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Abstract

NK cells are enriched in the liver, constituting around a third of intrahepatic lymphocytes. We have previously demonstrated
that they upregulate the death ligand TRAIL in patients with chronic hepatitis B virus infection (CHB), allowing them to kill
hepatocytes bearing TRAIL receptors. In this study we investigated whether, in addition to their pathogenic role, NK cells
have antiviral potential in CHB. We characterised NK cell subsets and effector function in 64 patients with CHB compared to
31 healthy controls. We found that, in contrast to their upregulated TRAIL expression and maintenance of cytolytic function,
NK cells had a markedly impaired capacity to produce IFN-c in CHB. This functional dichotomy of NK cells could be
recapitulated in vitro by exposure to the immunosuppressive cytokine IL-10, which was induced in patients with active CHB.
IL-10 selectively suppressed NK cell IFN-c production without altering cytotoxicity or death ligand expression. Potent
antiviral therapy reduced TRAIL-expressing CD56bright NK cells, consistent with the reduction in liver inflammation it
induced; however, it was not able to normalise IL-10 levels or the capacity of NK cells to produce the antiviral cytokine IFN-c.
Blockade of IL-10 +/2 TGF-b restored the capacity of NK cells from both the periphery and liver of patients with CHB to
produce IFN-c, thereby enhancing their non-cytolytic antiviral capacity. In conclusion, NK cells may be driven to a state of
partial functional tolerance by the immunosuppressive cytokine environment in CHB. Their defective capacity to produce
the antiviral cytokine IFN-c persists in patients on antiviral therapy but can be corrected in vitro by IL-10+/2 TGF-b
blockade.
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Introduction

NK cells constitute a major cellular arm of the innate immune

system and, as such, have been viewed as most relevant in the

setting of the initial response to an acute infection. However, they

may also be appropriately or inappropriately activated to exert

effector function when persistent infection and its pathological

sequelae become established. Their role may be particularly

important in patients with CHB, in whom the virus-specific CD8

T cell arm of protection is markedly diminished and dysfunctional

[1,2].

NK cells are greatly enriched in the liver, the site of HBV

replication[3,4]. We have previously demonstrated an increase in

activated CD56bright NK cells in the livers of patients undergoing

flares of eAg-negative CHB. This subset can be induced to express

TNF-related apoptosis-inducing ligand (TRAIL), which is able to

kill hepatocytes that have upregulated death-inducing TRAIL

receptors, thereby contributing to liver inflammation in CHB[4].

The CD56bright subset can also be a potent source of cytokines

such as IFN-c[5,6], a key cytokine shaping adaptive immunity and

the delicate balance between protective and pathogenic responses.

IFN-c can clear HBV-infected hepatocytes through non-cytolytic

mechanisms[7,8]. NK cell-derived IFN-c could therefore consti-

tute a vital antiviral mechanism in the liver, where hepatocytes are

relatively resistant to the cytolytic mechanisms of perforin and

granzyme production[9].

The intensity and quality of NK cell effector function is

determined by the balance of activatory and inhibitory signals

through their array of receptors (NK-R), in addition to the

influences exerted by the cytokine microenvironment. The TRAIL

pathway of NK cell-mediated hepatocyte killing can be driven by

the cytokines IFN-a and IL-8, induced during flares of CHB[4].

Similarly, NK cells in HCV infection can be polarised towards

cytolysis and expression of TRAIL as a result of exposure to

endogenous[10] or therapeutic[11] IFN-a. Conversely, intrahe-

patic NK cell function can be down-regulated by the immuno-

suppressive cytokine IL-10 produced by Kupffer cells[12]. In

addition, a role for IL-17 in curtailing NK cell function was

recently demonstrated in disseminated vaccinia virus infection of

mice with pre-existing dermatitis[13]. In this study we have
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investigated cytokine-driven modulation of IFN-c production by

NK cells in patients with CHB and explored the potential to

restore their non-cytolytic antiviral function.

Results

Expansion of the CD56bright subset of NK cells in CHB
To explore NK cell effector potential in the setting of persis-

tent HBV infection, we first analysed the frequency of

CD56bright(CD16dim/neg) and CD56dim(CD16pos) NK cell subsets

in 64 patients with CHB compared to 31 healthy age-matched

controls (Table 1). The proportion of circulating CD56bright NK

cells was significantly increased in patients with CHB (represen-

tative FACS plots Fig1a, summary data Fig1b), with a tendency to

further increases in those with liver inflammation (Fig1b). There

was a trend for the percent of circulating NK cells to decrease in

CHB (Fig 1c) but the absolute number of circulating CD56bright

NK cells was still significantly increased (p,0.05 data not

shown).

To determine whether there was a further enrichment of this

immunoregulatory CD56bright NK cell subset at the site of viral

replication, we compared the proportions in intrahepatic and

circulating lymphocytes. In all eight patients with CHB from

whom paired samples were available, the percent of CD56bright of

total NK cells was higher in the intrahepatic compared to

peripheral compartment (Fig1d,e). Since NK cells make up a

significantly greater proportion of intrahepatic than circulating

lymphocytes in these patients (Fig 1f), this corresponds to a

substantial enrichment of CD56bright NK cells in the liver.

Impaired non-cytolytic antiviral potential of NK cells in
CHB

We have previously shown that the CD56bright subset of NK

cells can mediate hepatocyte apoptosis through expression of the

death ligand TRAIL in flares of eAg-negative CHB[4]. In this

cohort of patients we confirmed an increase in TRAIL expression

(largely on the CD56bright subset, Fig 2a representative plots) in

patients with either eAg+ or eAg- CHB who had evidence of liver

inflammation (Fig2a summary data).

The CD56bright subset of NK cells can also be a potent source of

IFN-c[14], a cytokine that has direct non-cytolytic antiviral effects

on HBV replication [7,8] and can promote adaptive immune

responses[6]. Despite the enrichment of CD56bright NK cells in

CHB, we found that they had an impaired capacity to produce

IFN-c (representative plots, Fig2b). There was a significant

reduction in production of IFN-c by NK cells from 46 patients

with CHB compared to 29 healthy controls (Fig2b). This reduction

was seen irrespective of disease activity (liver inflammation Fig2b,

viral load or eAg status, data not shown) or method of NK cell

stimulation (IL-12/IL-18 (Fig2b), IL-12/IL-15, K562 with IL-12/

IL-18 or PMA/ionomycin, data not shown). Both the CD56bright

subset and the CD56dim subset (that has recently been recognised

to also make a contribution to cytokine production[15]) showed

significantly impaired IFN-c production (FigS1a). Similarly,

CD56bright and CD56dim NK cells in CHB showed a trend to

produce less TNF-a, despite the strong stimulus required to

reliably elicit this cytokine (FigS1b). Simultaneous assessment of

IFN-c and TNF-a production showed a significant reduction in

dual producing NK cells in CHB (FigS1c).

To assess NK cell cytolytic potential, we determined their

capacity to degranulate as evidenced by CD107 expression

following stimulation with K562 target cells and cytokines. There

was no significant difference in NK cell degranulation potential in

33 patients with CHB compared to 21 controls (Fig2c). Differential

analysis by NK cell subset or by patient disease status did not show

any differences (data not shown). NK cells in CHB were therefore

biased towards cytolytic and death-ligand mediated effector

functions and defective IFN-c production.

To determine the potential of potent antiviral treatment to

correct this bias in NK cell effector function, we studied a group of

22 patients with HBV viraemia well-suppressed on a combination

of Lamivudine and Adefovir. Upon viral suppression and

normalisation of liver inflammatory markers, there was no

significant change in the percent of NK cells (FigS2a), but the

proportion of CD56bright NK cells decreased to levels observed in

Author Summary

Hepatitis B virus (HBV) infection is responsible for more
than a million deaths annually as a result of the immune-
mediated chronic liver damage it induces. One of the key
immune players in the liver is the natural killer (NK) cell,
which we have recently found can cause liver damage in
HBV infection. Here we address the antiviral potential of
NK cells in the HBV-infected liver and demonstrate that
they have a specific impairment in their ability to produce
the cytokine IFN-c, which could limit their capacity to
control HBV. We find that the potent antiviral drugs
currently being used to treat HBV infection are unable to
fully reverse this NK cell functional defect. We define a role
for the immunosuppressive cytokine environment in HBV
in down-regulating NK cell antiviral function, which can be
restored by specific blockade of IL-10 and TGF-b. This work
therefore highlights a mechanism contributing to the
failure of immune control in chronic HBV infection, paving
the way to new therapeutic options.

Table 1. Characteristics of study population.

Healthy Controls
n = 31

HBV Patients
High ALT
n = 29

HBV Patients
Low ALT
n = 35

Treatment Group
(Lamivudine
and Adefovir)
n = 22

Age, years: median (range) 30 (18–52) 43.5 (23–65) 32 (23–65) 43 (18–70)

Sex (Female:male) 14:17 14:15 16:19 5:17

ALT IU/L: median (range) na 112 (57–604) 34 (10–47) 25 (18–70)

HBV DNA IU/mL: median (range) na 1,546,000 (1150–2.96108) 870 (100–3.36108) ,100

HBeAg+ na 18 3 6

na = not applicable.
doi:10.1371/journal.ppat.1001227.t001

Defective NK Cells in CHB
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healthy controls (Fig2d); in line with this, NK cell TRAIL

expression reduced to baseline levels (Fig2d). However NK cell

IFN-c production was only partially augmented upon antiviral

treatment (mainly CD56dim subset, FigS2b) and remained

significantly lower than that in healthy controls (Fig2d).

IL-10 is induced in CHB and recapitulates the NK cell
defect in IFN-c production

Effector function of NK cells is tightly regulated by the cytokine

milieu and their production of IFN-c can be inhibited by

immunosuppressive cytokines such as IL-10[12,16] and IL-

17[13]. The levels of IL-17A were not elevated in sera from

patients with CHB compared to controls (Fig3a). In contrast,

circulating concentrations of IL-10 were significantly increased in

patients with active HBV disease (Fig3b,c by CBA, confirmed by

ELISA, data not shown), correlating with viral load (r = 0.48,

p = 0.002) and ALT (r = 0.37, p = 0.03). IL-10 levels showed a

trend to decrease on antiviral treatment but remained significantly

higher than in controls (Fig3c), consistent with the limited

restoration of NK cell IFN-c production in these patients.

To test whether IL-10 could induce the defect in NK cell IFN-c
production seen in CHB, we re-assessed NK cell effector function

with or without the addition of exogenous IL-10. IL-10

significantly suppressed NK-cell derived IFN-c (Fig3d), particu-

larly in those patients in whom it was not already substantially

reduced (Fig3e, and in healthy controls, data not shown). By

contrast, IL-10 had no effect on cytolytic ability or TRAIL

phenotype (Fig3f) and did not affect the percent of NK cells

(FigS3a). The ability of IFN-a to further induce NK cell TRAIL

expression in vitro[4] was also not abrogated by IL-10 (data not

shown). The effect of IL-10 was consistent but more modest on

purified NK cells (FigS3b), suggesting that some of its suppressive

activity on NK cells is mediated indirectly via other constituents

such as APCs. The contrasting effects of IL-10 on TRAIL and

IFN-c expression represented differential regulation of these

effector functions in the same NK cells rather than the emergence

of two distinct subsets. The small population of TRAIL-expressing

NK cells present in healthy donors were at least as able to produce

IFN-c as the rest of the NK cell population (FigS3c). The addition

of exogenous IL-10 suppressed IFN-c in NK cells regardless of

their TRAIL expression (FigS3c). In line with this, gating on the

expanded population of TRAIL-expressing NK cells found in

CHB demonstrated that their IFN-c-producing capacity was no

more reduced than that of the non-TRAIL-expressing fraction

(FigS3d).

Restoration of NK cell IFN-c production upon blockade of
immunosuppressive cytokines

Since IL-10 was induced in CHB and exogenous IL-10 was able

to mimic the selective suppression of NK cell effector function, we

next investigated the potential to restore NK cell IFN-c production

by IL-10 blockade. Addition of antiIL10/IL10-R blocking mAbs

restored the ability of both CD56bright and CD56dim NK cells from

patients with active CHB to produce IFN-c (mean 2.5 fold

increase, Fig4a,b,d). The majority of patients without biochemical

evidence of liver inflammation (and with low viral loads) did not

respond to this strategy (Fig4c,d), in line with their lower levels of

circulating IL-10 (Fig3b). A subset of those patients failing to

respond to IL-10 blockade did show recovery of NK cell IFN-c
production following blockade of both IL-10 and TGFb, another

immunosuppressive cytokine known to be able to inhibit NK cell

production (Fig4e,f).

To investigate whether the suppression of NK cell IFN-c was

maintained at the site of HBV replication, paired liver and blood

Figure 1. NK cell frequency and altered subset distribution in the periphery and intrahepatic compartment. (A) Representative density
plots gated on CD3- PBMC and co-stained for CD56 and CD16 to identify NK cells from a healthy control and a CHB patient. (B) Summary data of the
proportions of CD56bright subset in the periphery of CHB patients with low ALT (n = 35, ALT ,50IU/L, median 34) compared to high ALT (n = 29,
median ALT 112) and healthy controls (n = 31). (C) Frequency of circulating NK cells in CHB patients with low ALT and high ALT and healthy controls.
(D) Density plots of NK cells from peripheral blood and intrahepatic lymphocytes from a representative CHB patient. (E) Paired cumulative results of
peripheral and intrahepatic CD56bright NK cells frequencies from 8 patients with CHB. (F) NK cell frequency in peripheral blood and intrahepatic
compartment from 8 patients with CHB with paired samples. The non-parametric Mann-Whitney U test was used to compare data between groups
and the Wilcoxon signed rank test was used between paired variables. *p,0.05 or ** p,0.01 designates values that differ significantly between
groups. Ctr = healthy controls.
doi:10.1371/journal.ppat.1001227.g001

Defective NK Cells in CHB
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samples from eight patients with CHB were examined (Table 2).

CD56bright NK cell IFN-c production showed a trend to be even

lower in the liver than the periphery of patients with CHB

(FigS4a). Levels of intrahepatic NK cell IFN-c production did not

significantly correlate with levels of ALT (FigS4b), viral load or

liver histology in this small sample of patients, only one of whom

had histological evidence of significant liver inflammation (Table

2). Due to limited cell numbers, individual cytokine blockade could

not be performed but dual IL-10/TGFbRII blockade reconstitut-

ed the proportion of NK cells able to produce IFN-c (%positive,

Fig5a) and increased their level of IFN-c production (MFI, Fig5b).

The fold increase in the capacity of CD56bright NK cells to secrete

IFN-c upon IL-10/TGFb blockade was greater in the liver than

the periphery (Fig5a,b).

Discussion

Accumulating evidence points to a contribution of NK cells in

the battle to control persistent intracellular pathogens[6,17,18].

Although NK cells have been considered part of the innate

immune response, recent data have suggested that they can possess

properties previously ascribed to the adaptive arm, including the

Figure 2. Skewed NK cell effector function in CHB is only partially corrected during therapy. (Panels A–C) Representative density plots
from a healthy control and HBV patients with low ALT (ALT ,50 IU/L, median 33) and raised ALT (ALT.50 IU/L, median 112) and summary data for
TRAIL expression, IFN-c production and CD107 expression. (D) Summary bar charts of CD56bright proportions, NK cell TRAIL expression and NK cell
IFN-c production from healthy, CHB and patients on antiviral therapy. Results are expressed as mean 6 SEM. Rx = treated patients. *p,0.05,
**p,0.01, ***p,0.001 by Mann-Whitney test.
doi:10.1371/journal.ppat.1001227.g002

Defective NK Cells in CHB
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capacity to develop memory and tolerance[19,20,21]. In this study

we show that NK cells can develop selective defects in antiviral

function in the setting of chronic infection and inflammation,

reminiscent of the hierarchical loss of effector function manifested

by exhausted T cells[22].

Just as T cell defects have been attributed to excessive antigenic

stimulation, functional impairment of NK cells has been ascribed

to excessive stimulatory signals through the activating receptor

NKG2D, resulting in its down-modulation[19,20]. This is a

plausible mechanism in CHB since data from transgenic mice

suggest that HBV can upregulate the intrahepatic expression of

NKG2D ligands[23]. However, a recent study and our unpub-

lished data do not support this mechanism, showing no down-

regulation of NKG2D or consistent changes in other NK cell

receptors that could account for the NK cell impairment seen in

CHB[24]. Instead, our data suggest that the selective NK cell

functional defects seen in this infection may be attributable to the

immunosuppressive cytokine milieu.

Our analysis of NK cell effector potential in a large cohort of

patients with CHB revealed preservation of cytolytic capacity and

an increase in TRAIL-bearing CD56bright NK cells. Despite this

increase in the subset of NK cells that are usually the most potent

source of cytokines[14], there was a decrease in the overall NK cell

capacity to produce IFN-c. Such divergence of effector function is

in line with the recent finding that cytokines are trafficked and

secreted via completely different pathways to cytotoxic granules in

NK cells[25]. Consistent with these distinct trafficking pathways,

separate signalling pathways have been shown to control the

release of cytokines and cytotoxic granules in NK cells[26,27].

Unique molecular switches are starting to be identified that couple

Figure 3. IL-10 is elevated in CHB and suppresses NK cell IFN-c production. (A) Levels of cytokines IL-17A and (B) IL-10 determined using
Cytometric Bead Arrays flex sets using sera from 13 healthy controls, 14 low ALT (median ALT 35, all eAg-) and 21 high ALT patients (median ALT 115,
13eAg-). (C) Cumulative IL-10 results including therapy group (n = 13, median ALT 25). (D) Representative density plots of the effect of exogenous IL-
10 on IFN-c production by NK cells from a CHB patient and (E) paired cumulative results from 19 CHB patients. (F) Summary bar charts of the effect of
exogenous IL-10 on the expression of TRAIL and CD107 in 5 CHB patients. Results are paired and expressed as mean 6 SEM. Stimulus = IL12+IL18.
Significance determined by the Mann-Whitney test for comparison between groups and the Wilcoxon signed rank test for paired data, *p,0.05,
**p,0.01, ***p,0.001.
doi:10.1371/journal.ppat.1001227.g003

Defective NK Cells in CHB
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NK cell receptor signalling with the generation of cytokines rather

than cytotoxic functions[28,29]. It is therefore conceivable that a

pathway specific to NK cell cytokine production is dysregulated in

patients with CHB.

The immunosuppressive cytokine IL-10 has been shown to

specifically impair NK cell IFN-c production[30], in contrast with

IL-17 and excessive NKG2D signalling, both of which result in

down-modulation of all NK cell effector functions[13,20]. The

liver is an immunotolerant organ, predisposed to the production of

immunosuppressive cytokines; down-regulation of intrahepatic

NK cell IFN-c production has been linked to the local release of

IL-10 by Kupffer cells[12,31]. We found that exposure of NK cells

to IL-10 in vitro was able to recapitulate the selective reduction in

IFN-c production noted in patients with CHB. Furthermore, its

blockade was able to restore the capacity of NK cells from patients

with active HBV infection to produce IFN-c. IL-10 was not able to

inhibit cytotoxic degranulation and could not overcome the

capacity of IFN-a to induce TRAIL, in line with the maintenance

of these pathogenic functions of NK cells in CHB. IL-10 was

consistently modestly elevated in the serum of patients with CHB,

but would be expected to be at higher concentrations at the site of

infection in the liver and in close proximity to the cells from which

it is released. NK cells themselves can produce IL-10[14,32] to

allow auto-suppression, but in the HBV-infected liver there are a

number of other candidate cellular sources and there is likely to be

a complex regulatory network involved in maintaining its

production, as recently described in HIV infection[33].

We recently reported a transient induction of IL-10 in early

acute HBV infection that was temporally associated with a

transient suppression of the capacity of NK cells to produce IFN-c,

Figure 4. IL-10 blockade alone or in combination with TGFbRII blocking restores NK cell IFN-c production. (A) Representative density
plot from a CHB patient of peripheral NK cell IFN-c production in the presence of anti-IL-10 and anti-IL10 receptor blocking mAb. (B) Paired summary
data from CHB patients with either active disease (High ALT median 104, n = 13) or (C) inactive disease (Low ALT median 33, n = 9). (D) Fold change in
IFN-c produced by total NK cells following IL-10 blockade in both groups of patients. (E, F) Representative density dot plots from a CHB patient and
summary bar chart of paired results from 11 patients (n = 11 median ALT 42) of NK cell IFN-c production following IL-10 blockade alone or in
combination with anti-TGFbRII blocking antibodies. Stimulus = IL12+IL18. Significance determined by the Mann-Whitney test for comparison
between groups and the Wilcoxon signed rank test for paired data, *p,0.05, **p,0.01.
doi:10.1371/journal.ppat.1001227.g004

Defective NK Cells in CHB
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coincident with the increase in viraemia and production of viral

antigens[16]. In our cohort of patients with CHB it was difficult to

distinguish the influence of viraemia or liver inflammation, since

both were increased in patients with elevated levels of IL-10.

Future study of a group of patients with high viral load but normal

ALT (immunotolerant phase) could help to dissect the role of these

factors. The fact that NK cell IFN-c production and IL-10 levels

were not significantly normalised by potent antiviral therapy

suggests that the continued secretion of high levels of HBV

proteins in these patients may play a role. In patients with low level

CHB without evidence of liver inflammation, IL-10 was not

elevated and its blockade alone could not rescue NK function,

which instead required additional TGF-b blockade. TGF-b is

another immunosuppressive cytokine that characterises the

tolerising liver environment and has been shown to be increased

in CHB[34]. TGF-b has been shown to be an alternative key

regulator of the capacity of human NK cells to produce IFN-c,

suppressing IFN-c and T-bet via Smad2/3/4[35].

Figure 5. Blockade of IL10/TGF enhances intrahepatic NK cell IFN-c production. (A) Representative density plots and (B) histograms for
total intrahepatic NK cell and CD56bright subset IFN-c production upon blockade with anti-lL-10, anti-IL10 receptor and anti-TGFbRII blocking
antibodies. Paired summary bar charts of fold change increase in the percentage and mean fluorescence intensity (MFI) of NK total and CD56bright

IFN-c+ cells in the periphery and intrahepatic compartment of 7 CHB (median ALT 56). Results are expressed as mean 6 SEM. Stimulus = IL12+IL18.
*p,0.05 by Wilcoxon signed rank test.
doi:10.1371/journal.ppat.1001227.g005

Table 2. Patient characteristics with available liver biopsy specimens.

Patients
n = 8

Age
Median 35.5
Range 24–66

Sex
M:F
6:2 HBeAg+ 2/6

HBV DNA (IU/mL)
Median 66,879
Range 646–1.26106

ALT (IU/L)
Median 56
Range 15–113

Necro-
inflammatory
score

Modified ISHAK
Stage Fibrosis

Pt1 25 F Pos 113,757 113 2/18 1/6

Pt2 32 M Pos 310,000 63 4/18 3/6

Pt3 49 M Neg 700,000 15 na 1/6

Pt4 40 F Neg 20,000 26 3/18 1/6

Pt5 24 M Neg 947 86 2/18 1/6

Pt6 66 M Neg 646 56 3/18 1/6

Pt7 39 M Neg 6500 26 3/18 1/6

Pt8 27 M Neg 1.26106 56 3/18 1/6

na = not available.
doi:10.1371/journal.ppat.1001227.t002

Defective NK Cells in CHB
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The collective action of TGF-b and IL-10 may represent an

important feedback mechanism to limit exuberant immune

responses and tissue immunopathology in a vital organ like the

liver. However, in the context of chronic infections, elevated levels

may attenuate immune responses sufficiently to contribute to the

failure of resolution of infection. A role for IL-10 in persistent viral

infection has been highlighted recently by studies showing that

blockade of the IL-10 receptor is associated with resolution of

LCMV infection[36,37]. Genetic studies have also highlighted the

importance of IL-10 in the antiviral response to HBV; polymor-

phisms of the IL-10 promoter resulting in elevated IL-10

production are associated with viral persistence, increased disease

severity and progression[38,39].

Our data suggest that immunosupressive cytokines may polarise

NK cells in CHB, having no effect on their expression of death

ligands and cytolytic granules but inhibiting IFN-c production.

NK cells expressing death ligands like TRAIL would only be able

to have a direct antiviral effect at the expense of liver damage. The

decline in liver inflammation seen on antiviral treatment is

compatible with the reduction in TRAIL-expressing CD56bright

NK cells that we noted in this setting. However, potent antiviral

therapy was unable to significantly restore the capacity of NK

cells to produce IFN-c, which would therefore retain an impair-

ed capacity for non-cytolytic clearance of HBV from hepatocytes

and boosting of adaptive immune responses. Our findings raise

the possibility of immunotherapeutic targeting of IL-10 and

TGF-b in CHB, with the caveat that these cytokines govern a

critical balance between impeding pathogen clearance and re-

straining immunopathology.

Materials and Methods

Ethics statement
Clinical assessment and blood sampling were performed during

routine hepatitis clinics, with written informed consent and local

ethical board approval of the Royal Free Hospital, the Royal

London Hospital and Camden Primary Care Ethics Review

Board.

Patients and healthy subjects
All patients were anti-Hepatitis C- and anti-Human Immuno-

deficiency Virus-antibody negative and treatment naı̈ve with the

exception of a sub-group of 22 patients suppressed on a

combination of Lamivudine and Adefovir. Patient characteristics

are included in Table 1. Paired peripheral blood and liver biopsy

specimens (surplus to diagnostic requirements) were obtained from

8 CHB-infected patients (Table 2).

Isolation and storage of PBMC and Intrahepatic
lymphocyte isolation

Peripheral blood mononuclear cells (PBMC) were isolated by

gradient centrifugation on Ficoll-Hypaque and frozen or imme-

diately studied as described later. Sera were collected and frozen

for later use. Intrahepatic lymphocytes were isolated as previously

described[4].

Extracellular staining and flow cytometric analysis
For phenotypic analysis, PBMC isolated from HBV patients

and healthy donors were stained with fluorochrome-conjugated

antibodies to CD3-Cy5.5/PerCP, CD56-FITC, CD16-APC, and

TRAIL-PE or isotype matched controls (BD Biosciences, Cowley,

U.K.). In selected experiments TRAIL expression was determined

following overnight incubation with 50 ng/mL of rhIL-10

(eBioscience). PBMC were acquired on a FACS Calibur flow

cytometer (Becton Dickinson) and analysed using Flowjo analysis

software (Treestar).

Cytokine production by intracellular staining
As previously described[16], PBMC were incubated with

50 ng/mL of rhIL-12 (Miltenyi) and rhIL-18 (R&D Systems,

Abingdon, U.K.) for 21 hours at 37uC. 1mM monensin (Sigma-

Aldrich, Gillingham, U.K.) was added for the final 3 hours. Cells

were fixed and permeabilised followed by intracellular staining for

IFN-c-PE (R&D systems). Where indicated the same experiments

were performed in the presence of rhIL-10 (50ng/mL), or blocking

antibodies to anti-IL10 (5 mg/mL) (eBioscience) and anti-IL-10R

(10 mg/mL) alone or in combination with antiTGFbRII (10 mg/

mL) (BD Biosciences). NK IFN-c production was determined by

subtracting baseline IFN-c production from that observed after

cytokine or antibody treatment. NK cells from PBMC of a

randomly selected group of patients were isolated (.96% purity

and viability) (Miltenyi Biotec, Germany, NK isolation kit) to

assess the effect of exogenous IL-10 on IFN-c production.

For TNF-a production, PBMC were stimulated with phorbol

myristate acetate (PMA) (3 ng/mL) and ionomycin (100 ng/mL)

(Sigma) for 3 hours; 1mM monensin (Sigma-Aldrich, Gillingham,

U.K.) was added for the final 2 hours. Cells were then stained with

the same antibody combination used for phenotyping prior to

permealisation and intracellular staining for TNF-a. In selected

experiments NK cell TNF-a and IFN-c co-expression was assessed

following PMA/I stimulation.

CD107 degranulation assay
As previously described[16], PBMC were incubated with K562

cells (5:1 E:T ratio) for 3 hours at 37uC following overnight

stimulation with a combination of rhIL-12/rhIL-18 or medium

alone in the presence or absence of rh-IL10. CD107a-PE antibody

(BD Biosciences, Cowley, U.K.) was added at the time of

stimulation with target cells and 1mM monensin was added

during the last two hours of the incubation prior to staining and

acquisition.

Determination of serum cytokine concentrations by
Cytometric Bead Array (CBA)

CBA flex-sets were used for the determination of IL-10, IL-17

(BD Biosciences, Cowley, U.K) according to manufacturers’

protocols for serum samples.

Statistical analysis
Statistical significance was performed between paired samples

using the Wilcoxon signed rank test and between HBV patients

and healthy controls using the Mann-Whitney U test. Correlations

between variables were evaluated with the Spearman rank

correlation test. P,0.05 was considered to be significant for all

tests.

Supporting Information

Figure S1 Summary bar charts comparing production of (A)

IFN-c and (B) TNF-a from NK total and NK cell subsets in

healthy controls and CHB patients. (C) 10 healthy controls and 12

CHB patients were evaluated for the co-production of TNF-a and

IFN-c following stimulation with PMA/I. Summary bar charts

show the percentage of total NK cells that are single positive for

IFN-c, TNF-a and double positive for IFN-c/TNF-a. *P,.05,

**P,.01, ***P,.001 by Mann-Whitney test.

Found at: doi:10.1371/journal.ppat.1001227.s001 (0.48 MB EPS)
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Figure S2 (A) Frequencies of circulating NK cells and (B)

summary bar chart comparing production of IFN-c from NK total

and NK cell subsets in healthy controls (n = 29), CHB patients

(n = 46) and HBV patients on antiviral treatment (n = 20). *P,.05,

**P,.01, ***P,.001 by Mann-Whitney test.

Found at: doi:10.1371/journal.ppat.1001227.s002 (0.46 MB EPS)

Figure S3 (A) Representative FACS plots showing the effect of

exogenous IL10 on NK cells frequencies (boxed CD56+CD32)

(B) NK cells from 4 eAg- CHB patients (median ALT 50, median

VL 2300) were negatively purified (.96% purities) and stimulated

with IL-12/IL-18 in the presence or absence of exogenous IL-10.

The effect of IL-10 is shown for the CD56bright subset (**P,.01

significance determined by paired t test). (C) Representative density plots

and histograms from a healthy control and (D) a CHB patient

showing NK cell IFN-c production, gated on the

CD56+CD32TRAIL- and CD56+CD32TRAIL+ populations,

following stimulation with IL12/IL18 +/2 IL-10. NK cell IFN-c
production is expressed as MFI.

Found at: doi:10.1371/journal.ppat.1001227.s003 (0.92 MB EPS)

Figure S4 (A) Production of IFN-c by circulating and intrahe-

patic NK cells and NK cell subsets from 8 CHB patients with

available liver samples. Paired summary bar charts expressed as

mean 6 SEM. (B) Lack of significant correlation between

intrahepatic NK cell IFN-c production and ALT. Spearman

statistical test was performed (r = -0.39, p = 0.32).

Found at: doi:10.1371/journal.ppat.1001227.s004 (0.46 MB EPS)

Acknowledgments

We are grateful to the staff and patients of our clinics for the provision of

the samples used in this study.

Author Contributions

Conceived and designed the experiments: DP CD CP MKM. Performed

the experiments: DP LM AJ GE. Analyzed the data: DP LM AS MKM.

Contributed reagents/materials/analysis tools: AJ PTFK PK GD RJG.

Wrote the paper: DP MKM.

References

1. Maini MK, Boni C, Lee CK, Larrubia JR, Reignat S, et al. (2000) The role of

virus-specific CD8(+) cells in liver damage and viral control during persistent

hepatitis B virus infection. J Exp Med 191: 1269–1280.

2. Maini MK, Schurich A (2010) The molecular basis of the failed immune

response in chronic HBV: therapeutic implications. J Hepatol 52: 616–619.

3. Doherty DG, Norris S, Madrigal-Estebas L, McEntee G, Traynor O, et al.

(1999) The human liver contains multiple populations of NK cells, T cells, and

CD3+CD56+ natural T cells with distinct cytotoxic activities and Th1, Th2, and

Th0 cytokine secretion patterns. J Immunol 163: 2314–2321.

4. Dunn C, Brunetto M, Reynolds G, Christophides T, Kennedy PT, et al. (2007)

Cytokines induced during chronic hepatitis B virus infection promote a pathway

for NK cell-mediated liver damage. J Exp Med 204: 667–680.

5. Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural

killer-cell subsets. Trends Immunol 22: 633–640.

6. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S (2008) Functions of

natural killer cells. Nat Immunol 9: 503–510.

7. Guidotti LG, Ishikawa T, Hobbs MV, Matzke B, Schreiber R, et al. (1996)

Intracellular inactivation of the hepatitis B virus by cytotoxic T lymphocytes.

Immunity 4: 25–36.

8. Kakimi K, Guidotti LG, Koezuka Y, Chisari FV (2000) Natural killer T cell

activation inhibits hepatitis B virus replication in vivo. J Exp Med 192: 921–930.

9. Tay CH, Welsh RM (1997) Distinct organ-dependent mechanisms for the

control of murine cytomegalovirus infection by natural killer cells. J Virol 71:

267–275.

10. Ahlenstiel G, Titerence RH, Koh C, Edlich B, Feld JJ, et al. Natural killer cells

are polarized toward cytotoxicity in chronic hepatitis C in an interferon-alfa-

dependent manner. Gastroenterology 138: 325–335 e321-322.

11. Stegmann KA, Bjorkstrom NK, Veber H, Ciesek S, Riese P, et al. 1885–1897.

12. Tu Z, Bozorgzadeh A, Pierce RH, Kurtis J, Crispe IN, et al. (2008) TLR-

dependent cross talk between human Kupffer cells and NK cells. J Exp Med

205: 233–244.

13. Kawakami Y, Tomimori Y, Yumoto K, Hasegawa S, Ando T, et al. (2009)

Inhibition of NK cell activity by IL-17 allows vaccinia virus to induce severe skin

lesions in a mouse model of eczema vaccinatum. J Exp Med 206: 1219–1225.

14. Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, et al. (2001)

Human natural killer cells: a unique innate immunoregulatory role for the

CD56(bright) subset. Blood 97: 3146–3151.

15. Fauriat C, Long EO, Ljunggren HG Bryceson YT Regulation of human NK-

cell cytokine and chemokine production by target cell recognition. Blood 115:

2167–2176.

16. Dunn C, Peppa D, Khanna P, Nebbia G, Jones M, et al. (2009) Temporal

analysis of early immune responses in patients with acute hepatitis B virus

infection. Gastroenterology 137: 1289–1300.

17. Alter G, Martin MP, Teigen N, Carr WH, Suscovich TJ, et al. (2007)

Differential natural killer cell-mediated inhibition of HIV-1 replication based on

distinct KIR/HLA subtypes. J Exp Med 204: 3027–3036.

18. Khakoo SI, Thio CL, Martin MP, Brooks CR, Gao X, et al. (2004) HLA and

NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science

305: 872–874.

19. Coudert JD, Zimmer J, Tomasello E, Cebecauer M, Colonna M, et al. (2005)

Altered NKG2D function in NK cells induced by chronic exposure to NKG2D

ligand-expressing tumor cells. Blood 106: 1711–1717.

20. Oppenheim DE, Roberts SJ, Clarke SL, Filler R, Lewis JM, et al. (2005)

Sustained localized expression of ligand for the activating NKG2D receptor

impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat

Immunol 6: 928–937.

21. Sun J, Madan R, Karp CL, Braciale TJ (2009) Effector T cells control lung

inflammation during acute influenza virus infection by producing IL-10. Nat
Med 15: 277–284.

22. Wherry EJ, Blattman JN, Murali-Krishna K, Van Der Most R, Ahmed R (2003)
Viral persistence alters CD8 T-cell immunodominance and tissue distribution

and results in distinct stages of functional impairment. J Virol 77: 4911–4927.

23. Chen Y, Wei H, Sun R, Dong Z, Zhang J, et al. (2007) Increased susceptibility to

liver injury in hepatitis B virus transgenic mice involves NKG2D-ligand
interaction and natural killer cells. Hepatology 46: 706–715.

24. Oliviero B, Varchetta S, Paudice E, Michelone G, Zaramella M, et al. (2009)

Natural killer cell functional dichotomy in chronic hepatitis B and chronic

hepatitis C virus infections. Gastroenterology 137: 1151–1160, 1160 e1151-1157.

25. Reefman E, Kay JG, Wood SM, Offenhauser C, Brown DL, et al. Cytokine
secretion is distinct from secretion of cytotoxic granules in NK cells J Immunol

184: 4852–4862.

26. Caraux A, Kim N, Bell SE, Zompi S, Ranson T, et al. (2006) Phospholipase C-

gamma2 is essential for NK cell cytotoxicity and innate immunity to malignant
and virally infected cells. Blood 107: 994–1002.

27. Kim N, Saudemont A, Webb L, Camps M, Ruckle T, et al. (2007) The

p110delta catalytic isoform of PI3K is a key player in NK-cell development and

cytokine secretion. Blood 110: 3202–3208.

28. Guo H, Samarakoon A, Vanhaesebroeck B, Malarkannan S (2008) The p110
delta of PI3K plays a critical role in NK cell terminal maturation and cytokine/

chemokine generation. J Exp Med 205: 2419–2435.

29. Malarkannan S, Regunathan J, Chu H, Kutlesa S, Chen Y, et al. (2007) Bcl10

plays a divergent role in NK cell-mediated cytotoxicity and cytokine generation.
J Immunol 179: 3752–3762.

30. Tripp CS, Wolf SF, Unanue ER (1993) Interleukin 12 and tumor necrosis factor
alpha are costimulators of interferon gamma production by natural killer cells in

severe combined immunodeficiency mice with listeriosis, and interleukin 10 is a
physiologic antagonist. Proc Natl Acad Sci U S A 90: 3725–3729.

31. Lassen MG, Lukens JR, Dolina JS, Brown MG, Hahn YS Intrahepatic IL-10
maintains NKG2A+Ly492 liver NK cells in a functionally hyporesponsive state

J Immunol 184: 2693–2701.

32. Maroof A, Beattie L, Zubairi S, Svensson M, Stager S, et al. (2008)
Posttranscriptional regulation of II10 gene expression allows natural killer cells

to express immunoregulatory function. Immunity 29: 295–305.

33. Brockman MA, Kwon DS, Tighe DP, Pavlik DF, Rosato PC, et al. (2009) IL-10

is upregulated in multiple cell types during viremic HIV infection and reversibly
inhibits virus-specific T cells. Blood 114: 346–356.

34. Flisiak R, Al-Kadasi H, Jaroszewicz J, Prokopowicz D, Flisiak I (2004) Effect of
lamivudine treatment on plasma levels of transforming growth factor beta1,

tissue inhibitor of metalloproteinases-1 and metalloproteinase-1 in patients with
chronic hepatitis B. World J Gastroenterol 10: 2661–2665.

35. Yu J, Wei M, Becknell B, Trotta R, Liu S, et al. (2006) Pro- and
antiinflammatory cytokine signaling: reciprocal antagonism regulates interfer-

on-gamma production by human natural killer cells. Immunity 24: 575–590.

36. Brooks DG, Trifilo MJ, Edelmann KH, Teyton L, McGavern DB, et al. (2006)

Interleukin-10 determines viral clearance or persistence in vivo. Nat Med 12:
1301–1309.

37. Ejrnaes M, Filippi CM, Martinic MM, Ling EM, Togher LM, et al. (2006)

Resolution of a chronic viral infection after interleukin-10 receptor blockade. J
Exp Med 203: 2461–2472.

Defective NK Cells in CHB

PLoS Pathogens | www.plospathogens.org 9 December 2010 | Volume 6 | Issue 12 | e1001227



38. Cheong JY, Cho SW, Hwang IL, Yoon SK, Lee JH, et al. (2006) Association

between chronic hepatitis B virus infection and interleukin-10, tumor necrosis
factor-alpha gene promoter polymorphisms. J Gastroenterol Hepatol 21:

1163–1169.

39. Miyazoe S, Hamasaki K, Nakata K, Kajiya Y, Kitajima K, et al. (2002)

Influence of interleukin-10 gene promoter polymorphisms on disease progression
in patients chronically infected with hepatitis B virus. Am J Gastroenterol 97:

2086–2092.

Defective NK Cells in CHB

PLoS Pathogens | www.plospathogens.org 10 December 2010 | Volume 6 | Issue 12 | e1001227


