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Abstract—SLANg is a language for expressing Service Level
Agreements (SLAs) under development as part of the European
project TAPAS. It is defined using a meta-model, an instance of
the Meta-Object Facility (MOF) model, in which the relationship
between the syntax of the language and its domain of appli-
cation is explicitly represented, and the violation semantics of
the language defined using Object Constraint Language (OCL)
constraints. The concrete syntax of the language is the XML
Meta-data Interchange (XMI) mapping of the syntactic part of
the meta-model. In this paper we describe how the Java Meta-
data Interface (JMI) mapping can be applied to the meta-model
of the language to generate interfaces and classes to create and
query SLAs and relevant service monitoring data in memory;
and how an OCL interpreter can be applied to check violation
constraints over this data, resulting in the implementation of a
contract checker that is highly likely to respect the semantics of
the language.
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I. INTRODUCTION

N [1] we introduced SLANg, a language for Service Level

Agreements (SLAs). An SLA is the part of a contract
between the client and provider of a service that defines th
parties’ obligations with respect to the qualities of the servic;eI
usually taken to mean its performance and reliability. This
first paper documented two novel features of the language: i
scoped according to an informal reference model of distribute
systems’ architecture, so it predefines syntax for the types
of agreements likely to be useful in the context of today’s
Internet; and it explicitly includes client responsibilities, i
recognition of the fact that the provider must be protecte{é1
from malicious behaviour on the part of the client as much a
the client must be protected from failures on the part of thg:
provider to deliver requisite levels of service.

The principle requirement of an SLA is to define un-
ambiguously the obligations of the parties in a particul
service provision scenario. When a party fails to meet the
obligations, a violation is said to have occurred. Clearly,
disagreements over violations are possible, then the utility
an SLA is significantly diminished. Financial penalties are.
often associated with violations, in order to mitigate the ri
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An SLA written in a pre-defined language such as SLAng
relies on the definition of the language for part of its meaning.
In [2] we described modifications to the definition of SLAng
to improve its precision with respect to the definition of
violations. The parties to an SLA can disagree over whether
a violation has occurred in at least four different ways:

They can disagree over the terms of the agreement, by
disagreeing over whether a particular piece of moni-
toring data or aspect of the services configuration is
relevant to the calculation of a violation.

They can disagree over the conditions of the agreement,
by disagreeing over whether a particular behaviour of
the service constitutes a violation.

They can disagree over the amount of error introduced
by the particular process or mechanism for calculating
whether a violation has occurred from a particular set
of monitoring data.

They can disagree about the amount of error present
in any monitoring data, in effect a disagreement over
the degree to which a particular set of monitoring data
represents the true behaviour of the service.

®rhe contribution of our second paper was to address the
rst two types of disagreement listed above. We achieved this
Y. applying a meta-modelling technique to the definition of
he language, in which both the syntax and semantic domain
of the language are explicitly modelled using a Meta-Object
acility (MOF) model (similar to a UML class diagram). The

? Syntactic part of the model defines the format of SLAng SLAs.
e semantic part of the model can be interpreted as describing
e objects and events in the real world to which the syntactic
Sements refer, in this case service infrastructure and the events
Ssociated with service provision.

The co-location and association of syntactic and semantic
aqjements in the language meta-model significantly reduces the
ggility of the parties to disagree over the meaning of terms
P the language, as the syntactic elements are associated with
%(?mantic elements that disambiguate their meaning.

To ensure that the conditions of the SLA are also unam-
Jpiguous, the model contains constraints over the associations

to the injured party that such violations imply. Fraud, eithdietween syntactic and semantic elements. These ensure that

accidental or malicious, is possible if violations cannot belA Statements are only associated with behaviour (repre-

proven to have occurred with a high degree of confidence.Sented by the semantic model) that is acceptable according
to the quantities specified in the SLA. The constraints hence

This work was partially funded by the TAPAS project, IST-2001-34069. define the meaning of conditions for SLAng SLAs. They are



expressed in OCL [3], a language with formal semantics of its MOF models are commonly called ‘meta-models’, because
own, and so are unambiguous, thereby addressing the secibiey are used to describe meta-data (data about data, or
cause of disagreements above. The meta-model can be thouglodels’). Our original intent of using the MOF was to allow
of as a model of a world in which all SLAs are respected bihe description of data concerning electronic services, so using
the parties to them. the MOF to describe SLAs for electronic services is quite ap-

This paper describes the way in which the language mefaopriate. We will henceforth refer to the SLAng MOF model
model and associated constraints can be used as the irgmithe SLAng 'meta-model’. The term 'SLANg specification’
for a generative programming tool to automatically generefers to the specification document that describes the model.
ate a contract checker. The checker compares the measurddOF models are very similar to UML class models, and
performance of a service with a set of SLAs to determiria fact we use the UML tool Poseidon [9] to maintain the
if violations have occurred. By automatically generating thBLAng meta-model. Poseidon produces UML version 1.4 class
checker from the specification of the language semantics, models, not MOF models. However, differences between the
human errors of interpretation can be introduced in the procda® standards can be eliminated by using the UML profile for
of implementing the checker. This makes it harder to dispudOF models [10] introduced as part of the EDOC standard
the output of the checker on the grounds that it does not respguifile. This adapts the syntax of the UML slightly, so that it
the language specification and therefore the intent of the SLA®n represent all elements in the MOF meta-model.
This reduces the possibility of the third type of disagreementWhen SLAng was initially presented in [1] it could express
from the list above. SLAs for the following kinds of service:

The technologies and process applied to generating tha Application — In which a thin client uses a web- or
contract checker are components of the Model Driven Archi-  application-service.
tecture (MDA) [4] approach under development by the OMG. « Hosting — In which components use an execution envi-
This work can be seen as a case study in the advantages of ronment (a container).
defining domain-specific languages using meta-models, and of Persistence — In which a container uses a Storage Service
generating code automatically from models. Provider (SSP).

In outline, our paper reads as follows: In Section Il we « Communication — In which a container uses an Internet
review the features of the SLAng language specification. Service Provider (ISP).
In Section Ill we describe in more detail the motivation « Service — In which one application service uses another.
for generating a checker component automatically, and the, Container — In which a container uses another for pur-
approach taken to achieve this. In Section IV we discuss the poses of replication or load balancing.
design and implementation of a tool for generating the checker. Networking — In which ISPs agree to convey traffic across
In Section V we describe the architecture of the resulting network boundaries.
checker. In Section VI we discuss related work. Finally, in However, since adopting the meta-modelling approach de-
Section VIl we make some concluding remarks, and discusgribed in [2], we have only completed the meta-model for
future work. Electronic Service SLAs, which are the amalgam of the

Application and Service type SLAs previously defined (and

Il. OVERVIEW OF THE SLANG LANGUAGE SPECIFICATION ' t5nd to be so similar, that no distinction was useful between

SLANg is defined by a combination of a document, ‘Theéhe two). The models and discussions in this paper therefore
SLANng Specification’ [5], and a MOF (version 1.1) model [6]pertain to ES SLAs only. In future we intend to expand the
The model provides a formal definition of the structure of thianguage to describe SLAs for the other types of services listed
syntax of the language, and of the semantic domain in whighove.
SLAs apply. These are modelled in terms of classes of objectsA view of the meta-model showing the syntax of the
with attributes and associations. Constraints in the mode$ SLA is shown in Figure 1. The SLA is divided into a
restrict the sets of objects described so that SLAs are only egection for defining terms, and another for conditions. The
associated with services that are consistent with their terms aathditions section is further subdivided between conditions
which meet their conditions. In this way the semantics of then the behaviour of the service provider, and conditions on
language are formally defined. This approach was inspired the behaviour of the client.
the work of the Precise UML group (pUML) [7]. The semantic model of electronic service provision is shown

The specification document presents views of the modei, Figure 2. It is currently quite simple. Service usages are
and describes its elements in English, thereby clearly estalyents, occurring at some instant and having a duration,
lishing the meaning of the elements, whose interpretatiovith the possibility of failure. They are associated with an
is otherwise only implied in their natural-language nameseperation, which forms part of an electronic service. They are
structure and relationships. The elements include syntaddiso associated with the client that caused the usage.
elements, which should be interpreted as parts of SLAs, andAlthough the model of service usage for application services
semantic elements, which should be interpreted as partspogsented here is simple, it is explicit and fairly unambiguous.
behaviours of services in the real world. The specificatidnserves as a reference for the definition of terms seen in the
document mimics the documentation standards applied by gyntax of the ASP SLA.
Object Management Group (OMG) [8] when documenting The syntactic and semantic models are co-located in a single
their meta-model-based standards, such as UML and the M@tedel, and the terms in the syntactic model are associated
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Fig. 1. Model of the syntax of SLAng electronic-service contracts
with elements in the semantic model in order to define their Event Period
R . . ) . . ) (from services) (from services)
meaning. This relationship is shown in Figure 3. e Dat +durationDuration
As stated above, the SLAng meta-model also includes OCL
constraints that give meaning to condition statements in the
language. These OCL constraints are part of the meta-model,
HI|
and when we refer to the meta-model subsequently, we W2 cencectient SeniceUsage |+ Usageoperaton _
also be referring to the constraints. However, for convenien| (rom sewices) e sage I iodBootean — (frgn':i’::'v"i:esj
. . . - . . i * +serviceUsage
we maintain them in text files outside of the Poseidon tojname:suing clentisage +operation [ o
used to edit the UML diagrams. The following is the top-leve
invariant defining the meaning of performance and reliability OperationToEs oo
for ASP SLAS: +eleclr0nicServilc.:
. El icServi
context contracts::es::ServerPerformanceClainse o eonons)
operation—collect(o : contracts::asp::OperationDefinitibn
o.operation
)—forAll(o : services::Operatiot
observedDowntime(ox (timeRemaining(-1x (1 - reliability))) Fig. 2. Model of electronic service usage

This expression is explained in detail in {2)t relies on a
number of function definitions, such as ‘observedDowntimdype Definitions (DTDs) [12].
defined in the specification. The total amount of OCL for
this constraint runs to about 50 lines, and may be found in I1l. GENERATING A CONTRACT CHECKER

the language specification. The specification also includes e SLAng meta-model and constraints, as used in the

number of constraints that enforce well-formedness of SLAs e
o o L . l[anguage specification, are a model of the world as we hope
or eliminate illogical situations from the semantic model.

The concrete syntax of SLAng, used to represent ait will be. The model states that in the world a collection of

: : . ﬂqngs exist that are called SLAng SLAs, which are structured
exchange SLAs, is the XMI mapping of the syntactic pam a particular way. It further describes a set of things called
of the meta-model. XMI (the XML Metadata Interchang ectronic services, and the way in which those services can

) - €l
forr?]at) [11]f|s a dst?nd?]rd tha: spte-uﬂgs 2 ‘f.eXtJ"m_‘at for'vtllg have. It states that there may be an association between
exchange of models whose structure is detined using a As and the services they govern, and that if this is the

meta-model, by mapping meta-models onto XML Documeragse then the behaviour of those services and their clients

1 o . _ is restricted so as to be acceptable according to the values
The expression is slightly modified from [2] as a result of testing and - .
gcified in the SLA.

developing the meta-model and constraints using the generated contriY - ; ; . .
checker. However, its intent is the same and overall structure quite similar. The first idea in this paper is that the meta-model can



ff':z::'zz::r':jg) OCL interpreter that can check constraints by querying these
PER— interfaces. This approach is shown in Figure 4.
+ clientDefinition *party pay | 00— — — — — | _____ |
ar .
* clientToParty (from services) | Syntax model | Semantic model
ProviderDefinition | +ProviderDefinition +pary +name:S tring | l N | l
(from contracts) * providerToParty | ! Constraints T |
+description:S tring | |
| |
L = Lo
E lectronicS erviceDefinition . ~ +electronicService
(from contracts -es) +electronicS erviceDefinition ElectronicS ervice Code
= o ] ] (from services) Generator
+description:S tring * definitionT oE lectronicS ervice
N N
ServiceClientDefinition Py——— vadl OCL Java classes
B erviceClien ava classes i
(from contacts:es) |, serviceClientDefinition  +serviceClient (from services) for SLAs interpreter for events
+description:S tring X
* definitonToServiceClient ~ 1.* |+name:String
Fig. 4. Generating a contract checker from the SLAng metamodel
OperationDefinition )
(from contracts es) + operationDefinition +operation Operation
. : . . . .
+descriptonsting | * definitionT 0O peration (fom services) We achlevec_i this goal by |mplemer1t|ng a JMI generator.
+ailureCriteria:String +name:String As discussed in the related work section, this was necessary
because previous generators did not offer adequate flexibility

over the type of code generated. We combined the resulting
Fig. 3. The associations between syntax and semantic model elements de@eﬂerated data structures with the OCL2 interpreter imple-
the meaning of the language mented at Kent University [14], which features an extension
allowing it to evaluate OCL constraints over plain Java objects

. . o sing Java reflection. The design of the JMI generator is
alternatively be interpreted as a model of data describing tE%cussed in more detail in the next section. The design of

world, a_nd the set of CO”‘?"“OF‘S necessary for those datatf.% resulting checker is discussed in detail in Section V.
be considered free from violations. If we interpret the meta-

model in this way, then we can produce a computer program
capable of holding those data. The program can then check
those data, to see if the world is in fact behaving in the way The JMI generator is implemented in Java, and follows the
that we want it to, i.e. without violations of SLAs. design shown in Figure 5. It is heavily dependent on the
The process of implementing the checker program has tWelocity Template Engine (VTE) [15], developed as part of
potential to introduce errors, such that the program eithtfre Apache project. Similar to Java Server Pages (JSP) [16], or
misses violations defined by the language specification, BHP [17], Velocity is a tool for generating text from predefined
reports violations that have not actually occurred. The secotgnplates. These templates are text files, embedded in which
idea in this paper is that the potential for such errors can bee fields delimited using special characters. The VTE is
substantially reduced by automatically generating the checlk@nfigured with these templates, and also extra data called
from the specification, rather than requiring human prograrngontext’. The templates are parsed by the VTE: ordinary
mers to interpret the specification. The SLAng meta-modeltiext is passed straight through; the fields in the templates
ideally suited to this approach for the following reasons: either control the order of parsing, for example by specifying
1) It is entirely expressed in a machine readable forrRPtional or repeated sections, or indicate that data from the
The meta-model itself is a MOF model, and may peontext should be inserted. By varying the context, several

represented in XMI. The constraints are in the textuUtPUts can be produced from the same template.
format of the OCL. The templates in our implementation are taken from the JMI

2) A standard already exists for transforming MOF modefpecification, _a_nd .translatgd into Velocit_y’s template syntax.
into code, called the Java Metadata Interface (JMI) staht’® JMI specification requires the following Java types to be
dard [13]. It defines a set of interfaces for manipulatingroduced, each of which is contained in its own file:

IV. DESIGN OF THEJMI GENERATOR

models based on the structure of their meta-model. ~ « For each class:
3) A standard already exists for interpreting OCL con- — A ‘class proxy’ interface, for creating and finding
straints programmatically, and implementations have instances of the class.
been produced. — An ‘instance’ interface, for editing properties and
Therefore, all that is necessary in order to implement a invoking operations of instances of the class.

checker for SLAng SLAs is to generate the JMI interfaces and. For each association: An ‘association proxy’ interface for
an implementation for the SLAng meta-model, and attach an creating and querying pairs of associated instances.



B package uk.ac.ucl.cs.s2lang.model.services.es;
Poseid Velocity
oseidon
UML Editor te{gﬂafs public interface ZervicelUsage
extends uk.ac.ucl.cs.slang.model.services.Period {

YN

J/ Attributes

interfaces
JMI generator and
implemen- public boolean getFailed()
SLAng B Create Velocity tations throws javax.]jmi.reflect.JmiException:
meta- Read Velocity template
model I:_Jl> XMI |:> context E> engine YR public void setFailed(boolean failed) throws
XMI objects reader/ javax.jwi.reflect.JmiException:
writer/
DTD // References
public uk.ac.ucl.cs.slang.model.services. ServiceClient
get3erviceClient {)
Fig. 5. Design of the JMI generator throws javax.jmi.reflect.JmiException:
public void setlerviceClient|
uk.ac.ucl.cs.slang.model,.services. ServiceClient
« For each package: A ‘package proxy’ interface enablir newValue)
. . P . throws Jjavax.]Jjmwi.reflect.JmiException;
the discovery of class proxies, association proxies al
SpraCkage prOXieS. public uk.ac.ucl.cs.slang.model.services.Operation
« For each enumeration: getOperation()

throws Jjavax.]Jjmwi.reflect.JmiException;

— An interface type for enumeration values.

— A class containing static exemplars of enumeratic ~ P*t*¢ Yoid s=tOperarioni

uk.ac.ucl.cs.slanyg.model.services .. Operation

values. newValue)
o An XM| reader interface. throws Javax.jmi.reflectc, JmiException:
o An XMI writer interface. // Operations

The generator includes a template for each of these e
ments. Figure 6 shows the fragment of the template for the if;
stance interface that generates accessor methods for attributes.
Figure 7 shows the template applied to the context data for
the ServiceUsage class shown in Figure 2. It extends a
more general event interface, adding methods for setting
‘failed’ attribute (generate by the template shown in Figure
and references to the associated service client and operati

JMI interface to service usage data

Xy and instance as a separate Java object. All instances are
Bred in main memory simultaneously. The generator also has
emplates to implement the XMI reader and writer interfaces,
24 to produce an XMI DTD following the pattern described
in the XMI standard.

#H# Locessor Operations

g THIAE (§a.multiValued) The context for each of these templates is drawn from the
D‘«‘bl;? Sta';ichlass getfiallameCaps)_elementType = particular MOF model for which a set of JMI interfaces is
T . H . . .
YRR EeEss being generated. In our case this is the SLAng meta-model.
g | THEAE (Sa.ordered) The meta-model is exported from Poseidon in an XMI format
puBlis Java uvil.list gerdldimcsans) file. The first stage of the JMI generator reads this file and
rows javax.jmwi.reflect.JmiException; _ R X
g *Helse creates an in-memory representation of it.

public java.util.Collection get${alameCaps) ()
throws javax.jmwi.reflect.JmiException;

In theory, the XMI reader for the UML models could be

g *fftend generated automatically from the UML metamodel, using a
#* “Hitelse template derived from the XMI specification. Moreover, the
public Stype getd(aNameCaps) () loaded model should properly be manipulated using the JMI
. t;u:ows Javax.imwi.reflect.dniException; interfaces. Now that the JMI generator is implemented, we
* * d . . . .
# Hutator“g;erations can g.enerate the_se thlngs.. However, this is a chicken and egg
#e “HHAE (' da.mltiValued &6 §a.changeable) situation, so the first stage is currently hand-implemented. The
public void setd{aemeCaps) (§type §ia.neme}] throws in-memory representation does npt follow t_he JMI_standard but
javax.imi.reflect.dmiException; is a simple data-structure reflecting the hierarchical structure
#e “Htend of the XMI document.
#* vHfend .. . . .
The initial in-memory representation of the API is not
Fig. 6. Template for attribute methods on JMI instance interface suitable context for the Velocity templates. Velocity templates

can perform only quite simple data manipulation (they lack

Except in the case of enumerations, the JMI specificatioacursion, for example, which makes it difficult to navigate
only defines interfaces, but does not indicate how they adata structures in the context). They must therefore be supplied

to be implemented. The generator therefore also includegh their context data in a form that closely reflects the way
templates for implementations of each of the above elemeritsis used in the template. The second stage of the generator
Our simplistic implementation currently implements evertherefore creates a number of different context objects, appro-



priate to the Java files that must be generated, using the datdio demonstrate the contract checker and to assist in the
from the in-memory representation of the XMl file. development of the SLAng semantics, we have implemented
In the third stage of its operation, the VTE is invoked using browser that allows the editing of SLA and event data,
the generated context objects and the JMI templates, in orde&x a tree-view of the model. This is implemented using the
to generate the requisite JMI Java code. This is placed rflective facilities of the JMI, which allows each element in
the appropriate places in a package directory hierarchy on #henodel to contain a link to its corresponding meta-element
filesystem. in its meta-model. The meta-model in this case is the MOF
model instance representing the SLAng meta-model. It is
stored in JMI classes generated (using the same JMI generator
. as described in the previous section) from the MOF model.
A. Design The representation of the SLAng meta-model is only necessary
The contract checker consists of three major component#hen using the user-interface, and would not be required when
1) The automatically generated JMI interfaces and impl&Sing the checker as a component. B
mentation for holding SLAs and event data. . The user-mterface also allows interactive editing and chec.k-
2) The Kent OCL implementation, with SLAng constraintd"d Of the constraints over the SLAng model, and the di-
loaded, for checking whether SLAs have been violateggnostics and complaint messages associated with violations
3) An API wrapper, that allows checks to be requested, aﬁé these constraints. The design of the checker is shown in

returns lists of violations that have been found. This paifgure 8. A screenshot of the user interface is shown in
is hand-written in our implementation. Figure 9. The leftmost panel in the user interface contains
.the tree representing the SLAng model (SLAs and events).

The checker may be incorporated in electronic SEVIGhe middle panel lists the constraints over the model, and the

systems wherever SLAs need to be monitored. Its use is rf&ﬁwtmost panel allows the editing of constraints.

V. THE CONTRACT CHECKER

follows:
1) The che(_:ker is instantiated. _ _ User interface
2) The static elements from the semantic model are in- | ¢, M
H . - MOF MOF Reflective Violations
stennated or loaded from an XMl .f|le. Theee elements, meta. ,:V'\ ol |:{> vt |:{> brousor reporting
with types such as ElectronicService, ServiceClient and | xwi reader
Operation represent knowledge that the checker has —
about the service or services being monitored. The - Checker component | |/
H H H H SLAs/
model is manipulated using the generated JMIinterfaces. | o e sLAng sLAng Kent Violations
3) One or more SLAs are instantiated or loaded from an | models XM |:> M |:> _OtCL |:{> interface
. . . . d inter-
XMI file, again using the JMI interfaces. reacet preter
4) Associations are established between the service com-

ponents defined in the SLAs and those components in j_r
the service model created in Step 2. This is the moment sLAngD)
when it is necessary to have a clear understanding of to Constraints

what the terms in the agreement refer. The associations

being established are shown in Figure 3. The links be-

tween the elements are created using the JMI interfaceg. g pesign of the SLA checker
5) Monitoring data is provided to the component by invok-

ing the various ‘create’ methods found on the JMI API.

This data is associated with the relevant static elements

in the service model, created in Step 2. B. Discussion

6) Periodically, the check methods on the violations APl Tg establish that the contract checker respects the semantics
may be invoked. These return lists of violations, if angf the SLANg language, we must in some way validate its
exist. correctness with respect to the language specification. It does

The Kent OCL implementation permits the evaluation afot seem feasible to prove formally and exhaustively that the

arbitrarily typed OCL expressions over the model (rather thgmocess of generating the JMI interfaces and implementations,
being restricted to binary expressions — constraints). We haweinterpreting the OCL constraints introduces no such errors.
made use of this facility by associating a set of diagnostidowever, the strength of the approach taken, and the main
expressions with each violation. If the constraint identifyingontribution of this paper is the observation that by generating
the violation is found to have failed, then the diagnostics atke checker according to patterns (the JMI specification)
evaluated to provide extra information as to the cause of tti&at are standard and independent of the application domain
failure. For example, if the performance and reliability conichecking SLAS), then such errors are unlikely to be intro-
straint shown in Section Il is found to have been violated, thetuced, supporting our objective of making SLAng a more than
a diagnostic is used to calculate the observed reliability. Thesgually precise SLA language.

statistics are combined in a ‘complaint’ message, constructedrhis observation can receive some corroboration by testing
using the Velocity template engine. our implementation. To date we have not conducted a thorough




SEIES : : I :
T == expect that this experience will give us the opportunity to
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+ seveestenermnan |4 | o weeoronicon ] |57 D S any other attempt to automatically generate a checker for an
%+ aithoncZentceDatn wonte s il SLA language.
@ = mofid: -
i e oL e However, our work does bear some resemblance to efforts
L me -tpes: - to embed requirements monitors in software for runtime
_— validation of systems. Systems for this purpose consist of

a language for expressing the requirements, coupled with a
mapping onto monitoring solutions. Representative examples
are: the Java-MaC system [18] which automatically embeds
mg:itors in Java code using a combination of bytecode rewrit-

Fig. 9. Screenshot of the SLA checker user interface

and systematic test of the component, although what infor
testing we have performed so far has tended to reveal errpy
in the language specification, rather than in the componené’

interpretation of it. However, a more thorough study is requirg)dse
in the future.

and runtime libraries; and the KAOS-FLEA [19] system
hich requirements specified using the KAOS methodology
monitored using the FLEA monitoring system coupled
ith manually implemented event detectors. These approaches
) are of comparable expressive power to the use of UML/OCL
In order to function as a useful contract checker, thg gescribe constraints on a system. JavaMaC seems to provide
component must also be able to check for violations in &qra advantages in terms of automating the instrumentation of
reasonable amount of time, over data sets of a realistic size.;f@ system, but in fact the requirements must be expressed in
far we have only tested our implementation on small modelgims of the structure of the Java code being instrumented. The

that is, models containing few SLAs and little monitoring datgjegree of abstraction at which the requirements are specified
In these cases, violations can be checked for within a secqpys to determine the degree to which the placement of

or two. More formal characterisations of the performangggnitors can be automated.

of the component are required. However, there is reason tcbenerating program code from UML diagrams is an impor-
believe that the design as presented will be deficient in seveggl step in the Model Driven Architecture (MDA) methodol-
respects: ogy. A number of systems to achieve this have been developed
The ASP SLAs are currently defined as implying constrainigith varying degrees of flexibility in the specification of their
over a complete record of every service invocation. This daé@tput. However, we found none to be ideal for our purposes,
is likely to be very extensive, which will have implicationsand elected to implement a generator from hand instead.
both for the evaluation of the constraints and the managemenprobably the most commercially significant generator is the
of performance data. The constraints as written are high¢lipse Modelling Framework (EMF) [20]. The EMF gener-
recursive and may require some optimisation to control thejfes specific repositories from UML meta-models according
complexity. Moreover, in our current implementation of they 5 pattern similar to JMI. However, it is not template driven,
component, service data is recorded in main memory and ne¥grwe would have no control over the implementation of the
deleted, leading to inevitable memory exhaustion. repository. If, as suggested in the previous section, we need
Some of these problems can be solved be refining ttgimplement a repository backed by a database, it would be
implementation of the component, for example by providingifficult to achieve using the EMF.
a more sophisticated implementation of the JMI interfaces Another alternative is the AndroMDA tool [21], imple-
that relies on a database to persist service usage datamehted using Velocity templates. The architecture of this tool
by translating the OCL constraints into Java instead of ifs essentially identical to that presented in Section IV. Custom
terpreting them. Conversely, some problems will have to kemplates can be configured by the user, and the tool parses
solved by modifying the SLAng semantics. For example, }MI representations of models and makes available standard
the volume of monitoring data renders either service provisi@ntext objects . However, as stated earlier, Velocity templates
or SLA checking infeasible, then the constraints will need i@ not have powerful control structures. Without the ability
be redefined in terms of samples of monitoring data, rathgr modify the structure of the context objects to preprocess
than the total performance of the service. model information it is impossible to generate some outputs
At present we are preparing a large scale demonstratiosing AndroMDA. For example, the XML DTD requires the
of the TAPAS project technologies, including SLAng contraaise of transitive closure across inheritance relationships in the
checking, in the context of an auction house scenario. Weodel, which cannot be achieved in the template.



A powerful alternative is that implemented in the Kent
Modelling Framework, version 3 [22]. This tool evaluates[1
string-typed OCL expression over models to generate program
text. This approach is potentially very powerful, since OCL is
recursive so can calculate arbitrary functions of the mode[.z]
However, the OCL expressions are hard to write, particularly
when a ‘generation state’ has to be maintained, containing!
things like a list of unique identifiers used. For this reason wey
preferred to use more conventional templates.

In future we would like to see a combination between thé®l
template-based approach of AndroMDA, and the more poweg)
ful control structures available from OCL. One possibility is
the use of PHP, a template language with sophisticated contrdl
structures. The use of PHP to generate code from models could
be facilitated by providing a mapping of the MOF model to
PHP to provide a standard interface to model data, compara#%

to the facilities provided by the JMI for Java. [10]
[11]
VIl. CONCLUSION [12]

This paper has presented our approach to automatically
generating an implementation of a contract checker from tHe!
specification of our SLA language, SLAng. We have argued
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