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Abstract

We envisage pervasive computing applications to be
predominantly engaged in knowledge-based interactions,
where services and information will be found and ex-
changed based on some formal knowledge representation.
To enable knowledge sharing and reuse, current middle-
ware make the assumption that a single, universally ac-
cepted, ontology exists with which queries and assertions
are exchanged. We argue that such an assumption is un-
realistic. Rather, different communities will speak differ-
ent ‘dialects’; in order to enable cross-community interac-
tions, thus increasing the range of services and information
available to users, on-the-fly translations are required. In
this paper we introduce MaLM, a middleware for pervasive
computing devices that exploits an unsupervised machine
learning technique called Self-Organising Map to tackle the
problem of ontology heterogeneity. At any given time, the
MaLM instance running on a device operates in one of two
possible modes: ‘training’, that is, MaLM is autonomically
learning how to group together semantically closed con-
cepts; and ‘expert’, that is, given in input a query or as-
sertion expressed in a foreign dialect, MaLM identifies the
concept, expressed in the device mother-tongue, that most
closely represents it.

1. Introduction

Pervasive computing is quickly turning from vision to
reality. A wide range of devices, with different hardware,
software and network capabilities, are available on the mar-
ket and an always increasing number of people rely on one
or more of them (e.g., mobile phones, PDAs, portable mu-
sic players, etc.) to accomplish their daily task. The range
and variety of public resources and services offered to, and
being offered by, users of these devices will soon be over-

whelming. Coordinating these entities has been recognised
as a major challenge by middleware researchers and prac-
titioners, partly due to high degrees of heterogeneity both
in device capabilities, types of networks and services, and
communication paradigms.

Portable devices come in many forms, from resource-
poor to fully-fledged notebooks. As a result of mobility,
they make and break connections with a degree of spontane-
ity not found before in other forms of networks; while mov-
ing around different areas, they are required to interact with
different types of networks, such as WaveLAN, Bluetooth,
GSM, and so on. They have to understand and use differ-
ent communication paradigms (e.g., JEDI [9], Lime [17]);
they are expected to talk different service discovery proto-
cols (e.g., Jini [4], UPnP [18]). Various middleware sys-
tems have been proposed that tackle heterogeneity at dif-
ferent levels. For example, SATIN [20] is a light-weight,
general-purpose component-based middleware that exploits
logical mobility techniques to discover, download and de-
ploy the components needed at run-time by the mobile de-
vice to reconfigure itself and interact in new settings. ReM-
MoC [13] and INDISS [6] are two different approaches to
the more specific issue of interoperability among different
service discovery protocols, where the former is based on
reflection, while the latter exploits event-based parsing tech-
niques.

We argue that there exists another form of heterogene-
ity implicit in pervasive systems that has not been inves-
tigated yet, that is, ontology heterogeneity. Pervasive sys-
tems appear as localised communities where services and
resources are continuously offered and looked for. Devices
will be predominantly engaged in knowledge-based interac-
tions, where they will ask queries and give assertions about
some domain of discourse, based on a formal knowledge
representation, or ontology. Service discovery is an exam-
ple of knowledge-based interaction, where a client device
sends around a service request (i.e., query) and expects ser-



vice advertisements (i.e., assertions) in answer. Both the
request and the advertisements refer to the same domain of
discourse and are expected to be encoded using a formal
representation (e.g., OWL-S [19]).

In order to enable device collaboration, current mid-
dleware make the assumption that a single, universally
accepted, ontology exists with which knowledge is ex-
changed. We argue that this is an unrealistic assumption,
in the same way as it is unrealistic to assume that all mo-
bile devices will talk the same communication protocol over
the same network technology. Rather, different communi-
ties will use distinct dialects to formalise their knowledge.
Because of the autonomous nature of ad-hoc communities,
these dialects are likely to contain homonym and/or syn-
onym discrepancies, they are likely to evolve over time and
may be subject to incremental changes [12]. In order to fos-
ter pervasive computing collaborations, cross-community
interactions must be supported.

In this paper, we introduce MaLM, a middleware for per-
vasive computing devices that exploits an unsupervised ma-
chine learning technique called Self-Organising Map [15]
to tackle ontology heterogeneity. MaLM assumes each de-
vice speaks a certain language, which we sometimes refer to
as mother-tongue. In order to understand incoming queries
and assertions, MaLM autonomically learns: (1) how to
group together related concepts; (2) how to translate con-
cepts from a foreign dialect to the device mother-tongue. It
does so by means of unsupervised training, that is, from a
software developer and end-user perspective, the learning
and translation occur in a transparent manner.

The paper is further structured as follows: Section 2 mo-
tivates this research by illustrating two scenarios where on-
tology heterogeneity is a primary concern. In Section 3 we
provide a short background to the machine learning tech-
nique we have deployed; we then discuss how this technique
is used to enable MaLM autonomic training and transla-
tions. Section 4 discusses experimental results, Section 5
compares our work with others in the field, and finally Sec-
tion 6 concludes the paper.

2. Motivating Examples

In this section, we describe two scenarios where the
problem of ontology heterogeneity appears prominently: a
pervasive service discovery setting, and a distributed trust
management setting.

2.1. Ontology Heterogeneity in Service De-
scription and Discovery.

Almost any service discovery protocol for pervasive
computing is based on the following pattern: a client de-
vice A sends around a query, which contains a description
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Figure 1: Ontology Heterogeneity in Service Description
and Delivery.

of the service S that A is looking for. Such a description
usually consists of a list of attribute-value pairs (ai, vi),
where attributes and values are assumed to belong to a given
ontology O. In its simplest formulation, a query contains
a single attribute, indicating the service type A is looking
for; usually, additional attributes are included for more re-
fined queries, thus constraining, for example, the location
of the service, the QoS it offers, the cost, etc. The query
is evaluated either by service providers or by intermediate
nodes who maintain information about available services in
the proximity; available services are described by means
of a service descriptor, which is once again nothing but a
list of attribute-value pairs (a′

i, v
′
i), with attributes and val-

ues expressed in a given ontology O′. Until now, one of
the following two assumptions has been made by service
discovery protocols: either they assume that O ≡ O′, or
that it exists a statically known homomorphism φ such that
φ(O) = O′. In practice, that means that if any device
speaks a language other than O (device mother-tongue) or
O′ (statically known dialect), then it will be excluded from
potentially fruitful collaborations. Consider for example the
scenario depicted in Figure 1, where Alice is looking for a
car rental service provider. Among the group of providers
speaking Alice’s language, no-one exists that can provide
the service requested; with available middleware technolo-
gies, the discovery would thus fail, even though qualified
providers (i.e., Bob) are indeed available, but advertising
their services using a different ontology.

2.2. Ontology Heterogeneity in Distributed
Trust Management.

Distributed trust management systems are gaining
momentum, as a mechanism for devices to make better
informed decisions, for example, about who to interact
with in a pervasive setting. These systems rely on the
following idea: whenever a device A interacts with another
device B, A updates its trust tA,B ∈ [0, 1] in B based on
the outcome of the interaction; next time A has to make a
decision about B (e.g., whether to cooperate with it), A’s
trust in B will be used to decide whether to proceed. If B
is unknown to A, recommendations from devices that have
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Figure 2: Ontology Heterogeneity in Distributed Trust
Management.

interacted with B before are looked for. Behind this idea, a
key assumption holds: all devices use the same ontology O
to remember what is called the ‘context’ of the interaction;
remembering the context is vital as B may be a trustworthy
‘car rental’ company, but might provide untrustworthy ‘taxi
service’. If only recommendations coming from devices
who use the same ontology are taken into considerations,
a large amount of information may not be processed, as
exemplified in Figure 2.

Assuming the existence of a single, universally accepted
ontology is unrealistic in these scenarios. The same could
be said for traditional distributed systems; however, with
pervasive computing, the problem becomes much more pre-
dominant for various reasons: first, the scale of a pervasive
system is by orders of magnitude higher (in the number of
devices and services), thus the assumption of having a uni-
versal ontology becomes even less plausible; second, there
are no administrative boundaries within which to enforce an
ontology, rather, each device could be considered a bounded
domain of its own; finally, services and information are of-
fered in a much more dynamic, open, and serendipitous
manner, so that even static cross-ontology translations be-
come inapplicable.

3. MaLM Middleware

We propose MaLM, a middleware that exploits ma-
chine learning techniques to learn how to perform on-the-
fly translations across ontologies, removing the unrealis-
tic assumption that devices exchange knowledge by means
of a shared ontology (or a set of statically known ones).
It does so by means of an unsupervised machine learn-
ing technique called the Kohonen’s Self-Organising Map
(SOM) [15]. Informally speaking, a SOM can be visualised
as a two-dimensional structure (a rectangular grid), the cells
(or nodes) of which represent word categories; words with
related meaning are mapped on the same or spatially close
nodes. No a priori information about categories is neces-
sary; rather, a self-organizing process, governed by a neural

network algorithm, learns how to organise conceptually in-
terrelated words into the map. As a result, a model of the
word categories emerges. The learning process is unsuper-
vised, meaning that no teacher (i.e., the application devel-
oper or the end-user) is needed to define the node in the
map (called winner) to which an input word is semantically
closest. While more accurate results are expected to be ob-
tained with supervised learning techniques, we chose to in-
vestigate unsupervised learning first, in order to avoid the
burden that supervised learning imposes on the application
developer (or end-user) during training periods.

In the reminder of this section, we first provide some
background on the SOM technique; we then describe in de-
tails how SOM is used in MaLM.

3.1. Background: The Self-Organising Map

The Self-Organising Map is a very popular technique
within the information retrieval community used to per-
form document classification. The problem could be for-
malised as follows: given in input a document set, create
a two-dimensional map, so that conceptually related doc-
uments are mapped onto spatially close nodes. The map
self-organises itself by means of an initial training period,
during which each document belonging to a training set is
processed as follows: the document is described by a real
vector x(t) ∈ Rn, where t represents the tth element in the
training set; in practice, t could be seen as logical time, as
at each step a new document from the set is processed. At
bootstrap, each node i in the map is assigned a model vector
mi ∈ Rn, which has the same number of elements as the
input vectors x, and whose values are chosen at random.
For any input x(t), the following two steps occur:

Step 1 - x(t) is compared with all the model vectors
mi(t). The best-matching node on the map, i.e., the
node where the model vector is most similar to the in-
put vector in some metric (e.g. Euclidean) is identified.
This best matching unit is called the winner.

Step 2 - the model vectors of the winner and a number of
its neighbours are changed toward the input vector ac-
cording to the following learning principle:

mi(t + 1) = mi(t) + α(t)[x(t)−mi(t)],
∀i ∈ Nw(t)

mi(t + 1) = mi(t) otherwise,

where the factor α(t) ∈ [0, 1] is a scalar that defines the
relative size of the learning step, and Nw(t) specifies
the neighborhood around the winner in the map array.

At the beginning of the learning process, the radius of
the neighborhood is fairly large, but it is made to shrink



during learning. This ensures that the global order is ob-
tained already at the beginning, whereas toward the end, as
the radius gets smaller, the local corrections of the model
vectors in the map will be more specific. The factor α(t)
also decreases during learning. If the number of available
input samples is restricted, the samples must be presented
reiteratively to the SOM algorithm.

3.2. Self-Organising Ontology Map in
MaLM

MaLM uses the SOM algorithm described above in the
following way. We describe the algorithm from the perspec-
tive of the client device, when trying to understand replies;
the same steps apply for the server device, when under-
standing incoming queries.

Bootstrap - The document set is incrementally built: from
the service queries sent out by the device and the
service descriptors obtained in answers (in the case
of pervasive service discovery), and from the context
of recommendation requests’ and replies (in the case
of distributed trust management). These descriptions
(strings) are first broken into words; words are then
used to build up two dictionaries: Dm, of cardinality
nm, made up of words used in the requests, and Df , of
cardinality nf , made up of words used in the replies.
In other words, Dm is the device mother-tongue and
Df is a collection of ‘foreign’ ontologies. Each docu-
ment is then represented as a vector x(t) ∈ {0, 1}n,
where n is the cardinality of D = Dm ∪ Df and
x[i](t) = 1 if the ith word in D is present in docu-
ment t, and x[i](t) = 0 otherwise. In practice, the
dictionary is subject to growth over time, while new
queries/assertions are processed (i.e., the dictionary is
not fully known aforehand), so its cardinality is actu-
ally chosen to be bigger than the actual number of dif-
ferent words counted so far.

Training - A SOM is created, with its size chosen one or-
der of magnitude smaller than the size of the mother-
tongue dictionary Dm (a universally good choice does
not exist; in the following section, we provide de-
tails about our choice of values during experiments).
Model vectors are initialised at random within [0, 1]n.
Training starts with vectors whose words all belong to
the mother-tongue (i.e., derived from device’s queries).
For each of them, the process described in the previ-
ous section is applied; the Euclidean distance is used
as a metric to locate the winning model vector. At the
beginning, both α and Nw are set to high values (α
close to 1 and Nw close to the size of the whole map),
and are then made to linearly decrease with t. As the
sample set is usually not large, the process is repeated

over the same input until the map has becomes ‘good
enough’, that is, until the average quantisation error
E(||x−mw(x)||) (where w is the best match for x) is
made arbitrarily small.

Translating - Whenever a new service descriptor or rec-
ommendation is received, it is processed into a vector
x ∈ {0, 1}n, with words being added to Df (and thus
D) if necessary. The best matching node w is iden-
tified, and its associated vector mw (and possibly its
close neighbours) returned by SOM. The final trans-
lation simply requires to: (1) prune elements of mw

whose corresponding words do not belong to Dm; (2)
order the remaining elements by decreasing value of
mw[i] (from most significant to least significant words)
and return them.

While the above steps have been presented sequen-
tially, they actually happen in cycle during the device life-
time (i.e., the device goes back to training when new
queries/assertions are processed).

4. Evaluation

To evaluate the accuracy of the ontology mapping tech-
nique described in the previous section, we have conducted
the following experiment. We have extracted informa-
tion from the ontology used by Amazon Auction [1] and
eBay [2]; while these systems are not representative of per-
vasive computing applications, their ontology could well be
used by groups of pervasive devices, for example, in street
market fairs to advertise products from specific categories,
or to exchange recommendations about trustworthy sellers.
While the products on sale by these systems are broadly
speaking of the same type (antiques, books, clothes, etc.),
the ontology used are rather different; in particular, Ama-
zon Auction uses approximately 350 distinct words (dictio-
nary DA) to describe product categories, while eBay uses
approximately 650 (dictionary DE). DA is not strictly con-
tained in DE as the cardinality of DA∪DE is approximately
800.

We have simulated a scenario where a set of devices
uses DA as mother tongue, while another set of devices
uses DE . The two groups exchange queries/assertions ex-
pressed in their own dialect, while learning on-the-fly the
foreign one by means of the Self-Organising Map technique
implemented by MaLM middleware (we have used an im-
plementation of SOM called SOM PAK [16]). We have
collected 300 product descriptions (set VA) expressed us-
ing DA (e.g., “Exercise Sports Equipment”) and 500 de-
scriptions (set VE) using DE (e.g., “Inline Roller Skating
Sporting Goods”). These descriptions have been broken
into words and transformed into input vectors for MaLM as
described in the previous section. From the perspective of



devices speaking DA, VA vectors are used for training the
map, while VE vectors are the ones that require translations;
for devices speaking DE , the opposite holds.

We have run a number of experiments, varying the fol-
lowing parameters: size of the map, duration of training,
size of the learning step α(t), and size Nw(t) of the neigh-
borhood around the winner in the map. Our aim was to
experimentally find the values of these parameters so that
training (i.e., overhead) was minimal, while still bringing
accurate translations. At bootstrap, a 10x10 map is created
with values taken at random. The training is then split in
two steps: an initial coarse-grained learning, repeated 30
times, where input vectors in the mother tongue are used
to order the map (during this stage, we set α = 0.05 and
Nw = 10, that is, high learning rate and neighbourhood
that encompasses the whole map), followed by another 300
steps of fine-tuning, where α starts at 0.02 and Nw at 3, with
the former linearly decreasing to 0 and the latter to 1 during
training. At this point, the map is ready and, when used to
learn the foreign dialect, it gives an average quantisation er-
ror (computed over the whole foreign input set) of 1.8 when
DA learns DE , and 1.65 when DE learns DA. The aver-
age error is slightly higher in the former case as Amazon
Auction ontology is considerably smaller than eBay ontol-
ogy, that is, it is more difficult to accurately find a mapping
from an eBay descriptions to Amazon ones, as some words
are completely unknown to DA. Overall, error is very small
and MaLM is capable of quite precisely locating the point
in the map representing concepts which are semantically
close to the processed input (the average quantisation error
at bootstrap, before training starts, is around 10 in all simu-
lated settings). We have run the simulations on a notebook
with Intel Pentium processor 1400MHz CPU and 800MB
RAM; simulation time was approximately 75” for training,
and 60” to map the whole set of foreign descriptions to the
device mother tongue (approximately 0.1” to translate each
sample). While these numbers are not meaningful as the
tested device is ways more powerful than a pervasive com-
puting device, they demonstrate that the approach is indeed
worth investigating, and our next step will be to run MaLM
on really pervasive devices.

5. Related Work

Many research efforts have been devoted to solve the
problem of ‘protocol heterogeneity’ in pervasive com-
puting, leading to middleware-based solutions, such as
SATIN [20], ReMMoC [13] and INDISS [6], that exploit
a variety of components, reflection and event-based parsing
techniques to achieve interoperability.

To date, the problem of ontology heterogeneity has re-
ceived little attention instead. The few works that specifi-
cally tackle the issue can be classified in one of two cate-

gories: static mapping and dynamic mapping. Approaches
belonging to the former category (e.g., [5]) make the as-
sumption that the various ontologies are known a priori, so
that static mappings between the various ontologies can be
created off-line and injected into the device middleware; no
dynamic learning occurs so that, if a device is encountered
that speaks a language other than those already known, it
is inevitably excluded from interactions. Off-line transla-
tions between the new language and each of the other lan-
guages must be created and injected into the middleware,
inevitably leading to a scalability problem. Approaches be-
longing to the latter category (e.g., [14]) were mainly devel-
oped to tackle the problem of ontology heterogeneity for the
Semantic Web. In this domain, performance overhead is not
much of an issue; moreover, the degree of dynamicity ex-
perienced is by orders of magnitude lower than in pervasive
computing. As a result, a variety of supervised and semi-
supervised machine learning techniques (e.g., [11, 10]) have
been developed and proved to be very useful. We have been
inspired by these approaches; however, we argue that such
techniques are of limited applicability in the pervasive do-
main, as they are rather heavyweight both in terms of perfor-
mance overhead, in the amount of domain knowledge they
require from the application developer, and in the amount
of user intervention they expect.

In an attempt to find a solution to the ontology hetero-
geneity problem which could be successfully used in per-
vasive computing scenarios, we have explored an unsu-
pervised machine learning technique, which enables auto-
nomic learning and on-the-fly translations between a device
‘mother-tongue’ and other dialects, thus allowing higher de-
grees of flexibility and dynamicity.

6. Conclusion

In this paper we have presented MaLM, a machine learn-
ing middleware that tackles the problem of ontology hetero-
geneity. MaLM uses the Self-Organising Map unsupervised
learning technique to autonomically map queries/assertions
written in a foreign ontology onto the device mother-
tongue. A proof-of-concept evaluation based on eBay and
Amazon Auction ontology has demonstrated the accuracy
of the process.

Our plans for the future spans three main directions. To
assess the performance overhead imposed by MaLM, we
intend to run it on really pervasive devices, in particular,
mobile phones and PDAs; while these devices do not cover
the full spectrum of pervasive devices (leaving out the most
resource constrained ones), we expect them to be the most
widely used ones in the scenarios we have described in the
paper. To measure the trade-off between accuracy and us-
ability, we intend to investigate and experiment with super-
vised and semi-supervised learning techniques, thus being



able to better assess advantages and disadvantages of such
techniques in the pervasive computing scenario. Finally, we
plan to integrate MaLM with both a service discovery [8]
and a distributed trust management [7] platform for perva-
sive devices we have previously developed, and run experi-
ments in the context of a real market fair, as part of the Uti-
foro [3] EPSRC project; this will enable proper evaluation
in a real life setting where training happens incrementally.
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