Pages JSP v. 2.0 specification. http://java.sun.com/products/jsp/.
6. Novosoft Metadata Framework and UML Library (NSUML). http://nsuml.

sourceforge.net/.
7. PHP: PHP Hypertext Preprocessor. http://www.php.net/.
8. The Eclipse Modelling Framework (EMF). http://www.eclipse.org/emf/.
9. The Kent Modelling Framework (KMF). http://www.cs.kent.ac.uk/projects/

kmf/documents.html.
10. The Netbeans Meta-Data Repository (MDR) Project. http://mdr.netbeans.

org/.
11. The Velocity Template Engine v1.4. http://jakarta.apache.org/velocity/.
12. David Akehurst, Peter Linington, and Octavian Patrascoiu. OCL 2.0: Implement-

ing the Standard. Technical report, Computer Laboratory, University of Kent,
November 2003.

13. A. S Evans and S. Kent. Meta-modelling semantics of UML: the pUML approach.
In 2nd International Conference on the Unified Modeling Language, volume 1723
of Lecture Notes in Computer Science (LNCS), pages 140 – 155, Colorado, USA,
1999. Springer-Verlag.

14. M. S. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard. Reconciling sys-
tem requirements and runtime behavior. In Proceedings of the 9th International
Workshop on Software Specification and Design, pages 50–59, 1998.

15. Klaus Havelund and Grigore Rosu. Monitoring java programs with java pathex-
plorer. In Electronic Notes in Theoretical Computer Science, volume 55. Elsevier
Science Publishers, 2001.

16. Moonjoo Kim, Sampath Kannan, Insup Lee, Oleg Sokolsky, and Mahesh
Viswanathan. Java-mac: a run-time assurance tool for java programs. In Klaus
Havelund and Grigore Rosu, editors, Electronic Notes in Theoretical Computer
Science, volume 55. Elsevier Science Publishers, 2001.

17. Moonjoo Kim, Sampath Kannan, Insup Lee, Oleg Sokolsky, and Mahesh
Viswanathan. Computational analysis of run-time monitoring - fundamentals of
java-mac. In Electronic Notes in Theoretical Computer Science, volume 70. Elsevier
Science Publishers, 2002.

18. P. F. Linington, Z. Milosevic, J. Cole, S. Gibson, S. Kilkarni, and S. Neal. A unified
behavioural model and a contract for extended enterprise. In Data and Knowledge
Engineering, volume 51. Elsevier Science Publishers, 2004.

19. Peter F. Linington. Automating support for e-business contracts. In Proc. of
the EDOC 2004 Workshop on Contract Architectures and Languages, Monterey,
California. IEEE Computer Society Press, 2004.

20. The Object Management Group (OMG). The Meta-Object Facility v1.4,
formal/2002-04-03 edition, April 2002.

21. The Object Management Group (OMG). XML Metadata Interchange (XMI), v1.2,
formal/02-01-01 edition, January 2002.

22. The Object Management Group (OMG). The Unified Modelling Language v1.5,
formal/2003-03-01 edition, March 2003.

23. J. Skene, D. Lamanna, and W. Emmerich. Precise service level agreements. In
Proc. of the 26th Int. Conference on Software Engineering, Edinburgh, UK, pages
179–188. IEEE Computer Society Press, May 2004.


