# An improved national house price index using Land Registry data # **RICS** Research paper series Volume 7 Number 11 September 2007 Selwyn Lim Calnea Analytics Menelaos Pavlou Calnea Analytics **Selwyn Lim's** research interests are in the field of automated valuation model (AVM) technology, in particular, the various applications of database, GIS, artificial neural network and statistical software to the development of automated valuation systems for residential property. He holds a Bachelor's degree from the University of York and a Master's degree from Magdalen College, University of Oxford. Menelaos Pavlou's current research interests involve the development of statistical methodologies for medical research. He is currently working on a PhD in Statistics at University College of London, focusing on a methodological project which looks into the analysis of longitudinal data with varying number of measurements. His first degree was in Mathematics at the Aristotelian University of Thessaloniki, Greece, followed by a Master's degree in Statistics at University College of London. # An improved national house price index using Land Registry data Volume 7, Number 11 September 2007 ### Panel of referees Kwame Addae-Dapaah National University of Singapore Singapore Akintola Akintoya Glasgow Caledonian University Scotland Saleh Al-Hathloul Alhathloul lilumran Kingdom of Saudi Arabia Adarkwah Antwi University of Wolverhampton England Ghassan Aouad University of Salford England David Baldry University of Salford England Malcolm Bell Leeds Metropolitan University Roderick Bisset Faithful & Gould Scotland England Alistair Blyth University of Westminster England Thomas Bohn University of Leipzig Germany Paul Bowen University of Cape Town South Africa Spike Boydell University of Technology, Sydney Australia Jagjit Chadha BNP Paribas UK Holdings Ltd United Kingdom S O Cheung City University of Hong Kong Hong Kong Chris Cloete University of Pretoria South Africa Charles Cowap Harper Adams University College England Hoffie Cruywagen Association of Quantity Surveyors in South Africa South Africa Julian Diaz III Georgia State University United States of America Tim Dixon Oxford Brookes University England Keith Duff Consultant England Richard Fellows University of Hong Kong Hong Kong Christopher Fortune Heriot-Watt University Scotland Karen Gibler Georgia State University United States of America Andy Hamilton University of Salford England Cliff Hardcastle University of Teesside England Barbara Haward University of Portsmouth England John Henneberry University of Sheffield England Robert Home Anglia Ruskin University England Aart Hordijk ROZ Real Estate Council The Netherlands Michael Hoxley Nottingham Trent University England Will Hughes University of Reading England Eddie Hui Hong Kong Polytechnic University Hong Kong Norman Hutchison University of Aberdeen Scotland L Jide Iwarere Howard University United States of America Ramin Keivani Oxford Brookes University England J M Lusugga Kironde UCLAS Tanzania Andrew Knight Nottingham Trent University England Richard Laing Robert Gordon's University Scotland Chris Leishman University of Glasgow Scotland David Lewis Royal Agricultural College England Colin Lizieri University of Reading England SM Lo City University of Hong Kong Hong Kong Sim Loo Lee National University of Singapore Singapore Sui Pheng Low National Universoty of Singapore Singapore David Lowe University of Manchester England Ahmed M Saleh Ouf Government of Sharjah United Arab Emirates John Mansfield Nottingham Trent University England Pat McAllister University of Reading England William McCluskey University of Ulster Northern Ireland James Meikle Davis Langdon England Stuart Morley GVA Grimley England Wordsworth Odame Larbi Ministry of Lands, Foresty & Mines Ghana Modupe Omirin University of Lagos Nigeria Jacob Opadeyi University of the West Indies Trinidad and Tobago Allison Orr University of Glasgow Scotland Ali Parsa University of Ulster Northern Ireland Rob Pickard University of Northumbria England Frances Plimmer Kingston University England Gwilym Price University of Glasgow Scotland David Proverbs University of Wolverhampton England Les Ruddock University of Salford England Sarah Sayce Kingston University England Karl-Werner Schulte University of Regensberg Germany Rainer Schultz University of Aberdeen Scotland Martin Sexton University of Salford England Low Sui Pheng National University of Singapore Singapore Francois Viruly University of Witwatersrand South Africa Clive Warrren University of Queensland Australia Christine Whitehead London School of Economics England Peter Wyatt University of the West of England England Saad Yahya Saad Yahya Associates Kenya # **RICS Research Paper Series** The aim of the RICS Research Paper Series is to provide an outlet for the results of research relevant to the surveying profession. Papers range from fundamental research work through to innovative practical applications of new and interesting ideas. Papers combine academic rigour with an emphasis on the implications in practice of the material presented. The Series is presented in a readable and lucid style which stimulates the interest of all the members of the surveying profession. ## **Editorial Team** Stephen Brown Head of Research RICS E: sbrown@rics.org T: +44 (0)20 7334 3725 > Amy Roberts Research Officer RICS E: aroberts@rics.org T: +44(0)20 7334 3750 September 2007 ISSN 1464-648X ISBN 978-1-84219-347-1 Published by: RICS 12 Great George Street London SW1P 3AD United Kingdom The views expressed by the author(s) are not necessarily those of RICS nor any body connected with it. Neither the author(s), nor RICS accept any liability arising from the use of this publication. This paper can be copied free of charge for teaching and research purposes, provided that: - the permission of RICS is sought in advance - · the copies are not subsequently resold - RICS is acknowledged # An improved national house price index using Land Registry data Selwyn Lim and Menelaos Pavlou (Calnea Analytics) ### **Abstract** The methods of constructing house price indices in the UK have lagged behind those employed in some Western countries. The deficiencies in these methods weaken the decision-making ability of investors, stakeholders and policy makers. This paper reviews existing methodologies and introduces the repeat sales regression (RSR) method in a UK context, utilising Land Registry data. Particularly, we build upon the argument presented by Leishman and Watkins (2002) that some deficiencies of the existing indices can in part be remedied through the application of the repeat sales regression method using Land Registry Data. We initially summarise evidence and conclusions drawn from previous studies in order to demonstrate through application that repeat sales regression analysis on the recently released Land Registry 'price paid' dataset, is the preferable methodology for the measurement of house price movements in England and Wales; addressing some of the shortcomings associated with the current methodologies. We present empirical research conducted by the author, illustrating the first application of repeat sales regression for England and Wales using Land Registry data. ### **Contact:** Calnea Analytics Press Office press@calnea.com www.calnea.com # **Acknowledgements:** We are grateful for the feedback from both the anonymous referees. # **Contents** | 1 | Introduction | 8 | |---|-----------------------------------------------|----| | 2 | Current indices and the Land Registry dataset | 10 | | 3 | Quality adjustment methodologies | 14 | | | 3.1 Mix-adjustment method (weighted averages) | 14 | | | 3.2 Hedonic methods | 14 | | | 3.3 Repeat sales regression | 14 | | | 3.3.1 Methodology | 16 | | | 3.3.2 Model Estimation | 19 | | 4 | Practical and theoretical limitations of | | | | the various methodologies | 20 | | | 4.1 Mix-adjustment and Hedonic Models | 20 | | | 4.2 Repeat sales regression | 22 | | | 4.2.1 Heteroskedasticity | 22 | | | 4.2.2 Sample Selection | 22 | | | 4.2.3 Inconstancy of attribute appreciation | 24 | | | 4.2.4 Multicollinearity | 24 | | | 4.2.5 House Improvement Adjustment | 25 | | | 4.2.6 Inefficiency | 26 | | 5 | Comparison of indices produced using | | | | the Land Registry dataset | 28 | | | 5.1 National indices compared | 29 | | | 5.2 RSR vs Hedonic | 31 | | | 5.3 RSR vs. Mix-adjustment | 32 | | 6 | Concluding remarks | 36 | | | References | 38 | | | PICS research namer series | 49 | # 1 Introduction dependable and precise source of house price information is required for a variety of purposes. Changes in house prices can have a significant effect on consumer spending and saving patterns, and for the majority of the population housing represents the most valuable asset they are ever likely to own. Moreover, information on house price levels and growth rates form the basis of key decisions made by a wide variety of decision makers, for example; home buyers, home sellers, mortgage lenders, valuation surveyors, and house builders. Accurate price series on a large number of assets, such as equities and bonds, is an essential feature of financial market research. Analogous information for local property markets (e.g. cities and towns) would be useful not only to researchers but also to town officials and homeowners. Furthermore, economic and social policy, on a national and local level, require reliable house price information. House prices feed directly into the RPI, through measured physical housing depreciation and mortgage interest payments: physical housing depreciation represented approximately one third of annual RPI-X inflation in December 2002. This in turn plays a significant role in the setting of interest rates by the Monetary Policy Committee. House prices are an important consideration in assessing macroeconomic developments. The measurement of house price movements is by no means an easy task. The principal problem is due to the fact that houses are heterogeneous goods. No two houses are exactly the same. Secondly, houses are sold infrequently; between 3% and 7% of all houses transact each year. Thirdly, as prices are negotiated, particular circumstances for individual buyers and sellers can lead to the situation that even extremely similar houses sell for very different amounts. Given the nature of individual houses and the property market, it is convenient and useful to capture the overall average price trends followed by a group of houses. In such a situation, it is common practice in economics to propose a single price index, e.g. consumer price index. A house price index is simply "one of many plausible measures of the central tendency of house price appreciation for a particular group of properties" (Araham and Schauman, 1991). Current problems regarding the evaluation of the property market in the UK are exacerbated by the lack of local or city level price indices. This fact gives grounds for several indices to be produced. There is a clear argument for the need to produce multiple indices. The only official national dataset involving each completed property transaction is provided by Land Registry and is described in the next section. In section 3 we provide an overview of the widely used Mix-adjustment and Hedonic methodologies. In the same section we present a detailed description of the RSR method. Section 4 discusses the relative merits and shortcomings of each method, both from a theoretical and a practical level. The implementation of RSR using the Land Registry dataset is discussed in section 5. Direct comparisons are made with the other methodologies as a means of highlighting the significant advantages brought by an RSR based price index using Land Registry data. Finally, section 6 summarises and discusses our findings. # 2 Current indices and the Land Registry dataset C ommentators including the Office of National Statistics acknowledge that none of the current house price indices completely meets user requirements. The current most popular measurements are those published by Halifax, DCLG and Nationwide using proprietary datasets. For Halifax and Nationwide, the recorded price refers to the negotiated price at time of approval of application for a mortgage at each lender. All cash purchases are excluded. It is worth noting that the indices produced are based on approved applications which may not always go through to completion. Also, for applications that do proceed to completion, the price of some transactions may be re-negotiated prior to completion. Therefore, the Halifax and Nationwide indices may not be a true reflection of prices actually paid. DCLG calculates indices based on prices at completion of a mortgage. The lack of reliable house price indicators weakens the decision-making ability of policy makers and investors. Nicol (1996) claims that such misinformation created problems for the Monetary Policy Committee of the Bank of England and exacerbated the problems of the last housing market recession. Leishman and Watkins (2002) claim that this has had significant implications for a range of principals in the housing market including private investors and policy makers. Neither the DCLG, Halifax nor Nationwide house price indices provide information to a geographical resolution greater than Government Office Regions. The methods used by the three main house price indices (DCLG, Halifax and Nationwide) are variants of the Hedonic regression model but comparisons between the indices usually send conflicting messages. Leishman and Watkins (2002) express unease about the use of these house price indices in the Retail Price Index for the calculation of mortgage interest payments, depreciation and other costs borne by owner-occupiers. The problems generally stem from the limitations in the volume of data that is being analysed. A lack of sample size introduces potential statistical bias and unreliability, particularly on a monthly basis while examining smaller geographical areas. Of the three main indices in use, the new DCLG house price index has the largest sample size. Since September 2005 the new mix-adjusted house price index is based on an enlarged sample of completions data (about 45,000 per month) from about 50 mortgage lenders who supply data through the Regulated Mortgage Survey (RMS) of the Council of Mortgage Lenders (CML)/BankSearch. Prior to this date the index was based on the Survey of Mortgage Lenders (SML) (about 25,000 completions per month). The number of cases received will also be affected by the total number of mortgages that have been completed. Table 1 presents the house price indices produced by several institutions based on monthly observations. | | Source data | Observations<br>(approx) | Quality<br>adjustment<br>method | Local indices | Frequency | Prioce<br>observations | |------------------------------|----------------------|--------------------------|---------------------------------|---------------|-----------|------------------------------------| | New Land<br>Registry | Land Registry | 100K | RSR | Yes | Monthly | Actual price paid | | DCLG | RMSdata | 45K | MA | Regional only | Monthly | Mortgage<br>completions | | Halifax | Loan<br>approvals | 12K | HR | Regional only | Monthly | Valuation at time of loan approval | | Nationwide | Loan<br>approvals | 12K | HR | Regional only | Monthly | Valuation at time of Ioan approval | | ОІЧ ОДЬМ | SMLdata | БK | MA | No | Quarterly | Mortgage<br>completions | | Hometrack | Estate agents | 4K | MA | 0N | Monthly | Estate agent reports | | Calnea/HomeCo | Asking prices online | 100K | MA | Regional only | Monthly | Asking price | | Rightmove | Asking prices online | Undiscosed | MA | Regional only | Monthly | Asking price | | FT/Academetrics | Land Registry | 100K | MA | 0<br>ا | Monthly | Actual price paid | | Old Land Registry | Land Registry | 100K | None | No | Quarterly | Actual price apid | | RSR: Repeat Sales Regression | | MA: Mix Adjustment | HR: Hedonic Regression | gression | | | " This time lag is reducing due to Land Registry improvements and the introduction of e-conveyancing is expected to have a further positive effect. The new Land Registry 'price paid' dataset which was recently released (January 1st 2005) contains approximately 100,000 transactions per month (~100% of housing completions) and incorporates data from April 1st 2000 onwards. It includes all UK registered residential property transactions and it provides unambiguous, accurate information on the Exact Address, Postcode, Date and Price Paid for each transaction. Information provided on Property Type is acknowledged by Land Registry as slightly less reliable. The dataset incorporates no information on any other qualitative or quantitative characteristics of a house, like number of bedrooms, toilets, living rooms, number of garages and garage spaces etc. Leishman, Watkins and Fraser (2002) lamented the lack of methodologically consistent local housing market price indices and suggested that such indices be constructed by Land Registry. The details held by Land Registry are updated following the receipt of an application at the appropriate local office. For guidance, on average this is a couple of months after a property transaction. For a given month, around 25% of the actual number of transactions are recorded at the end of the month, 80% by the end of the following month and 90% by the end of the second month. This time lag is reducing due to Land Registry improvements and the introduction of econveyancing is expected to have a further positive effect. # 3 Quality adjustment methodologies P rice indices can be created using simple averages; the current quarterly Land Registry reports are examples of this. However, as different properties are sold in each period, comparisons of simple average prices are prone to error. As previously noted, houses are heterogeneous goods as opposed to commodities. The volatility of simple average prices, as argued later in this paper, is primarily due to the lack of any quality adjustment. Reliable indicators require a system of measurement which adequately allows for differences in the sample of houses traded; in other words the sample data used in index calculation must be quality adjusted. Aside from the quality of the underlying data sample, the method chosen to adjust for heterogeneity in the data sample is the primary factor in determining the value of a particular system of measurement. This paper discusses the three main types of quality adjustment methods: The Mix-adjustment Method ● an approach based on weighted averages **The Hedonic Method** • an approach based on Hedonic Regression. The RSR Method • an approach based on Repeat Sales Regression. # 3.1 Mix-adjustment method (weighted averages) The most commonly used method of quality adjustment is the Mix-adjustment method, occasionally called the `matrix' or `weighted averages' approach. The popularity of this method is due to the ease of its implementation. It can improve on the reliability of an index calculated using simple averages by applying weightings to the constituents of the averages. Examples of this method include the old ODPM (DETR) Index, the FT House Price Index produced by Acadametrics, the Rightmove Asking Price Index, and the Hometrack Index. In this method a matrix is constructed dividing house price observations into groups or `cells' of observations depending on various property characteristics. Examples of characteristics collected by Land Registry that can be used to define these cells are: - Property type (i.e. detached, semidetached, terrace or flat) - Region (e.g. governmental office regions) ### 3.2 Hedonic methods A Hedonic econometric model is one where the independent variables are related to quality; e.g. the quality of a product that one might buy or the quality of a job one might take. For example, a Hedonic model of wages might correspond to the idea that there are compensating differentials that workers would get higher wages for jobs that were more unpleasant. The Hedonic methodology was devised in the context of measuring price changes for goods which consist of a wide range of characteristics. The idea behind the Hedonic model of Lancaster (1966), in the context of constructing house price indices, is that the price of a house can be accurately estimated from its individual qualitative and quantitative properties or characteristics. The obvious problem is that when a property is sold, the selling price corresponds to the worth of the house as a unity, as a bundle of characteristics; the contribution of each characteristic to the total price cannot be discerned. Given sufficient information and using multivariate regression, the value that the market attributes to each of those characteristics can be estimated. In particular, Hedonic regression uses a sample of house prices and by considering their individual that when the original standard is no longer representative, so a new starting point in time is defined and considered as the basis. Instead of delivering a simple summary of either raw growth rates or prices, Hedonic methods are trying to uncover the functionally correct mathematical model of house prices. In other words the models make explicit assumptions that both the functional form of the regression equation and the various # ....a property is valued according to the price of the locational and physical attributes it possesses. characteristics it calculates the underlying market price for the unit of each characteristic. These values are frequently referred to as "characteristics prices". Therefore a property is valued according to the price of the locational and physical attributes it possesses. It is then possible to estimate the change in average price from one period to another by holding the set of characteristics constant (standardisation). A standardised index is then obtained as the ratio of the price at a time period t to the price at a reference point in time (price at the base period). It is sensible parameters' values are correct. Hedonic regression is essentially a parametric method. Parametric models are those where the model structure is specified *a priori*. The term parametric is meant to imply that the number and nature of the parameters is fixed in advance. The Hedonic method was originally introduced in 1939; Rosen (1974) established its theoretical foundation while other early studies were conducted by Fleming and Nelis (1974); more recent references include Case *et al.* (1991), and Meese and Wallace (1991, 1997). For a more authoratative review of the hedonic literature, the reader could refer to Malpezzi, S (2003) Hedonic pricing models: a selective and applied review, in O'Sullivan, A and Gibb, K (eds) Housing Economics and Public Policy, Blackwells, Oxford. # 3.3 Repeat sales regression In this paper we suggest that the RSR method is a solution to the quality adjustment problems faced by the Land Registry dataset (Leishman, Watkins and Fraser, 2002; Costello and Watkins, 2002; Thwaite and Woods, 2003). Repeat sales methodologies focus on price changes rather than prices themselves, directly measuring these changes by examining only properties that have been sold at least twice. These measurements are combined in fairly intuitive ways to form estimates of the price index or growth rate in any particular time period. By using only properties that have been sold at least twice, contributing factors to variation in price growth are controlled. The RSR method of estimating house price indices was first introduced by Bailey, Muth and Nourse (1963). The main idea behind RSR is that the market-wide growth rate for a given period is reflected in averaging the observed individual growth rates of all properties that were transacted twice in that time period (Leishman, 2000). Wherever the necessary data has been available, RSR has gained popularity in economic application. RSR is now widely adopted by a number of large private, state and federal organizations in the United States, for example the Housing Economics and Financial Research Department at Freddie Mac (Federal Home Loan Mortgage Corporation). RSR is also a tool widely used in the study of other markets characterised by infrequent trading, such as the fine art market (Goetzmann, 1992). ### 3.3.1 Methodology The model underlying the Bailey et al (1963) method can be written as follows, using appropriate notation. Any property n that has been sold twice satisfies the following equation, $$R_{n,t_1,t_2} = \frac{P_{n,t_2}}{P_{n,t_1}} = \frac{I_{t_2}}{I_{t_1}} \times U_{n,t_1,t_2},$$ where $P_{n,t_1}$ and $P_{n,t_2}$ are the prices at which property n was sold at time periods $t_1$ and $t_2$ respectively, $I_{t_1}$ and $I_{t_2}$ correspond to the unknown indices at the times mentioned above and finally $U_{n,t_1,t_2}$ is an idiosyncratic error term; $t_1 < t_2$ , for $t_1 = 0, 1, \ldots, T-1, t_2 = 1, \ldots, T$ . The model means that the ratio of the final sales price in period $t_2$ to initial sales price in period $t_1$ for the $n^{\text{th}}$ property, which is defined as $R_{n,t_1,t_2}$ , is equal to the ratio of the (unknown) indices of the corresponding two periods with a property-specific noise term. The intuition behind the model is obvious. A pair of sales prices of a given property contains information on house price appreciation happening in the market it belongs to within the periods between the first and second sale (Case and Shiller, 1987). Therefore, the observed price appreciation between the two sales of this given property can be attributed to two factors: 1) the general trend of appreciation of the housing market this property belongs to, and 2) some property-specific elements that drive its house price to deviate from the overall trend of the housing market. The first factor is represented in the index ratio , $\frac{I_{t_2}}{I_{t_1}}$ , while the second factor is captured by the term $U_{n,t_1,t_2}$ , in the above model. To make the Bailey model more practical, one can transform the model into a linear form by taking logarithm of both sides of the equation, $$\log(R_{n,t_1,t_2}) = -\log(I_{t_1}) + \log(I_{t_2}) + \log(U_{n,t_1,t_2})$$ or $$r_{n,t_1,t_2} = -it_1 + it_2 + u_{n,t_1,t_2},$$ where lower case letters stand for the logarithms of the corresponding capital letters. In the Bailey model, it is assumed that the error terms $u_{n,t_1,t_2}$ have a mean of zero, constant variance, and are uncorrelated with each other and any $i_t$ . Recall the goal is to estimate lt, or, equivalently, it, for $t = 0, 1, \ldots, T$ . If one introduces T + 1 dummy variables xt, for t = 0, $1, \ldots, T$ , and rewrites the model above as $$r_{n,t_1,t_2} = \sum_{t=0}^{T} i_t x_t + u_{n,t_1,t_2}$$ where, if we denote initial sale and final sale periods as $t_1$ and $t_2$ respectively, $$x_t = \begin{cases} -1, & \text{if the period } t = t_1 \text{ is an initial sale;} \\ +1, & \text{if the period } t = t_2 \text{ is a final sale;} \\ 0, & \text{otherwise.} \end{cases}$$ Therefore, the model becomes a multiple linear regression model with T as the dummy independent variable. In matrix notation, the model is $$Y = X\beta + \varepsilon$$ where *Y* is a column vector containing the log of relative prices for each property $$Y = \left( egin{array}{c} r_{1,t_1,t_2} \\ r_{2,t_1,t_2} \\ r_{3,t_1,t_2} \\ ..... \\ r_{n,t_1,t_2} \end{array} ight),$$ If there are altogether M pairs of repeat sales in the sample, then X is an $M \times (T+1)$ matrix and at each row the $t^{\text{th}}$ component is -1 if $t=t_1$ , 1 if $t=t_2$ and 0 otherwise as the variables $X_t$ was defined before. Thus the matrix X is of the form $$X = \left(\begin{array}{ccccc} 0 & -1 & 0 & \dots & 1 \\ 0 & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ -1 & 0 & 1 & \dots & 0 \end{array}\right)$$ Finally, $\beta$ is a $(T + 1) \times 1$ column vector of the form Therefore, for $t = 0, 1, \ldots, T$ , $$\beta = \begin{pmatrix} i_0 \\ i_1 \\ \dots \\ i_T \end{pmatrix}.$$ $$\bar{I}_t = \exp(\hat{i}_t - \hat{i}_0 + \log 100).$$ We hence get house price indices $I_t$ , for t = 0, 1, . . . , T, after rebasing $\overline{I_0} = 100$ . ### 3.3.2 Model Estimation The model can be estimated by ordinary least squared (OLS) method, which can be implemented by most statistical software packages. The regression outputs are the estimated parameters $\hat{i}_t$ for $t = 0, 1, \ldots, T$ , which in matrix form is $$\hat{\beta} = (X'X)^{-1}X'Y.$$ However, this is still in logarithm form. In addition, it is convention to have an index of 100 for base period t=0, i.e. $\overline{I_0}=100$ . If we denote the indices estimated from OLS as $\widehat{I_h}$ and indices after rebasing as $\overline{I_h}$ for $t=0,\ldots,7$ , the relationship is the following: $$rac{\widehat{I}_t}{\widehat{I}_0} = rac{ar{I}_t}{ar{I}_0},$$ which, by taking natural logarithms in both sides of the above equation, is equivalent to $$\log(\bar{I}_t) = \log(\hat{I}_t) - \log(\bar{I}_0) + \log(\bar{I}_0) = \hat{i}_t - \hat{i}_0 + \log 100.$$ # 4 Practical and theoretical limitations of the various methodologies A large number of academic papers have been written comparing the relative merits of the various methodologies and the overall consensus seems to be that given idealised data samples, there was little to distinguish between the theoretical merits of the Hedonic and RSR methods. In 1992 Crone and Voith compared Hedonic and RSR methods and, although their findings were vague, they favoured RSR, mainly because RSR was the method least affected by reductions in sample size. In 1991 Hosios and Pesando found in favour of RSR methods. In 1994 Gatzlaff and Ling compared a variety of RSR and Hedonic methods. They found that both of these methods produced precise estimates of the index and growth rates. In 2000, Leishman summarised the research, claiming US studies show that the RSR and Hedonic methods are on par when given similar data sample sizes. The Mix-adjustment method is generally considered inferior to both Hedonic and RSR methods when constructing house price indices due to its incomplete quality adjustment procedure. # 4.1 Mix-adjustment and Hedonic Models The Bank of England's Structural Economic Analysis Division implies that the Mixadjustment method when using Land Registry data is unreliable. The Land Registry `price paid' dataset does not record bedroom numbers, square footage, number of bathrooms and other key attributes. Both the Mix-adjustment and Hedonic regression approaches require a large number of dwelling characteristics to be recorded if they are to be reliable (Thwaites and Wood, 2003). The volatility of the Mix-adjustment method is empirically demonstrated in the later sections of this paper. Overall, Mix-adjustment has been largely ignored by the academic literature that compares the various quality adjustment methods. Academics in the field have chosen to concentrate instead on comparing the two more advanced approaches to quality adjustment, the Hedonic and RSR methods. The clear limitation with Mix-adjustment is the specification of the characteristics defining the cells. In practice, the cells cannot be defined sufficiently to remove sources of statistical bias. Compositional changes will invariably lead to volatility in the final measurement. For example the common specifications for property type (e.g. detached, semi-detached, terrace or flat) can lead to a situation whereby a 20-room mansion is placed in the same category as a 3-room cottage. An approach to address this limitation is to increase the number of characteristics used to describe a house price observation. The outcome of this is a method that resembles the Hedonic model. The Hedonic method is essentially a more robust and advanced parametric form of Mix-adjustment. Indeed, Mix-adjustment and Hedonic regression can give very similar results if they adjust for the same property characteristics. The Hedonic method is designed for datasets containing detailed property information. The Land Registry dataset does not lend itself to Hedonic analysis as it does not capture detailed property characteristic information. In cases where such detail is captured, for example in both the Halifax and Nationwide data, the Hedonic method can be employed. Even with such data there are still limitations to the method. A significant difficulty the Hedonic method faces is the fact that it relies heavily on the correct specification of both the functional form of the model and the set of property characteristics (Meese and Wallace, 1997). Case and Quigley (1991) illustrated the Hedonic model in a general form, $P_t = f(x,t)$ , i.e. house price is a function of time *t* and the vector of all physical and locational characteristics x. This requires f to be correctly specified, and the vector x to be correctly chosen and accurately measured; none of these can be guaranteed. Incorrect specification of f and vector x introduces what is known as 'misspecification bias' (Bailey, Muth and Nourse, 1963; Case and Shiller, 1987). The most serious theoretical drawback of both Hedonic and Mix-adjusted methods concerns ignorance of the appropriate set of house attributes to include in the analysis. This can lead to inconsistent estimates of the implicit prices of the characteristics. Consistent estimates of implicit Hedonic prices will rely on the bold assumption that all omitted variables are orthogonal to those included in the analysis. Omitted unobserved characteristics correlated with those included can severely bias the Hedonic estimates and create index inaccuracies. This is a particularly acute problem for goods like properties. For example, it is widely accepted that the location of a property can significantly affect its price. Even for properties located in the same building, qualitative characteristics like "view" or "aspect" can cause important difference in the price. Therefore, no matter how detailed the housing characteristics collected, no Hedonic housing equation could practically observe precise location. With as many different locations as different properties, Hedonic equations simply cannot capture all location data. The already very complex Hedonic equations deal with 10 UK regions (Halifax and DCLG equations). Conversely, mainly due to the fact that RSR utilises a larger sample size, while simultaneously observing the precise location, RSR is able to produce indices down to the region level. In addition, if certain unobserved attributes were more common in houses sold at certain phases of the cycle (e.g. if higher quality properties transacted relatively more during booms) then the amplitude of the house price index fluctuations may be underestimated or overestimated. The crucial question for Hedonic and Mix-adjustment procedures is whether the chosen characteristics used for adjustment are the main determinants of price differences. While some of these are easy to measure (e.g. number of rooms), other important factors (e.g. vista) are often difficult to capture. The adoption of Hedonic methods requires a considerable data-collection effort as information is needed not only on product prices but also on their related characteristics. The most comprehensive single dataset containing sufficient characteristics for reliable analysis is the Halifax's proprietary dataset. However capturing ~12,000 transactions per month, this dataset falls short of the ~100,000 transactions per month that is captured by Land Registry. Whilst the Hedonic and Mix-adjustment methods cannot employ Land Registry data reliably (due to lack of property characteristic information), the Land Registry dataset can be reliably quality adjusted through the use of the RSR method. The lack of a sufficiently large dataset containing sufficient attribute information prevents the Hedonic method from providing a system of local house price indices for the United Kingdom. This is one of the drawbacks in the implementation of the Hedonic method and the reason why the RSR method should be examined as a potential improvement method in the UK context. # 4.2 Repeat sales regression There are a number of technical issues that arise from implementation of the RSR method. It must be recognized that no index estimation method is perfect, and the RSR method, while we believe it to be extremely robust and value adding, is not by nature bias free. A description of various technical issues follows below. ## 4.2.1 Heteroskedasticity Recall in the model of Bailey, Muth and Nourse (1963), the error terms $un, t_1, t_2$ are by convention assumed to have constant variances. Case and Shiller (1987, 1989) argued that $un, t_1, t_2$ has varying variances, and this is called heteroskedasticity in econometric literature. The solution Case and Shiller (1987, 1989) provided was a weighted repeat sales model. However, it has been argued that the effect of the model is ambiguous. Leishman and Watkins (2002) using Scottish data, applied both the normal RS method and weighted RS method and concluded that the normal RS method was preferred. 4.2.2 Sample Selection An important feature of the RSR method is that the sample used in RS regression only run. They argued that arbitrage typically forces prices for the repeat sample to grow at the same rate as those for the full sample. Another study of Wallace and Meese (1997) also arrived at the conclusion that the subsample of RSR is actually representative of includes houses that have been sold more than once, and therefore suffers from `sample selection bias' (Case, Pollakowski and Wachter, 1991 and 1997; Cho, 1996; Gatzlaff and Haurin, 1997; Meese and Wallace, 1997; Steele and Goy, 1997; Hwang and Quigley, 2004). The empirical study of Clapp, Giacotto and Tirtiroglu (1991) found no systematic differences between the RS sample and the full sample of all transactions over the long all home sales during the period under consideration. Pryce and Mason (2006) found evidence that the proportion of the housing stock which trades in a given period varies non-randomly across space. This issue raises the important question about what the underlying target of measurement is. Much of the debate over index methodology can be distilled to largely unrecognised disagreement over the desired # The increase in transaction costs for more expensive properties due to stamp duty may result in a decreased turnover of more expensive homes. target or intended application (Wang and Zorn, 1999). The RSR index is naturally more reflective of properties that transact more frequently. In so far as a differential in price appreciation exists between properties based on the relative frequency of transactions, the RSR measure will be naturally weighted towards the more frequently transacting subset of properties. There are a variety of reasons why the holding duration of properties might be unevenly distributed. The increase in transaction costs for more expensive properties due to stamp duty may result in a decreased turnover of more expensive homes. Life-cycle theories on property holding period posit that less expensive properties are traded more frequently; when people move up the property ladder they tend to move home less often. In addition the Buy-to-Let market is more active in the lower price brackets. Policy-makers need to be aware of the price appreciation differentials between submarkets, especially when there is systematic variation in the frequency of transactions between these submarkets. Hwang and Quigley (2004) conducted a study using comprehensive data from the Stockholm housing market during 1981-1999 to explore the effects of RSR sample selection bias and constant quality assumptions. They strongly concluded that these issues represented shortcomings in the RSR method and that their hybrid model yields significantly improved estimates. Unfortunately due to limitations in data availability, the Hwang and Quigley study and model cannot be replicated in the United Kingdom. The availability of housing characteristic data in Sweden, where even the type of roof tiles are recorded, is not comparable to characteristic data availability in the United Kingdom. 4.2.3 Inconstancy of attribute appreciation If one takes a Hedonic perspective to consider a house as a bundle of separate attributes, both qualitative ones and quantitative ones, the setting of the RSR method implicitly assumes that the prices of all these attributes move at the same rate over time, which may not be the case (Case, Pollakowski and Watcher, 1991). ### 4.2.4 Multicollinearity Multicollinearity refers to situations where there is an approximate linear relationship among independent variables (Kennedy, 2003). This is not a rare phenomenon in econometrics. Although the Gauss-Markov Theorem still ensures a best linear unbiased estimator, some problems can be caused in applied research: - Small changes in the data produce wide swings in the parameter estimates. - Coefficients may have very high standard errors and low significance levels even though they are jointly significant and the R<sup>2</sup> for the regression is quite high. - Coefficients may have the wrong sign or implausible magnitudes. Unlike other model specification problems, the problem of multicollinearity is caused by the specific sample used in the regression (Kennedy, 2003). Cho (1996) pointed out that this problem tends to arise with small sample sizes. With only a small percentage of transactions, two columns of the data matrix are by construction similar and hence highly correlated. However, this problem does not present itself materially in the UK housing market. The housing market liquidity in England and Wales is greater than most other countries. With ~100,000 residential property transactions per month and close to a 70% rate of homeownership, the national sample data does not suffer from material multicollinearity. 4.2.5 House Improvement Adjustment RSR requires that the property has undergone neither a significant enhancement in value, such as remodelling, nor substantial physical deterioration (Araham and Schauman, 1991), so that the single property price appreciation can be attributed solely to trends of market price movement. It is clear that all properties experience physical depreciation and in addition many properties are improved prior to sale. There are two contrasting approaches in the academic literature. The first approach advocates not adjusting for this issue. It holds that in the long-run the value of house improvements will equate to the value of depreciation such that this factor will hold constant. If it is viewed that the main component of value is space, i.e. square footage, then the argument regarding the irrelevance of depreciation or improvements gains strength. The alternative approach is to make an adjustment to the index to reflect the average value of improvements minus depreciation. Araham and Schauman (1991) believe that it is possible to correct the index directly from knowledge of the value of improvements nationwide. A perfect RSR model would require the absence of systematic property deterioration or improvement across the sample. It is worth noting that this same bias affects Hedonic model variants insofar as the home improvement or deterioration is not perfectly captured by the Hedonic variables. It is the view of the author that insofar as data on systematic property deterioration or improvement is available, this information can and should be practically incorporated in the model. One valuable source of such information is the English House Condition Survey (EHCS) annually conducted by the the remaining portion of data (i.e. the matched pairs) is likely to be superior to a similar sized dataset used by Hedonic methods. To fully understand the difference between the number of transactions and amount of Department of Communities and Local Government. ## 4.2.6 Inefficiency One critisism about the RSR method is that it only uses a portion of the transaction dataset (i.e. it only uses matched pairs and ignores other transactions) therefore suffering from inefficiency. Such comments often fail to note that the explanatory and informative power of information utilised it is important to understand how the transaction information is being used by the different methodologies. The characteristic based methods do not utilise exact address information; the only information on each transaction that is used are the characteristics analysed. RSR, on the other hand, utilises exact address information. Contained within exact address are all the characteristics that make an individual Figure 1: The number of transactions which have identifiable 'matched pairs' increases with time property unique. The information efficiency advantage of RSR stems from the fact that there is less chance of omitted variables, i.e. the method uses the information that is contained within the exact address. Additionally, it is important to point out that this already valuable dataset is improving over time at an increasing rate. As the time-span of data collection increases, an increasing proportion of transactions within the dataset will be able to be matched with other transactions, leaving fewer and fewer transactions left unmatched. Figure 1 shows these projections and their implications for the number of price observations available to RSR. # 5 Comparison of indices produced using the Land Registry dataset hile in theory there is little to separate RSR from the Hedonic method, in practice the RSR method is preferable in the creation of UK house price indices. This is primarily because the less onerous data requirements enable RSR to utilise the significantly larger Land Registry dataset. The Land Registry's price paid dataset contains details on every residential home purchase in England and Wales. As mentioned above, while Hedonic method is a valid technique, its heavy data requirements limit the datasets that can be used. To employ either the mix-adjusted or Hedonic approach with confidence, a detailed data sample needs to be collected. These data requirements are far stricter than the repeat sales methodology. Data on many of the attributes that are important determinants of the price of a property, particularly qualitative attributes, are not collected nationally by any institution in the UK. Although large databases containing information on both quantitative and qualitative attributes do exist (e.g. Nationwide, Halifax, and DCLG), the databases are still significantly smaller than that held by Land Registry. It is clearly a major advantage to have the largest database, as for a given level of aggregation, more data means tighter standard errors about the estimated mean of the price series (Araham and Schauman, 1991). Given a much larger dataset, RSR yields less volatile results on a national and local scale. This paper is not the first report to note that the Land Registry data is best suited to the RSR method. In a 2002 paper, Leishman, Watkins and Fraser claimed that the data compiled by the Land Registry lends itself better to repeat sales methods rather than the Hedonic approach. In fact, the limitations in the type of data available in the Land Registry dataset effectively prevent its use by any Hedonic method. A limitation of the Halifax, Nationwide and DCLG reports has been the lack of indices for geographical areas finer than broad government office regions; this is because necessary data do not exist in sufficient detail and volume for reliable local indices to be created. The size of the Land Registry dataset gives RSR the ability to create a system of indices for not only finer geographic areas but for other segmentation such as price and property type. Work carried out by the author shows that reliable indices can be created to the postcode area level. These have been found to have an equivalent level of volatility as a national level mix-adjusted index using the same Land Registry dataset. With the ability to identify matched pairs from within the Land Registry dataset, over time these indices will continue to improve. As frequently cited, one of the main problems with the existing indices is their lack of geographic focus. Munro and Maclennan (1986) point to the need to examine house price appreciation rates at neighbourhood level and caution against making assumptions about the aggregate nature and behaviour of markets. Costello and Watkins (2002), and Leishman Watkins and Fraser (2002) all argue strongly for the construction of a system of local house price indices for British cities using RSR, citing numerous decision-making benefits. The author has carried out an empirical estimation of indices using the methodologies described above, utilising Land Registry data. In the following sections we present the key findings of this analysis findings that support the arguments presented throughout this paper. Given the superior sample size opportunity presented by Land Registry data, the methodology that can best utilise this data could be seen as the logical choice for house price measurement in the UK. The relatively recent introduction of RSR was due to the historically limited availability of data; the restoration of 'price paid' to the Land Register for England and Wales only occurred in April 2000. The subsequent public release of this data occurred in January 2005. Leishman (2000), Leishman and Watkins (2002), and Leishman, Watkins and Fraser (2002) were the first to conduct research in applying RSR in the UK; however due to data constraints, their work was confined to Scotland. Calnea Analytics produces monthly RSR, Mix-adjustment and simple average indices based on Land Registry data. These indices, combined with index data produced by Halifax, DCLG and Nationwide are compared side-by-side in the discussion that follows. Empirical results display the dominance of the RSR method in terms of low index volatility. # 5.1 National indices compared It is plausible to argue that relative index reliability and accuracy can be inferred from the relative volatility or 'statistical noise' in the index results. Statistical noise caused by insufficiencies in either the data sample or the quality adjustment procedures tends to 44 Given the superior sample size opportunity presented by Land Registry data, the methodology that can best utilise this data could be seen as the logical choice for house price measurement in the " produce index volatility. Index volatility can be displayed visually and measured numerically. We should note that volatility may be due to genuine changes of the house market rather than statistical noise. However, econometric literature suggests that high volatility on such an aggregated level is unlikely to exist; therefore an observer could infer that the more reliable indices are those which display less erratic movements, i.e. fewer monthly changes that differ from the underlying trend. Numerical measurement of volatility can be performed. Common methods include measuring the standard deviation of monthly price changes. The stability of the RSR method using Land Registry data is consistently shown in all the empirical results in this paper. Relative comparisons of RSR with all the alternative methods on national, regional and segmental levels show RSR as the least volatile measure of price change. For the purpose of consistent and unbiased comparisons, all indices in this report have been observed prior to any application of seasonal adjustment or smoothing. A less volatile index will tend to have lower standard deviation of growth rate. The results in Tables 2 and 3 and also in Figures 2 and 4, rank (in terms of index volatility) the RSR method ahead of the Hedonic methods which in turn just outperform Mix-adjustment. As expected, the worst performing price index according to standard deviation is the Simple average index. The Simple average index is a series based on monthly arithmetic means, without using any quality adjustment procedure. We should stress that the above measure of volatility is rather subjective, since the underlying growth rate of the market is not actually known. However, intuitive knowledge Table 2: Performance of the indices over the last 79 months | | RSR | Halifax | Nationwide | DCLG | Mix<br>adjustment | Simple<br>average | |--------------------|--------|---------|------------|------|-------------------|-------------------| | Total increase | 109.4% | 117.3% | 109.7% | nc | 92.5% | 93.3% | | Standard deviation | 0.7% | 1.5% | 1.1% | nc | 1.7% | 2.0% | Table 3: Performance of the indices over the last 24 months | | RSR | Halifax | Nationwide | DCLG | Mix<br>adjustment | Simple average | |--------------------|-------|---------|------------|------|-------------------|----------------| | Total increase | 10.2% | 15.4% | 10.5% | 9.4% | 9% | 11.1% | | Standard deviation | 0.4% | 1.1% | 0.7% | 0.9% | 1.3% | 1.8% | of the market's movements suggests that it is unlikely that the market shows erratic swings in monthly growth; therefore one might conclude that such growth rate swings should be attributed to imprecise estimation. ## 5.2 RSR vs Hedonic The key feature of both these methods is that they offer a robust approach to quality adjustment. The differences in empirical results are almost wholly determined by the quality of the underlying dataset. The importance of the data sample is illustrated by direct comparisons between the Halifax and Nationwide indices. These indices often give different monthly results. In an effort to uncover the causes of the discrepancy both indices were adjusted for a variety of possible effects. For example, the supposedly northern-biased Halifax was adjusted for its regional mix. None of these adjustments had a material effect. Independent analysis by the Royal Statistical Association found no methodological reason why the price indices varied. Martin Ellis of Nationwide said, "The only conclusion we can come to is that the raw data, the samples which are used to calculate the indices, make the figures diverge. There's no other factor which can be responsible for the variations". The Halifax and Nationwide use property datasets that are significantly smaller than that held by the Land Registry. For example, the Halifax claims their database covers 12,000 mortgage approvals per month, whereas the Land Registry records approximately 100,000 home purchase transactions per month. Of the 7.5 million price observations recorded by the Land Registry since April 2000, around 3 million are multiple transactions of the same property. Already this number is roughly twice the number of price observations available to Hedonic methods. Therefore, not only is there more information, but the type of information RSR processes holds more informative power. The conclusions are corroborated in the graphs shown. Figure 2 illustrates the high historical correlation between indices in the long-run, however limited the short-term corroboration, while Figure 3 verifies that the volatility of RSR is lower than the Hedonic methods, as the standard deviations of growth rates in Table 2 suggest. # 5.3 RSR vs. Mix-adjustment Mix-adjustment can be performed on the Land Registry dataset. However, the lack of characteristic data means that the Mix-adjustment method offers minimal reductions in index volatility. Compared to Hedonic methods, Mix-adjustment is more volatile. When comparing Mix-adjustment to RSR, which can utilise the same dataset, RSR offers much lower volatility. It would seem that the advantages RSR has in terms of quality adjustment vastly outweigh the Mixadjustment method's ability to include more transactions in its calculation of averages. Figure 4 verifies once more the pattern of long term correlation between indices, but limited short term corroboration. The Simple Average and Mix-adjustment methods are inherently biased towards the growth patterns of more expensive properties. Over the last four years, the boom in the buy-to-let and first-time buyer markets have caused less ...not only is there more information, but the type of information RSR processes holds more informative power Figure 2: Monthly house price index Figure 3: Monthly price inflation Figure 4: Monthly house price index Figure 5: Monthly price inflation expensive properties to appreciate at a faster rate than more expensive properties. The lower growth rates of the Simple Average and Mix-adjustment methods in the graph above are caused by this phenomenon. This understatement is due to the fact that these indices are based on weighted averages of prices of `cells' rather than weighted averages of growth of `cells'. If the Mix-adjustment method is altered such that the weighted averages are applied to growth rates rather than prices, this bias is corrected. # 6 Concluding remarks ethodologically consistent local and national housing market price indices created using the RSR method will undoubtedly be of use to a wide range of policy makers, investors and other stakeholders. The purpose of this research has been to build upon the valuable work of Leishman, Watkins and Fraser (2002) amongst many others, in order to investigate the advantages brought by the RSR method in relation to its practical application using Land Registry data. The advantages and disadvantages of RSR have been well documented. Summarising we should stress that the greatest strength of RSR is its method of separating quality from price (Araham and Schauman, 1991). As mentioned earlier in this paper, the difficulty the Hedonic and Mix-adjustment methods face is the fact that they rely heavily on the correct specification of both the functional form of the model and the set of property characteristics (Meese and Wallace, 1997). Case and Quigley (1991) illustrated the Hedonic model in a general form, $P_t = f(x,t)$ , i.e., house price is a function of time and the vector of all physical and location characteristics *x*. This requires *f* to be correctly specified, and the vector x to be correctly chosen and accurately measured, neither of which can be guaranteed. Errors here introduce what is known as misspecification bias (Bailey, Muth and Nourse, 1963; Case and Shiller, 1987). For the RSR method, researchers control for Hedonic characteristics by examining only those properties that have been sold more than once during the period under consideration. Case and Quigley (1991) provided a general expression of the RSR model as: $P_{t2}/P_{t1} = g(t_1,t_2)$ , which obviously highlights the feature of RSR that it only depends on price data and transaction dates, both of which can be measured accurately. The functional form g is also unique to the property, which is a clear advantage over Hedonic regression and Mix-adjustment. Another clear strength of the method is the less strict data requirement. RSR requires only data on transaction prices and dates of two consecutive transactions, and does not require data on physical attributes. Thus, unlike other methodologies, RSR can perform extensive quality adjustment using the attribute lacking Land Registry dataset. There are currently 7.5 million price observations recorded by Land Registry, at present approximately 38% of these (around 3 million) are multiple transactions of the same property. It is misleading to make direct comparisons of sample size due to the additional informative power that RSR extracts from matched pairs. However, any direct comparison will still show that there are already far more price observations available to RSR from the Land Registry price paid dataset than to alternative datasets. The empirical research conducted by the author and presented in this paper suggests that not only can the Land Registry price paid dataset be usefully deployed in the construction of national, local and segmental price indices but that these RSR based indices display a significant stability advantage over other methodologies. It is widely accepted that there is no perfect house price index. However, the RSR method can be seen as a potential solution to the quality adjustment problems faced by index creation using the Land Registry dataset (Thwaites and Woods, 2003; Leishman, Watkins and Fraser, 2002; Costello and Watkins, 2002). The RSR index provides a true constant quality house price series for existing houses that can be calculated with reliability down to the postcode area level. It can provide hitherto unavailable insights to aid the decision-making ability of policy makers and investors operating in specific housing markets. Furthermore as the time-span of the Land Registry dataset increases, the reliability of the RSR index will increase. At the time of writing there remains the possibility that Land Registry will make available price paid data back to 1995. A longer time span will improve index reliability and could be incorporated as a simple recalibration of the index. A longer time span will improve index reliability and could be incorporated as a simple recalibration of the index. " # References Araham, J.M, David J., Schauman, W.S. (1991) "New evidence on house pries from Freddie Mac repeat sales", AREUEA Journal 19(3), 333-352. Bailey, M. Muth,R and Nurse, H.(1963), "A regression method for real estate price index construction", Journal of the American Statistical Association 58(304), 933-942. Baumohl, B. (2005), "The Secrets of Economic Indicators", Pearson Education. Case, B., Pollakowski, H. and Wachter, S. (1991), "On choosing among house price index methodologies", AREUEA Journal, 19(3), 286-307. Case, B., Pollakowski, H. and Wachter, S. (1997), "Frequency of Transaction and House Price Modeling", The Journal of Real Estate Finance and Economics, 14(1-2), 173-187. Case, B. and Quigley, J.(1991), "The dynamics of real estate prices", Review of Economics and Statistics, 73(1), 50-58. Case, K. and Shiller, R. (1987), "Prices of single-family homes since 1970: new indexes for four cities", New England Economic Review, 45-56. Cho, M. (1996), "House price dynamics: a survey of theoretical and empirical issues", Journal of Housing Research, 7(2), 145-172. Clapp, J. and Giaccotto, C. (1992), "Estimating price indices for residential property: a comparison of repeat sales and assessed value methods", Journal of the American Statistical Association, 87, 300-306. Clapp, J. and Giaccotto, C. (1999) "Revisions in repeat sales price indices: here today, gone tomorrow?", Real Estate Economics, 27(1), 79-104. Clapp, J., Giacotto, C. and Tirtiroglu, D. (1991), "Housing price indices based on all transactions compared to repeat subsamples", AREUEA Journal, 19(3), 270-285. Costello, G. and Watkins, C. (2002), "Towards a system of local house price indices", Housing Studies, 17(6), 857-873. Crone, T.M. and Voith, R.P. (1992), "Estimating House Price Appreciation: A Comparison of Methods", Journal of Housing Economics, 2(4), 324-338. Fleming, M.C. and Nellis, J.G. (1994), "The measurement of UK house prices: a review and appraisal of the principal sources", Housing Finance, 24. Gatzlaff, D.H. and Ling, D. (1994), "Measuring Changes in Local House Prices: An empirical Investigation of Alternative Methodologies", Journal of Urban Economics, 35(2), 221-244. Gatzlaff, D.H. and Haurin, D.R. (1997), "Sample selection bias and repeat-sales index estimates", Journal of Real Estate Finance and Economics, 14, 33-50. Goetzmann, W. (1992), "The accuracy of real estate indices: repeat sales estimators", Journal of Real Estate Finance and Economics, 5, 5-53. 24 Goetzmann, W. and Peng, L. (2002), "The bias of RSR estimator and the accuracy of some alternatives", Real Estate Economics, 30(1), 13-39. Greene, W.H. (2003), "Econometric Analysis (5th Edition)", Blackwell Publishing, 56-59. Hosios, A.J. and Pesando, E.J. (1991), "Measuring Prices in Resale Housing Markets in Canada: Evidence and Implications", Journal of Housing Economics, 1(4), 303-317. Hwang, M. and Quigley, J.M. (2004), "Selectivity, Quality Adjustment and Mean Reversion in the Measurement of House Values", Kluwer Academic Publishers, 28(2/3), 161-178. Kennedy, P. (2003), "A Guide to Econometrics (5th Edition)", Blackwell Publishing, 205-206. Lancaster, K.J. (1966), "A new approach to consumer theory", The Journal of Political Economy, 74(3), 132-157. Leishman, C. (2000), "Estimating local ousing market price indices using Land Registry data", Housing Finance, 47(August), 55-60. Leishman, C., Watkins, C. (2002), "Estimating local repeat sales house price indices for British cities", JPIF, 20(1), 36-58. Leishman, C., Watkins, C. and Fraser, W.D. (2002), "The estimation of house price indices based on repeat sales regression using Land Registry data", Report to RICS Education Trust, London. Meese, R. and Wallace, N. (1997), "The construction of residential housing price indices: a comparison of repeat sales, Hedonic regression, and hybrid approaches", Journal of Real Estate Finance and Economics, 14(1/2), 51-74. Munro, M. and Maclennan, D. (1986), "Intraurban changes in housing prices: Glasgow 1972-1983", Housing Studies, 2, 65-81. Nicol, C. (1996), "Interpretation and comparability of house price series", Environment and planning A, 28, 119-133. Pryce, G. and Mason, P. (2006), "Which house price?: finding the right measure of house price inflation for housing policy: technical report", Office of the Deputy Prime Minister, April. Rosen, S. (1974), "Hedonic Price and Implicit Markets: Product Differentiation in Pure Competition", Journal of Political Economy, 82, 34-55. Steele, M. and Goy, R. (1997), "Short holds, the distribution of first and second sales, and bias in the repeat-sales price index", Journal of Real Estate Finance and Economics, 14, 133-154. Shiller, R.J. (1994), "Macro Markets: Creating Institutions for Managing Societys Largest Economic Risks (Chapter 8)", Oxford University Press. Thwaites, G. and Wood, R. (2003), "The Measurement of House Prices, Bank of England Quarterly Bulletin, 38-45. 25 Wang, T. and Zorn, P.M. (1997), "Estimating house price growth with repeat sales data: Whats the aim of the game?", Journal of Housing Economics, 6, 93-118. 26 An improved national house price index using Land Registry data # **RICS** Research paper series ## **Submission of papers** The RICS encourages academics and other researchers to submit work that is relevant to the discipline of surveying in all its fields. Authors may submit either by post or by email. In the first instance, submissions should be made to the RICS. Postal submissions should be made in triplicate to: Stephen Brown Head of Research Royal Institution of Chartered Surveyors 12 Great George Street London SW1P 3AD UNITED KINGDOM Email submissions of Word or PDF files should be sent to sbrown@rics.org Telephone number for enquiries: +44 (0)20 7334 3725 The refereeing process is double blind and all submitted papers will be referred to at least two reviewers. ## The manuscript There is no fixed limit on the length of papers and each paper is published as: - A PDF on the RICS website, with no charge made for download. - A stand-alone published document Papers are placed on the RICS website immediately that they are completed and printed copies available shortly thereafter. While there is no word limit, it is anticipated that papers would be no less than 5,000 words and generally no more than 30,000 words. The manuscript must be in English, typed in double spacing on one side of A4 paper only, with a 4 cm margin on the left-hand side. The pages should be numbered consecutively. There should be no loose addenda or notes or other explanatory material. # Title page The first page of the manuscript must contain the full title: the name(s), affiliation(s), address(es) of the author(s); a title of not more than 75 characters and spaces; and five key words for the purpose of indexing. If there is more than one author, the corresponding author should be indicated. ### The abstract The second page should contain the title and an abstract. It should not contain the name(s) of the author(s). The abstract should not exceed 200 words and must be a clear summary of the contents of the manuscript, indicating the contribution that the paper makes to knowledge and providing a clear statement of the key findings and outcomes of the paper. ## Illustrations Any illustrations must accompany the manuscript but should not be included in the text. Diagrams, charts, photographs and maps, should be referred to as 'Figure 1', 'Figure 2' and so on. They should be numbered in the order in which they are referred to in the text. Illustrations can be colour or monochrome. When providing electronic version of illustrations, please ensure that these are of a sufficient resolution for reproduction. A resolution of 300 dots per inch is the minimum acceptable standard for images. They will normally be reduced in size on reproduction and authors should bear this in mind, particularly when selecting font sizes. Appropriate electronic submission is permissible. ### **Proofs** Proofs, in the form of a PDF file, will be sent to the corresponding author for correction and approval. The website is used to provide ongoing comment and feedback on papers that are posted on the website, and comments that are provided will be passed through to the corresponding author. Authors are provided with five free copies of their paper. Further copies can bought at a price of \$2.00 each. # **Publicity** The aim of the RICS is to ensure that papers are promoted and publicised to appropriate academic, professional, policy and media audiences. In pursuit of this, the RICS may seek to develop and issue supporting material for papers published, such as press releases and summary documents. The RICS will liaise with the corresponding author on the drafting of this material and on the appropriate degree of involvement of the author in this process. ### References The Harvard system should be used. References in the text should be quoted in the following manner: Jones (1999) or (Edge and Moody, 2001) or, if there are more than two authors ... Thomas *et al.* (2002). If there is a citation of a page number or numbers, the format should, as appropriate, be Smith (1999, 20), Smith (1999, 20-5), (Smith, 1999,20) or (Smith, 1999, 20-5). References should be collected at the end of the paper in alphabetical order by the first author's surname. If references to the same author have the same year, they should be differentiated by using 1998a, 1998b and so on. The style should follow the examples below: Chau, K.W., MacGregor, B.D. and Schwann, G. (2001) Price discovery in the Hong Kong real estate market, Journal of Property Research, 18(3), 187-216. Brown, G.R. and Matysiak, G.A. (2000) Real estate investment - a capital markets approach, Financial Times Prentice Hall, Harlow. If no person is named as the author the body should be used, for example: Royal Institution of Chartered Surveyors (1994) Understanding the property cycle, London. ### Copyright Submission of an article to the RICS Research Paper Series is taken to imply that it represents original, unpublished work, not under consideration for publication elsewhere. When submitting a manuscript, authors will be asked to transfer the copyright for their article to the Royal Institution of Chartered Surveyors, if and when the article is accepted for publication. The Royal Institution of Chartered Surveyors will not refuse any reasonable request by the author for permission to reproduce any of his or her contributions to the series in other forms. Permission to publish illustrations must be obtained by the author before submission and any acknowledgements should be included in the figure captions. # www.rics.org RICS (Royal Institution of Chartered Surveyors) is the largest organisation for professionals in property, land, construction and related environmental issues worldwide. We promote **best practice**, regulation and **consumer protection** to business and the public. With 130 000 members, RICS is the leading source of property related knowledge, providing independent, **impartial advice** to governments and global organisations. The Royal Institution of Chartered Surveyors 12 Great George Street Parliament Square London SW1P 3AD United Kingdom T +44 (0)20 7334 3725 contactrics@rics.org www.rics.org