
Markup Meets Middleware

Wolfgang Emmerich1;3

1 Zühlke Engineering
Mergenthaler Allee 1-3

65730 Eschborn
Germany

we@acm.org

Walter Schwarz2

2 Deutsche Genossenschaftsbank
Am Platz der Republik

60325 Frankfurt
Germany

walter schwarz@dgbank.de

Anthony Finkelstein3

3 Dept. of Computer Science
University College London

Gower Street, London
WC1E 6BT, UK

a.finkelstein@cs.ucl.ac.uk

Abstract

We describe a distributed system architecture that supports
the integration of different front-office trading systems with
middle and back-office systems, each of which have been
procured from different vendors. The architecture uses a
judicious combination of object-oriented middleware and
markup languages. In this combination an object request
broker implements reliable trade data transport. Markup
languages, particularly XML, are used to address data inte-
gration problems. We show that the strengths of middleware
and markup languages are complementary and discuss the
benefits of deploying middleware and markup languages in
a synergistic manner.

1 Introduction

An increasing number of distributed systems are not built
from scratch but rather integrate legacy systems or commer-
cial off-the-shelf (COTS) components. These components
may not have been built to be integrated and are commonly
heterogeneous. The heterogeneity may exhibit itself in the
use of different programming languages, availability on dif-
ferent hardware and operating system platforms and the use
of different representations for the exchange of data. We de-
scribe an example of such a heterogeneous and distributed
environment in the financial domain.

We have been involved in building a new distributed sys-
tem architecture for a financial trading system. In this set-
ting, traders utilize various front-office components to input
trade data as they complete transactions on the stock ex-
change or directly with other traders. The front-office com-
ponents execute on different hardware platforms in offices
in New York, Tokyo, Hong Kong, London and Frankfurt.

Front-office components for the different financial products
have been procured from specialized vendors. Once com-
pleted, every transaction has to be processed by middle and
back-office components in the headquarters of the bank.
These components perform the settlement of the transac-
tion, analyze the risk that the bank has undertaken and mon-
itor the performance of individual traders. Some back of-
fice components have been written in Cobol and execute on
mainframes and others are purpose built using C++ on Unix
machines.

Distribution middleware, such as message queues,
object-oriented middleware [3] and transaction monitors
can be employed to achieve reliable transfer between dis-
tributed system components.

Middleware, however, is not very good at resolving data
heterogeneity. Object-oriented middleware uses common
data representations for data conversions between different
data formats for atomic data types (e.g. EBCDIC charac-
ters into Unicode). The middleware does not go far enough
in resolving data heterogeneity. The integration of trading
components demandssemantic conversionsbetween differ-
ent data formats. For example, trades that do not involve
risks should not be sent to the risk management component.

The latest generation of markup languages, most notably
the eXtensible Markup Language (XML) [1] support the
definition of data structures through document type defi-
nitions (DTDs). These DTDs are, in fact, grammars for
special purpose markup languages. Although they were ini-
tially meant to represent structured documents on the world-
wide-web, they are increasingly used as data representation
mechanisms for complex structured data that needs to be
communicated between distributed system components.

The main contribution of this paper is the discussion of
an example of a successful combination of distribution mid-
dleware and markup languages that facilitates system inte-

Input Adapter 2

Input Ada pter n

Output Adapter 1

Output Adapter 2

Output Adapter n

Front-
Office

System 1

Front-
Office

System 2

Front-
Office

System n

...

FO1ToXML

Router

Back-
Office

System 1

Middle-
Office

System 2

Back-
Office

System n

...

XMLToBO 1

FO2ToXML XMLToMO2

FOnToXML XMLToBO n

Input Adapter 1

Figure 1. Overview of Trading Architecture

gration. The following Section 2 presents an overview of
the trading architecture that we discuss as an example. We
then indicate in Section 3 how markup languages, and in
particular XML, are used in this trading architecture to re-
solve semantic differences between different trade data rep-
resentations. We discuss in Section 4 how we use object-
oriented middleware in order to control the reliable trade
data transport between front, middle and back office com-
ponents. We conclude by indicating research directions to-
wards a tighter integration of markup and middleware.

2. An Overview of the Trading Architecture

The distributed trading system architecture has to meet two
main requirements. It has to:

� reliably transfer trading data between the distributed
system components and

� resolve the heterogeneity of the data that is produced
or expected by different trading system components.

Figure 1 shows an overview of the trading architecture
and the data flow between the different architectural com-
ponents. The different front, middle and back office com-
ponents cannot be modified, but rather have to be integrated
using their legacy interfaces. Input and output adapters
achieve this integration. They wrap [7] these legacy com-
ponents and hide the complexities of interfacing with these
components.

An essential requirement is that the trading data that
originates in a front office component has to reach those
middle and back office components that have to further pro-
cess the trade. Trade data are usually not sent to all middle
and back office components. Trades that do not involve any
risk, for example do not have to be sent to the risk man-
agement component. Hence the architecture has to manage

the routing of trades from front office to middle and back
office components. This routing is performed by the router
component.

The trading architecture meets the two main require-
ments shown above. The data flow is achieved by a reliable
notification mechanism that uses the CORBA Notification
Service. The input and output adapters that wrap existing
components perform translations to and from a common
trade data representation in XML. We now discuss these
two aspects in more detail.

3. Semantic Translations using XML

Conversion components could be built and integrated us-
ing, for example an object-oriented middleware, such as an
implementation of the CORBA standard [11]. That would,
however, require modelling the complete trade data format
in the OMG Interface Definition Language (IDL). The data
structures of trading data are large and complex. When
complex and large data structures are to be transmitted be-
tween conversion components using middleware there is
a substantial development overhead because in addition to
the mapping of the source data structure to the target data
structure, these data structures need to be expressed in the
interface definition language of the middleware. There is
also a run-time performance penalty to be paid because the
data structures need to be marshalled and unmarshalled. To
make things worse, the data structures for trading data are
far from stable. Traders develop new products (derivatives)
on a regular basis. Incorporating these new products into
the interface definition of the object middleware would de-
mand interface changes on a fortnightly or monthly basis.
The current CORBA standard and its implementations lack
the capabilities to manage such change.

It is, we argue, impractical to express large and com-
plex trading data structures using the interface definition

languages of middleware. High performance, low devel-
opment and maintenance costs can only be achieved if the
middleware does not have to interpret complex data. The
trading architecture therefore uses a trade data representa-
tion in XML and trade data is transported by the object mid-
dleware in an uninterpreted way. The use of XML is mo-
tivated by the availability of standards for financial trading
data and by the evolving tool support. Moreover, vendors of
front office components are starting to provide XML-based
interfaces to their components, which will further simplify
future integration.

The architecture defines a common trade data represen-
tation. The representation has been developed starting from
international financial standards, most notably the Network
Trade Model (NTM) [5] that will be incorporated into the
Financial Products Markup Language (FpML) [4]. The
NTM trade data representations have then been adjusted so
that bank-specific products can be represented. Figure 2
shows an excerpt of the document type definitions for the
model. The fragment shown is used to define the data struc-
tures that need to be exchanged for bond transactions.

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT Bond(IssueID,SettlementDate,BuyOrSell,

PriceOrYield, Principal, Accrual)>
<!ELEMENT IssueID (#PCDATA)>
<!ELEMENT SettlementDate (#PCDATA)>
<!ATTLIST SettlementDate datatype CDATA #FIXED "Date">
<!ELEMENT BuyOrSell EMPTY>
<!ATTLIST BuyOrSell value (Buy|Sell) #REQUIRED>
<!ELEMENT Principal (#PCDATA)>
<!ATTLIST Principal datatype CDATA #FIXED "Float">
<!ELEMENT PriceOrYield EMPTY>
<!ATTLIST PriceOrYield value (Price|Yield) #REQUIRED>
<!ELEMENT Accrual (Cashflow)>
<!ELEMENT Cashflow(CashflowID,CashflowPayment,

(FixedCashflow|FloatingCashflow|
ComplexFloatingCashflow)?,Notes?,
Extensions?)>

<!ATTLIST Cashflow
CFLType (FixedInterest|FloatingInterest|
ComplexFloatingInterest|Principal|
Fee|Premium|Commission|Tax|Other) #REQUIRED>

Figure 2. DTD for a Bond Trade

Figure 3 shows the data representation for a very simple
bond trade, which is an instance of the DTD in Figure 2.

The architecture has to implement mappings between the
proprietary formats that front, middle and back office com-
ponents produce or expect and the standardized XML based
format as shown above. These mappings are implemented
in a mapping service, which is called from within the output
and input adapters shown in Figure 1.

Some of the front office components have a message-
based interface and emit messages in proprietary formats.
These messages do not have XML markup tags, mostly be-
cause the front office components were built before XML
was defined. Consequently they cannot be parsed by an
XML parser. Instead, the architecture uses a specialized

<?xml version="1.0"?>
<!DOCTYPE BondTrade SYSTEM "NTM.dtd">
<Bond>

<IssueID> Bundesrepublik Deutschland</IssueID>
<SettlementDate> 26.05.1999 </SettlementDate>
<BuyOrSell value="Buy"/>
<PriceOrYield value="Yield"/>
<Principal>Wolfgang Emmerich</Principal>
<Accrual>

<Cashflow CFLType="FixedInterest">
<FixedCashflow>

<Rate>5.25%</Rate>
<Period>6m</Period>

</FixedCashflow>
</Cashflow>

</Accrual>
</Bond>

Figure 3. A Bond Trade in XML

mapping tool [6]. This mapping tool supports the defini-
tion of different message formats and rule based mappings
between them.

The architecture could use the eXtensible Stylesheet
Language (XSL) [2] to translate marked-up trade informa-
tion into the representations that the back-office compo-
nents expect.

XSL includes a rule-based language that can specify how
source tree elements are translated into target elements.
It supports projection (Omitting tree elements), traversing
trees in a particular order and the like. The XSL program-
ming support and processors that are currently available,
however, are not yet stable and sophisticated enough to war-
rant mission critical use. Instead, we use the mapping tool
that generates the translation for the output adapters also
for mapping XML representations to middle and back of-
fice representations.

XML has originally been defined as the next generation
Web Markup Language. Hence, it was initially assumed
that XML data is distributed using the HTTP protocol. The
HTTP protocol is however very inflexible as it supports only
point-to-point connections and only put and get operations
between them. Also there are no reliability guarantees for
delivery of XML data over HTTP, which renders the proto-
col unusable for reliable system architectures, such as the
one for the financial trading system. We now review how
data transport can be achieved with Middleware rather than
the HTTP protocol.

4. Middleware for Reliable Data Transport

There are many different middleware approaches, such as
message queues, object request brokers and transaction
monitors. Most of them can be employed to achieve reli-
able transfer between distributed system components. Mes-
sage queues buffer messages for temporarily unavailable
system components. Object-oriented middleware, such as
OMG/CORBA implementations, Java/RMI or Microsoft’s

COM, transmit structured data within operation parameters
and notify requesters if failures occur. Transaction monitors
use the two-phase commit protocol to achieve consensus be-
tween distributed components on the success of a transac-
tion.

This diversity of available middleware approaches and
the even bigger number of vendors offering middleware
products leads to a selection problem. Our approach
to selecting middleware for this trading architecture was
requirements-driven.

During the early stages of the trading architecture de-
velopment process, non-functional requirements were iden-
tified. These included scalability requirements, availabil-
ity requirements, reliability requirements, security require-
ments and maintainability requirements. Scalability re-
quired that the architecture has to be able to process up to
100,000 transactions per day. Security required that trade
information must not be eavesdropped and that trade infor-
mation should only be passed between system components
within the bank. Maintainability required the introduction
of new front, middle or back-office components to be re-
duced to a couple of months rather than several years that
it currently takes. In order to determine interfacing require-
ments legacy mining activities were performed so as to dis-
cover the legacy interfaces that were available for the inte-
gration of input and output adapters.

We compared message-oriented middleware,
transaction-oriented middleware and object-oriented
middleware first analytically and then using prototypes
in order to find a suitable middleware approach. Several
interesting results arose from that comparison. The degree
of standardization is far higher for CORBA products than
for message-oriented and transaction-oriented middleware.
Message-oriented and transaction-oriented middleware
are more difficult to use than object-oriented middleware,
mainly because of the need to “hand-code” marshalling.
As a result a middleware that implements the CORBA
standard was selected.

The trading architecture has to achieve a selective and
reliable multicast of trade data that is represented in XML.
Only a limited amount of trade data information is needed
for making the selection. These data have to be represented
redundantly both in the XML trade representation and in a
CORBA data type, that we refer to asRoutable . Even with
the selection of CORBA as the middleware and the aim to
reuse as many of the CORBAservices as possible, a number
of design options remained open. These are

� use of the CORBA Event Service as basis of the Router
implementation;

� use of the CORBA Messaging Service for reliable and
asynchronous trade data delivery; and

� use of the CORBA Notification Service as basis of the
Router implementation.

The CORBA Event Service is specified in Chapter 4
of [9] and is available for most CORBA implementations.
The CORBA Event Service supports asynchronous one-
way multicast of event data from one supplier to multiple
receivers. Moreover, it achieves a de-coupling of event pro-
ducers from event consumers. The Event service is rele-
vant to the trading architecture, as the trade data that needs
to be multicast from one front office component to multi-
ple middle- and back-office components can be regarded
as typed events. Furthermore, the architecture aims at de-
coupling trade data senders and receivers and that could be
achieved with the Event service, too.

The Event service supports both push- and pull-type
communication. The communication pattern in the trading
architecture is push rather than pull. The Event service sup-
ports both typed and non-typed event communications. In
the trading architecture event communication will be typed
(using theRoutable data structure) and the event types will
express those parts of the trading data structures that are of
concern for the routing of event data. The Event service is,
however, not suitable for the trading architecture as it does
not support the specification of quality of service attributes,
such as reliability of data delivery. Moreover, it does not
support event filtering, which is necessary to charge the ser-
vice with routing of trading data.

The CORBA Messaging service is specified in [8] and
supports guaranteed delivery of asynchronous object re-
quests in CORBA. It will be incorporated into the CORBA
3.0 standard and is not yet available in any product.

Call back objects in the messaging service support asyn-
chronous object requests. Messaging capable IDL compil-
ers will generate these call back objects for asynchronous
IDL operations. CORBA implementations are expected to
invoke call back objects transparently for the application
programmer when the server object finishes the request.
The Messaging and Event Services have in common that
they support asynchronous delivery of request parameters.
They are different in that firstly, the Messaging Service sup-
ports peer-to-peer communication, while the Event Service
supports multicasts, secondly the Event Service supports
unidirectional communication, while the Messaging Ser-
vice supports bi-directional communication, and finally the
Messaging Service supports guaranteed delivery which the
Event Service does not.

The Messaging service, however, is unsuitable. The time
between the creation of a trade at a front-office and the
back-office might well exceed several hours. It could some-
times even exceed a night. The messaging service would
need to keep callback objects for all those trades in order

Input Adapter 2

Input Adapter n

Output Adapter 1

Output Adapter 2

Output Adapter n

Front-
Office

System 1

Front-
Office

System 2

Front-
Office

System n

...

FO 1ToXML Back-
Office

System 1

Middle-
Office

System 2

Back-
Office

System n

...

XM LToBO 1

FO 2ToXML XM LToMO 2

FO nToXML XM LToBO n

Input Adapter 1

Event
Channel

Event
Channel

Figure 4. Use of CORBA Notification Service

to wait for acknowledgement of the receipt of the trade ob-
jects in all middle and back-office components. We would
expect that there will be a substantial overhead involved in
managing these callback objects in a fault-tolerant and re-
liable way. Moreover, there are no stable implementations
of the messaging service as yet and implementing the Mes-
saging service is beyond what can reasonably be achieved
in our setting as it requires modifications of the core of an
object request broker, such as the IDL compiler.

The CORBA Notification service was adopted by the
OMG Telecommunication Task Force [10] and overcomes
the shortcomings of the Event Service. There are various
implementation of the notification service available. The
Notification Service is based on the Event Service, and adds
capabilities to determine reliability of event communica-
tion, event prioritisation, event expiry and event filtering.
This makes the service very suitable for the implementa-
tion of trade data transport. In particular, it will be possi-
ble to treat all Output Adapters as event suppliers, all Input
Adapters as event consumers and the Router as an Event
Channel.

As shown in Figure 4, trade data are processed and con-
verted by output adapters into the standardized XML rep-
resentation and then passed into an event channel for dis-
tribution. The event channel knows the input adapters and
applies filtering to each event so as to make sure that every
event is sent to that subset of input adapters that have to re-
ceive the event. It is also shown that additional event chan-
nels may be used to further de-couple the conversion pro-
cess performed by the input adapter from a receiving mid-
dle or back office component. The input adapters may also
contact receiving back and middle office components with-
out involving an event channel if the interface to receiving
component already contains a queuing mechanism.

Figure 5 shows as a UML Sequence Diagram how
an output adapter uses the interfaces of the No-

tification service. To initialize itself, it obtains a
TypedSupplierAdmin object for Routable event
types from aTypedEventChannel and it then establishes
the qualities of service attribute for that channel, asking the
channel to retain its connections upon failure and to guar-
antee delivery of event data. Whenever event data needs to
be forwarded through the Notification service, the output
adapter converts the data into the standard XML represen-
tation and then invokespush structured events

from the TypedProxyPushConsumer object.
This will guarantee delivery of the event to all
TypedPushConsumersObjects that are currently
registered with the event channel.

Thus, by determining persistent event and connection re-
liability, an implementation of the trading architecture can
delegate guaranteed delivery to a Notification service imple-
mentation. By using the filtering mechanism supported by
the Notification service, each input adapter can ensure that
only relevant events are passed on to the middle and back
office component. The Notification service supports the ad-
ministration of these filters with a constraint language.

5. Lessons Learned

We learned numerous lessons during this project, the most
important of which we detail below.

1. The combination of markup languages and middleware
is largely successful. The use of middleware enabled
us to isolate functional concerns in the mapping com-
ponents. Further work will be needed by the OMG and
the W3C to achieve a tighter integration. In particular
it would be desirable to be able to see XML data struc-
tures through an IDL interface and vice versa. This
would have allowed us to avoid encoding data redun-
dantly in the Routable data structure.

2. Our first attempt to use XSL for the mapping of se-

: MurexOutput : TypedEventChannel : TypedSupplier
Admin

: QoSAdmin : XMLMapper: TypedProxyPu
shConsumer

1: get_supplier_admin

2: get_consumer(Routable)

3: set_qos()

5: push_structured_events()

EventReliability=Persistent &
ConnectionReliability=Persis
tent

4: murex2xml()

Figure 5. Output Adapter Interacting with Notification Service

mantic data conversions was seriously hampered by
the lack of tool support and higher-level abstractions.
The mapping of data structures needs to be done by
business analysts, who understand the semantics of the
different XML markups. For analysts, rule based XSL
specification is too low a level of abstraction.

3. Non-functional requirements determine most of the
choices during the selection and design of the archi-
tecture. The strong demand for scalability, reliability
and high availability drove the development of the ar-
chitecture and the selection of products that were de-
ployed in the architecture.

4. The remaining freedom for architectural design
choices were further restricted by constraints imposed
through standardized components, such as the CORBA
Notification service. In particular, the service de-
manded that its filtering mechanism has to be used for
distributing event data.

6. Conclusion

The strength of middleware and markup languages are com-
plementary. Based on the experience with this trading ar-
chitecture, we would expect this combination to be used in
those future distributed systems where complex data struc-
tures need to be transmitted between distributed off-the-
shelf components and semantic transformations have to be
performed. Such architectures will utilize middleware for
achieving reliable transport of data between multiple dis-
tributed system components. They will leverage markup
languages to express the structure of data so that seman-
tic data transformations can be determined at appropriate
levels of abstraction using standards and performed using
off-the-shelf technology.

Acknowledgements
The architecture described in this paper was developed
jointly with Jürgen Büchler, Henry Fieglein, Rolf K¨ohling,
Harald Viel and Stefan Walther.

References

[1] T. Bray, J. Paoli, and C. M. Sperberg-McQueen.
Extensible Markup Language. Recommendation
http://www.w3.org/TR/1998/REC-xml-19980210, World
Wide Web Consortium, March 1998.

[2] J. Clark and S. Deach. Extensible Stylesheet Language
(XSL). Technical Report http://www.w3.org/TR/1998/WD-
xsl-19980818, World Wide Web Consortium, August 1998.

[3] W. Emmerich.Engineering Distributed Objects. John Wiley
& Sons, April 2000.

[4] FpML. Introducing FpML: A New Standard for e-
commerce. http://www.fpml.org, 1999.

[5] Infinity. Infinity Network Trade Model Overview.
http://www.infinity.com/ntm/pdf/ntmOverview.pdf, 1999.

[6] MINT Technologies. MINT Rule Manager.
http://www.mintech.com/rule.html, 1998.

[7] T. Mowbray and R. Zahavi.The Essential CORBA – Systems
Integration Using Distributed Objects. Wiley, 1995.

[8] OMG. CORBA Messaging – Revised Joint Submission.
ftp://ftp.omg.org/pub/docs/orbos/98-03-11.pdf, MAR 1998.

[9] OMG. CORBAservices: Common Object Services Specifica-
tion, Revised Edition. 492 Old Connecticut Path, Framing-
ham, MA 01701, USA, December 1998.

[10] OMG. Notification Service. 492 Old Connecticut Path,
Framingham, MA 01701, USA, January 1998.

[11] OMG. The Common Object Request Broker: Architecture
and Specification Revision 2.2. 492 Old Connecticut Path,
Framingham, MA 01701, USA, February 1998.

