
1

Generating a Contract Checker for an SLA
Language

James Skene, Wolfgang Emmerich
Dept. of Computer Science, UCL
Gower St, London WC1E 6BT

{j.skene|w.emmerich }@cs.ucl.ac.uk

Abstract— SLAng is a language for expressing Service Level
Agreements (SLAs) under development as part of the European
project TAPAS. It is defined using a meta-model, an instance of
the Meta-Object Facility (MOF) model, in which the relationship
between the syntax of the language and its domain of appli-
cation is explicitly represented, and the violation semantics of
the language defined using Object Constraint Language (OCL)
constraints. The concrete syntax of the language is the XML
Meta-data Interchange (XMI) mapping of the syntactic part of
the meta-model. In this paper we describe how the Java Meta-
data Interface (JMI) mapping can be applied to the meta-model
of the language to generate interfaces and classes to create and
query SLAs and relevant service monitoring data in memory;
and how an OCL interpreter can be applied to check violation
constraints over this data, resulting in the implementation of a
contract checker that is highly likely to respect the semantics of
the language.

Index Terms— Service level agreements, contracts, generative
programming, UML, MOF, MDA.

I. I NTRODUCTION

I N [1] we introduced SLAng, a language for Service Level
Agreements (SLAs). An SLA is the part of a contract

between the client and provider of a service that defines the
parties’ obligations with respect to the qualities of the service,
usually taken to mean its performance and reliability. This
first paper documented two novel features of the language: it is
scoped according to an informal reference model of distributed
systems’ architecture, so it predefines syntax for the types
of agreements likely to be useful in the context of today’s
Internet; and it explicitly includes client responsibilities, in
recognition of the fact that the provider must be protected
from malicious behaviour on the part of the client as much as
the client must be protected from failures on the part of the
provider to deliver requisite levels of service.

The principle requirement of an SLA is to define un-
ambiguously the obligations of the parties in a particular
service provision scenario. When a party fails to meet these
obligations, a violation is said to have occurred. Clearly, if
disagreements over violations are possible, then the utility of
an SLA is significantly diminished. Financial penalties are
often associated with violations, in order to mitigate the risk
to the injured party that such violations imply. Fraud, either
accidental or malicious, is possible if violations cannot be
proven to have occurred with a high degree of confidence.

This work was partially funded by the TAPAS project, IST-2001-34069.

An SLA written in a pre-defined language such as SLAng
relies on the definition of the language for part of its meaning.
In [2] we described modifications to the definition of SLAng
to improve its precision with respect to the definition of
violations. The parties to an SLA can disagree over whether
a violation has occurred in at least four different ways:

1) They can disagree over the terms of the agreement, by
disagreeing over whether a particular piece of moni-
toring data or aspect of the services configuration is
relevant to the calculation of a violation.

2) They can disagree over the conditions of the agreement,
by disagreeing over whether a particular behaviour of
the service constitutes a violation.

3) They can disagree over the amount of error introduced
by the particular process or mechanism for calculating
whether a violation has occurred from a particular set
of monitoring data.

4) They can disagree about the amount of error present
in any monitoring data, in effect a disagreement over
the degree to which a particular set of monitoring data
represents the true behaviour of the service.

The contribution of our second paper was to address the
first two types of disagreement listed above. We achieved this
by applying a meta-modelling technique to the definition of
the language, in which both the syntax and semantic domain
of the language are explicitly modelled using a Meta-Object
Facility (MOF) model (similar to a UML class diagram). The
syntactic part of the model defines the format of SLAng SLAs.
The semantic part of the model can be interpreted as describing
the objects and events in the real world to which the syntactic
elements refer, in this case service infrastructure and the events
associated with service provision.

The co-location and association of syntactic and semantic
elements in the language meta-model significantly reduces the
ability of the parties to disagree over the meaning of terms
in the language, as the syntactic elements are associated with
semantic elements that disambiguate their meaning.

To ensure that the conditions of the SLA are also unam-
biguous, the model contains constraints over the associations
between syntactic and semantic elements. These ensure that
SLA statements are only associated with behaviour (repre-
sented by the semantic model) that is acceptable according
to the quantities specified in the SLA. The constraints hence
define the meaning of conditions for SLAng SLAs. They are



2

expressed in OCL [3], a language with formal semantics of its
own, and so are unambiguous, thereby addressing the second
cause of disagreements above. The meta-model can be thought
of as a model of a world in which all SLAs are respected by
the parties to them.

This paper describes the way in which the language meta-
model and associated constraints can be used as the input
for a generative programming tool to automatically gener-
ate a contract checker. The checker compares the measured
performance of a service with a set of SLAs to determine
if violations have occurred. By automatically generating the
checker from the specification of the language semantics, no
human errors of interpretation can be introduced in the process
of implementing the checker. This makes it harder to dispute
the output of the checker on the grounds that it does not respect
the language specification and therefore the intent of the SLAs.
This reduces the possibility of the third type of disagreement
from the list above.

The technologies and process applied to generating the
contract checker are components of the Model Driven Archi-
tecture (MDA) [4] approach under development by the OMG.
This work can be seen as a case study in the advantages of
defining domain-specific languages using meta-models, and of
generating code automatically from models.

In outline, our paper reads as follows: In Section II we
review the features of the SLAng language specification.
In Section III we describe in more detail the motivation
for generating a checker component automatically, and the
approach taken to achieve this. In Section IV we discuss the
design and implementation of a tool for generating the checker.
In Section V we describe the architecture of the resulting
checker. In Section VI we discuss related work. Finally, in
Section VII we make some concluding remarks, and discuss
future work.

II. OVERVIEW OF THE SLANG LANGUAGE SPECIFICATION

SLAng is defined by a combination of a document, ‘The
SLAng Specification’ [5], and a MOF (version 1.1) model [6].
The model provides a formal definition of the structure of the
syntax of the language, and of the semantic domain in which
SLAs apply. These are modelled in terms of classes of objects
with attributes and associations. Constraints in the model
restrict the sets of objects described so that SLAs are only ever
associated with services that are consistent with their terms and
which meet their conditions. In this way the semantics of the
language are formally defined. This approach was inspired by
the work of the Precise UML group (pUML) [7].

The specification document presents views of the model,
and describes its elements in English, thereby clearly estab-
lishing the meaning of the elements, whose interpretation
is otherwise only implied in their natural-language names,
structure and relationships. The elements include syntactic
elements, which should be interpreted as parts of SLAs, and
semantic elements, which should be interpreted as parts or
behaviours of services in the real world. The specification
document mimics the documentation standards applied by the
Object Management Group (OMG) [8] when documenting
their meta-model-based standards, such as UML and the MOF.

MOF models are commonly called ‘meta-models’, because
they are used to describe meta-data (data about data, or
‘models’). Our original intent of using the MOF was to allow
the description of data concerning electronic services, so using
the MOF to describe SLAs for electronic services is quite ap-
propriate. We will henceforth refer to the SLAng MOF model
as the SLAng ’meta-model’. The term ’SLAng specification’
refers to the specification document that describes the model.

MOF models are very similar to UML class models, and
in fact we use the UML tool Poseidon [9] to maintain the
SLAng meta-model. Poseidon produces UML version 1.4 class
models, not MOF models. However, differences between the
two standards can be eliminated by using the UML profile for
MOF models [10] introduced as part of the EDOC standard
profile. This adapts the syntax of the UML slightly, so that it
can represent all elements in the MOF meta-model.

When SLAng was initially presented in [1] it could express
SLAs for the following kinds of service:

• Application – In which a thin client uses a web- or
application-service.

• Hosting – In which components use an execution envi-
ronment (a container).

• Persistence – In which a container uses a Storage Service
Provider (SSP).

• Communication – In which a container uses an Internet
Service Provider (ISP).

• Service – In which one application service uses another.
• Container – In which a container uses another for pur-

poses of replication or load balancing.
• Networking – In which ISPs agree to convey traffic across

network boundaries.
However, since adopting the meta-modelling approach de-

scribed in [2], we have only completed the meta-model for
Electronic Service SLAs, which are the amalgam of the
Application and Service type SLAs previously defined (and
found to be so similar, that no distinction was useful between
the two). The models and discussions in this paper therefore
pertain to ES SLAs only. In future we intend to expand the
language to describe SLAs for the other types of services listed
above.

A view of the meta-model showing the syntax of the
ES SLA is shown in Figure 1. The SLA is divided into a
section for defining terms, and another for conditions. The
conditions section is further subdivided between conditions
on the behaviour of the service provider, and conditions on
the behaviour of the client.

The semantic model of electronic service provision is shown
in Figure 2. It is currently quite simple. Service usages are
events, occurring at some instant and having a duration,
with the possibility of failure. They are associated with an
operation, which forms part of an electronic service. They are
also associated with the client that caused the usage.

Although the model of service usage for application services
presented here is simple, it is explicit and fairly unambiguous.
It serves as a reference for the definition of terms seen in the
syntax of the ASP SLA.

The syntactic and semantic models are co-located in a single
model, and the terms in the syntactic model are associated



3

E lectronicS erviceS LA

C lientP erformanceC lause

+name:S tring

+maximumT hroughput:F requency

S erverP erformanceC lause

+name:S tring

+maximumLatency:Duration[0..1]

+reliability:P ercentage[0..1]

+maxT imeT oR epair:Duration[0..1]S cheduledC lause

(from contracts )

S LA

(from contracts )

E lectronicS erviceT erms

E lectronicS erviceC onditions

OperationDefinition

+description:S tring

+failureC riteria:S tring

S erviceC lientDefinition

+description:S tring

E lectronicS erviceDefinition

+description:S tring

T erms

(from contracts )

C onditions

(from contracts )

conditions+

clientP erformanceC lause+

1..*
E S S LAC lientC lauses

conditions+ serverP erformanceC lause+

1..*E S S LAS erverC lauses

serverP erformanceC lause+

*

operation+

1..*

clientP erformanceC lause+

*

operation+

1..*

terms+

operationDefinition+

1..*

termsT oOpDef

terms+ serviceC lientDefinition+

termsT oC lientDef

terms+

electronicS erviceDefinition+

termsT oE S Def

sLA+ terms+

sLAT oT ermssLA+

conditions+

sLAT oC onditions

electronicS erviceS LA+

electronicS erviceT erms+

eS S LAT oE S T erms

electronicS erviceS LA+

electronicS erviceC onditions+

eS S LAT oE S C onditions

Fig. 1. Model of the syntax of SLAng electronic-service contracts

with elements in the semantic model in order to define their
meaning. This relationship is shown in Figure 3.

As stated above, the SLAng meta-model also includes OCL
constraints that give meaning to condition statements in the
language. These OCL constraints are part of the meta-model,
and when we refer to the meta-model subsequently, we will
also be referring to the constraints. However, for convenience
we maintain them in text files outside of the Poseidon tool
used to edit the UML diagrams. The following is the top-level
invariant defining the meaning of performance and reliability
for ASP SLAs:
context contracts::es::ServerPerformanceClauseinv:
operation→collect(o : contracts::asp::OperationDefinition|
o.operation
)→forAll(o : services::Operation|
observedDowntime(o)< (timeRemaining(-1)? (1 - reliability)))

This expression is explained in detail in [2]1. It relies on a
number of function definitions, such as ‘observedDowntime’
defined in the specification. The total amount of OCL for
this constraint runs to about 50 lines, and may be found in
the language specification. The specification also includes a
number of constraints that enforce well-formedness of SLAs
or eliminate illogical situations from the semantic model.

The concrete syntax of SLAng, used to represent and
exchange SLAs, is the XMI mapping of the syntactic part
of the meta-model. XMI (the XML Metadata Interchange
format) [11] is a standard that specifies a text format for the
exchange of models whose structure is defined using a MOF
meta-model, by mapping meta-models onto XML Document

1The expression is slightly modified from [2] as a result of testing and
developing the meta-model and constraints using the generated contract
checker. However, its intent is the same and overall structure quite similar.

S erviceUsage

+failed:B oolean
Operation

(from services)

+name:S tring

E lectronicS ervice

(from services)

P eriod

(from services)

+duration:Duration

S erviceC lient

(from services)

+name:S tring

E vent

(from services)

+date:Date

serviceC lient+
serviceUsage+

*C lientUsage

electronicS ervice+

operation+

1..*
OperationT oE S

serviceUsage+

*

operation+

UsageOperation

Fig. 2. Model of electronic service usage

Type Definitions (DTDs) [12].

III. G ENERATING A CONTRACT CHECKER

The SLAng meta-model and constraints, as used in the
language specification, are a model of the world as we hope
it will be. The model states that in the world a collection of
things exist that are called SLAng SLAs, which are structured
in a particular way. It further describes a set of things called
Electronic services, and the way in which those services can
behave. It states that there may be an association between
SLAs and the services they govern, and that if this is the
case then the behaviour of those services and their clients
is restricted so as to be acceptable according to the values
specified in the SLA.

The first idea in this paper is that the meta-model can



4

P arty

(from services)

+name:S tring

C lientDefinition

(from contracts )

+description:S tring

P roviderDefinition

(from contracts )

+description:S tring

E lectronicS erviceDefinition

(from contracts ::es )

+description:S tring

S erviceC lientDefinition

(from contracts ::es )

+description:S tring

OperationDefinition

(from contracts ::es )

+description:S tring

+failureC riteria:S tring

S erviceC lient

(from services)

+name:S tring

serviceC lientDefinition+

*

serviceC lient+

1..*definitionT oS erviceC lient

Operation

(from services)

+name:S tring

operationDefinition+

*

operation+

definitionT oOperation

E lectronicS ervice

(from services)

electronicS erviceDefinition+

*

electronicS ervice+

definitionT oE lectronicS ervice

clientDefinition+

*

party+

clientT oP arty

providerDefinition+

*

party+

providerT oP arty

Fig. 3. The associations between syntax and semantic model elements defines
the meaning of the language

alternatively be interpreted as a model of data describing the
world, and the set of conditions necessary for those data to
be considered free from violations. If we interpret the meta-
model in this way, then we can produce a computer program
capable of holding those data. The program can then check
those data, to see if the world is in fact behaving in the way
that we want it to, i.e. without violations of SLAs.

The process of implementing the checker program has the
potential to introduce errors, such that the program either
misses violations defined by the language specification, or
reports violations that have not actually occurred. The second
idea in this paper is that the potential for such errors can be
substantially reduced by automatically generating the checker
from the specification, rather than requiring human program-
mers to interpret the specification. The SLAng meta-model is
ideally suited to this approach for the following reasons:

1) It is entirely expressed in a machine readable form.
The meta-model itself is a MOF model, and may be
represented in XMI. The constraints are in the textual
format of the OCL.

2) A standard already exists for transforming MOF models
into code, called the Java Metadata Interface (JMI) stan-
dard [13]. It defines a set of interfaces for manipulating
models based on the structure of their meta-model.

3) A standard already exists for interpreting OCL con-
straints programmatically, and implementations have
been produced.

Therefore, all that is necessary in order to implement a
checker for SLAng SLAs is to generate the JMI interfaces and
an implementation for the SLAng meta-model, and attach an

OCL interpreter that can check constraints by querying these
interfaces. This approach is shown in Figure 4.

Syntax model Semantic model

Constraints

Code
Generator

Java classes
for SLAs

Java classes
for events

OCL
interpreter

Fig. 4. Generating a contract checker from the SLAng metamodel

We achieved this goal by implementing a JMI generator.
As discussed in the related work section, this was necessary
because previous generators did not offer adequate flexibility
over the type of code generated. We combined the resulting
generated data structures with the OCL2 interpreter imple-
mented at Kent University [14], which features an extension
allowing it to evaluate OCL constraints over plain Java objects
using Java reflection. The design of the JMI generator is
discussed in more detail in the next section. The design of
the resulting checker is discussed in detail in Section V.

IV. D ESIGN OF THEJMI GENERATOR

The JMI generator is implemented in Java, and follows the
design shown in Figure 5. It is heavily dependent on the
Velocity Template Engine (VTE) [15], developed as part of
the Apache project. Similar to Java Server Pages (JSP) [16], or
PHP [17], Velocity is a tool for generating text from predefined
templates. These templates are text files, embedded in which
are fields delimited using special characters. The VTE is
configured with these templates, and also extra data called
‘context’. The templates are parsed by the VTE: ordinary
text is passed straight through; the fields in the templates
either control the order of parsing, for example by specifying
optional or repeated sections, or indicate that data from the
context should be inserted. By varying the context, several
outputs can be produced from the same template.

The templates in our implementation are taken from the JMI
specification, and translated into Velocity’s template syntax.
The JMI specification requires the following Java types to be
produced, each of which is contained in its own file:

• For each class:

– A ‘class proxy’ interface, for creating and finding
instances of the class.

– An ‘instance’ interface, for editing properties and
invoking operations of instances of the class.

• For each association: An ‘association proxy’ interface for
creating and querying pairs of associated instances.



5

SLAng
meta-
model

XMI

Velocity
templates

for JMI

Poseidon 
UML Editor

JMI
interfaces

and
implemen-

tations

JMI generator

Read
XMI

Create
Velocity
context
objects

Velocity
template

engine
XMI

reader/
writer/

DTD

Fig. 5. Design of the JMI generator

• For each package: A ‘package proxy’ interface enabling
the discovery of class proxies, association proxies and
subpackage proxies.

• For each enumeration:

– An interface type for enumeration values.
– A class containing static exemplars of enumeration

values.

• An XMI reader interface.
• An XMI writer interface.

The generator includes a template for each of these ele-
ments. Figure 6 shows the fragment of the template for the in-
stance interface that generates accessor methods for attributes.
Figure 7 shows the template applied to the context data for
the ServiceUsage class shown in Figure 2. It extends a the
more general event interface, adding methods for setting the
‘failed’ attribute (generate by the template shown in Figure 6,
and references to the associated service client and operation.

Fig. 6. Template for attribute methods on JMI instance interface

Except in the case of enumerations, the JMI specification
only defines interfaces, but does not indicate how they are
to be implemented. The generator therefore also includes
templates for implementations of each of the above elements.
Our simplistic implementation currently implements every

Fig. 7. JMI interface to service usage data

proxy and instance as a separate Java object. All instances are
stored in main memory simultaneously. The generator also has
templates to implement the XMI reader and writer interfaces,
and to produce an XMI DTD following the pattern described
in the XMI standard.

The context for each of these templates is drawn from the
particular MOF model for which a set of JMI interfaces is
being generated. In our case this is the SLAng meta-model.
The meta-model is exported from Poseidon in an XMI format
file. The first stage of the JMI generator reads this file and
creates an in-memory representation of it.

In theory, the XMI reader for the UML models could be
generated automatically from the UML metamodel, using a
template derived from the XMI specification. Moreover, the
loaded model should properly be manipulated using the JMI
interfaces. Now that the JMI generator is implemented, we
can generate these things. However, this is a chicken and egg
situation, so the first stage is currently hand-implemented. The
in-memory representation does not follow the JMI standard but
is a simple data-structure reflecting the hierarchical structure
of the XMI document.

The initial in-memory representation of the API is not
suitable context for the Velocity templates. Velocity templates
can perform only quite simple data manipulation (they lack
recursion, for example, which makes it difficult to navigate
data structures in the context). They must therefore be supplied
with their context data in a form that closely reflects the way
it is used in the template. The second stage of the generator
therefore creates a number of different context objects, appro-



6

priate to the Java files that must be generated, using the data
from the in-memory representation of the XMI file.

In the third stage of its operation, the VTE is invoked using
the generated context objects and the JMI templates, in order
to generate the requisite JMI Java code. This is placed in
the appropriate places in a package directory hierarchy on the
filesystem.

V. THE CONTRACT CHECKER

A. Design

The contract checker consists of three major components:

1) The automatically generated JMI interfaces and imple-
mentation for holding SLAs and event data.

2) The Kent OCL implementation, with SLAng constraints
loaded, for checking whether SLAs have been violated.

3) An API wrapper, that allows checks to be requested, and
returns lists of violations that have been found. This part
is hand-written in our implementation.

The checker may be incorporated in electronic service
systems wherever SLAs need to be monitored. Its use is as
follows:

1) The checker is instantiated.
2) The static elements from the semantic model are in-

stantiated or loaded from an XMI file. These elements,
with types such as ElectronicService, ServiceClient and
Operation represent knowledge that the checker has
about the service or services being monitored. The
model is manipulated using the generated JMI interfaces.

3) One or more SLAs are instantiated or loaded from an
XMI file, again using the JMI interfaces.

4) Associations are established between the service com-
ponents defined in the SLAs and those components in
the service model created in Step 2. This is the moment
when it is necessary to have a clear understanding of to
what the terms in the agreement refer. The associations
being established are shown in Figure 3. The links be-
tween the elements are created using the JMI interfaces.

5) Monitoring data is provided to the component by invok-
ing the various ‘create’ methods found on the JMI API.
This data is associated with the relevant static elements
in the service model, created in Step 2.

6) Periodically, the check methods on the violations API
may be invoked. These return lists of violations, if any
exist.

The Kent OCL implementation permits the evaluation of
arbitrarily typed OCL expressions over the model (rather than
being restricted to binary expressions – constraints). We have
made use of this facility by associating a set of diagnostic
expressions with each violation. If the constraint identifying
the violation is found to have failed, then the diagnostics are
evaluated to provide extra information as to the cause of the
failure. For example, if the performance and reliability con-
straint shown in Section II is found to have been violated, then
a diagnostic is used to calculate the observed reliability. These
statistics are combined in a ‘complaint’ message, constructed
using the Velocity template engine.

To demonstrate the contract checker and to assist in the
development of the SLAng semantics, we have implemented
a browser that allows the editing of SLA and event data,
via a tree-view of the model. This is implemented using the
reflective facilities of the JMI, which allows each element in
a model to contain a link to its corresponding meta-element
in its meta-model. The meta-model in this case is the MOF
model instance representing the SLAng meta-model. It is
stored in JMI classes generated (using the same JMI generator
as described in the previous section) from the MOF model.
The representation of the SLAng meta-model is only necessary
when using the user-interface, and would not be required when
using the checker as a component.

The user-interface also allows interactive editing and check-
ing of the constraints over the SLAng model, and the di-
agnostics and complaint messages associated with violations
of these constraints. The design of the checker is shown in
Figure 8. A screenshot of the user interface is shown in
Figure 9. The leftmost panel in the user interface contains
the tree representing the SLAng model (SLAs and events).
The middle panel lists the constraints over the model, and the
rightmost panel allows the editing of constraints.

SLAng
JMI

Kent
OCL

inter-
preter

Reflective
browser

MOF
JMI

SLAs/
Service
models

SLAng
meta-
model

XMI

SLAng
Constraints

Violations
interface

Violations
reporting

User interface

Checker component

SLAng
XMI

reader

MOF
XMI

reader

Fig. 8. Design of the SLA checker

B. Discussion

To establish that the contract checker respects the semantics
of the SLAng language, we must in some way validate its
correctness with respect to the language specification. It does
not seem feasible to prove formally and exhaustively that the
process of generating the JMI interfaces and implementations,
or interpreting the OCL constraints introduces no such errors.
However, the strength of the approach taken, and the main
contribution of this paper is the observation that by generating
the checker according to patterns (the JMI specification)
that are standard and independent of the application domain
(checking SLAs), then such errors are unlikely to be intro-
duced, supporting our objective of making SLAng a more than
usually precise SLA language.

This observation can receive some corroboration by testing
our implementation. To date we have not conducted a thorough



7

Fig. 9. Screenshot of the SLA checker user interface

and systematic test of the component, although what informal
testing we have performed so far has tended to reveal errors
in the language specification, rather than in the component’s
interpretation of it. However, a more thorough study is required
in the future.

In order to function as a useful contract checker, the
component must also be able to check for violations in a
reasonable amount of time, over data sets of a realistic size. So
far we have only tested our implementation on small models:
that is, models containing few SLAs and little monitoring data.
In these cases, violations can be checked for within a second
or two. More formal characterisations of the performance
of the component are required. However, there is reason to
believe that the design as presented will be deficient in several
respects:

The ASP SLAs are currently defined as implying constraints
over a complete record of every service invocation. This data
is likely to be very extensive, which will have implications
both for the evaluation of the constraints and the management
of performance data. The constraints as written are highly
recursive and may require some optimisation to control their
complexity. Moreover, in our current implementation of the
component, service data is recorded in main memory and never
deleted, leading to inevitable memory exhaustion.

Some of these problems can be solved be refining the
implementation of the component, for example by providing
a more sophisticated implementation of the JMI interfaces
that relies on a database to persist service usage data, or
by translating the OCL constraints into Java instead of in-
terpreting them. Conversely, some problems will have to be
solved by modifying the SLAng semantics. For example, if
the volume of monitoring data renders either service provision
or SLA checking infeasible, then the constraints will need to
be redefined in terms of samples of monitoring data, rather
than the total performance of the service.

At present we are preparing a large scale demonstration
of the TAPAS project technologies, including SLAng contract
checking, in the context of an auction house scenario. We

expect that this experience will give us the opportunity to
address the practical issues involved with checking SLAs.

VI. RELATED WORK

In [2] we provide a detailed comparison of SLAng with
previous SLA languages, focusing on the extent to which
these languages provide explicit definitions of their terms and
conditions. Our use of an explicit model for this seems to be
quite novel, and it is this feature of the language that allows
us to generate the checker automatically. We are not aware of
any other attempt to automatically generate a checker for an
SLA language.

However, our work does bear some resemblance to efforts
to embed requirements monitors in software for runtime
validation of systems. Systems for this purpose consist of
a language for expressing the requirements, coupled with a
mapping onto monitoring solutions. Representative examples
are: the Java-MaC system [18] which automatically embeds
monitors in Java code using a combination of bytecode rewrit-
ing and runtime libraries; and the KAOS-FLEA [19] system
in which requirements specified using the KAOS methodology
are monitored using the FLEA monitoring system coupled
with manually implemented event detectors. These approaches
are of comparable expressive power to the use of UML/OCL
to describe constraints on a system. JavaMaC seems to provide
extra advantages in terms of automating the instrumentation of
the system, but in fact the requirements must be expressed in
terms of the structure of the Java code being instrumented. The
degree of abstraction at which the requirements are specified
tends to determine the degree to which the placement of
monitors can be automated.

Generating program code from UML diagrams is an impor-
tant step in the Model Driven Architecture (MDA) methodol-
ogy. A number of systems to achieve this have been developed
with varying degrees of flexibility in the specification of their
output. However, we found none to be ideal for our purposes,
and elected to implement a generator from hand instead.

Probably the most commercially significant generator is the
Eclipse Modelling Framework (EMF) [20]. The EMF gener-
ates specific repositories from UML meta-models according
to a pattern similar to JMI. However, it is not template driven,
so we would have no control over the implementation of the
repository. If, as suggested in the previous section, we need
to implement a repository backed by a database, it would be
difficult to achieve using the EMF.

Another alternative is the AndroMDA tool [21], imple-
mented using Velocity templates. The architecture of this tool
is essentially identical to that presented in Section IV. Custom
templates can be configured by the user, and the tool parses
XMI representations of models and makes available standard
context objects . However, as stated earlier, Velocity templates
do not have powerful control structures. Without the ability
to modify the structure of the context objects to preprocess
model information it is impossible to generate some outputs
using AndroMDA. For example, the XML DTD requires the
use of transitive closure across inheritance relationships in the
model, which cannot be achieved in the template.



8

A powerful alternative is that implemented in the Kent
Modelling Framework, version 3 [22]. This tool evaluates
string-typed OCL expression over models to generate program
text. This approach is potentially very powerful, since OCL is
recursive so can calculate arbitrary functions of the model.
However, the OCL expressions are hard to write, particularly
when a ‘generation state’ has to be maintained, containing
things like a list of unique identifiers used. For this reason we
preferred to use more conventional templates.

In future we would like to see a combination between the
template-based approach of AndroMDA, and the more power-
ful control structures available from OCL. One possibility is
the use of PHP, a template language with sophisticated control
structures. The use of PHP to generate code from models could
be facilitated by providing a mapping of the MOF model to
PHP to provide a standard interface to model data, comparable
to the facilities provided by the JMI for Java.

VII. C ONCLUSION

This paper has presented our approach to automatically
generating an implementation of a contract checker from the
specification of our SLA language, SLAng. We have argued
that because the process of generating the checker is standard
and independent of the semantics of SLAng, then semantic
errors are less likely to be introduced into the checker. This
allows the checker to be deployed and its results trusted with
a greater degree of confidence by the parties to the agree-
ment. The possibility of generating such a checker from the
language specification enhances the utility of the specification
considerably, and is a direct consequence of our adoption of
a standardised modelling approach to describe the language
and its effect in the domain of application. This work can
be viewed as a case study, in a novel application area, of the
application of MDA principles, including the definition of new
high level languages, and the use of generative programming
approaches to reduce the cost and increase the quality of
software development projects.

Several practical and theoretical challenges remain to be
addressed. The operation of the contract checker must be
validated through testing. Further engineering needs to be
applied to ensure that it can be deployed in realistic contexts.
These efforts will be divided between improving the design of
the checker (by modifying the way that it is generated), and
improving the design of the language, so that its semantics do
not imply too great a burden of monitoring. The language also
requires expansion, to different kinds of services, including
hosting and applications service provision, and modification
to acknowledge that error is introduced by the process of
monitoring, and that violations should therefore be associated
with some degree of uncertainty.

Our initial implementation of the contract checker has
served as a proof of concept, and also provides a useful test
platform for refining future versions of the language, since
the previously theoretical constraints and semantic models can
now be tested against real and synthesised scenarios of service
usage.

REFERENCES

[1] D. D. Lamanna, J. Skene, and W. Emmerich, “SLAng: A language for
service level agreements,” in9th IEEE Workshop on Future Trends in
Distributed Computing Systems. IEEE Press, 2003, pp. 100 – 106.

[2] J. Skene and W. Emmerich, “Precise service level agreements,” in26th
International Conference on Software Engineering (ICSE). Edinburgh,
UK: IEEE Press, May 2004.

[3] UML 2.0 OCL Final Adopted specification, ptc/03-10-14 ed., The Object
Management Group (OMG), October 2003.

[4] MDA Guide Version 1.0.1, omg/2003-06-01 ed., The Object Manage-
ment Group (OMG), June 2003.

[5] J. Skene and D. D. Lamanna, “The SLAng Specification,” 2003, http:
//www.cs.ucl.ac.uk/staff/j.skene/slang.

[6] The Meta-Object Facility v1.4, formal/2002-04-03 ed., The Object
Management Group (OMG), April 2002.

[7] A. S. Evans and S. Kent, “Meta-modelling semantics of UML: the
pUML approach,” in 2nd International Conference on the Unified
Modeling Language, ser. Lecture Notes in Computer Science (LNCS),
vol. 1723. Colorado, USA: Springer-Verlag, 1999, pp. 140 – 155.

[8] “The Object Management Group (OMG),” http://www.omg.org/.
[9] “Poseidon UML Editor,” Gentleware A. B., http://www.gentleware.com/.

[10] UML Profile for Meta Object Facility, formal/04-02-06 ed., The Object
Management Group (OMG), February 2004.

[11] XML Metadata Interchange (XMI), v1.2, formal/02-01-01 ed., The
Object Management Group (OMG), January 2002.

[12] EXtensible Markup Language (XML) 1.0 (Third Edition), The World
Wide Web Consortium (W3C), February 2004, http://www.w3.org/TR/
2004/REC-xml-20040204/.

[13] Java(TM) Metadata Interface (JMI) API Specification 1.0 Final Re-
lease, Java Community Process, June 2002, http://jcp.org/aboutJava/
communityprocess/final/jsr040/index.html.

[14] D. Akehurst, P. Linington, and O. Patrascoiu, “OCL 2.0: Implementing
the Standard,” Computer Laboratory, University of Kent, Tech. Rep.,
November 2003. [Online]. Available: http://www.cs.kent.ac.uk/pubs/
2003/1746

[15] “The velocity template engine v1.4,” The Apache Jakarta Project, http:
//jakarta.apache.org/velocity/.

[16] “Java Server Pages JSP v. 2.0 specification,” Sun Microsystems, Inc.,
http://java.sun.com/products/jsp/.

[17] “PHP: PHP Hypertext Preprocessor,” http://www.php.net/.
[18] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan, “Java-

mac: a run-time assurance tool for java programs,” inElectronic Notes in
Theoretical Computer Science, K. Havelund and G. Rosu, Eds., vol. 55.
Elsevier Science Publishers, 2001.

[19] M. S. Feather, S. Fickas, A. van Lamsweerde, and C. Ponsard,
“Reconciling system requirements and runtime behavior,” in
Proceedings of the 9th International Workshop on Software
Specification and Design, 1998, pp. 50–59. [Online]. Available:
citeseer.nj.nec.com/article/feather98reconciling.html

[20] “The Eclipse Modelling Framework (EMF),” The Eclipse Project, http:
//www.eclipse.org/emf/.

[21] “AndroMDA code generation tool,” http://www.andromda.org/.
[22] “The Kent Modelling Framework (KMF),” The University of Kent, http:

//www.cs.kent.ac.uk/projects/kmf/documents.html.


