
Department of Computer Science
University College London

University of London

Reflective Mobile Middleware

for Context-Aware Applications

Licia Capra

Submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

at the University of London

October 2003

Abstract

The increasing popularity of mobile devices, such as mobile phones and personal digital
assistants, and advances in wireless networking technologies, are enabling new classes
of applications that present challenging problems to application designers. Applications
have to be aware of, and adapt to, variations in the execution context, such as fluctuating
network bandwidth and decreasing battery power, in order to deliver a good quality of
service to their users.

We argue that building applications directly on top of the network operating system
would be extremely tedious and error-prone, as application developers would have to
deal with these issues explicitly, and would consequently be distracted from the actual
requirements of the application they are building. Rather, a middleware layered between
the network operating system and the application should provide application developers
with abstractions and mechanisms to deal with them.

We investigate the principle of reflection and demonstrate how it can be used to support
context-awareness and dynamic adaptation to context changes. We offer application engi-
neers an abstraction of middleware as a dynamically customisable service provider, where
each service can be delivered using different policies when requested in different contexts.
Based on this abstraction, current middleware behaviour, with respect to a particular
application, is reified in an application profile, and made accessible to the application for
run-time inspection and adaptation. Applications can use the meta-interface that the
middleware provides to change the information encoded in their profile, thus tailoring
middleware behaviour to the user’s needs. However, while doing so, conflicts may arise;
different users may have different quality-of-service needs, and applications, in an attempt
to fulfil these needs, may customise middleware behaviour in conflicting ways. These con-
flicts have to be resolved in order to allow applications to come to an agreement, and thus
be able to engage successful collaborations.

We demonstrate how microeconomic techniques can be used to treat these kinds of con-
flicts. We offer an abstraction of the mobile setting as an economy, where applications
compete to have a service delivered according to their quality-of-service needs. We have
designed a mechanism where middleware plays the role of the auctioneer, collecting bids
from the applications and delivering the service using the policy that maximises social
welfare; that is, the one that delivers, on average, the best quality-of-service.

We formalise the principles discussed above, namely reflection to support context-awareness
and microeconomic techniques to support conflict resolution. To demonstrate their effec-
tiveness in fostering the development of context-aware applications, we discuss a middle-
ware architecture and implementation (CARISMA) that embed these principles, and re-
port on performance and usability results obtained during a thorough evaluation stage.

2

Acknowledgements

First and foremost, I would like to thank my supervisors, Wolfgang Emmerich and Cecilia
Mascolo. When I first contacted them about three and a half years ago, I was rather
confused about what to do in my life; I wanted to come to London, but I was not really
planning to pursue a PhD. Their enthusiasm in doing research convinced me to join the
Software Systems Engineering group, first as a Research Assistant, and then as a PhD
student. Their guidance, experience and encouragement have been invaluable for my
research. I would like to thank Cecilia and Wolfgang even more for their friendship, for
having been so supportive, for the long talks we had when I was in a crisis, and for having
given me a house to live in when I was left homeless (I did not forget it . . . thanks again :)

Special thanks to Anthony Finkelstein for his very creative spirit that made our discussions
so stimulating and profitable. I would like to thank Steve Hailes for the precious feedback
he gave me in my first and second year viva; Ken Binmore and Pedro Rey-Biel for disclosing
me some of the mysteries behind microeconomic theory, and Clare Gryce for the immense
work she did in proof reading my thesis. I would also like to thank the Department of
Computer Science of University College London, for providing me with the resources to
develop this thesis.

I have been very fortunate to be in the company of a wonderful group of people here at
UCL that have made this period of my life so enjoyable. In particular, I would like to
thank Stefanos for always fixing my computer with his technical skills (what linux kernel
version am I running?); Rami for the year planners and the baklava (I still owe you a
couple of kilos); Judy for the crazy shopping we did in Orlando, and Nicola for being
such a great gossip-mate :). Thanks to Christian, Martin, Nima, Danila, Carina, Gena,
Torsten, Daniel, Mirco, Andy D., Andy H., and the whole 104 and 203.

I am indebted to my family, Loredana, Manillo and Marco, for their love and unconditioned
support, and for more than I will ever be able to express.

Last but not least, a very special thank to Luca, the best anti-stress I ever came across
with :)

Financial support for this work has been provided by Zuhlke Engineering Ltd.

3

A Loredana e Manillo

per avermi messo sulla bicicletta

e insegnato a pedalare

A Luca

per essere il mio vento a favore

4

Contents

1 Introduction 14

1.1 Background . 14

1.2 Towards a Mobile Computing Middleware 17

1.3 Thesis Contributions . 19

1.3.1 Reflection for Context-Awareness and Dynamic Adaptation 19

1.3.2 Auctions for Dynamic QoS Conflict Resolution 20

1.3.3 Formalisation . 21

1.3.4 System Design and Implementation 22

1.3.5 Evaluation of Results . 23

1.4 Thesis Outline . 23

2 Motivation 25

2.1 Introducing a Running Example . 25

2.1.1 Conference Application . 26

2.1.2 Research Perspective . 28

2.2 Assumptions . 31

2.3 Research Aims and Objectives . 32

3 Reflection in Mobile Computing 35

5

3.1 Principles . 35

3.1.1 Configuration through Metadata . 37

3.1.2 Dynamic Re-configuration through Reflection 39

3.2 Conceptual Model . 40

3.2.1 Application Profile . 40

3.2.2 Reflective Mechanism . 42

3.3 Formal Model . 44

3.3.1 Application Profile . 44

3.3.2 Reflective Mechanism . 52

3.4 Related Work . 55

3.4.1 Context Sensing . 56

3.4.2 Application Adaptation . 57

3.4.3 Middleware Adaptation . 60

3.5 Summary . 62

4 QoS Conflict Resolution 64

4.1 Conflicts . 64

4.1.1 Intra-profile . 65

4.1.2 Inter-profile . 66

4.1.3 On the Nature of Conflicts . 67

4.2 Requirements . 68

4.3 Microeconomic Mechanism . 69

4.3.1 The Protocol: an Informal Description 70

4.3.2 The Protocol: Formalisation . 72

4.3.3 Utility Function . 77

4.3.4 Quota Allocation . 79

6

4.4 Examples . 81

4.4.1 Intra-profile Conflict: Talk Reminder 81

4.4.2 Inter-profile Conflict: Messaging Service 84

4.4.3 Inter-profile Conflict: Access Proceedings 87

4.5 Related Work . 90

4.5.1 Resource Allocation . 90

4.5.2 Requirements Monitoring . 90

4.5.3 Negotiation Mechanisms . 91

4.5.4 QoS Provision . 92

4.5.5 Data Conflicts . 92

4.5.6 Policy Conflicts . 93

4.6 Summary . 93

5 CARISMA Architecture 95

5.1 Reflective Architecture . 95

5.1.1 Core . 96

5.1.2 Context Management . 97

5.1.3 Core Services . 98

5.1.4 Application Model . 99

5.1.5 Example . 99

5.2 Distributed Auction Protocol . 100

5.2.1 Minimisation of Communication Costs 101

5.2.2 Minimisation of Computation Costs 102

5.2.3 Comparison . 103

5.3 Summary . 105

7

6 Implementation and Evaluation 107

6.1 Implementation . 107

6.2 Qualitative Evaluation . 108

6.3 Performance Evaluation . 115

6.3.1 Experiment Design . 116

6.3.2 Impact of Reflection . 118

6.3.3 Impact of Context-Awareness . 118

6.3.4 Impact of Conflict Resolution . 120

6.3.5 Impact of Distribution . 122

6.3.6 Design Guidelines . 124

6.4 Summary . 126

7 Conclusions and Future Work 128

7.1 Contributions . 128

7.2 Critical Evaluation . 130

7.3 Future Work . 131

A Reflective API Semantics 134

A.1 Introspection . 134

A.2 Adaptation . 138

A.2.1 Remove . 138

A.2.2 Add . 141

A.2.3 Update . 146

A.3 policyStatusList Adaptation . 148

A.3.1 Remove . 148

A.3.2 Add . 150

8

A.3.3 Update . 151

B Metadata Encoding 153

B.1 Application Profile Schema Definition . 153

B.2 Utility Function Schema Definition . 155

References 157

9

List of Figures

2.1 Middleware (Sub)Layers. 31

3.1 The Reflective Process. 37

3.2 The Reflective Process (adapted). 40

3.3 ER Diagram of Application Profile. 41

3.4 Application Profile’s Abstract Syntax - Reactive 44

3.5 Application Profile - Domain Sets. 45

3.6 Reactive Metadata - Example . 45

3.7 Reactive Semantic Functions - Domain Sets. 46

3.8 Application Profile Semantics - Reactive (init) 47

3.9 Application Profile Semantics - Reactive (fire). 48

3.10 Application Profile Semantics - Reactive (reset). 48

3.11 Application Profile Semantics - Reactive (update). 49

3.12 Application Profile’s Abstract Syntax - Proactive Part 50

3.13 Proactive Metadata - Examples. 51

3.14 Application Profile Semantics - Proactive Part 52

3.15 Inspection of Reactive Metadata . 53

3.16 Adaptation of Reactive Metadata . 53

3.17 Adaptation of Reactive Metadata - policyStatusList 54

10

3.18 Inspection of Proactive Metadata . 54

3.19 Adaptation of Proactive Metadata . 55

4.1 Example of Intra-profile Conflict. 66

4.2 Example of Inter-profile Conflict. 67

4.3 The Auction Protocol. 71

4.4 Application Profile - Domain Sets. 73

4.5 Semantics of the Computation of the Solution Set. 74

4.6 Semantics of the Computation of Bids. 75

4.7 Semantics of the Election of the Winning Policy. 75

4.8 Utility Function Abstract Syntax. 78

4.9 Semantics of Utility Functions. 79

4.10 Example of Quota Redistribution . 81

4.11 Example of Policy Specifications. 82

4.12 Example of Application Profile. 82

4.13 Example of Utility Function Specification. 82

4.14 Example of Policy Specifications. 84

4.15 Example of Application Profiles. 85

4.16 Example of Utility Function Specifications. 85

4.17 Example of Policy Specifications. 88

4.18 Example of Application Profiles. 88

4.19 Example of Utility Function Specifications. 88

5.1 Middleware Architecture. 96

5.2 Core Architecture. 96

5.3 Context Management Architecture. 97

11

5.4 Core Services Architecture. 98

5.5 Application Model Architecture. 99

5.6 Middleware Architecture Example. 100

5.7 Algorithm for Minimisation of Communication Costs. 101

5.8 Algorithm for Minimisation of Computation Costs. 103

5.9 Peer-to-peer Interactions . 104

6.1 Conference Application Customisation - Non-functional Requirements. . . . 109

6.2 Conference Application Customisation - Resources. 109

6.3 XML Profile - Reactive Encoding. 110

6.4 XML Profile - Proactive Encoding (Access Proceedings). 111

6.5 Conference Application Screenshot - Access Proceedings. 112

6.6 XML Profile - Proactive Encoding (Exchange of Messages). 113

6.7 Conference Application Screenshot - Exchange of Messages. 113

6.8 XML Utility Function. 114

6.9 Roles and Responsibilities in the Reflective Process. 115

6.10 Benchmark User Interface. 116

6.11 Impact of Reflection. 118

6.12 Impact of Context-Awareness - Contexts. 119

6.13 Impact of Context-Awareness - Resources. 119

6.14 Impact of Context-Awareness. 120

6.15 Impact of Utility Function Parameters. 121

6.16 Impact of Conflict Resolution Mechanism - Number of Conflicting Policies. 121

6.17 Impact of Conflict Resolution Mechanism. 121

6.18 Impact of Reflection in a Distributed Setting - First Algorithm. 122

6.19 Impact of Reflection in a Distributed Setting - Second Algorithm. 123

12

6.20 Impact of Conflicts in a Distributed Setting - First Algorithm. 123

6.21 Impact of Conflicts in a Distributed Setting - Second Algorithm. 123

6.22 Algorithm Comparison. 124

13

Chapter 1

Introduction

1.1 Background

Portable devices, such as palmtop computers, mobile phones, personal digital assistants,
digital cameras and the like, are gaining wide popularity. Their computing capabilities are
growing quickly, while their size is shrinking, allowing their pervasive use in our everyday
life. Wireless networks of increasing bandwidth allow these mobile units to aggregate and
form complex distributed system structures, as well as to seamlessly connect to fixed net-
works while they change location. The combined use of these technologies enables people
to access their personal information as well as public resources anytime and anywhere.

The image that we used to associate to distributed systems, that is, of a relatively static
network structure made of fixed and powerful hosts, permanently connected to the net-
work and executing in a stable environment, cannot be applied to the mobile scenario.
Although the computing capabilities of portable devices are growing quickly, their CPUs,
memory size, as well as network bandwidth and latency, will continue to lag one or two
orders of magnitude behind their fixed counterpart. The mobile network topology is now
very dynamic, as nodes may come and leave freely. Hosts can be added, deleted or moved
in a distributed system too, but the frequency at which this happens is orders of mag-
nitude lower than in mobile settings; the size of wireless devices, in fact, has shrunk to
the point that most of them can be carried in a pocket and moved around easily. In a
fixed distributed environment, context is more or less static: bandwidth is high and stable,
location almost never changes, services may vary, but the discovery of available services
is easily performed by forcing service providers to register with well-known location ser-
vices, such as LDAP or DNS. The execution environment of a portable device is extremely
dynamic and subject to rapid, unpredictable and drastic changes, instead: location is no
longer fixed and, depending on location, the services and hosts in reach vary, as well as
the quality of the network connection. The performance of wireless networks (i.e., GSM,

14

Chapter 1 1.1 Background

GPRS networks, satellite links, WaveLAN [Held, 2000], HiperLAN [Networks, 2000], Blue-
tooth [Bray and Sturman, 2000]) vary greatly depending on the protocols and technologies
being used; for example, if a PDA is equipped with both a WaveLan network card and a
GSM interface, connection may drop from 11Mbs bandwidth when close to a base station
(e.g., in a meeting room), to less than 9.6 Kpbs when outdoor in a GSM cell (e.g., in a car
on our way home). Reasonable bandwidth may be achieved if, for instance, the hosts are
within a few (hundred) meters of their base station, and if they are few in number in the
same base station cell (some technologies provide a shared bandwidth to the hosts in the
same cell, so that, if they grow in number, the quality-of-service rapidly drops). However,
if a device moves to an area with no coverage or with high interference, bandwidth may
suddenly drop to zero and the connection may be lost. Unpredictable disconnections can
no longer be considered an exception, but rather they become part of normal wireless
communication.

Mobility breaks down the concept of stability that was prevalent in traditional distributed
systems, and a new concept of dynamicity arises. This loss of stability in the physical
infrastructure introduces challenging problems to application designers. Applications are
required to react to frequent changes in the environment, such as change of location or
of resource availability, variability of network bandwidth (that will remain by orders of
magnitude lower than in fixed networks), and so on. They need to face temporary and
unannounced loss of network connectivity, when their host is on the move. They are
usually engaged in rather short connection sessions; they need to discover other hosts and
services in an ad-hoc manner. They have to support different communication protocols,
according to the wireless links they are exploiting.

Building mobile applications directly on top of the network operating system available
on portable devices, would be extremely tedious and error-prone. Application developers
would have to deal explicitly with all the requirements introduced by mobility (partly listed
above). As a result, constructing and maintaining mobile applications would become less
efficient and cost-effective, as developers, overwhelmed by the new complexities, would be
distracted from the actual requirements of the application they are building.

When developing applications for traditional distributed systems, designers do not have to
explicitly deal with the problems related to distribution, such as heterogeneity, scalability,
resource sharing and fault tolerance. Middleware layered between the network operating
system and the application, provide application designers with abstractions, such as remote
evaluation, message passing, transactions, exception handling, and so on, that hide away
the complexity of distributed system construction from application developers as much
as possible. For example, developers do not need to know the location of a distributed
component to request a service from it, nor do they need to care of potential network
failures: the communication primitives that the middleware provides already take care of
these issues, so that developers are offered an image of the distributed system as a single
integrated computing facility [Emmerich, 2000]. In other words, distribution becomes

15

Chapter 1 1.1 Background

transparent [ANSA, 1989].

Different types of middleware technologies exist on the market that can be roughly clas-
sified based on the abstractions they implement. For example, the remote evaluation
abstraction is offered by current object-oriented technologies, such as implementations
of OMG CORBA [Pope, 1998] (e.g., IONA’S Orbix [Baker, 1997] and Borland’s Visi-
Broker [Natarajan et al., 2000]), the CORBA Component Model (CCM) [OMG, 1997],
Microsoft COM [Rogerson, 1997], Java/RMI [Pitt and McNiff, 2001] and Enterprise Jav-
aBeans [Monson-Haefel, 2000]). The message passing abstraction has been implemented
by message-oriented technologies, like IBM MQSeries [Redbooks, 1999] and Sun’s Java
Message Queue [Monson-Haefel et al., 2000]. Transactions are offered by transaction-
oriented middleware, such as IBM CICS [Hudders, 1994] and BEA’s Tuxedo [Hall, 1996].
These technologies are widely adopted in industry, thus proving the effectiveness of the
abstractions they implement in enhancing the development of distributed applications.

Although successfully used in stationary distributed systems, we argue that these abstrac-
tions and mechanisms have only limited applicability in the mobile setting. Traditional
distributed systems are characterised by a stable network infrastructure, where hosts are
permanently connected to the network through high-bandwidth links. This infrastructure
naturally promotes synchronous communication styles, such as distributed transactions,
object requests or remote procedure calls. For example, object-oriented middleware sys-
tems, such as CORBA [Pope, 1998], support synchronous point-to-point communication
abstractions that require a rendez-vous between the client asking for a service, and the
server delivering that service. Mobile devices, instead, often connect to the network oppor-
tunistically for short periods of time, mainly to access some data or to request a service.
Even during these periods, the available bandwidth is by orders of magnitude lower than
in fixed distributed systems, and it may suddenly drop to zero if an area with no net-
work coverage is entered. It is often the case that the client asking for a service, and the
server delivering that service, are not connected at the same time, because of voluntary
disconnections (e.g., to save battery power), or forced ones (e.g., loss of network coverage).
Mobile computing middleware should take the dynamicity of the network infrastructure
into account and promote asynchronous communication styles instead.

Moreover, the principle of transparency that has driven the design of traditional middle-
ware can no longer be applied. The execution context of a fixed distributed system is rather
static: the location of a device seldom changes, the topology of the system is preserved
over time, bandwidth tends to be stable, and so on. Because of the static nature of their
context, traditional middleware systems have taken the approach of hiding environmental
information from application developers, and of managing internally the rare changes that
happen, so that developers do not have to deal with them explicitly. For example, one
way to achieve scalability in distributed systems is through replication: a component is
copied onto different hosts, and these copies are kept synchronised with the master. If the
copy that an application is currently accessing is no longer available, because, for example,

16

Chapter 1 1.2 Towards a Mobile Computing Middleware

of a sudden network failure, middleware exploits its (mainly static) knowledge about net-
work topology to transparently redirect application’s requests to another accessible copy.
While this approach is plausible in a stable environment, it cannot be adopted in a mobile
setting. By providing transparency, in fact, middleware must take decisions on behalf of
the application; this is inevitably done using built-in mechanisms and policies that cater
for the common case rather than the high levels of heterogeneity and dynamicity intrinsic
in mobile environments. In addition, applications may have valuable information that
could enable the middleware to execute more efficiently. For example, because of frequent
disconnections, replica cannot always be kept synchronised in a mobile setting; if access
to a copy is suddenly lost, application knowledge should be exploited to decide which
of the available copies to contact (e.g., a synchronised copy may be less preferred to an
out-of-date one, if accessible only through a poor quality network link).

Finally, the interaction primitives provided by traditional middleware systems are usually
too heavy-weight to be used on portable devices. In order to deliver high quality-of-
service to applications, traditional middleware systems offer powerful abstractions (e.g.,
transactions) that often prescribe heavy-weight primitive implementations. While this
burden can be borne by the powerful machines that constitute the fixed scenario, resource
limitations on portable devices demand abstractions that can be provided through light-
weight primitive implementations instead.

In order to enhance the development of mobile computing applications, different principles
(other than transparency) have to be investigated, and new abstractions and mechanisms
have to be developed that can be used by middleware practitioners to build a new class
of middleware tailored to the mobile setting.

1.2 Towards a Mobile Computing Middleware

In order to understand what abstractions and mechanisms are needed to enhance the de-
velopment of mobile computing applications, we take an application developer perspective.
In the following, we isolate some of the new complexities that application developers have
to face in building and maintaining this class of applications, and that we aim to tackle
in this thesis.

Context-awareness and adaptation to context changes

Unlike fixed distributed systems, mobile systems execute in an extremely dynamic context.
By context, we mean everything that can influence the behaviour of an application, from
resources within the physical device, such as memory, battery power, screen size, and
processing power, to resources outside the physical device, such as location, remote service
available, network bandwidth and latency. Mobile applications need to be aware of changes

17

Chapter 1 1.2 Towards a Mobile Computing Middleware

occurring in their execution context, and adapt to these changes, to continue to deliver a
high quality-of-service to their users.

In order to achieve context-awareness, and enable adaptation to context changes, appli-
cation developers would have to face the following issues: first, they would be required to
deal with heterogeneous physical sensors to gather context information. This information
can vary considerably from sensor to sensor (for example, location information can be
gathered using the Global Positioning System outdoors, or infrared and radio frequency
indoors), and can require various processing in order to be interpreted correctly by differ-
ent applications (e.g., absolute location, relative location). Once this information has been
gathered and processed, the behaviour of the application has to be adapted to the newly
available context configuration; a mechanism would therefore be needed to detect context
changes of interest to the application, and to carry out the adaptation strategy required.
However, this mechanism cannot be simply based on a static mapping between possible
context configurations and corresponding adaptation strategies. First, we cannot expect
application developers to foresee all possible execution contexts, second, user’s needs may
vary over time, and thus require different adaptation strategies at different moments.

The construction and maintenance of mobile applications would be hampered and con-
siderably slowed down if application developers had to deal with these issues. Rather, a
middleware software layer developed between the network operating system and the ap-
plication should provide application developers with an abstraction of context that hides
the heterogeneity of physical sensors from applications, and enables them to easily specify
which portion of context they are interested in. Also, it should provide a mechanism to
dynamically specify which adaptation strategies have to be undertaken in answer to con-
text changes, based on varying user’s needs. Middleware, on behalf of the applications,
should then interact with the physical sensors to gather context information, process this
information in an application-specific manner, check whether a configuration of interest
to the application has been entered, and if so, execute the adaptation strategy required.

Quality-of-Service (QoS) conflict resolution

Applications running on mobile devices often have limited amounts of resources at their
disposal, so that they need to carefully exploit these resources, in order to deliver to their
users a good quality-of-service. When context changes, and adaptation is required, it is
likely that different users will have different quality-of-service needs, and this will cause
applications to compete in order to use the available resources and adapt as their user
demands.

When these conflicts arise, a conflict resolution mechanism must be put in place, so that
applications will agree on which adaptation strategy to apply (i.e., which quality-of-service
to deliver), and successful cooperations can be established.

18

Chapter 1 1.3 Thesis Contributions

When building mobile applications, we do not expect application engineers to design a
conflict resolution mechanism, as this would overburden them with additional complex-
ities. These conflicts, in fact, cannot be easily resolved at design time by assigning, for
example, priorities to various adaptation strategies, as this would not take into consider-
ation the current user’s needs, and thus may fail to deliver actual benefit to the parties
involved. Rather, a dynamic conflict resolution mechanism must be put in place that
takes into consideration both the current availability of resources, and the importance
that applications (and their users) associate to the quality-of-service levels involved.

Middleware, having direct knowledge of both the above running applications and of the
available resources, is in the best position to function as an arbiter in these disputes.
Suitable abstractions and mechanisms have therefore to be provided at the middleware
layer to enable dynamic conflict resolution based on user’s needs.

1.3 Thesis Contributions

The goal of this thesis is to investigate new principles, and design new abstractions and
mechanisms that, embedded in a mobile computing middleware software layer, facilitate
the development of context-aware applications. The following is an overview of the main
contributions of this thesis.

1.3.1 Reflection for Context-Awareness and Dynamic Adaptation

We have investigated the principle of reflection to offer application developers abstractions
and mechanisms that allow them to achieve context-awareness and adaptation to context
changes [Capra et al., 2001a, Capra et al., 2001b, Capra et al., 2002a].

Reflection is a technique that first emerged in the programming language community to
support the design of more open and extensible languages (e.g., see [Kiczales et al., 1991]).
By definition, reflection allows a program to access, reason about and alter its own inter-
pretation. The key to the approach is to offer a meta-interface supporting the inspection
and adaptation of the underlying virtual machine (the meta-level). We have borrowed the
idea of using reflection from the programming language community, and adapted it to
middleware in the following way.

Reification of middleware behaviour: we provide application developers with an abstraction
of middleware as a dynamically customisable service provider, where each service
that the application is willing to customise can be delivered using different policies
when requested in different contexts. For example, an instant messaging application

19

Chapter 1 1.3 Thesis Contributions

may wish to exchange messages in plain text when bandwidth is high, while using
compressed messages when bandwidth is low.

Middleware behaviour, with regard to a particular application it serves, is encoded in
an application profile, which contains associations between the services that middle-
ware delivers to the application, the policies that can be used to deliver the services,
and the context conditions that must hold in order for a policy to be applied. This
meta-encoding of middleware behaviour is then made available to applications (the
base-level) for inspection, so that they can dynamically interrogate the middleware
to know its current configuration, that is, its current behaviour. The process of
making some aspects of the internal representation of the middleware explicit, and,
hence, accessible to the application, is called reification.

Absorption of middleware behaviour: as user’s needs may vary over time, applications must
be allowed to customise middleware behaviour (i.e., to change the way services are
delivered) while executing. Middleware provides applications with a meta-interface
that enables run-time inspection and modification of the associations previously
made explicit. The process where some aspects of the system are altered or overrid-
den is called absorption.

The variety and heterogeneity of physical sensors is transparent to application engineers,
as they are offered an image of context as a uniform set of resources. Once they have
defined, in an application profile, which resources they are interested in, and how services
should be delivered in different contexts, middleware takes charge of periodically querying
the physical sensors and of determining the applicability of policies to deliver services.
It is however outside the scope of this research to investigate what happens underneath
the middleware, at the network operating system layer. We therefore do not research on
how contextual information is actually retrieved; instead, we assume that the network OS
provides an interface middleware designers can exploit to capture this information.

Context-aware computing is not a new computing paradigm; however, many of the solu-
tions developed to date are of limited applicability, either because of the narrow view of
context that they imply, or because of the lack of a systematic and principled approach, so
that mainly ad-hoc, rather than reusable solutions, have evolved. There is also a growing
community that is investigating the use of reflection in middleware; we will discuss our
position compared to related work in these areas in Chapter 3, after having presented our
approach.

1.3.2 Auctions for Dynamic QoS Conflict Resolution

Applications participating in the delivery of a service (e.g., instant messengers exchanging
lines of text) may come to disagreements with regards to the policy that has to be used,

20

Chapter 1 1.3 Thesis Contributions

that is, the QoS level they are willing to achieve in their current context. These con-
flicts cannot be statically resolved when application profiles are written, as they manifest
themselves only in relation to the particular context configuration available at the time
the service is requested, and to the profiles of participating applications. Therefore, a
dynamic solution is needed.

We have designed a conflict resolution mechanism that exploits micro-economic techniques
to dynamically solve these conflicts. We propose an image of the mobile distributed
system as an economy, where a set of consumers must make a collective choice over a set
of alternative goods. Goods represent the various policies that can be used to deliver a
service, and the different QoS levels associated with them. Consumers are applications
seeking to achieve their own goals, that is, to have the middleware deliver a service using
the policy that achieves the best quality-of-service, according to user’s preferences.

At the centre of the conflict resolution mechanism we have designed is an auction mecha-
nism that allows applications to express their own preferences (i.e., how much they value
the use of each conflicting policy), and therefore influence the way conflicts are resolved
[Capra et al., 2002b]. Whenever a service that incorporates a conflict is requested, middle-
ware plays the role of the auctioneer, collecting bids from the applications and delivering
the service using the policy that maximises social welfare, that is, the policy that delivers,
on average, the best quality-of-service.

The mechanism we have designed is simple, as it requires only a low computational over-
head; it is dynamic, as it solves conflicts at run-time, when a service that incorporates a
conflict is invoked, and it is customisable, as it takes application preferences into account.

The problem of resolving conflicts is a general one and different communities have in-
vestigated it over the years. We will discuss our position compared to related work in
Chapter 4, after having presented our approach.

1.3.3 Formalisation

In order to provide a better understanding of the abstractions and mechanisms we have
designed, we have provided a mathematical model that formalises their behaviour, using
denotational semantics [Capra et al., 2002b].

Dynamic adaptation. Dynamic adaptation to context changes is achieved by means of re-
flection and metadata (i.e., the associations between services, policies and context
encoded at the meta-level). These associations define which policies can be used to
deliver a service and when. In order to understand exactly what happens when a
service is invoked, we have provided the abstract syntax used to encode profiles, and
the denotational semantics of service invocation. In particular, we have defined a

21

Chapter 1 1.3 Thesis Contributions

semantic function that, given the name of a service, the associations attached to it in
the meta-encoding, and current context, determines the way in which the service is
delivered, that is, what policy is applied. Moreover, we have defined the set of oper-
ations that the meta-interface provides to applications to access the meta-encoding,
together with their semantics.

Dynamic QoS agreement. Whenever a service is requested, the policy that must be used
to deliver that service can be determined using the previously defined semantic
function. However, a conflict may arise when different policies are enabled at the
same time (i.e., in the same context). We have provided a formalisation of our
auctioning mechanism, in order to understand the way conflicts are detected and
solved. Conflict detection is based on the idea of sets. Each time a service is
requested, the set of enabled policies is determined. If the cardinality of this set
is exactly one, there is an agreement on the policy that must be applied, and no
conflict resolution mechanism is therefore necessary. If the cardinality is zero, a
conflict exists that cannot be automatically solved, as applications do not agree on a
common policy to be applied. Finally, if the cardinality is greater than one, there is
a conflict that can be resolved using one of the policies in the previously computed
set. In order to understand which of these policies is selected, we have formalised
the auctioning process. In particular, we have provided the semantic functions that,
given the set of enabled (i.e., conflicting) policies, determine which policy is finally
applied.

1.3.4 System Design and Implementation

To prove the effectiveness of the principles we have investigated in developing mobile
context-aware applications, we have designed and implemented a reflective middleware
architecture, CARISMA, that realises our middleware model. Only a minimal set of com-
ponents have to be installed on a portable device, together with a meta-level description of
the system. This core has a very small footprint, and therefore it is particularly well-suited
for use on portable devices. According to the functionalities that the application needs,
this set of components can be easily extended (e.g., new policies can be delivered, and new
sensors can be monitored), and the middleware behaviour dynamically re-configured (by
changing, through a reflective API, the meta-level description of the system).

We have designed two distributed algorithms to implement the conflict resolution mech-
anism, one that optimises time performance, the other that minimises communication
costs. Both algorithms either complete successfully, or fail gracefully as a result of loss of
connection.

22

Chapter 1 1.4 Thesis Outline

1.3.5 Evaluation of Results

CARISMA implementation has been evaluated with a number of case studies, so to
gauge the suitability of our reflective approach in achieving the main goals of this the-
sis [Capra et al., 2003]. In particular, we prove that the overheads introduced by reflection
and by the conflict resolution mechanism are moderate, so that, as far as performance is
concerned, CARISMA is well suited to run on portable devices. From the performance
analysis we have run, we have also derived heuristics on how to encode associations (i.e.,
to what level of detail) in order to achieve the best performance results.

To estimate the flexibility and usability of our approach, we have asked students to imple-
ment context-aware applications on top of CARISMA and to report on their experience.
The results have shown that the application development time is rather short, as the com-
plexities of dealing with changes happening in the environment have been confined inside
the middleware. Application engineers are only exposed to a small and easy-to-use inter-
face through which they can access and modify a high-level meta-encoding of middleware
behaviour.

1.4 Thesis Outline

Chapter 2 defines the motivation and the scope of our work. The characteristics of our
target applications are elicited, and our assumptions declared, together with the
aims and objectives of our research.

Chapter 3 introduces the concepts of reflection and metadata, and illustrates how they
have been exploited to achieve dynamic adaptation to context. The conceptual
model at the basis of our approach is first illustrated, and then formalised. Our
position to related work is discussed.

Chapter 4 introduces the concept of conflicts. A classification of the conflicts we are inter-
ested in is first presented, followed by the requirements that our conflict resolution
mechanism aims to achieve. Both a high-level description and a formalisation of the
mechanism are presented, followed by a set of clarifying examples. Our position to
related work is also discussed.

Chapter 5 discusses the construction of CARISMA, focusing on two major aspects: the
reflective architecture we have designed to achieve dynamic adaptability, and the
distributed algorithms that implement the conflict resolution process.

Chapter 6 offers a thorough evaluation of CARISMA, both quantitative, in terms of per-
formance (i.e., time requested to answer a service request), and qualitative, in terms
of usability. A critical evaluation of the results achieved concludes the chapter.

23

Chapter 1 1.4 Thesis Outline

Chapter 7 summarises and evaluates the contributions of CARISMA to mobile computing
middleware and explores directions for future work.

Appendix A contains the semantics of the reflective meta-interface.

Appendix B contains the grammar (XML Schema) used to encode meta-information.

24

Chapter 2

Motivation

In order to enhance the development of mobile computing applications, application engi-
neers should be provided with abstractions and mechanisms to deal with context changes.
This thesis investigates the principles needed to support the construction of context-aware
applications, and how they can be best offered to application engineers through a middle-
ware software layer.

Building a context-aware middleware requires the investigation of a broad set of aspects:
from techniques to sense context changes, to formalisms to encode context information,
from mechanisms to adapt application execution, to mechanisms to dynamically set the
quality-of-service level to be delivered in current context. In approaching the issue of
context-awareness, the following questions have to be answered in order to outline our
research perspective: what context is considered? Who adapts to context changes? Who
drives this adaptation?

In this chapter, we first introduce an example that illustrates the class of applications
our middleware model aims at supporting; we define what context is relevant to these
applications, and what kind of adaptation to context changes they need. Once the setting
of our research has been established, we define the assumptions our work is based upon,
and declare our research aims and objectives.

2.1 Introducing a Running Example

In this section, we sketch a conference application that is representative of the class of
context-aware mobile applications we target. In particular, we focus on the many lev-
els of complexity raised by mobility, to understand the requirements that context-aware
middleware for mobile computing would need to fulfil.

25

Chapter 2 2.1 Introducing a Running Example

2.1.1 Conference Application

Let us imagine a researcher Alice travelling to a conference with her own PDA. When
arriving at the conference location, no paper information (e.g., conference proceedings,
technical programme, local information, etc.) is provided; rather, a wireless network has
been put in place that allows attendees to access this information dynamically from their
portable devices.

Among the functionalities provided, Alice may:

1. Access the electronic proceedings to read papers of interest, browse through the
technical programme to find out which talks to attend, search for local restaurants
and places of interest.

2. Select the talks she wishes to attend and be alerted of those selected 10 minutes
before they start, to have time to reach the conference room where they are being
held.

3. Exchange messages with other attendees, for example, to share opinions, to arrange
meetings, to organise dinners, and so on.

1. Access to the electronic proceedings

Once she arrives at the conference location, Alice starts browsing through the technical
programme to select the talks she wants to attend the following day. It is difficult to
decide, as there are many good speakers and interesting topics. To make up her mind,
she accesses the on-line proceedings and has a look at the abstracts of the talks. While
doing so, she meets her old friend Bob, also attending the conference. The two decide to
have a look at the programme together, but as the weather is so nice, they want to do
that by the swimming pool. When they arrive there, however, the quality of the network
connection has worsened considerably and it takes them a significant amount of time to
access the content of a paper. They decide to move to find a place where they have better
connectivity, but suddenly they loose connection altogether, and they cannot access the
conference programme anymore.

Problem statement: the system was designed considering that
portable devices do not have much memory but they are connected
with reasonable bandwidth (e.g., using an indoor WaveLAN con-
nection). Therefore, the proceedings were not replicated on Alice’s
device, but always accessed on demand. Although saving memory,
the system failed to provide Alice with the information she wanted
at the time she needed it. What was more important here? Saving
memory or granting data availability?

26

Chapter 2 2.1 Introducing a Running Example

The system should be designed in such a way that the conference proceedings, as well as
any other piece of information, can be accessed in different ways when requested in differ-
ent contexts. For example, access to the proceedings may be obtained through network
reference (e.g., no data is cached on the PDA), when executing indoors (i.e., good network
connection) and battery availability is high (i.e., the user can stay connected for a long
period of time). Title and abstract of the talks may be cached locally instead, to grant
Alice data availability upon disconnections, either triggered by the user (e.g., to save bat-
tery power) or by the environment (e.g., degradation of network connectivity). However,
this is not enough. Only Alice knows what her needs are, and therefore what behaviour is
desired of the system. Moreover, her needs may change over time; availability may become
more important than saving resources, and, as a result, network link techniques should
be replaced by caching ones, possibly improved with compression mechanisms. It must
therefore be possible for Alice to express her needs (maybe depending on context), and
for the application to adapt according to these needs.

2. Reminder of the next talk

Alice and Bob go back inside the conference hotel, access the proceedings again, and select
the talks they wish to attend the following day. At 8.50am the next day, Alice’s PDA starts
beeping: the first talk to attend starts in 10 minutes, and a reminder appears on the screen
with information about the speaker name, the title of the talk, and the location where it
is going to be held. At 9.20am, the speaker is about to finish when Alice’s PDA starts
beeping again to remind her to change room to attend her next talk.

Problem statement: the reminder functionality of the system was
designed to capture user’s attention in noisy places as effectively
as possible. Therefore, a sound alert was activated each time a
reminder had to be issued. It was successful in capturing Alice’s
attention, but it also captured the attention of everybody else in
her auditorium. What was more important here? User’s respon-
siveness or discretion?

The reminder for the next talk must be delivered in different ways in different situations.
For example, Alice may wish to use a sound alert in open air environments (e.g. by the
swimming pool), a vibrating alert when attending a talk, and a silent alert when actively
using the PDA (i.e., a blinking message is enough to capture user’s attention). This is
just one possible solution. Bob, for example, or Alice herself sometime later, may wish to
use a sound alert also when attending a talk, so to be sure not to miss the alert, provided
that a head-set is being used. Once again, dynamic and user-driven customisation of the
system behaviour must be provided.

27

Chapter 2 2.1 Introducing a Running Example

3. Exchange of messages

Alice leaves the room and tries to talk privately to her friend Bob. She turns on the
messaging functionality of the conference application to see whether Bob is online. He is,
so they start chatting. However, together with Bob’s replies, Alice receives messages from
other attendees and friends who want to say hello.

Problem statement: the messaging functionality of the system was
designed to let people interact with each other; for example, to find
each other, to exchange opinions, arrange meetings, etc. There-
fore, when Alice was connected, all users of the system could see
her online. This was successful for finding out where Bob was;
however, it also made Alice visible to everybody else. What was
more important here? User reachability or privacy?

Alice’s visibility to other users of the messaging system should change according (for
example) to her status (e.g., ‘on-line’ means that everyone can see her, ‘busy’ means that
only her closest friends can see her, ‘invisible’ allows Alice to hide from everyone, for
example, while giving a talk herself). Moreover, the way messages are exchanged may
vary: messages may be sent in plain text, or encrypted, depending on the importance
Alice confers to issues such as privacy and resource consumption. What represents a
major concern to Alice, however, may not be a major concern to Bob, or to Alice herself
at a different time. Users must be allowed to specify what is of concern to them, and to
change this information at any time.

2.1.2 Research Perspective

The previous examples help us illustrate the perspective we take when designing mobile
computing middleware for context-aware applications. This perspective can be defined as
application-centric, that is, we look at the issue of context-awareness putting the applica-
tion (and its user) at the centre of our interest, as explained below.

What context do we consider?

Context has been defined in a variety of ways in the mobile computing arena.
[Schilit et al., 1994] emphasise three aspects of context: ‘where you are, who you are with,
and what resources are nearby’. [Dey et al., 1999] define context as ‘any information that
can be used to characterise the situation of an entity, where an entity can be a person,
place, or physical or computational object’. According to the entity we consider, some as-
pects of context are therefore more important than others. [Chalmers and Sloman, 1999b]
take the user’s perspective and give a definition of context as comprising ‘location, relative

28

Chapter 2 2.1 Introducing a Running Example

location, device characteristics, environment, and user’s activity’.

In the conference application example, aspects such as location, device characteristics,
network characteristics, and user’s activity are discussed more frequently than others.
However, we prefer to give a general definition of context, that is not restricted by the
particular examples we use:

Context is any information that is of interest to the execution of an
application.

This definition includes information that is local to the device the application is executing
on, such as available memory, available battery, screen size, and CPU speed; information
that is external to the device, such as location, available bandwidth, hosts, services and
resources in reach; and information that is application-specific, such as user’s mood, user’s
activity, and similar.

Note that the notion of context changes radically if we take a middleware (rather than an
application) perspective. From a middleware point of view, context comprises, for exam-
ple, the communication protocol used to interact with other devices, the service discovery
protocol put in place to dynamically discover resources and services, etc.

Who adapts to context changes?

In our application-centric perspective, we aim to support application adaptation to context
changes. In order to provide application engineers with abstractions and mechanisms that
facilitate the development of context-aware applications, we first need to understand more
precisely what ‘application adaptation’ means and what it demands. In particular, we
distinguish between reactive adaptation and proactive adaptation.

With reactive adaptation, we refer to the ability of the application to alter and re-configure
itself as a result of (i.e., in reaction to) context changes; the application can then present
itself to the users in different ways when executing in different context. For example, the
‘print’ option of an application main menu can be automatically enabled and disabled
based on the proximity to a printer; users of a chat application may be automatically
highlighted or overshadowed depending on their connectivity status, and so on.

With proactive adaptation, we refer to the ability of the application to deliver the same
service in different ways when requested in different contexts and at different points in
time. For example, in our conference application, access to the electronic proceedings
may be granted using caching techniques when executing in an unstable environment and
disconnections are likely to happen, while a network reference is preferred when executing
in more stable and richer environments.

29

Chapter 2 2.1 Introducing a Running Example

There have been approaches in the literature (e.g., OpenORB [Blair et al., 2001], ReM-
MoC [Capra et al., 2002a], UIC [Román et al., 2001]) that enable middleware adaptation
to context changes, where context is defined according to a middleware point of view. For
example, ReMMoC provides primitives that support adaptation of the service discovery
protocol used by middleware, based on the service discovery infrastructure available in
its current context. In this thesis, we take an application perspective instead, and aim
at providing application engineers with abstractions and mechanisms that facilitate the
achievement of both reactive and proactive application adaptation to context changes.

In this thesis, we do not target multimedia applications. For multimedia, adaptation has
to be performed in a continuous way, while information (e.g., voice and video) flows over
time [Coulson et al., 1992]. Although it would be possible to model continuous media
flows as repeated service invocations, there could be no concept of a long term quality-
of-service level to be achieved, as each invocation would be a separate, isolated event;
moreover, it would not be possible to specify synchronisation constraints that apply to
these sequences of requests. On the contrary, the class of applications we target requires a
‘per-request’ adaptation. We believe this represents an interesting class to study, as there
exists a large number of applications that fall into this category, and that would therefore
benefit from primitives that support this type of adaptation to context: from data-sharing
applications, where adaptation is performed each time some (piece of) data is accessed,
to web browsers, that adapt each time a new page is loaded, to e-mail clients, that adapt
the download and display of e-mail contents, and so on.

Who drives adaptation?

In our application-centric perspective, context-changes trigger adaptation, and the way
adaptation (both reactive and proactive) is carried out is driven by applications.

When installing an application on a mobile device, there is no static configuration that
can be used by the application itself to learn how to execute in different contexts. One
reason for this is that the variety of context configurations is so wide that one cannot
possibly cover all of them; another reason is that applications, or rather the users of the
applications, may change their minds, and therefore they may wish to adapt to context
changes in different ways, not only in different contexts but also at different moments.
Referring once again to the conference application example, at one moment Alice may
wish to exchange messages with peers in plain text if her user’s mood is set to ‘on-line’,
while using encryption when ‘busy’ (i.e., when willing to communicate privately with her
closest friends). Sometimes later, Alice may wish to give up encryption, because it is too
resource demanding, and want to exchange messages in plain text only.

As applications alone know what is important to their users and when, applications must
be put in a position that allow them to drive the adaptation process. We therefore need

30

Chapter 2 2.2 Assumptions

to provide application engineers with primitives to dynamically state how context changes
should be handled.

2.2 Assumptions

As we have pointed out in the previous section, our research aims to investigate principles
and techniques that enable the development of context-aware mobile computing middle-
ware. In doing so, we take an application-centric perspective, therefore focusing on context
information that is relevant to the application.

One can argue that a software layer that provides support for context-awareness only is not
a middleware, as it does not tackle fundamental issues, such as enabling communication of
distributed components. However, as we argued in Chapter 1, providing application engi-
neers with primitives that facilitate the communication of distributed components is not
enough: mobility introduces new complexities (e.g., context-awareness), that should not be
tackled by application engineers directly, as this would slow down productivity and would
compromise product quality. We believe middleware should be structured into different
layers, each focusing on a specific issue (e.g., communication, context-awareness, etc.). In
this thesis, we investigate one of these layers, while making the following assumptions as
far as other layers are concerned (see Figure 2.1).

1. First, we assume the existence of a communication (sub)layer that enables com-
ponents to coordinate via some wireless data link. We are not interested in what
particular communication paradigm is actually provided; we only require that it
fits mobile settings, and therefore that it tackles issues such as frequent discon-

Service Discovery
Asynchronous

Communication

Context
Encoding

Context
Sensing

Application Layer

Network Layer

Application−driven AdaptationApplication−side

M
ID

D
LE

W
A

R
E

S
O

F
T

W
A

R
E

 L
A

Y
E

R

Middleware−side Adaptation

Figure 2.1: Middleware (Sub)Layers.

31

Chapter 2 2.3 Research Aims and Objectives

nections. Asynchronous communication paradigms, such as message-based (e.g.,
iBus [Softwired, 2002]), event-based (e.g., Elvin [Segall and Arnold, 1997], iBus
[Softwired, 2002], JEDI [Cugola and Nitto, 2001]), and tuple space-based (e.g., Lime
[Murphy et al., 2001], TSpaces [Wyckoff et al., 1998], JavaSpaces [Waldo, 1998],
L2imbo [Davies et al., 1998]), would therefore fit.

2. Second, we assume the existence of an infrastructure to advertise and discover hosts,
services and resources in an ad-hoc network; this may be a simple broadcasting mech-
anism implemented on each mobile device, or a more sophisticated approach (e.g.,
Jini [Arnold et al., 1999], JMatos [Psinaptic, 2001] SLP [Guttman et al., 1999],
UPnP [UPnP Forum, 1998], Salutation [Salutation Consortium, 1999]). When dis-
cussing the implementation of our middleware model (see Chapter 5), we will provide
details about the communication and service discovery (sub)layers we build upon.

3. Although not necessary to our work, on top of these two layers there may be an
infrastructure that support middleware-side adaptation; assuming a middleware-
centric perspective, this infrastructure may enable, for example, customisation of
the communication and service discovery protocols, based on context (e.g., ReM-
MoC [Capra et al., 2002a]).

4. In the application-centric perspective we take, context information we are interested
in includes, for example, local resource availability (e.g., memory, battery, etc.), lo-
cation, bandwidth, hosts within reach, application-specific information (e.g., user’s
activity and mood), and so on. Middleware gathers this information by interact-
ing with a variety of heterogeneous sensors; for example, available battery can be
obtained invoking a primitive of the underlying operating system, location can be
computed interacting with various sensor technologies (e.g., GPS, infrared and ra-
dio frequency), user’s mood can be discovered invoking a method that the above
application provides. In this thesis, we are not interested in how (accurate) context
sensing is actually performed; we assume that each sensor, be it a location sensor, a
memory sensor, or a user’s mood sensor, provides an interface that middleware can
use to get the value of the associated resource (as accurately as possible). As long
as such an interface exists, the resource can be part of the context our middleware
monitors.

2.3 Research Aims and Objectives

As we have defined in Section 1.3, the goal of this thesis is to investigate new princi-
ples, and define new abstractions and mechanisms that, embedded in a mobile computing
middleware software layer, facilitate the development of context-aware applications. Given
the assumptions enumerated above, and the application-centric perspective we adopt, our
research aims and objectives can be summarised as follows.

32

Chapter 2 2.3 Research Aims and Objectives

Adaptation to Context Changes. We aim to support both reactive and proactive adaptation
to context changes. Although the way this adaptation takes place is application-
dependent, we aim to simplify this task, by providing application engineers with
abstractions and mechanisms to deal with both types of adaptation. In particular,
for reactive adaptation, applications should only define the context configurations
they are interested in, and the adaptations that must be performed when these con-
figurations are entered; similarly, for proactive adaptation, applications should define
how services should be delivered when requested in different contexts. The tasks of
monitoring the environment, detecting context configurations of interest to the ap-
plication and triggering the associated adaptation, and finding out how to deliver
services in the context in which they are requested, are delegated to a middleware
software layer that embeds the mechanisms we aim to provide. These mechanisms
should also enable applications to dynamically change the context configurations of
interest, the adaptation strategies adopted, and the way services are delivered, as
the application’s needs may vary during its lifetime.

In investigating the principles, and designing the mechanisms, that support applica-
tion adaptation to context changes, we are only marginally concerned with context
sensing (see Figure 2.1). It is our goal, instead, to provide application engineers
with a uniform representation of context, and with a well-defined and general in-
terface that they can use to inspect its status. Applications should therefore not
be concerned with how each sensor encodes status information about the associated
resource, and how this information can be retrieved: our middleware layer aims to
provide them with a high-level encoding that abstracts from sensor-specific encod-
ings, so that, be it a memory sensor, a location sensor, or any other sensor, the way
context is queried and the way resource status is encoded, appears (to the applica-
tion) to be the same.

QoS Conflict Resolution. In adapting the way services are delivered in various context con-
figurations, applications may come to quality-of-service disagreements. For exam-
ple, instant messaging application instances may disagree on the way messages are
exchanged: while one peer may wish to send encrypted messages to protect the in-
formation moved around, another peer may prefer to send plain text messages only,
to minimise resource consumption. As quality-of-service needs vary, applications are
likely to use the adaptation mechanism provided by the middleware to express con-
flicting preferences. We aim to provide a mechanism that allows automatic conflict
detection, and that enables applications to drive the conflict resolution process with
as little effort as possible.

In order to be effective, mechanisms for dynamic adaptation to context and for QoS conflict
resolution should not impose additional complexities on application engineers. We aim to
provide powerful abstractions and mechanisms that minimise application engineer efforts

33

Chapter 2 2.3 Research Aims and Objectives

in using them, while maximising automation (e.g., applications do not have to repeatedly
check the status of their context to detect changes as middleware does it on their behalves).

34

Chapter 3

Reflection in Mobile Computing

As we have outlined in the previous chapter, our research in the area of mobile computing
middleware tackles the issue of context-awareness from an application-centric perspective;
applications determine our definition of context, as any piece of information that is of
interest to their execution. Moreover, applications are responsible for driving the adap-
tation process (both reactive and proactive) that causes applications to dynamically tune
their behaviour when context changes occur.

In this chapter, we discuss the principles we exploit to support application-driven adap-
tation to context changes. We illustrate the conceptual model we have developed based
on these principles, and provide a formalisation of the model itself, to avoid ambiguities
in its interpretation.

3.1 Principles

Application-driven adaptation refers to the ability of applications to configure and re-
configure their behaviour, in order to adapt to different context conditions and needs.

With application-driven configuration, we refer to the ability of applications to control their
own behaviour in a set of pre-defined context configurations. For example, referring to
our conference application, an application-driven configuration may require access to the
electronic proceedings using a network reference when bandwidth is stable and battery is
high, while using caching techniques when bandwidth is variable and battery is low. Also,
an application may want to be notified when some pre-defined context configurations are
entered; for example, when running out of battery, or when new hosts come within reach.
Applications determine both the set of behaviours they want to adhere to, and the context
configurations that must hold in order for these behaviours to be applied.

35

Chapter 3 3.1 Principles

With application-driven re-configuration, we refer to the ability of applications to dynam-
ically change the set of possible behaviours, as well as the associations between these
behaviours and their corresponding enabling contexts, in order to cope, for example, with
varying application needs and unforeseen context conditions. Considering once again
our conference application, the set of behaviours associated with the ‘access proceedings’
service may be altered from ‘copy’ (i.e., caching techniques) and ‘link’ (i.e., network ref-
erence), to ‘copy’ and ‘compress and copy’ (i.e., first compress the proceedings and then
cache them locally), if availability of information when disconnected becomes a user’s pri-
mary need. Also, an application may alter the set of context configurations of interest,
and may ask also to be alerted when running out of memory.

Note that, although strictly related, application-driven configuration and re-configuration
are two distinct processes; in particular, one can have configuration without supporting
re-configuration, but not viceversa.

We aim to support both application-driven configuration and re-configuration in a prin-
cipled way, so that a reusable, rather than an ad-hoc solution, is promoted. On the
one hand, this solution should minimise the application engineer’s efforts in developing
context-aware applications, so that a high degree of automation should be provided; on
the other, applications should be allowed to control the adaptation process, whenever and
to the extent that they need to. We intend to reach this goal by means of a middleware
software layer that provides automation, and by exploiting the principles of metadata and
reflection to provide applications with the mechanisms and primitives to control the adap-
tation process. Before discussing how we exploit these principles in details, we provide the
rationale behind this approach.

As we argued in the previous chapter, in supporting context-awareness we do not want
application engineers to deal with low-level tasks, such as monitoring the environment,
detecting context changes, and so on. These repetitive tasks can be easily performed
by a middleware software layer that hides these complexities, thus providing the level of
automation we call for. However, applications alone know how to properly adapt and
when; middleware cannot have this knowledge a priori, because of the variety of applica-
tions, user’s needs, and context. Therefore, applications must be allowed, at any time, to
dynamically specify what context information they are interested in, which context con-
figurations they wish to react to, and so on. In other words, applications must be able to
dynamically customise middleware behaviour, with respect to the resources it monitors,
the alerts it issues, and so on. Metadata and reflection support this customisation in a
very effective and elegant manner. By definition [Eliassen et al., 1999], reflection allows
a program to access, reason about and alter its own interpretation. The key to the ap-
proach [Smith, 1982] is to make some aspects of the internal representation of the system,
or meta-level (i.e., the middleware), explicit, and hence accessible from the base-level (i.e.,
the application), through a process called reification. Applications are then allowed to
dynamically inspect middleware (introspection), and also to dynamically change it (adap-

36

Chapter 3 3.1 Principles

Meta−interfaceab
so

rb
ti

o
n

re
if

ic
at

io
n

Metadata

Base−level

Meta−level

Figure 3.1: The Reflective Process.

tation), by means of a meta-interface that enables run-time modification of the internal
representation previously made explicit. The process whereby some aspects of the system
are altered or overridden is called absorption. In principle, a reflective system could be
structured into a (potentially unbounded) number of logical meta/base levels, leading to
what is known as the “reflective tower” [Smith, 1982]; in practice, there are seldom more
than two of them. The whole process is depicted in Figure 3.1.

The principles we exploit to support application adaptation to context mirror the asym-
metric dependability between the goals we aim to fulfil: we use metadata (i.e., reification
of middleware behaviour) to achieve application-driven configuration, and reflection to
add support for application-driven re-configuration.

3.1.1 Configuration through Metadata

Application-driven configuration concerns both reactive and proactive adaptation. As far
as reactive adaptation is concerned, configuration refers to the ability of the application
to define which aspects of context are of interest to the application itself (e.g., battery
availability, location, etc.); to identify which context changes are relevant (e.g., available
battery power falls below 10%, a printer becomes reachable, etc.), and to associate be-
haviours the application is willing to adhere to when such changes occur (e.g., switch off
the back light of a PDA, fire an alert, etc.).

In the case of proactive adaptation, configuration refers to the ability of the application
to identify the services that it wishes to adapt to context changes (e.g., access to the
electronic proceedings); to decide on a set of possible behaviours that can be used to
deliver these services (e.g., network reference, caching, etc.), and to specify the context
configurations that must hold in order for a behaviour to be selected and applied when
the service is actually requested (e.g., high battery power for a network reference, high
memory availability for a caching technique).

To ease application development, middleware takes care of performing low-level and repet-

37

Chapter 3 3.1 Principles

itive tasks, such as monitoring physical sensors, detecting context changes, selecting the
behaviour enabled in the current context, etc. However, the set of resources that must
be monitored, the changes that must be detected, the behaviours that must be enabled,
and so on, are known to the application alone, and not to the middleware. Configura-
tion information, specifying how the application wishes the middleware to behave (with
regard to these issues) in its current context, should therefore be encoded in middleware
metadata and used by the middleware to perform its tasks. In other words, middleware
metadata reify middleware behaviour with respect to a particular application. This meta-
information is divided into two parts:

Reactive metadata. Applications define associations between the context configurations of
interest to them, and the behaviours that have to be triggered when such config-
urations are entered (e.g., switch off the back light of the PDA when battery falls
below 20%). The task of interacting with the (heterogeneous) physical sensors, to
periodically obtain updated information about context, of checking if one of the en-
coded configurations is entered, and then of executing the corresponding behaviour,
is automatically performed by the middleware, without the application having to
care about these low-level tasks. These behaviours can be simple notifications of a
context configuration being entered (e.g., an alert that the device is running out of
battery), or more complex behaviours that cause the application to execute differ-
ently (e.g., disable the ‘print’ functionality when there are no printers in reach). The
extent to which applications adapt to context changes depend on the nature of the
behaviours they associate in the metadata.

Note that the normal behaviour of the application is altered as a consequence of
entering a particular context configuration, without the application performing any
particular action for this to happen (apart, of course, from specifying an associa-
tion between the new behaviour and that particular context configuration in the
metadata).

Proactive metadata. Applications define associations between the services they wish to cus-
tomise, the set of behaviours that can be used to deliver the services, and the context
configurations that enable each of these behaviours. Each time one of these services
is requested, the middleware is in charge of getting updated context information by
interacting with the physical sensors, of checking which of the encoded configurations
is currently valid, and then of delivering the service with the associated behaviour. In
the conference application example, customisable services (i.e., services that should
be delivered in different ways when requested in different context) include the ‘ac-
cess proceedings’ service, the ‘talk reminder’ service, and the ‘messaging’ service.
For the ‘talk reminder’ service, possible behaviours (i.e., possible ways of delivering
the service) include a ‘sound alert’ and a ‘vibrating alert’.

In this case, adaptation is performed only when a service is requested; as long as

38

Chapter 3 3.1 Principles

the application does not request a service, proactive metadata is not used, and,
therefore, it has no effect on the way the application behaves.

Once configuration information has been encoded in metadata and made available to the
middleware, the adaptation process is transparent to applications: middleware, in fact,
implements mechanisms that use this information to perform both reactive and proactive
adaptation of application behaviour. Unlike middleware systems that have been built
adhering to the principle of the black-box, our middleware has no static behaviour it
adheres to, either in response to context changes, or to answer a service request: in
both cases, our middleware learns how to behave from the application, by looking at the
configuration information that the application has encoded as middleware metadata. We
discuss what metadata is encoding and how in Section 3.2.1 and 3.3.1.

3.1.2 Dynamic Re-configuration through Reflection

Configuration information is likely to need updating during the lifetime of an application;
for example, an application may wish to be notified of new context changes, as a result of
having entered unforeseen context configurations, or it may wish to adapt the delivery of
a service in different ways, because of changes in application’s user needs.

As far as reactive adaptation is concerned, re-configuration refers to the ability of appli-
cations to dynamically change the way the application reacts to context changes, that is,
both to alter the set of resources that make up the context of interest to the application,
and to re-define the associations between relevant context configurations and adaptation
behaviours. Similarly, for proactive adaptation, re-configuration refers to the ability of
applications to dynamically change the way services are delivered in different contexts.
This refers to the ability to redefine both the set of services that require customisation, as
well as the associations between customised services, possible behaviours to deliver these
services, and context configurations that enable the various behaviours.

We argue that reflection is the best possible way to achieve dynamic re-configuration, as it
makes the system it is applied to adaptable to its environment and better able to cope with
changes. Brian Cantwell Smith, the originator of the early work on reflection [Smith, 1982],
defines the reflective process as follows:

“In as much as a computational process can be constructed to reason about
an external world in virtue of comprising an ingredient process (interpreter)
formally manipulating representations of that world, so too a computational
process could be made to reason about itself in virtue of comprising an ingre-
dient process (interpreter) formally manipulating representations of its own
operations and structures.”

39

Chapter 3 3.2 Conceptual Model

The approach demands that an explicit representation of middleware behaviour, with
respect to the above running applications, is maintained; this is what we call middle-
ware metadata (i.e., reification of middleware behaviour). Reflection [Maes, 1987] then
allows both dynamic inspection and adaptation of middleware behaviour, by means of a
meta-interface that the middleware offers to applications to access this explicit represen-
tation. In particular, the meta-interface allows applications to read the currently active
configuration (i.e., introspection), and to dynamically alter the information here encoded
(i.e., adaptation). As middleware metadata reify middleware actual behaviour, changes in
the behaviour are materialised in the meta-level description and, similarly, changes in the
meta-level description immediately reflect back into the underlying middleware behaviour.
This “closed loop” approach is called causal connection. Once we will have detailed what
information we encode in middleware metadata and how (Section 3.2.1 and 3.3.1), we will
discuss what part of metadata can be accessed and altered using the meta-interface, and
with what effects (Section 3.2.2 and 3.3.2).

3.2 Conceptual Model

Having described the principles of our middleware model, we now introduce the primitives
that support the application of these principles in practice. In particular, we define in this
section what information we encode in middleware metadata (what we call application
profile), and how this information can be accessed and altered using the meta-interface
that the middleware provides (what we call the reflective API). Figure 3.2 illustrates how
the reflective process has been adapted in our approach.

Reflective API Application Profile

Application

Middleware

Base−level

Meta−level

Meta−interface Metadata

Figure 3.2: The Reflective Process (adapted).

3.2.1 Application Profile

We assume a single user for each mobile device, though there may be many applications
running simultaneously on that device, hence, on the same middleware instance. This
assumption is reasonable for many portable devices, such as palmtop computers, PDAs

40

Chapter 3 3.2 Conceptual Model

and mobile phones. In order to adapt to context changes, each application encodes how
the middleware should behave when executing in particular execution contexts, in what
we call an application profile, that is, middleware metadata.

Each application profile is divided into two parts, one containing reactive metadata, for
reactive adaptation, and one containing proactive metadata, for proactive adaptation.

Policy

Service

Policy
*

* *
Configuration Configuration

Resource* *

Proactive Metadata

Reactive Metadata

Figure 3.3: ER Diagram of Application Profile.

Reactive Metadata

Applications use reactive metadata to ask the middleware to listen for changes in the
execution context and to react accordingly, independently of the task the application is
performing at the moment. For example, the application may ask the middleware to
switch off the back-light of a PDA when running out of battery, or to be alerted when
the memory availability drops below a certain value. We therefore establish associations
between particular context configurations that depend on the value of one or more resources
that the middleware monitors, and policies (i.e., behaviours) that the middleware has
to trigger when such configurations are entered, as depicted on the right-hand side of
Figure 3.3. The arrow in the figure is pointing upward to represent an execution flow that
goes from the middleware to the application: the middleware monitors context, and as a
reaction to particular changes, it fires policies that reach the applications, for example,
to simply notify that something has happened, or to modify the current behaviour of the
application itself.

Proactive Metadata

Proactive metadata specify how the application wants to have a service delivered in differ-
ent contexts. In particular, each application creates associations between the services the
application is willing to customise, the policies that can be applied to deliver the services,
and the context configurations that must hold in order for a policy to be applied, as shown
on the left-hand side of Figure 3.3. For example, the ‘access proceedings’ service can be

41

Chapter 3 3.2 Conceptual Model

delivered either using a ‘network reference’ policy, when bandwidth is stable, or a ‘cache’
policy, when bandwidth is fluctuating. In this case, the arrow is pointing downward to
indicate that control flows from the application to the middleware: each time an applica-
tion requests a service, the middleware consults its application profile to determine which
policy should be applied to deliver the requested service in the current context. We make
here an assumption that must be remembered in the following chapter: each service can be
delivered using exactly one policy at a time. Multiple policies can logically be combined,
for example, to compress data first and then to cache it locally. However, we regard the
combined ‘compress and cache’ policy as a new one, and in the profile we will refer to this
new policy, not to the sequential execution of two distinct policies, ‘compress’ and ‘cache’.

Context Encoding

We represent context configurations, for both reactive and proactive metadata, in terms
of the resources that the middleware monitors and that the application is interested in.
These resources vary greatly, both in the sensing technologies the middleware has to inter-
act with to obtain resource status information, as well as in the obtained information itself.
For example, the resources we deal with can be local to the device, such as memory or
battery availability, whose status can be obtained by invoking a primitive of the underlying
network operating system; resources can be external to the device, such as location, whose
status is usually obtained by interacting with a physical sensor (not necessarily available
on the device); and, finally, resources can be application-specific, such as user’s mood,
whose status can be obtained by interacting with an application-defined software agent.
Not only does the way status information is obtained vary greatly, but also the nature of
this information is extremely heterogeneous. For example, memory or battery availability
can be easily expressed with a numeric value that is interpreted roughly in the same way by
any application (e.g., either absolute value or percentage). Location information, instead,
may be represented in different ways (e.g., coordinates in the space, proximity to physical
objects, etc.) by different sensing technologies (e.g., GPS, infrared, radio frequency, etc.),
and may require various processing to become meaningful to the applications (e.g., from
a (x, y, z) point in the space to a room in the conference hotel). Context configurations
encoded in a profile abstract away from the specific sensing technique used, and the raw
and heterogeneous status information obtained; rather, these configurations assume that
context information has already been gathered and processed, and that a uniform repre-
sentation of resource status has being used. Details of this uniform encoding are given in
Section 3.3.1.

3.2.2 Reflective Mechanism

Our middleware model provides a meta-interface to read and alter the information encoded
in an application profile, thus allowing applications to dynamically control middleware

42

Chapter 3 3.2 Conceptual Model

behaviour. This meta-interface is divided into two parts: one that gives access to reactive
metadata, and the other that gives access to proactive metadata.

Reactive Meta-Interface

The meta-interface to the reactive metadata encoded in a profile allows applications to
read information about currently encoded associations, that is, which policies can be
executed, and in which context configurations. Associations between policies and context
configurations can also be removed, added, and updated. Updates may happen at any level
of granularity: of the resources that make up a configuration, of the set of configurations
associated with a policy, and of the policies that make up the reactive metadata. For
example, an application may ask to be notified when the battery falls below 10%; some
time later, it may use the reactive meta-interface to request the middleware to trigger a
low battery alert when battery falls below 5% too, and to trigger a low memory alert when
falling short of memory. These changes have immediate impact on middleware behaviour
as, for example, a resource may not be of interest to the application anymore, and therefore
middleware does not need to periodically interact with the corresponding physical sensor.
Viceversa, when a new resource becomes of interest to the application, its physical sensor
is activated and middleware starts to poll it periodically. Reactive metadata may also
be empty, in case the application is not interested in adapting its behaviour to context
changes.

Proactive Meta-Interface

The meta-interface to the proactive metadata encoded in a profile allows applications to
know which services are currently customised, which policies are associated with such
services, and which context configurations are associated with the policies. As before,
associations can be added, removed and updated, and these updates may happen at any
level of granularity: from the resources that make up a configuration, to the services
currently customised, thus giving applications full control over middleware execution. For
example, the association that requires the ‘access proceedings’ service to be delivered using
a network reference policy may be removed, in order to maximise data availability when
disconnected. The effects of these changes are visible only when a customised service is
requested; as long as these services are not invoked, the behaviour of the system is not
affected. If there is no proactive metadata, services are always delivered in the same way
(i.e., using a default behaviour).

It should be clear by now that reflection does not enforce any particular behaviour; it is
up to the applications to decide whether to use the adaptation mechanism the middleware
provides; if context adaptation is not needed, applications may simply leave their profile
blank.

43

Chapter 3 3.3 Formal Model

3.3 Formal Model

In this section, we illustrate a formalisation of our conceptual model. In particular, we
define the abstract syntax that we use to encode application profiles, and the semantics
of its reactive and proactive metadata. A formalisation of the meta-interface that we
provide to access the profiles is also illustrated; its semantics is reported for completeness
in Appendix A.

3.3.1 Application Profile

Each application profile is divided into two parts: a reactive part and a proactive part.

profile ::= reactive proactive

Reactive Metadata

The reactive part of the profile (Figure 3.4) encodes associations (policyList) between
policies (identified by name pname) and context configurations (contextList) that deter-
mine when each policy should be fired. Each context configuration (context) is uniquely
identified inside the profile (cid), and describes the status of one or more resources
(resourceList). Each resource (resource) is identified by a unique name (rname), and its
status is described by the result of applying a resource-specific operator (oname) to a set of
associated values (valueList). For example, (memory, inBetween, {20%, 25%}) describes
resource memory having one of the possible values {20%, 21%, 22%, 23%, 24%, 25%}.

We use a model for context that is based on boolean algebra, which allows us to easily

reactive ::= policyList | ε
policyList ::= policy policyList | policy

policy ::= pname contextList

contextList ::= context contextList | context
context ::= cid resourceList

resourceList ::= resource resourceList | resource
resource ::= rname oname valueList

valueList ::= value valueList | ε

Figure 3.4: Application Profile’s Abstract Syntax - Reactive Part. pname ∈ P, rname ∈
R, cid ∈ N, value ∈ V, oname ∈ O, being P, R, N, V, and O the domain sets illustrated
in Figure 3.5.

44

Chapter 3 3.3 Formal Model

Σ : alphabet
S ⊂ Σ∗ : set of all service names
P ⊂ Σ∗ : set of all policy names

N : set of all natural numbers
R ⊂ Σ∗ : set of all resource names
O ⊂ Σ∗ : set of all operator names

V : set of all values of resources in R
E ⊂ ℘(R×V) : set of all possible execution contexts

Figure 3.5: Application Profile - Domain Sets.

construct more complex context configurations starting from atomic formulae, using the
∧ (logical and) and ∨ (logical or) operators. An atomic context is represented by the
3-ary predicate: < rname oname valueList >. Atomic formulae can then be combined
using (implicit) ∧ operators, to form more complex context configurations to which a new
cid is assigned; finally, various context configurations can be combined using (implicit) ∨
operators and are then associated with a policy. In other words, each context configuration
expresses the set of resource conditions that must simultaneously hold (∧ operator) for a
policy to be applied; these context configurations are then put in ∨ relation, as the same
policy may be enabled in different contexts.

Figure 3.6 shows an example of reactive metadata; at this stage, we are not interested
in implementation details (in particular, in the language used to encode profiles); we
therefore use the abstract syntax illustrated above to discuss the following examples. The
application with which this profile is associated requires notification when executing in a
resource constrained environment (constrainedContextAlert); this is defined to mean
when memory availability drops below 10% and battery power is between 5% and 10%.
Also, it requires notification when running out of battery (lowBatteryAlert), i.e., battery
power falls below 10%, or when below 5%.

lowBatteryAlert
1

battery lessThan 10%
2

battery lessThan 5%

constrainedContextAlert
3

memory lessThan 10%
battery inBetween {5% 10%}

Figure 3.6: Reactive Metadata - Example.

45

Chapter 3 3.3 Formal Model

bool : {>, ⊥}
resourceStatus : R×O× ℘(V)× bool

resourceStatusList : ℘(resourceStatus)
contextStatus : N× ℘(resourceStatusList)

contextStatusList : ℘(contextStatus)
policyStatus : P× ℘(contextStatusList)

policyStatusList : ℘(policyStatus)

Figure 3.7: Reactive Semantic Functions - Domain Sets.

Once battery power has dropped below 10% (but not yet below 5%), and this context
change has been notified, the application should not keep receiving notifications of the
fact that battery power is below 10% every t time units (i.e., at the frequency at which
middleware checks the context). Only when available battery falls below 5% another alert
should be fired, followed by no other. The semantics we attach to each reactive association
is therefore the following. Context configurations are independent: if a policy has more
than one configuration associated with it, any of them (∨ semantics) can cause the policy to
be fired. For example, lowBatteryAlert is fired both when battery drops below 10% (cid
= 1), and when it falls below 5% (cid = 2). Moreover, each configuration determines a
partition of the context space; for example, cid=1 determines a partition between a context
where battery is greater than 10%, and one where its value is less than 10%. When battery
falls below 10% (i.e., when context enters into the first element of the partition), the policy
is fired; before this policy is fired again, context changes must have happened that have
brought context into a different element of the partition. For example, when battery
power falls below 10% for the first time, lowBatteryAlert is fired. Before cid=1 causes
the policy to be fired again, the battery must have been recharged and its value brought
above 10%; therefore, while battery power level keeps decreasing (i.e., 9%,8%,7%, . . .),
the policy is not fired repeatedly. When battery drops below 5%, the same policy is fired
again, but this time cid=2 enables it. We therefore prevent triggering undesired sequences
of policies.

A formalisation of this behaviour is shown in Figures 3.8 to 3.10. The domain sets of the
semantic functions presented here can be found in Figure 3.7. When an application is
started, the middleware fetches its profile and processes it, in order to associate a boolean
value equal to true to each resource of the context configurations encoded in the reactive
part of the profile itself (function init in Figure 3.8). In order for a context to be enabled,
and the associated policy to be fired, all resource conditions expressed in the configuration
must hold, and the associated boolean values set to true. As we are going to show, we use
these boolean values to prevent cascading policies, as they represent a sort of ‘firability’
pre-condition.

In order for a policy to be fired, two conditions must be met, as shown in Figure 3.9: at least

46

Chapter 3 3.3 Formal Model

init : policyList→ policyStatusList

initcl : contextList→ contextStatusList

initrl : resourceList→ resourceStatusList

init[[policy policyList]] = init[[policy]] ∪ init[[policyList]]
init[[policy]] = init[[pname contextList]]

init[[pname contextList]] = {(pname, initcl[[contextList]])}
initcl[[context contextList]] = initcl[[context]] ∪ initcl[[contextList]]

initcl[[context]] = initcl[[cid resourceList]]
initcl[[cid resourceList]] = {(cid, initrl[[resourceList]])}

initrl[[resource resourceList]] = initrl[[resource]] ∪ initrl[[resourceList]]
initrl[[resource]] = initrl[[rname oname valueList]]

initrl[[rname oname valueList]] = {(rname, oname, valueList, >)}

Figure 3.8: Application Profile Semantics - Reactive (init).

one of its associated context configurations evaluates to true (i.e., it is enabled) in its cur-
rent context (i.e., all resource conditions hold in the current context), and all the boolean
values of resources that make up this configuration are true. We make use here of the aux-
iliary boolean function eval, such that eval((rname, oname, vList), e) returns true if the
value of resource rname in the execution context e is among the values obtained by apply-
ing the operator oname to vList. For example, eval((memory, inBetween, {20%, 25%}),
{(memory, 22%)}) = >, while eval((memory, lessThan, {5%}), {(memory, 22%)}) = ⊥.

Once a policy has been executed, we prevent it from being repeatedly fired by setting the
boolean value of each resource that makes up the enabling context configuration to false
(Figure 3.10).

Boolean values representing firability pre-conditions are re-set to true by the update func-
tion. Every t time units, the middleware checks the status of context and updates the
boolean value previously associated with each resource in the following way: if the boolean
value is set to false, and the current resource value does not respect the condition ex-
pressed by that resource in the profile, the value is changed to true; otherwise, the boolean
value is not altered (Figure 3.11).

Let us refer to the example shown in Figure 3.6, where we have encoded a condition
(battery, lessThan, 10%) in context 1. When the application is started, a boolean value

47

Chapter 3 3.3 Formal Model

fire : policyStatusList→ E→ ℘(P× N)
fire[[pStatus psList]]e = fire[[pStatus]]e ∪ fire[[psList]]e

fire[[pStatus]]e = fire[[(pname, csList)]]e

fire[[(pname, csList)]]e =

{(pname, cid)} if ∃ cStatus = (cid, rsList) ∈ csList |
∀ rStatus = (rname, oname, vList, b) ∈ rsList,
eval((rname, oname, vList), e) = > ∧ b = >

∅ otherwise

Figure 3.9: Application Profile Semantics - Reactive (fire).

reset : policyStatusList→ ℘(P× N)→ policyStatusList

resetcsl : contextStatusList→ ℘(P× N)→ contextStatusList

resetrsl : resourceStatusList→ ℘(P× N)→ resourceStatusList

reset[[pStatus psList]]pcl = reset[[pStatus]]pcl ∪ reset[[psList]]pcl
reset[[pStatus]]pcl = reset[[(pname, csList)]]pcl

reset[[(pname, csList)]]pcl =

∪{(pname, resetcsl[[csList]]{(pi,ci)})} ∀ i |
∃ (pi, ci) ∈ pcl, pname = pi

{(pname, csList)} otherwise
resetcsl[[cStatus csList]]{(p,c)} = resetcsl[[cStatus]]{(p,c)} ∪ resetcsl[[csList]]{(p,c)}

resetcsl[[cStatus]]{(p,c)} = resetcsl[[(cid, rsList)]]{(p,c)}

resetcsl[[(cid, rsList)]]{(p,c)} =
{
{(cid, resetrsl[[rsList]]{(p,c)})} if cid = c

{(cid, rsList)} otherwise
resetrsl[[rStatus rsList]]{(p,c)} = resetrsl[[rStatus]]{(p,c)} ∪ resetrsl[[rsList]]{(p,c)}

resetrsl[[rStatus]]{(p,c)} = resetrsl[[(rname, oname, vList, b)]]{(p,c)}
resetrsl[[(rname, oname, vList, b)]]{(p,c)} = {(rname, oname, vList,⊥)}

Figure 3.10: Application Profile Semantics - Reactive (reset).

equal to true is associated with the battery status condition; as soon as a context change
brings battery value below 10%, the lowBatteryAlert policy is fired, and the boolean
value is changed to false; as long as battery values stay below 10%, context configuration
1 does not enable this policy, as the boolean value stays false. A change in the context
that brings battery above 10%, will cause the boolan value to be set to true (update

48

Chapter 3 3.3 Formal Model

update : policyStatusList→ E→ policyStatusList

updatecsl : contextStatusList→ E→ contextStatusList

updatersl : resourceStatusList→ E→ resourceStatusList

update[[pStatus psList]]e = update[[pStatus]]e ∪ update[[psList]]e
update[[pStatus]]e = update[[(pname, csList)]]e

update[[(pname, csList)]]e = {(pname, updatecsl[[csList]]e)}
updatecsl[[cStatus csList]]e = updatecsl[[cStatus]]e ∪ updatecsl[[csList]]e

updatecsl[[cStatus]]e = updatecsl[[(cid, rsList)]]e
updatecsl[[(cid, rsList)]]e = {(cid, updatersl[[rsList]]e)}

updatersl[[rStatus rsList]]e = updatersl[[rStatus]]e ∪ updatersl[[rsList]]e
updatersl[[rStatus]]e = updatersl[[(rname, oname, vList, b)]]e

updatersl[[(rname, oname, vList, b)]]e =

{(rname, oname, vList,>)}
if eval((rname, oname, vList), e) = >
∧ b = ⊥

{(rname, oname, vList, b)}
otherwise

Figure 3.11: Application Profile Semantics - Reactive (update).

function), and the next time the battery value drops below 10% the lowBatteryAlert

policy will be fired again.

After an initialisation process that takes place when an application is started (time t0),
the reactive encoding of the application profile determines the set of policies that are fired
in the following way:

t0 : PSL0 = init[[policyList]]

t1 : P1 = fire[[update[[PSL0]]e1]]e1
PSL1 = reset[[PSL0]]P1

· · ·
ti : Pi = fire[[update[[PSLi−1]]ei]]ei (3.1)

PSLi = reset[[PSLi−1]]Pi

where PSLi ∈ policyStatusList associates boolean values with resource conditions, and

49

Chapter 3 3.3 Formal Model

Pi ∈ ℘(P×N) states which policies have been fired, and which context configurations have
enabled them.

Proactive Metadata

The proactive part of the profile (Figure 3.12) encodes associations (serviceList) between
the services the application wishes to customise (identified by name sname), the policies
(identified by name pname) that can be applied to deliver each service, and context
configurations (contextList) that determine when each policy can be applied. Similarly
to what we discussed for the reactive encoding, each context configuration (context) is
identified by a unique number inside the profile (cid), and describes the required status
for one or more resources in order for the corresponding context configuration to be valid,
and its associated policy to be applied.

Figure 3.13 shows various examples of proactive encodings for the conference application.
Three services have been customised here: as shown, more than one resource can be
associated with the same context (e.g., cid = 4), and more than one context configuration
may be associated with the same policy (e.g., policy plainMsg). Note that compressCache
is a combination of two other policies, compress and cache; however, in the profile, only
the name of the combined policy appears, without reference to its constituents. The
rationale for this is that, at the profile level, we are not interested in how various policies
can be combined, and what the semantics of the combination is; policies can be combined
at below the profile level, but this requires assigning a new name to the combined policy,
and using this name in the profile.

The semantics we associate to proactive metadata is the following: whenever a customised

proactive ::= serviceList | ε
serviceList ::= service serviceList | service

service ::= sname policyList

policyList ::= policy policyList | policy
policy ::= pname contextList

contextList ::= context contextList | ε
context ::= cid resourceList

resourceList ::= resource resourceList | resource
resource ::= rname oname valueList

valueList ::= value valueList | ε

Figure 3.12: Application Profile’s Abstract Syntax - Proactive Part. sname ∈ S, pname ∈
P, rname ∈ R, cid ∈ N, value ∈ V, oname ∈ O, being S, P, R, N, V, and O the domain
sets illustrated in Figure 3.5.

50

Chapter 3 3.3 Formal Model

accessProceedings messagingService
networkReference plainMsg

4 7
bandwidth greaterThan 1 userMood equals online
battery greaterThan 10% 8

battery lessThan 30%
userMood notEquals online

cacheAbstract encryptedMsg
5 9

bandwidth lessThan 1 userMood equals busy
battery lessThan 10% battery greaterThan 30%

compressCache
6

memory lessThan 10\%

talkReminder
vibraAlert

soundAlert
10

location equals outdoor

Figure 3.13: Proactive Metadata - Examples.

service is invoked, the policy that will be used to deliver the service is the one that has
got at least one context configuration enabled in the current context. A configuration is
enabled if and only if all resource conditions that make up the configuration hold in the
current context. For example, if the accessProceedings service is invoked in a context
where bandwidth is less than 1 and battery less than 10%, than the policy cacheAbstract

is applied. Note that if no context is associated with a policy (e.g., policy vibraAlert

in Figure 3.13), then that policy is always enabled, regardless of the current execution
context.

The semantics of proactive metadata is formally presented in Figure 3.14. The domain sets
of these semantic functions can be found in Figures 3.5 and 3.7; as described before, eval
is a boolean function such that eval((rname, oname, vList), e) returns true if the value of
resource rname in the execution context e is among the values obtained by applying the
operator oname to vList. According to this semantics, whenever an application requests
a customised service of the middleware, a set of policies is determined. So far, we have
assumed that each service is delivered with exactly one policy at a time: we will discuss
what happens if the cardinality of this set is not exactly one in the next chapter.

51

Chapter 3 3.3 Formal Model

F : service→ E→ ℘(P)
Fpl : policyList→ E→ ℘(P)

F [[sname policyList]]e = Fpl[[policyList]]e
Fpl[[policy policyList]]e = Fpl[[policy]]e ∪ Fpl[[policyList]]e

Fpl[[policy]]e = Fpl[[pname contextList]]e
Fpl[[pname contextList]]e = {pname} if valid[[contextList]]e = >

∅ if valid[[contextList]]e = ⊥

valid : contextList→ E→ bool

validrl : resourceList→ E→ bool

valid[[context contextList]]e = valid[[context]]e ∨ valid[[contextList]]e
valid[[context]]e = valid[[cid resourceList]]e

valid[[cid resourceList]]e = validrl[[resourceList]]e
validrl[[resource resourceList]]e = validrl[[resource]]e ∧ validrl[[resourceList]]e

validrl[[resource]]e = validrl[[rname oname valueList]]e
validrl[[rname oname valueList]]e = eval((rname, oname, valueList), e)

valid[[ε]]e = >

Figure 3.14: Application Profile Semantics - Proactive.

3.3.2 Reflective Mechanism

In this section, we define how the meta-interface we provide acts upon application pro-
files, either to inspect them (i.e., to inspect middleware behaviour) or to alter them (i.e.,
adaptation of middleware behaviour).

Reactive Meta-Interface

Inspection of reactive metadata may happen at different levels of granularity: from the
resources associated with a context configuration, to the configurations associated with a
policy, up to the policies themselves. Figure 3.15 lists the semantic functions available to
inspect this information; inspection is based on unique names for policies and resources,
and on ids for context configurations; we use null to indicate an empty search result. The
semantics of these functions is trivial, and is reported in Appendix A for completeness.

Adaptation of proactive metadata takes place by adding, removing and updating the
associations encoded in a profile. As for inspection, we allow these operations to work at
different levels of granularity: the resources associated with a context, the configurations
associated with a policy, and the policies themselves. The semantics of these functions,

52

Chapter 3 3.3 Formal Model

readRP : profile× P→ policy ∪ {null}
readRC : profile× P× N→ context ∪ {null}
readRR : profile× P× N× R→ resource ∪ {null}

Figure 3.15: Reflective Mechanism - Inspection of Reactive Metadata.

with respect to the way they change the meta-encoding, is also rather simple, and is
reported in Appendix A.

Informally speaking, remove operations are based on unique policy names, context ids, and
resource names; if the names/ids are not found, the profile is not altered. Add operations
require that the policy to be added does not already exist; that the context id of the new
context does not already exist (while the policy to which it has to be added must already
be listed in the profile), and that the resource name is not already listed in the particular
context and policy to which it must be added. Finally, update operations require the
existence of the policy/context/resource to be modified.

These operations alter the policyStatusList PSLi (see equation 3.1 on page 49) that is
used by the middleware to decide which policies to fire as a result of context changes.
In order for a reactive policy to be fired, both the information encoded in a profile, and
the ‘firability’ status of its associated resources are checked. Therefore, each time an
operation that changes the reactive metadata is performed, the policyStatusList has to

remRP : profile× P→ profile

remRC : profile× P× N→ profile

remRR : profile× P× N× R→ profile

addRP : profile× policy → profile

addRC : profile× P× context→ profile

addRR : profile× P× N× resource→ profile

updRP : profile× P× policy → profile

updRC : profile× P× N× context→ profile

updRR : profile× P× N× R× resource→ profile

Figure 3.16: Reflective Mechanism - Adaptation of Reactive Metadata.

53

Chapter 3 3.3 Formal Model

remPSP : policyStatusList× P→ policyStatusList

remPSC : policyStatusList× P× N→ policyStatusList

remPSR : policyStatusList× P× N× R→ policyStatusList

addPSP : policyStatusList× policy → policyStatusList

addPSC : policyStatusList× P× context→ policyStatusList

addPSR : policyStatusList× P× N× resource→ policyStatusList

updPSP : policyStatusList× P× policy → policyStatusList

updPSC : policyStatusList× P× N× context→ policyStatusList

updPSR : policyStatusList× P× N× R× resource→ policyStatusList

Figure 3.17: Reflective Mechanism - Adaptation of Reactive Metadata (policyStatusList).

be updated consequently, using the semantic functions listed in Figure 3.17; the new
policyStatusList obtained is then used in equation 3.1 to decide which policies to fire.
The semantics of these functions is trivial and is reported in Appendix A for complete-
ness; simply, remove/add/update operations respectively remove/add/update the specified
policy/context/resource status from the policyStatusList.

Proactive Meta-Interface

As before, the meta-interface to proactive metadata accesses associations at various levels
of granularity, both during inspection and adaptation: from the resources associated with a
context configuration, to the configurations associated with a policy, the policies associated
with a service, up to the services themselves. Figures 3.18 and 3.19 list the semantic
functions that make up this meta-interface; their full semantics is reported in Appendix A
for completeness.

readPS : profile× S→ service ∪ {null}
readPP : profile× S× P→ policy ∪ {null}
readPC : profile× S× P× N→ context ∪ {null}
readPR : profile× S× P× N× R→ resource ∪ {null}

Figure 3.18: Reflective Mechanism - Inspection of Proactive Metadata.

Read operations are based on unique service, policy, resource names and context ids;

54

Chapter 3 3.4 Related Work

null is used for an empty search result. Remove, add and update operations exhibit a
semantics very similar to the one discussed for reactive encoding: remove and update
operations succeed if and only if the specified entity (be it a service, policy, context or
resource) exists in the profile, while add operations require its non-existence.

remPS : profile× S→ profile

remPP : profile× S× P→ profile

remPC : profile× S× P× N→ profile

remPR : profile× S× P× N× R→ profile

addPS : profile× service→ profile

addPP : profile× S× policy → profile

addPC : profile× S× P× context→ profile

addPR : profile× S× P× N× resource→ profile

updPS : profile× S× service→ profile

updPP : profile× S× P× policy → profile

updPC : profile× S× P× N× context→ profile

updPR : profile× S× P× N× R× resource→ profile

Figure 3.19: Reflective Mechanism - Adaptation of Proactive Metadata.

While the set of reactively fired policies depends on both the information encoded in a pro-
file, and the status of the associated resources (their ‘firability’ condition), the way a proac-
tive service is delivered depends solely on its currently encoded associations. Therefore,
the semantics of adaptation of proactive information is fully captured by these functions.

3.4 Related Work

It is not the aim of this thesis to provide a detailed literature review in the area of mobile
computing middleware, as this would require the discussion of issues such as asynchronous
communication, service discovery, and so on, that have not been investigated in this thesis.
For a more exhaustive discussion on the state-of-the-art of mobile computing middleware,
the interested reader may refer to [Mascolo et al., 2002a].

In this section, we discuss instead our position compared to the works done in the area
of mobile computing, as far as context-awareness and dynamic adaptation to changes are
concerned. We structure the discussion into three main parts, based on what currently

55

Chapter 3 3.4 Related Work

available systems achieve: context sensing, application adaptation, and middleware adap-
tation.

3.4.1 Context Sensing

One of the first issues that context-aware systems have to tackle is gathering context infor-
mation and processing it in a manner that is meaningful to the (context-aware) application.
Researchers in context-aware computing [Schilit et al., 1994] have studied and developed
systems that collect context information, such as location, with varying accuracy depend-
ing on the positioning system used; relative location, such as proximity to printers and
databases; device characteristics, such as processing power and input devices; physical
environment, such as noise level and bandwidth; and user’s activity, such as driving a car
or sitting in a lecture theatre.

In particular, location has attracted a lot of attention and many examples exist of appli-
cations that exploit location information in order to: offer travellers directional guid-
ance, such as the Shopping Assistant [Asthana and Krzyzanowski, 1994], CyberGuide
[Long et al., 1996] and GUIDE [Davies et al., 1999]; find out neighbouring devices and
the services they provide, such as Teleporting [Bennett et al., 1994]; send advertisements
depending on user’s location, such as People and Object Pager [Brown, 1998]; send mes-
sages to anyone in a specific area, such as Conference Assistant [Dey et al., 1999]; and so
on. Most of these systems interact directly with the underlying network operating system
to extract location information, process it, and present it in a convenient format to the
user. These approaches suffer from two major drawbacks: first, they are mainly ad-hoc
solutions, that can be used for the development of one particular application, but cannot
be reused, thus requiring application engineers to ‘re-invent the wheel’ each time a new
location-aware application has to be developed. Second, they do not cope with heterogene-
ity of coordinate information, and therefore different versions have to be released that are
able to interact with specific sensor technologies, such as the Global Positioning System
(GPS) outdoors, and infrared and radio frequency indoors.

To enhance the development of location-based services and applications, and reduce their
development cycle, middleware systems have been built that integrate different positioning
technologies by providing a common interface to the different positioning systems. Exam-
ples include Oracle iASWE [Oracle Technology Network, 2000], Nexus [Fritsch et al., 2000],
Alternis [Alternis S.A., 2000], SignalSoft [SignalSoft, 2000], and CellPoint
[CellPoint, Inc., 2000]. [Leonhardt and Magee, 1996], for example, describe a framework
for a general location service where multiple sources of location information are integrated
for location information acquisition, processing and presentation. First, raw location data
is acquired from the physical sensors and represented as cells in a symbolic space. Then,
the cell space is processed into a zone space, that is a set of disjoint cells used for ob-

56

Chapter 3 3.4 Related Work

ject tracking and movement prediction; finally, zones are mapped into hierarchical do-
mains, with associated access control policies to protect users’ privacy. There exist also
more general approaches, that do not only cater for location information: the Context
Toolkit [Salber et al., 1999], for example, provides a set of context servers, each responsi-
ble for the sensing and processing of different context information.

We take a similar approach to context sensing, by investing the middleware with the
task of gathering and maintaining context information. While these tasks are trivial
when considering local resources, such as battery and memory, difficulties arise when
context extends across multiple mobile hosts in an ad-hoc network, to include resources
whose status cannot be measured directly by the host itself (because, for example, it
does not possess the sensors necessary to gather such information). In presenting our
approach, we have voluntarily left these issues under-specified: we assume (see Figure 2.1
in Chapter 2) that middleware is able to maintain context information, by interacting
with an entity that can be a primitive of the operating system, a local physical sensor,
or a more advanced software agent that is able to interact with other hosts and sensors
in the network. [Roman et al., 2002, Julien and Roman, 2002] provide a formal definition
of context, together with algorithms for computing and maintaining a specified context.
The solution maps nodes of an ad-hoc network to points in a multi-dimensional space, and
considers context as the set of all nodes whose distance from the host where the application
of interest is running, is below an application-defined bound. This solution could be used
by our middleware model too, to broaden the context of interest to an application to an
entire ad-hoc network; however, the problem of binding and re-binding of external sensors
while on the move has not yet been completely solved and remains therefore an open issue.

3.4.2 Application Adaptation

Being able to gather and process context information is only the first step towards the
development of context-aware applications. Applications, in fact, must be provided with
mechanisms and primitives to adapt to context changes. Various systems exist that achieve
this goal to different extents and in different ways. In particular, we distinguish between
systems that support: reactive adaptation, multimedia adaptation and application interface
adaptation.

Reactive Adaptation

There are systems that provide application adaptation to context changes only as far as
what we called reactive adaptation is concerned. They provide applications with primitives
to specify what portion of context they are interested into, and with mechanisms to be
alerted when context configurations of interest to the application are entered.

57

Chapter 3 3.4 Related Work

[Welling and Badrinath, 1998], for example, discuss a publish-subscribe architecture, where
applications register their interest in particular context changes, and then an event de-
livery mechanism notifies registered applications of relevant changes happening in the
environment. The set of events that can be detected and delivered is extensible and can
be dynamically modified by the application. It is then entirely up to the application to
decide what to do (i.e., how to adapt) once these changes have been notified.

Odyssey [Satyanarayanan, 1996] goes one step further: not only does it notify applica-
tions of context changes, but it also provides applications with primitives to register the
behaviours that the system should automatically invoke when specific context configura-
tions are entered. Odyssey is a platform for mobile data access: first, applications register
an interest in particular resources, by defining the acceptable upper and lower bounds on
the availability of that resource, and by registering an ‘up-call procedure’ that must be
invoked whenever the availability of the resource falls outside the window of acceptance.
A ‘Viceroy’ component is then responsible for monitoring resource usage and notifying
applications of significant changes, using the registered up-calls. When an application is
notified of a change in resource availability, it must adapt its access. ‘Warden’ compo-
nents are responsible for implementing the access methods on objects of their type: they
provide customised data access behaviour (e.g., different replication policies) according to
type-specific knowledge.

Gaia [Román et al., 2002] offers a more general approach to reactive adaptation to context
changes, as it does not focus on one particular service (data access). It is built on top
of the 2k [Kon et al., 2000a] reflective, component-based meta-operating system. On top
of this framework, Gaia converts physical spaces and the ubiquitous computing devices
they contain into active spaces. An active space hides the complexities of dealing with
heterogeneous devices and sensors, and provides application engineers with a generic in-
terface that allows them to interact with any physical space in a uniform way. Gaia then
adapts application requirements to the properties of its associated active space, without
the application having to explicitly deal with the particular characteristics of every possible
physical space where they can be executed.

A common limitation of these approaches is the lack of support for what we have defined
as proactive adaptation to context changes. That is, they do not provide the application
with mechanisms to facilitate the customisation of the services the application delivers
to its user, based on context. In the case of services that require adaptation to context
(e.g., the instant messaging functionality of the conference application, the talk reminder
service, etc.), the application has to perform the tedious and repetitive tasks of querying
its context and finding out which policy suits the current context. We go a step further,
by providing applications with primitives to transfer this knowledge to the middleware
(i.e., proactive metadata), thus automating these tasks.

58

Chapter 3 3.4 Related Work

Multimedia Adaptation

Although we are not concerned with multimedia data and applications, we briefly discuss
a couple of examples from this area, as this is from where most of the early work on
dynamic adaptation comes from. In the area of multimedia, dynamic adaptation to con-
text changes becomes vital in order to achieve reasonable quality-of-service. Researchers
have devised a number of interesting approaches to quality-of-service provision to mobile
hosts [Chalmers and Sloman, 1999a]. Most of the time, the hosts are considered terminal
nodes and the clients of the service provision, and the network connectivity is assumed
fluctuating but almost continuous (like in GSM settings).

Probably the most significant example of QoS-oriented middleware is Mobiware
[Angin et al., 1998], which uses CORBA, IIOP and Java to allow service quality adap-
tation in the delivery of multimedia to hosts in mobile settings. In Mobiware, mobile
hosts are seen as terminal nodes of the network, and the main operations and services
are developed on a core programmable network of routers and switches. Mobile hosts are
connected to access points and can roam from one access point to another. The main idea
of Mobiware is that mobile hosts will have to probe and adapt to the constantly changing
resources over the wireless link. Mobiware mostly assumes a service provision scenario
where mobile hosts are roaming but permanently connected, with fluctuating bandwidth.
Even in the case of the ad-hoc broadband link, the host is supposed to receive the service
provision from the core network through the cellular links first, and then some ad-hoc
hops. In more extreme scenarios, where links are all ad-hoc, these assumptions cannot be
made and different middleware technologies need to be applied.

[Chalmers et al., 2001] present a model for multimedia data adaptation to context changes
and user’s needs. The approach assumes that a document can be seen as a collection of
elements, each of which has a type and can be represented by multiple variants (e.g.,
different scale, resolution, etc.). Each variant is described by an encoding format and a
set of parameters (e.g., size). Whenever a user requests access to a document, the elements
to be displayed are first dynamically chosen, based on ‘weights’ that the user associates
with the element types. Each of these elements is then displayed using the variant that
maximises user’s preferences. These preferences are represented as values computed using
a ‘utility function’ over variant parameters. Both weights and utility functions may vary
to take into account context information, such as user’s activity, screen size, etc. Similar
to this approach, we aim to build a middleware model that achieves adaptation both to
context changes and varying user’s needs. However, what we aim to adapt is not static data
but application behaviours, for which different abstractions and mechanisms are needed.

59

Chapter 3 3.4 Related Work

Application Interface Adaptation

In the area of Human-Computer Interaction (HCI), researchers have investigated the issue
of application interface adaptation to context. Although the subject of adaptation (i.e.,
application interfaces), and the perspective they take (i.e., user’s perspective) are funda-
mentally different from ours (i.e., we take an application’s perspective to adapt application
functionalities), some of the issues encountered, and the solutions proposed, manifest sim-
ilarities that are worth discussing.

Some researchers have focused on accurate sensing of context information, such as the
user’s task, its social environment, and so on. This information has then been used to adapt
the user interface to a set of pre-defined situations; for example, [Schmidt et al., 1999]
illustrate a User Interface (UI) rotation based on awareness of the device orientation and
user’s task, to improve human-computer interaction.

[Eisenstein et al., 2001] discuss a more general approach to help UI designers to develop
mobile application interfaces that adapt to the characteristics of the devices they run on
(e.g., what kind of graphical capabilities they have, what kind of interaction capabilities,
etc.), and to the context of use (e.g., noise level, light, etc.). Rather than developing unique
UIs for each platform and usage, they propose to start from an abstract, platform-neutral,
formal description of the UI; this description should then be understood and analysed by
a software system to automatically produce a usable UI matching the requirements and
constraints of each context of use. This research is at an early stage: so far, they have
defined the abstract model of the UI, but they still lack the definition of the requirements
and constraints it has to satisfy, and therefore the automatic mapping from the model to an
actual interface. The process they are following is very similar to the one we have developed
to adapt application functionalities: first an abstract description of the behaviour of the
application (i.e., the abstract model) in different contexts (i.e., the constraints) is provided
through application profiles; then the middleware (i.e., the software system) automatically
adapts application behaviour to current context, based on the abstract description.

3.4.3 Middleware Adaptation

Instead of adapting applications, many researchers have taken a middleware-centric per-
spective and have investigated principles, and designed mechanisms, to achieve middleware
adaptation to context. The definition of context they have is completely different to the
one we gave, as they look at context from a different point of view. For example, con-
text includes the communication paradigms being used, the service discovery protocols
available, and so on. As discussed in Chapter 2 (see Figure 2.1 on page 31), this type of
adaptation is complementary to the one we provide, and middleware could be structured
into layers, with mechanisms to provide middleware adaptation at the bottom, and mech-

60

Chapter 3 3.4 Related Work

anisms to provide application adaptation on top. We discuss some of the most relevant
approaches to middleware adaptation in this section, as they exploit the same principles
we investigated, that is, reflection.

The concept of reflection was first introduced by Smith in 1982 [Smith, 1982] as a principle
that allows a program to access, reason about and alter its own interpretation. Initially,
reflection emerged as a technique to support the design of more open and extensible lan-
guages (e.g., [Kiczales et al., 1991]). Reflection is also increasingly being applied to a
variety of other areas including operating system design [Yokote, 1992], concurrent lan-
guages [Watanabe and Yonezawa, 1988], and distributed systems (e.g., [McAffer, 1996],
[Okamura et al., 1992]). There is now a growing community working on the area of reflec-
tive middleware too, mainly to provide a principled (as opposed to ad-hoc) means of achiev-
ing openness of the underlying middleware platform. A reflective middleware may bring
about modifications to itself by means of inspection and/or adaptation. Through inspec-
tion, the internal behaviour of the system is exposed, so that it becomes straightforward
to insert additional behaviour to monitor the middleware implementation. Through adap-
tation, the internal behaviour of the system can be dynamically changed, by modification
of existing features or by adding new ones. This is particularly useful when dealing with
portable devices which require light-weight middleware implementation, due to resource
limitations: a middleware core with only a minimal set of functionalities can be installed
on a device, and then, through reflection, the system can be re-configured dynamically to
adapt to context changes. Examples of middleware built around the principle of reflection
include, but are not limited to, OpenORB [ExoLab, 2001], OpenCorba [Ledoux, 1999],
dynamicTAO [Kon et al., 2000b], Blair et al. work [Blair et al., 1998], MULTE-ORB
[Plagemann et al., 1999], Flexinet [Hanssen and Eliassen, 1999], Globe
[van Steen et al., 1999, Bakker et al., 1999], UIC [Román et al., 2001]. Most of the plat-
forms developed to experiment with reflection were based on standard middleware im-
plementations (e.g., CORBA [Pope, 1998]), and therefore targeted to a wired distributed
environment. Some noticeable exceptions include OpenORBv2 [Blair et al., 2001], ReM-
MoC [Capra et al., 2002a], UIC [Román et al., 2001] and LegORB [Román et al., 2000].
They all share the idea of exploiting reflection and components to achieve dynamic re-
configurability of middleware.

The ReMMoC project and the Universally Interoperable Core (UIC) aim at overcoming
the problems of heterogeneous middleware technology in the mobile environment. They
offer developers the ability to specialise the middleware to suit different devices and en-
vironments. ReMMoC, in particular, enables dynamic re-configuration of the middleware
structure and behaviour so that it can interoperate with a range of middleware platforms
(e.g., RPC, message-oriented and event-based paradigms) and can discover services ad-
vertised using different service discovery protocols (e.g., SLP and UPnP). UIC, instead,
concentrates on synchronous communication paradigms, less suited to mobile settings, and
does not directly address the key property of heterogeneous service discovery.

61

Chapter 3 3.5 Summary

LegORB exploits reflection and component technology to provide a minimal CORBA
implementation for portable devices; its core implements the low-level functionalities re-
quired to guarantee CORBA interoperability. On top of this core, it provides a ‘Config-
urator Component’ that allows on-the-fly, consistent instantiation of other components,
for example, for marshaling and unmarshaling, in order to dynamically suit application
needs.

OpenORBv2 offers a general approach that achieves both backward compatibility with
middleware standards (in particular, Microsoft’s COM component model and the OMG’s
CORBA distributed programming environment), and dynamic and efficient middleware
re-configurability. At the core is a light-weight component model, called OpenCOM, built
on top of a subset of Microsoft’s COM where high-level features, such as distribution,
persistence, security and transactions, are discarded in favour of efficiency. On top of
this core, OpenORBv2 adds support for pre- and post- method call interception, that
enables the injection of monitoring code (e.g., to drive re-configuration policies), and the
addition of new behaviours. In order to constraint the scope and effect of re-configuration,
OpenORBv2 is structured as a set of nested component frameworks; by changing the
component frameworks contained in the various layers, new platform architectures can be
defined and customised to support, for example, transactions, security, etc.

As we have shown in this chapter, reflection can be effectively used at a higher level
of abstraction, to customise the way middleware delivers services to applications (i.e.,
proactive adaptation), and not only ‘low-level’ middleware services, such as communication
and service discovery. In [Capra et al., 2002a], we discuss how CARISMA, a realisation
of our reflective middleware model, could sit on top of ReMMoC: ReMMoC presents
the ability to develop applications independently from specific middleware technologies
that may be encountered over time, by allowing the service discovery and communication
implementation to be adapted dynamically. On top of it, CARISMA controls application-
driven adaptation, based on context information.

3.5 Summary

The development of context-aware mobile applications can be enhanced by a middleware
software layer that provides application engineers with primitives to define which aspects
of context are relevant to the execution of the application, and to describe how applications
should adapt to relevant context changes. Middleware then implements mechanisms to
detect relevant context changes, and to perform adaptation as required by the application.

This chapter has shown how the principles of reflection and metadata can be exploited to
fulfil this goal. Applications encode in profiles (i.e., metadata) two types of information:
reactive metadata and proactive metadata. Reactive metadata encode associations be-

62

Chapter 3 3.5 Summary

tween context configurations that are of interest to the application itself, and behaviours
that have to be triggered when such configurations are entered. Proactive metadata con-
tain associations between the services the application is willing to customise, the policies
used to deliver these services, and the context configurations that enable these policies.
Reactive metadata is used to perform reactive adaptation, while proactive metadata is
responsible for proactive adaptation. A reflective meta-interface has been defined that
allows applications to dynamically inspect and alter the information encoded in their pro-
file, thus enabling dynamic re-configuration. A formalisation of our middleware model
has been presented, to unambiguously define the semantics we associate with application
profiles and the meta-interface.

There are a number of known potential drawbacks of the reflective approach that need to be
carefully addressed; in particular, integrity and performance. By dynamically changing the
associations encoded in an application profile, the integrity of middleware and application
behaviour could be compromised. The problem of maintaining integrity is minimised in
our approach by highly structuring the information encoded in a profile, and providing
a meta-interface that minimises the scope of changes. Moreover, different applications
have got different profiles, so that changes to a profile cannot affect the behaviour of the
middleware with respect to other applications. As for performance, we will demonstrate
in Chapter 6 that the overhead imposed by our reflective middleware is rather limited,
and can be accommodated by currently available mobile devices.

63

Chapter 4

QoS Conflict Resolution

In Chapter 3, we presented a mobile middleware model that exploits the principles of
reflection and metadata to simplify the development of context-aware applications. Appli-
cations encode in application profiles (i.e., middleware metadata) information about how
they wish context changes to be handled using policies; middleware, on behalf of the ap-
plication, maintains updated context information and then adapts application behaviour
dynamically, by selecting the context-suitable policy, as specified in the profiles. As a result
of entering unforeseen context conditions, and/or of varying user needs, applications may
wish to modify the information encoded in their profile, that is, the policies they want to
be executed in different contexts; a reflective meta-interface allows applications to inspect
and alter this information at run-time, thus achieving dynamic re-configuration. However,
while doing so, applications may introduce ambiguities, contradictions, and other logical
inconsistencies. For example, applications cooperating in the delivery of a service may not
agree on a common behaviour (i.e., policy) to be applied to deliver that service, or they
may request the execution of different and contradictory behaviours in the same context.
We refer to these inconsistencies as conflicts.

In this chapter, we classify the types of conflicts that may arise in our mobile setting. We
present and formalise a conflict resolution mechanism based on microeconomic techniques,
and demonstrate its suitability to our problem.

4.1 Conflicts

In this section, we characterise the types of conflicts that may emerge in mobile computing,
and provide examples taken from our conference application. Based on our application-
centric perspective, middleware can be considered by applications as a dynamically cus-
tomisable service provider; the customisation takes place by means of the associations that

64

Chapter 4 4.1 Conflicts

applications encode in their profile, and that they can dynamically alter through the reflec-
tive mechanism that our middleware provides. These associations state how applications
want the middleware to deliver a service, that is, which policies should be used in different
contexts. Through reflection, applications are allowed to alter the set of policies associated
with a service, as well as the context conditions that lead one policy to be preferred over
others; in other words, reflection allows applications to customise middleware behaviour
(with respect to application service delivery) based on current user’s needs. For example,
in our conference application, access to the electronic proceedings may be granted using a
‘cache’ policy, if the user is interested in data availability when disconnected, while using
a ‘network reference’ if the user cares more about memory consumption.

This model enhances the development of context-aware applications, by providing applica-
tion designers with a mechanism to adapt to changes in context and user’s needs; however,
it also gives rise to conflicts.

In our model, a conflict exists when different policies can be used in the same
context to deliver a service, and therefore the middleware does not know which
one to apply.

This definition of conflicts is based on our assumption that a service can be delivered
using only one policy at a time. Note that, by removing this assumption, we do not avoid
the issue of conflicts, we just need to formulate it under different terms. In particular,
conflicts would appear as different sets of policies enabled at the same time; in this case, a
definition of what different means should be given too (e.g., is the order in which policies
appear relevant, or is the execution of policies commutative?).

Reflection gives applications the ‘intelligence’ that transparency takes away in traditional
middleware systems. Applications, however, may not be smart enough to cope with the
new power, and may encode associations that lead to conflicts. In particular, when setting
up application profiles, two basic kinds of conflicts may be created: intra-profile conflicts
and inter-profile conflicts.

4.1.1 Intra-profile

We call a conflict an intra-profile conflict if it occurs inside the profile of an application
running on a particular device. This class identifies conflicts that are local to a host.

Let us consider, for example, the ‘talkReminder’ service of the conference application. As
shown in Figure 4.1, Alice may instruct the middleware to use a silent alert (e.g., blinking
message on the screen) when she is interacting with the system; a vibration alert when she
is not actively using the system; and a sound alert when she is not in a conference room

65

Chapter 4 4.1 Conflicts

(i.e., she is not attending a talk). What happens when Alice is having a coffee during a
conference break, and a reminder has to be triggered to remind her of the next talk she
wishes to attend? The middleware checks which policy should be applied and determines
that more than one policy suits the current context, that is, both the vibraAlert policy
and the soundAlert one. As we made the assumption that each service is delivered
using one and only one policy at a time, the middleware is unable to choose which of the
context-suitable policies to apply. This is an example of intra-profile conflict.

talkReminder
silentAlert

1
userFocus equals on

vibraAlert
2

userFocus equals off
soundAlert

3
location notEquals conferenceRoom

Figure 4.1: Example of Intra-profile Conflict.

4.1.2 Inter-profile

We call a conflict an inter-profile conflict if it occurs between the profiles of applications
running on different devices and that wish to interact. This class identifies conflicts that
are distributed among various hosts.

As a particular example of inter-profile conflict, we consider the case in which a conflict
arises between applications running on two different devices. This scenario is typical in a
mobile setting, where interactions take place between peers. Let us consider the messaging
service of our conference application, and the case where Alice and Bob start exchanging
messages. As shown in Figure 4.2, Alice wishes to send encrypted messages when busy (i.e.,
when willing to communicate privately with her closest friends), due to the confidentiality
of the information exchanged, and plain text messages when on-line. Bob, on the other
hand, is more concerned with resource consumption than with privacy of information, and
therefore he prefers to exchange plain text messages, unless bandwidth is very low, in
which case he instructs the middleware to compress messages first. What happens if Alice
starts exchanging messages with Bob when busy? Or if the available bandwidth is low?
As they do not agree on which policy to use to exchange messages, the communication
fails. We call this situation an inter-profile conflict, as the conflict is not incorporated in
one particular profile, but spans more than one (in this case, two). A particular case of
inter-profile conflict happens when applications run on the same device; we refer to this
situation as an N-on-1 (i.e., N applications on 1 device) conflict.

66

Chapter 4 4.1 Conflicts

/* Alice profile */ /* Bob profile */

messagingService messagingService
plainMsg plainMsg

1 1
userMood equals online bandwidth greaterThan 0.56

encryptedMsg compressedMsg
2 2

userMood equals busy bandwidth lessThan 0.56

Figure 4.2: Example of Inter-profile Conflict.

4.1.3 On the Nature of Conflicts

Before describing the requirements that a conflict resolution mechanism should meet, we
discuss some important aspects of the conflicts we have exemplified.

Quality-of-Service Conflicts

Both intra- and inter- profile conflicts are Quality-of-Service (QoS) conflicts. Each of the
conflicting policies associated with a service, in fact, requires different amounts of resources
to be executed, and achieves different QoS levels: for example, a caching policy for the
‘access proceedings’ service consumes more memory than a network reference, but delivers
a better quality-of-service in terms of data availability.

We choose not to define the set of quality-of-service parameters we consider further, as
we do not want to constrain ourselves by any set in particular. It is likely that different
applications will be concerned with different QoS parameters: availability of information
may be a QoS parameter for a data-sharing application, privacy may be a QoS parameter
for an e-shopping application, and so on. Also, different users will value these parameters
in different ways, at different times; for example, depending on how much the user cares
about data availability and memory consumption, caching policies may or may not be
preferred to network reference ones.

The conflict resolution mechanism we aim to design should be able to find an optimal
solution (i.e., one that delivers the best quality-of-service according to the current user’s
preferences) regardless of what the actual set of QoS parameters contains; in other words,
these parameters should be treated as variables in our model. We cannot opt, for example,
for a non-deterministic choice from the set of enabled policies, and leave these parameters
behind the scene. A random choice, in fact, would not take user’s preferences into account,
and would be likely to fail to deliver to the user the QoS he/she expects from the system.
For example, non-deterministically choosing a soundAlert policy instead of a vibraAlert

may not please Alice, if she is talking to other conference attendees and discretion is a
major concern to her.

67

Chapter 4 4.2 Requirements

Service Delivery (Proactive) Conflicts

As we have illustrated in the previous chapter, the information encoded in an application
profile is divided into two parts: reactive metadata and proactive metadata. The QoS
conflicts we are interested in only occur within the proactive encoding; whenever a service
request is issued, different policies, achieving different QoS, may be enabled in the current
context, thus requiring the middleware to choose which of them to apply to deliver the
service. That is, the enabled policies are in conflict with respect to the service they have
been associated with. In the reactive encoding, instead, policies are not related to each
other, but only to the context conditions that enable them: if more than one policy is
enabled in the current context, our middleware model expects that all of them are fired
(e.g., both a ‘lowMemory’ alert and a ‘lowBattery’ alert can be triggered at the same
time, as a result of drops in memory and battery availability). This chapter is therefore
concerned with proactive metadata, as this is where quality-of-service conflicts occur.

4.2 Requirements

Whenever a service with conflicting policies, either intra- or inter- profile, is requested,
a conflict resolution mechanism has to be run to solve the conflict and find out which
policy to use to deliver the requested service, otherwise applications cannot execute. The
following requirements can be associated with such a mechanism.

Dynamicity. Neither intra- nor inter- profile conflicts can be detected and resolved stati-
cally, that is, at the time the profile is written by the application. In case of intra-
profile conflict, a possible static approach would require us to check whether there is
any intersection between the different contexts of the policies associated with each
service. Due to the complex nature of context (the number of monitored resources
may be large), a static conflict analysis would produce an explosion in the context
information that must be checked, and would require a consumption of resources
(especially in terms of battery, memory and processing power) that portable devices
cannot bear. Providing the conflict resolution as an external service on a powerful
machine that is contacted on-demand is not feasible either, as this would require
persistent connectivity that in mobile settings cannot be taken for granted. As for
inter-profile conflicts, the situation is even worse; mobile devices connect opportunis-
tically and sporadically. We cannot foresee which devices are going to be encountered
and, even if we could, we would be unable to assume that all of them were connected
and in reach at the time a profile is modified; this means that the middleware cannot
statically check whether the new configuration is conflict-free. Even assuming that
this distributed check could be statically performed, it would not be worth the effort,
as we would find many more potential conflicts than we would actually need to be

68

Chapter 4 4.3 Microeconomic Mechanism

concerned with. We are only interested in conflicts that manifest themselves in the
particular context in which the service is requested, and according to the current
peer profiles. As a consequence, a dynamic solution is needed: conflicts may exist
inside or among profiles, but both applications and middleware can live with these
conflicts until a service which involves such a conflict is invoked.

Simplicity. The conflict resolution mechanism must be simple in the sense that it must
not unduly consume resources that are already scarce on a mobile device. Only a
low computation and communication overhead should be imposed, even if this may
occasionally prevent an optimal solution to the conflict being found.

Customisation. Different applications may have different preferences, as may even the same
application at different times. Asking the middleware to solve conflicts independently
of the applications that requested the conflicting service would hardly do any better
than a non-deterministic choice, as it would not take into consideration how much
applications value the execution of the various policies. On the one hand, we do
not want applications to be questioned each time a conflict is detected, that is,
middleware should be in charge of carrying on the conflict resolution process and
keeping it as transparent as possible to applications and users. On the other, it must
be possible for the applications to customise the conflict resolution mechanism, thus
influencing which policy is chosen and applied, and which others are discarded, based
on how much they value the QoS parameters associated with the conflicting policies.

In the following section, we describe and formalise the conflict resolution mechanism we
have designed to meet these requirements.

4.3 Microeconomic Mechanism

When applications participating in the delivery of a service cannot agree on which policy
to apply, a conflict resolution scheme is necessary to resolve the dispute. We have explored
microeconomic techniques [Binmore, 1992] and used them to design a conflict resolution
mechanism. The motivating idea is that a mobile distributed system can be seen as an
economy, where a set of consumers must make a collective choice over a set of alternative
goods. Goods represent the various policies that can be used to deliver a service; for ex-
ample, policies ‘plainMsg’, ‘encryptedMsg’ and ‘compressedMsg’ are the goods associated
with service ‘messagingService’. Consumers are applications seeking to achieve their own
goals, that is, to have a service delivered using the policy that provides the best quality
of service, according to application-specific preferences.

Simple schemes include, for example, priority assignment or per capita distribution. Prior-
ity assignment could be used to solve intra-profile conflicts: it would require, for example,

69

Chapter 4 4.3 Microeconomic Mechanism

to statically assign a priority to the various policies, so that a conflict is solved by selecting
and applying the policy with the highest associated priority among the conflicting ones.
Per capita distribution would solve inter-profile conflicts instead, where each application
wins a conflict in turn and gets its preferred policy executed. However, these schemes do
not suit situations where participation in exchange of goods is voluntary on the part of all
parties (i.e., the applications), so that action requires a consensus and mutual perception
of benefit. A better scheme would use an auction protocol. Auctions allow parties to make
distributed decisions independently, on the basis of private state, revealing only offers and
acceptance of the offers made by others. Applications may vary greatly in their preferences
and decision processes. An auction permits greater degrees of heterogeneity than simpler
schemes.

The question we have to answer next is which auction protocol to use. This is known in
microeconomic theory as a mechanism design problem [Mas-Colell et al., 1995]. A proto-
col, or mechanism, consists of a set of rules that govern interactions, and by which agents
(i.e., our applications) will come to an agreement. It constrains the deals that can be
made, as well as the offers that are allowed. We argue that the auction protocol we have
designed [Capra et al., 2002b] can be successfully applied in a mobile setting, where the
requirements listed in Section 4.2 must be satisfied.

4.3.1 The Protocol: an Informal Description

In this section we provide a high-level description of the protocol we have designed to
automatically resolve QoS conflicts. Using microeconomic terms, the rules of our auction
can be described as follows.

Given a setting with N agents that must make a collective choice from a set of
P possible alternatives, each agent submits a single sealed bid for each element
in P . The auctioneer collects the bids and selects the alternative in P that
maximises social welfare, that is, the alternative with the highest sum of bids
received. Each agent then pays the auctioneer an amount of money that is
proportional to the bid they placed on the winning alternative.

The Agents

In our case, applications are the agents, and the goods they are competing for is the
execution of the policy they value most, among a set of alternatives that correspond to
the policies that can be applied in a particular context to deliver a service. In a human
auction, the maximum amount of money an agent can bid to win an auction is limited
by the maximum amount of money he/she has got. In our computer-based auction, we
simulate this concept by assigning each application a certain quota, that is, a maximum
amount of virtual money an application owns. Based on how much an agent values the

70

Chapter 4 4.3 Microeconomic Mechanism

goods put up for auction, different amounts of money can be offered; in our computer-
based auction, we use utility functions to derive an offer, that is, to decide what portion of
the application’s quota to bid, based on current application’s preferences. We will provide
a detailed discussion of utility functions and quota management in Section 4.3.3 and 4.3.4
respectively.

The Auctioneer

In our case, the role of the auctioneer is played by the middleware, which we assume
is a trusted entity whose code and behaviour cannot be interfered with. The aim of
the middleware is not to select the policy that received the highest bid, that is, the
one that maximises the selling price: virtual monies, in fact, are worthless; they are
simply an abstraction we use to allow applications to express preferences in a computer-
understandable way. Rather, the goal of the middleware is to satisfy the largest number
of applications involved in the conflict. In our case, in fact, applications are participating
in the delivery of the same service, rather than competing for it (i.e., the service will be
delivered to all of them, not only to one or some of them). In these collaborative, or at
least compromise scenarios, a solution that satisfies the total benefit of all the applications
is preferred to one that maximises the benefit of a single one.

The auction

Alice

Bob

Claire

Middleware
(auctioneer)

1: bidding

1: bidding

1:bidding

2: election of winner

3: payment

3: payment

3: payment

Figure 4.3: The Auction Protocol.

Let us consider the scenario depicted in Figure 4.3, where three peers (Alice, Bob and
Claire) are participating in a service delivery, and they do not agree on which policy to
use to deliver that service. In this case, our conflict resolution mechanism proceeds as
described below.

71

Chapter 4 4.3 Microeconomic Mechanism

1: Bidding: each peer uses its utility function to decide how much to bid on each conflicting
policy. These values are secretly communicated to the auctioneer (that is, to the
middleware) by all peers.

2: Election of the Winner: the auctioneer collects the offers, sums the bids received on each
conflicting policy, determines which policy received the highest sum of bids, and
selects this one as the winning policy.

3: Payment: in a human setting, the auction completes with the auctioneer collecting the
money and assigning the goods to the winning agent. In our computer-based game,
the goods are not uniquely assigned to one peer, as all applications will have the
service delivered, but with different degrees of satisfaction. Each peer then pays the
middleware an amount of money that is proportional to the added benefit obtained
by applying the winning policy over the other peers. Middleware puts this money in
what we call middleware accounts. Details about the payment scheme can be found
in Section 4.3.2

Each time an application participates in an auction, money is taken from its current quota
and used to pay the middleware. If we do not provide a way for money to flow back to
the application, this process will leave the application without money, thus unable to par-
ticipate in other auctions. To avoid this situation, middleware runs a quota redistribution
service that, at regular time intervals, returns money from the middleware accounts to the
applications in a way that rewards collaborative, rather than dictatorial, behaviours. We
will give full details of how middleware manages this self-stabilising quota redistribution
service in Section 4.3.4.

4.3.2 The Protocol: Formalisation

Having provided a high-level description of the microeconomic mechanism we have de-
signed to resolve QoS conflicts, we can now formalise it and unambiguously define its
rules. The following discussion applies to both intra- and inter- profile conflicts. To avoid
confusion between an application, which may exist on different devices, and an applica-
tion instance, which runs on a particular device, we will identify an application instance
and the device it is executing on as a ‘peer’. Peers are partners in the communication
process. We call PEER the set of all possible peers; the other domain sets we refer to in
the following discussion are the ones introduced in the previous chapter and reproduced
in Figure 4.4. We do not describe here how coordination among different devices takes
place; details of the algorithms that realise this coordination can be found in Chapter 5.

Step 1 - Initialisation. As part of an initialisation process, for every peer peeri, i ∈ [1, N],
a utility function ui : P→ R

+ that represents the user’s goals (e.g., minimisation of

72

Chapter 4 4.3 Microeconomic Mechanism

PEER : set of all peers
Σ : alphabet

S ⊂ Σ∗ : set of all service names
P ⊂ Σ∗ : set of all policy names

N : set of all natural numbers
R ⊂ Σ∗ : set of all resource names
O ⊂ Σ∗ : set of all operator names

V : set of all values of resources in R
E ⊂ ℘(R×V) : set of all possible execution contexts

Figure 4.4: Application Profile - Domain Sets.

battery consumption, maximisation of data availability, etc.) is determined. Peers
use a utility function to specify how much they value the use of a policy pj ∈ P
during an auction, that is, ui(pj) = ui,j . Each peer is also assigned a quota qi by
the middleware. The quota qi represents the maximum amount of money that peeri
can bid during a bidding process, that is, the bid placed by peer peeri on policy pj
is a number bi,j = min{ui,j , qi}.

Step 2 - Service Request. Whenever an application requires the middleware to execute a
service, a command like the one illustrated below is issued:

command ::= sname peerList

peerList ::= peer peerList | peer

where sname ∈ S is the name of the requested service, and peerList the set of
peers involved in the service execution. Assuming that service sname requires the
cooperation of n ≤ N peers, each peer (or, better, the middleware instance operating
on the device of the peer) computes Pi as the set of policies that the above running
application instance Ai has associated with service sname in its profile, and that can
be applied in the current context (i.e., according to current resource availability).
More formally, Pi can be defined as follow:

Pi = F [[serv(sname, peeri)]]Env(peeri)

where F is the semantic function defined in Chapter 3 (see Figure 3.14 on page 52);
serv : S × PEER → service is a function that, given a service name and a peer,
returns the corresponding service specification, and Env : PEER → E a function
that computes the current execution environment of a peer.

Step 3 - Computation of the Solution Set. Middleware instances then cooperate to com-
pute the solution set P ∗, that is, the set of policies that all peers involved in the

73

Chapter 4 4.3 Microeconomic Mechanism

I : S → ℘(PEER)→ ℘(P)
I[[sname]]{peer peerList} = I[[sname]]{peer} ∩ I[[sname]]{peerList}

I[[sname]]{peer} = F [[serv(sname, peer)]]Env(peer)

Figure 4.5: Semantics of the Computation of the Solution Set.

execution of the service have agreed upon:

P ∗ = I[[sname]]{peer1...peern}

I being the semantic function described in Figure 4.5.

If the cardinality of P ∗ is zero, that is, the solution set is empty, a conflict exists
that cannot be automatically solved, as peers do not agree on a common policy to
be applied; the conflict resolution process is terminated with a failure and peers are
notified. If the cardinality is exactly 1, there is mutual agreement on the policy to
apply (i.e., there is no conflict). Finally, if the cardinality is greater than 1, there
is a conflict that can be resolved using one of the policies in P ∗. In this case, the
auctioning process proceeds as below, to decide which of these policies should be
applied.

Step 4 - Computation of Bids. For every peer peeri participating in the communication
process, and for every agreed policy pj ∈ P ∗, j ∈ [1,m], a bid bi,j is computed,
based on the peer utility function ui and quota qi. Unlike human auctions, we make
the assumption that all peers participating in a bidding process bid a price, that is,
they cannot refuse to bid. Middleware instances of bidding peers exchange the bids
they have received, producing a merged set of tuples B∗ specifying how much each
peer valued the use of each agreed policy:

B∗ = B[[{p1, . . . , pm}]]{peer1,...,peern}

B being the semantic function shown in Figure 4.6.

Step 5 - Election of the Winner. From the setB∗, middleware instances participating in the
conflict resolution process select the winning policy p̃ as the one with the highest
sum of the bids placed:

p̃ =W[[B∗]]

where W is the semantic function defined in Figure 4.7. We make use here of
the following auxiliary functions: πi, to project a tuple onto the ith value (i.e.,
πi(a1, a2, . . . , an) = ai); # to compute the cardinality of a set (i.e., #{a1, a2, . . . , an} =
n); qmw(i) to retrieve the middleware account on top of which peer peeri is exe-
cuting; and, finally, pay, to move money from the application to the middleware

74

Chapter 4 4.3 Microeconomic Mechanism

B : ℘(P)→ ℘(PEER)→ ℘(P× PEER× R+)
B[[{p1, . . . , pm}]]{peer peerList} = B[[{p1, . . . , pm}]]{peer} ∪ B[[{p1, . . . , pm}]]{peerList}

B[[{p1, . . . , pm}]]{peer} =
m⋃
j=1

{(pj , peer, min{qpeer, upeer,j})}

B[[{p}]]{peerList} = {(p, , 0)} No conflict
B[[∅]]{peerList} = ∅ No agreement

Figure 4.6: Semantics of the Computation of Bids.

W : ℘(P× PEER× R+) → P
W[[{(pj , peeri, bi,j),
∀i ∈ [1, n], j ∈ [1,m]}]] = p̃ |

p̃ ∈ {π1(pj , peeri, bi,j), ∀i ∈ [1, n], j ∈ [1,m]}

∧
n∑
i=1

π3(p̃, peeri, bi,̃) = max
j∈[1,m]

n∑
i=1

π3(pj , peeri, bi,j)

∧ pay(qmw(i), fi, qi), ∀i ∈ [1, n]
W[[{(p, , 0)}]] = p No conflict

W[[∅]] = ε No agreement

fi =

a. 0 if ∀k ∈ [1, n] π3(p̃, peerk, bk,̃) = maxj∈[1,m] π3(pj , peerk, bk,j)

b.
∑

l∈{s|s∈[1,n]
∧bs,̃≤bi,̃}

bl,̃−max({bs,̃|bs,̃<bl,̃, s∈[1,n]}∪{bmin,̃})
#{bs,̃|bs,̃≥bl,̃, s∈[1,n]}∗#{bs,̃|bs,̃=bl,̃, s∈[1,n]} ,

bmin,̃ = min{bi,̃, i ∈ [1, n]} otherwise

Figure 4.7: Semantics of the Election of the Winning Policy.

(pay(q1, x, q2) = (q1 + x, q2 − x)).

As shown, each peer pays an amount of money that is proportional to the ‘added’
benefit obtained by applying the winning policy over the other peers. To understand
how the payment is split, let us consider three peers x, y and z, who bid bx < by < bz
respectively on a winning policy p. Applying p gives an equal benefit of bx to each
peer; moreover, y and z share an added benefit of by − bx over x, and z enjoys an
extra benefit equal to bz − by over both x and y. Our payment scheme demands
that x, y and z pay 0, (by − bx)/2, and (by − bx)/2 + (bz − by)/1 respectively. Note
that, if the winning policy is the one that has been valued most by all peers (i.e.,
bx = maxi bi,x, by = maxi bi,y, bz = maxi bi,z), then no payment is demanded, as there

75

Chapter 4 4.3 Microeconomic Mechanism

was no real conflict to be solved. Note also that, in case of intra-profile conflicts, the
payment is always zero, as the winning policy is never ‘imposed’ on anyone, that is,
there is no added benefit over anyone. The rationale for this payment scheme is that
applications are not paying for the resources they use when applying a policy, but,
rather, for the (added) quality-of-service level the policy gives them. We assume
that ties are broken by selecting a policy randomly (i.e., a k-way tie is decided by
flipping a ‘k-sided coin’, where each policy is chosen with probability 1/k).

If a service sname is requested that requires the cooperation of a set of peers peerList,
then the whole conflict resolution mechanism can be summarised as follows:

G : command → P

G[[sname peerList]] = W [[B [[I[[sname]]{peerList}]]{peerList}]]

A service request may then produce one of the following two results:

G[[sname peerList]] = pname: service sname is delivered using policy pname (either be-
cause all peers agreed on the policy, or because pname was the policy selected during
a conflict resolution process);

G[[sname peerList]] = ε: the service request fails as no policy can be found that is both
agreed on by all peers and valid in the current context.

Of this five-step procedure, step 1 is performed only at application startup; step 2 and
3 are part of every service request; only in the event of a solution set P ∗ of cardinality
greater than one, the conflict resolution process (step 4 and 5) is actually run.

The auctioning mechanism has been described in the general situation where there are
different applications running on different hosts (inter-profile conflict). N -on-1 conflicts are
detected and solved in the same way as inter-profile conflicts. However, as the application
instances involved are running on the same host, no communication overhead is required,
and both the solution set P ∗, the bids B∗ and the winning policy p̃ can be computed
locally. Intra-profile conflicts can be considered a degeneration of inter-profile conflicts,
where the number n of bidders is 1, and the solution set coincides with P1 (i.e., the
set of policies that can be applied in the current execution context, according to peer1

application profile). The auction proceeds as described above, selecting the policy that
maximises this peer utility, without communication costs.

The microeconomic mechanism we have designed can resolve conflicts, but it cannot re-
move them. Conflicts, in fact, are usually not local to a profile but distributed among the
profiles of different peers. If the peers involved change, or if the context changes, there
may be no conflict at all. Also, the result of the auction is not stored as each auction

76

Chapter 4 4.3 Microeconomic Mechanism

is carried out in isolation and cannot be repeated: we cannot assume that next time the
same conflict arises, the winning policy will be the same one, as the result depends on
current peer quotas, utility functions and application profiles. Therefore, each conflict
resolution process stands alone.

There are a few questions that need to be answered about the process described above; in
particular, how is a utility function defined, and how is the quota managed? We answer
these questions in the following sections.

4.3.3 Utility Function

Whenever an intra- or inter- profile conflict is detected, user goals, such as availability of
information for the ‘access proceedings’ service of the conference application, or privacy
for the instant messaging functionality, must be taken into account. In other words, users
should be allowed to influence the conflict resolution process operated by the middleware
as they are the only ones who know what their goals are at that moment, and how different
outcomes are valued.

Utility functions serve this purpose. A utility function ui translates peer i’s goals into a
value ui,j , that represents the price the peer is currently willing to pay to have policy pj
applied, that is, to see its goals fulfilled. The following holds:

ui,j ≥ 0, ∀i ∈ [1, n], j ∈ [1,m].

As in human auctions, values cannot be negative; a value ui,j = 0 means that policy pj is
not relevant to peer i, that is, the peer does not receive any benefit from applying pj (this
is a plausible ‘machine’ representation of a human who refrains from bidding).

Utility functions vary dynamically to reflect changes in the user goals; however, the value
they return is computed over static policy specifications which estimate the consumption
of resources that applying the policy entails, and the benefits it gives in terms of quality-
of-service. If R ⊂ Σ∗ defines the set of resource names that the middleware monitors, and
Q ⊂ Σ∗ the set of benefits achieved by applying policies in P, then a policy specification
can be described as a domain set:

PSPEC = ℘({R ∪Q} × level)

where level ::= ′1′| . . . |′LMAX′ is an estimate of resource consumption/benefit achieved
that the policy developers compute before delivering the policy. Policy specifications
are therefore divided into two parts: one that provides an estimate of the consumption of
resources that applying the policy would cause, and one that estimates the level of quality-
of-service that is expected to result from the application of this policy. We assume these
ratings are computed by policy developers and provided together with the policy code.

77

Chapter 4 4.3 Microeconomic Mechanism

The more accurate these ratings are, the more faithfully user goals will be translated into
bids; however, we do not require these numbers to be ‘absolute’, so that the specifications
of all possible policies can be compared. The accuracy of estimates is local to the policies
associated with a service. For example, the estimated consumption of battery to send en-
crypted messages must be higher than the one estimated to send plain messages; however,
we do not care how battery consumption for the ‘encryptedMsg’ policy of the ‘messaging’
service compares to the ‘cacheAbstract’ policy of the ‘access proceedings’ service.

For each application, a utility function is then defined that makes explicit the resources
the user is interested in preserving, and the quality-of-service parameters he/she wishes to
achieve. Users associate weights with each of these resources/parameters that represent
the importance they attribute to them (the higher the weight, the more important the
resource/QoS parameter). The abstract syntax of a utility function is given in Figure 4.8,
where cb name ∈ (R ∪Q) is a name that uniquely identifies a resource or benefit inside a
policy specification, and weight ::= ′1′| . . . |′WMAX′ represents the importance the user
associates with a particular resource/benefit.

ufunction ::= addendList | ε
addendList ::= addend addendList | addend

addend ::= cb name weight

Figure 4.8: Utility Function Abstract Syntax.

Both the resources/benefits listed in an utility function, and the weights associated with
them, may vary over time, in order to represent current user needs, with regard to a par-
ticular application, as faithfully as possible. Although we consider the issue of generating
weights that represent user needs as faithfully as possible a matter of future research, we
will give a flavour of how these numbers can be obtained from users and be directly used
in Chapter 6.

Whenever a peer peeri is involved in a bidding process, its utility function is retrieved
and used to find the peer utility value ui,j for each conflicting policy pj . The semantics
of a utility function is presented in Figure 4.9. The following auxiliary functions have
been used: S : (R ∪Q)→ PSPEC→ level, that, given a resource/benefit name cb name,
and a policy specification ps, fetches the level associated with cb name in ps (if the
utility function tries to retrieve a value for a resource/benefit that does not appear in the
policy specification, the returned value is 0). intval is a function that, given a literal in
{′1′, . . . ,′MAX′}, returns the corresponding integer value in [1,MAX]. LMAX∗WMAX∗
RQMAX represents the maximum bid an application can place, where RQMAX is the
maximum number of resources/benefits of interest to an application.

Informally, for each resource/benefit that appears in the utility function, the corresponding

78

Chapter 4 4.3 Microeconomic Mechanism

U : ufunction→ PSPEC→ R
+

U [[addend addendList]]ps = U [[addend]]ps + U [[addendList]]ps
U [[addend]]ps = U [[cb name weight]]ps

U [[cb name weight]]ps =
intval(S[[cb name]]ps) ∗ intval(weight)

LMAX ∗WMAX ∗RQMAX
,

U [[ε]]ps = 0

Figure 4.9: Semantics of Utility Functions.

level (i.e., policy developer’s estimate) is fetched from a policy specification. This value is
then multiplied by the weight the user has associated with this resource/benefit in the util-
ity function (the higher the multiplying factor, the more important the resource/benefit).
These values are then added, and the sum is returned and interpreted as the price the ap-
plication is willing to pay to have that policy applied. As shown, each value is normalised
to vary in a range [0, 1], so that different bids can be compared effectively, and money
fairly redistributed (see Section 4.3.4).

Note that, to avoid incompatibility among the prices bid during a conflict resolution
process, utility functions are locked at the beginning of an auction, and cannot be modified
until the auction finishes. Thus, applications cannot ‘cheat’ and associate high bids with
the policies they value most, while bidding zero for the others, to increase the chances of
having the policy they value most finally applied, as this would require applications to
change the weights of their utility functions during the auction.

4.3.4 Quota Allocation

When describing the rules of our mechanism (Section 4.3.2), we specified that each peer
peeri is allowed to bid a value bi,j for policy pj , given that this value is lower than its
current quota qi. We now explain how this quota is managed.

Whenever an application instance Ai is started, an initial quota qi = qinit is granted. Each
time Ai participates in a bidding process, its current quota is decreased by an amount fi
that is proportional to the added benefit Ai got from applying the winning policy over
other applications participating in the service delivery. Ai’s underlying middleware collects
Ai payments and stores them in an account q(i). We assume that there is no flow of money
from one peer to another (i.e., each application instance pays its underlying middleware
instance). Moreover, we assume that there is no explicit utility transfer among applica-
tions (e.g., no money can be transfered to a peer to compensate for a disadvantageous
agreement).

79

Chapter 4 4.3 Microeconomic Mechanism

Every t time units, each middleware instance redistributes the money it has collected in
the accounts it manages q(i), i ∈ [1, n], to the various application instances Ai, i ∈ [1, n].
The amount of money each application instance gets back is in direct relation to the
number of interactions it has been involved in during the last t time units, and in inverse
relation to the amount of money it has bid. We define an interaction as a service request
which involves an inter-profile conflict (intra-profile conflicts are excluded from the quota
recharging as no flow of money occurs).

In particular, if we indicate with Nt(i) the number of interactions in which application
instance Ai was involved in the last t time units, then the recharging process is carried
out as described below:

qi = qi +
(
q(i)− q(i)

Nt(i)

)
q(i) =

q(i)
Nt(i)

q(i) being the money currently stored by the middleware in the account associated with
Ai, and qi being Ai’s current quota.

This quota redistribution scheme discourages dictatorial interactions: if an application
instance bids very highly in a few interactions, ‘imposing’ its preferred policy over the
others, then only a very low amount of money is returned during a recharging process.
The only way to get money back from the middleware is to participate in other interactions
in a more cooperative fashion (i.e., by bidding lower and interacting more). For example,
let us assume that at time t0, two applications instances A1 and A2 are started and are
awarded the same quota qi = 3, i ∈ {1, 2}. During the following t time units, they
are involved in a number of interactions that cost them altogether the same amount of
money; however, while A1 bid aggressively, paying a lot of money in few interactions, A2

was more cooperative, paying low amounts in many interactions. As a result, our quota
redistribution scheme returns money to A2 faster than to A1 (see Figure 4.10).

The approach to quota redistribution that we have described could be defined as ‘con-
servative’: at any time, an application instance Ai has got the same amount of money,
although split differently between its current quota qi and the corresponding middleware
account q(i). In other words:

q(i) + qi = qmax,

qmax being a fixed amount that is the same for any application. At time t0 when an appli-
cation instance Ai is started, different choices of qinit and q(i) are possible. In particular,

80

Chapter 4 4.4 Examples

Time / Action q1 q(1) q2 q(2)
t0 / Start 3 0 3 0
t1 / Bid 2.1 0.9 2.7 0.3
t2 / Bid 1.2 1.8 2.4 0.6
t3 / Bid 2.1 0.9
t4 / Bid 1.8 1.2
t5 / Bid 1.5 1.5
t6 / Bid 1.2 1.8

t7 / Redistribution 2.1 0.9 2.7 0.3

Figure 4.10: Example of Quota Redistribution (with t7 − t0 = t).

any assignment that complies with the following equations is acceptable:

∀α ∈ [0, 1]

{
qinit = α · qmax
q(i) = (1− α) · qmax

Setting α = 1 favours newly started application instances, while setting α = 0 favours
applications that have been executing for a long while. The differences between these
possibilities disappear over time.

4.4 Examples

In the previous section we have formally discussed our auctioning approach to the conflict
resolution problem. We now illustrate how this mechanism can be instantiated and used
to solve conflicts. In particular, we refer to our conference application and present both
an example of intra-profile conflict, and two of inter-profile conflicts, and show how our
auctioning mechanism can be successfully applied to resolve them.

4.4.1 Intra-profile Conflict: Talk Reminder

One of the services that our conference application can customise is the way talk reminders
are issued. In particular, the application can choose one of three different policies: a
soundAlert policy, a vibraAlert policy, and a silentAlert policy. Each of these policies
requires different amounts of resources to be used (in particular, battery), and achieves a
different quality of service (in terms of focusing and privacy). The corresponding policy
specifications are shown in Figure 4.11; we are still not interested in implementation details
(in particular, in the way policy specifications and utility functions are actually encoded);
we therefore use the abstract syntax illustrated in the previous section to discuss the

81

Chapter 4 4.4 Examples

soundAlert: {(battery,6),(privacy,1),(focusing,8)}
vibraAlert: {(battery,10),(privacy,7),(focusing,8)}
silentAlert: {(battery,1),(privacy,10),(focusing,2)}

Figure 4.11: Example of Policy Specifications.

talkReminder
soundAlert

1
location equals outdoor

vibraAlert
2

location equals indoor
silentAlert

3
location equals indoor
battery lessThan 15%

Figure 4.12: Example of Application Profile.

following examples.

Whenever a talk reminder is due, the application profile is consulted to find out which
policy to apply. Let us assume that Alice’s (peer1) application profile is the one illustrated
in Figure 4.12, and that the talk reminder service is invoked when the user is attending a
talk (i.e., location = indoor), and battery is lower than 15%, so that both vibraAlert

and silentAlert are enabled. This is an example of intra-profile conflict.

Note that, although it could be argued that such a conflict would not exist if the profile
were properly written (i.e., if a line containing battery > 15% were added to the context
of the vibraAlert policy), avoiding context overlaps is not so easy. When the number
of resources associated with a context increases, the chances of making mistakes and of
writing profiles with context overlaps increase quickly. As already argued, a static conflict
analysis would be unmanageable on portable devices, and therefore a dynamic solution is
needed. We now illustrate how our dynamic conflict resolution mechanism works effectively
to solve this conflict. We assume that the initialisation process (step 1) has already been
performed, and therefore a quota has been assigned, and the utility function illustrated in
Figure 4.13 is in use. Also, we assume that a talk reminder service request (step 2) has

battery 2
privacy 10
focusing 10

Figure 4.13: Example of Utility Function Specification. peer1 aims at maximising privacy
and focusing, without paying too much attention to battery consumption.

82

Chapter 4 4.4 Examples

been issued, and the set of locally enabled policies has been computed.

Step 3 - Computation of the Solution Set.

First, the solution set P ∗ is computed; as only one peer is involved, P ∗ coincides with
P1, that is, with the set of policies enabled in the current context by peer1’s application
profile:

I[[talkReminder]]{peer1} = P1 = {vibraAlert, silentAlert}

As the cardinality of the solution set is greater than 1, a conflict exists that middleware
can automatically solve using our conflict resolution mechanism.

Step 4 - Computation of Bids

For each policy in the solution set, a bid indicating how much peer1 values the execution
of that policy has to be computed. High weights associated with resources in utility
function specifications mean that the user aims to preserve resources; however, policy
specifications estimate the amount of resources consumed, not preserved. In order to
give higher scores (i.e., higher bids) to the policies that reduce resource consumption, we
therefore need to compute the value: LMAX− expected consumption. For example, if we
assume LMAX = 10, WMAX = 10, and RQMAX = 6 (i.e., memory, battery, bandwidth,
focusing, availability and privacy), then:

upeer1(vibraAlert) =
(10− 10) ∗ 2 + 7 ∗ 10 + 8 ∗ 10

10 ∗ 10 ∗ 6
= 150/600 = 0.25

Assuming that the peer quota qpeer1 > 1 (i.e., the bid is not constrained by current quota,
as each bid b1,j ∈ [0, 1]), we obtain:

B[[{vibraAlert, silentAlert}]]{peer1} = {(vibraAlert, peer1, 0.25),
(silentAlert, peer1, 0.23)}

Step 5 - Election of the winner

As only one peer is involved in an intra-profile conflict, maximising social welfare coincides
with maximising individual utility. The winning policy is therefore the one that received

83

Chapter 4 4.4 Examples

the highest bid:

W[[B[[{vibraAlert, silentAlert}]]{peer1}]] = vibraAlert

No payment is needed for intra-profile conflicts, as there is no peer over which peer1 had
an extra benefit; the conflict resolution process simply ends with the execution of the
vibraAlert policy.

4.4.2 Inter-profile Conflict: Messaging Service

Another service that our conference application can customise is the way messages are
delivered among peers that have started a chat. In particular, the application designer
provides four different policies among which the application can choose: a charMsg policy,
which is used to exchange a character at a time; a plainMsg policy, which is used to
deliver a line of characters at a time; a compressedMsg policy, which is used to exchange
compressed messages, and finally an encryptedMsg policy used to exchange encrypted lines
of characters. Once again, each of these policies requires a different amount of resources
(in particular, battery and bandwidth), and achieves a different quality of service (in terms
of availability and privacy of the message). The corresponding policy specifications are
shown in Figure 4.14.

charMsg: {(battery,4),(bandwidth,10),(availability,10)}
plainMsg: {(battery,3),(bandwidth,6),(availability,7)}
compressedMsg: {(battery,5),(bandwidth,4),(availability,5)}
encryptedMsg: {(battery,6),(bandwidth,7),(availability,4),(privacy,10)}

Figure 4.14: Example of Policy Specifications.

Let us suppose that Alice (peer1), Bob (peer2), and Claire (peer3) are now in reach of
each other and want to start a chat. In order to do so, they have to agree on a common
policy to be applied to exchange messages. During the lifetime of the chat, the policy
used may change to adapt to new context configurations where the currently used policy
is no longer suitable. However, when this happens, all the chatting peers must agree on
the new policy to use.

The peers’ application profiles are represented in Figure 4.15. The first peer enables each
of the four policies in different contexts; the second peer prevents the use of the two
heaviest policies, charMsg and encryptedMsg; finally, the third one prevents the use of
charMsg, while leaving plainMsg always enabled (there is in fact no context associated
with it). Leaving one or more policies always enabled is a good way to reduce the risk of
ending a conflict resolution process with a failure because no agreed policy could be found.
However, this increases the risk of conflicts and, consequently, the time used to resolve

84

Chapter 4 4.4 Examples

them. It is up to the application to decide which strategy suits it best (we will discuss
in Chapter 6 some heuristics to write profiles, based on an experimental evaluation of our
middleware model).

% peer 1 % peer 3
messagingService messagingService

charMsg plainMsg
1

bandwidth > 70%
plainMsg compressedMsg

2 1
bandwidth < 70% bandwidth < 40%

compressedMsg encryptedMsg
3 2

bandwidth < 35% battery > 60%
encryptedMsg

4
battery > 50%

% peer 2
messagingService

plainMsg
1

battery < 50%
compressedMsg

2
bandwidth < 40%

Figure 4.15: Example of Application Profiles.

% peer 1 % peer 2 % peer 3
battery 4 battery 7 privacy 10
bandwidth 3 bandwidth 9
availability 10

Figure 4.16: Example of Utility Function Specifications. peer1 aims at maximising avail-
ability without wasting resources; peer2 aims at minimising resource consumption, and
peer3 aims at maximising privacy.

Assuming that the utility functions are the ones shown in Figure 4.16, and that the current
execution context enables the following sets of policies:

P1 = {plainMsg, compressedMsg, encryptedMsg}
P2 = {plainMsg, compressedMsg}
P3 = {plainMsg, compressedMsg, encryptedMsg}

for peers peer1, peer2 and peer3 respectively, then the conflict resolution process proceeds
as described below.

85

Chapter 4 4.4 Examples

Step 3 - Computation of the Solution Set

First, the solution set P ∗, that is, the set of commonly agreed policies is computed:

I[[messagingService]]{peer1,peer2,peer3} = P1 ∩ P2 ∩ P3

= {plainMsg, compressedMsg}

Once again, the cardinality of the solution set is greater than 1, that is, our conflict
resolution mechanism is needed to transparently solve the conflict.

Step 4 - Computation of Bids

Each peer is now required to compute a bid on both enabled policies. We assume, as
before, that LMAX = 10, WMAX = 10, and RQMAX = 6, and that each peer has
a quota qpeeri = 1 (i.e., the bid is not constrained by the current quota, as each bid
bi,j ∈ [0, 1]). For example:

upeer1(plainMsg) =
(10− 3) ∗ 4 + (10− 6) ∗ 3 + 7 ∗ 10

10 ∗ 10 ∗ 6
= 110/600 = 0.183

The whole set of bids is then the following:

B[[{plainMsg, compressedMsg}]]{peer1,peer2,peer3} =
{(plainMsg, peer1, 0.183), (compressedMsg, peer1, 0.146),
(plainMsg, peer2, 0.142), (compressedMsg, peer2, 0.15),
(plainMsg, peer3, 0), (compressedMsg, peer3, 0) }

Step 5 - Election of the Winner

Bids received for each policy in the solution set are added, and the policy that maximises
the sum (i.e., social welfare) is selected:

Policy peer1 peer2 peer3 Sum
plainMsg 0.183 + 0.142 + 0 = 0.325

compressedMsg 0.146 + 0.15 + 0 = 0.296

86

Chapter 4 4.4 Examples

Therefore:

W[[B[[{plainMsg, compressedMsg}]]{peer1,peer2,peer3}]] = plainMsg

Note that, while plainMsg was the preferred policy by peer1, peer2 placed a higher bid on
compressedMsg instead (peer3 placed an equal bid on both). Our auctioning mechanism
requires then that a payment that is proportional to the added benefit gained by each
peer in applying plainMsg is made. Each peer quota is therefore adjusted in the following
way:

q1 = q1 −
0.183− 0.142

1
− 0.142− 0

2
− 0

3

q2 = q2 −
0.142− 0

2
− 0

3

q3 = q3 −
0
3

At the same time, the middleware accounts associated with these peers are increased by
the same amounts:

q1 = q1 +
0.183− 0.142

1
+

0.142− 0
2

+
0
3

q2 = q2 +
0.142− 0

2
+

0
3

q3 = q3 +
0
3

4.4.3 Inter-profile Conflict: Access Proceedings

As a last example, we consider the ‘access proceedings’ service of our conference applica-
tion. Let us assume that the application developer provides three different policies among
which the application can choose: a networkReference policy, which is used to access
the proceedings without caching information locally, a cacheAbstract policy, which is
used to replicate the abstracts of the papers, so that they can be accessed when the host
is off-line, and a compressCache policy used to compress abstracts before caching them
on the mobile device. Each of these policies requires a different amount of resources (in
particular, memory, battery and bandwidth), and achieves a different quality of service
(in terms of availability of data). The corresponding policy specifications are shown in
Figure 4.17.

When Alice (peer1) arrives at the conference site, the available wireless infrastructure

87

Chapter 4 4.4 Examples

networkReference: {(battery,3),(bandwidth,8),(availability,2)}
cacheAbstract: {(memory,8),(battery,4),(bandwidth,8),(availability,10)}
compressCache: {(memory,5),(battery,7),(bandwidth,5),(availability,10)}

Figure 4.17: Example of Policy Specifications.

enables her to access the electronic proceedings, by requesting that service from a well-
known, permanently connected server (peer2). This is a typical client-server interaction;
while peer1 is willing to customise the way the accessProceedings service is delivered,
we may assume that peer2 is always willing to meet its clients’ requests. Therefore, the
client peer enables the three policies in different contexts, while the server peer enables all
of them at all times; the corresponding application profiles are represented in Figure 4.18.

% peer 1 (client) % peer 2 (server)
accessProceedings accessProceedings

networkReference networkReference
1

battery > 20%
cacheAbstract cacheAbstract

2
battery < 20%

compressCache compressCache
3

memory < 25%

Figure 4.18: Example of Application Profiles.

% peer 1 (client) % peer 2 (server)
battery 5
availability 10

Figure 4.19: Example of Utility Function Specifications. peer1 aims at maximising avail-
ability without wasting too much battery; peer2 expresses no preferences.

Also, we may assume that, in the case that a conflict is detected, the server peer expresses
no preferences as to which policy is actually chosen and applied; its utility function spec-
ification is therefore empty (Figure 4.19). Note that it entirely depends on the client
whether a conflict is detected, and, if so, how it is solved.

Assuming that the current execution context enables the following sets of policies:

P1 = {cacheAbstract, compressCache}
P2 = {networkReference, cacheAbstract, compressCache}

for peers peer1 and peer2 respectively, then the conflict resolution process as described

88

Chapter 4 4.4 Examples

below.

Step 3 - Computation of the Solution Set

First, the solution set P ∗, that is, the set of commonly agreed policies is computed:

I[[accessProceedings]]{peer1,peer2,} = P1 ∩ P2

= {cacheAbstract, compressCache}

As expected, it coincides with P1 (i.e., the client set of enabled policies), as the server
gives carte blanche on how the service is delivered.

Step 4 - Computation of Bids

Both the client and the server peer are now required to compute a bid on both enabled
policies. We assume, as before, that LMAX = 10, WMAX = 10, and RQMAX = 6, and
that each peer has a quota qpeeri = 1 (i.e., the bid is not constrained by the current quota,
as each bid bi,j ∈ [0, 1]). The whole set of bids is then the following:

B[[{cacheAbstract, compressCache}]]{peer1,peer2} =
{(cacheAbstract, peer1, 0.216), (compressCache, peer1, 0.196),
(cacheAbstract, peer2, 0), (compressCache, peer2, 0),

As discussed before, the server expresses no preferences and bids 0 on both policies.

Step 5 - Election of the Winner

Bids received for each policy in the solution set are added, and the policy that maximises
the sum (i.e., social welfare) is selected:

Policy peer1 peer2 Sum
cacheAbstract 0.216 + 0 = 0.216
compressCache 0.196 + 0 = 0.196

Social welfare coincides in this case with peer1 preferences, therefore:

W[[B[[{cacheAbstract, compressCache}]]{peer1,peer2}]] = cacheAbstract

Note that, in this case, cacheAbstract is the ‘preferred’ policy both by peer1 (who placed

89

Chapter 4 4.5 Related Work

its highest bid on it), and by peer2 (who did not bid higher on any other policy). Our
auctioning mechanism does not require any payment, as peer1 did not ‘impose’ any policy
on peer2. The conflict resolution process simply ends with the cacheAbstract policy
being executed.

4.5 Related Work

The problem of resolving conflicts is a general one and different research communities have
investigated it over the years.

4.5.1 Resource Allocation

The operating systems community has studied the issue of conflicts in distributed envi-
ronments, where conflicts manifest themselves as processes competing for shared resources.
Microeconomic techniques, and auctions in particular, have been explored.
[Malone et al., 1988] describe a market-like bidding mechanism which assigns tasks to
processors that have given the lowest estimated completion time; similar techniques have
been used to manage network traffic by [Sairamesh et al., 1995], and allocation of storage
space by [Ferguson et al., 1993].

We have demonstrated that microeconomic techniques can also be successfully used to
resolve QoS conflicts that arise in the mobile setting; however, the nature of conflicts is
fundamentally different, thus requiring different conflict resolution algorithms. In par-
ticular, resource conflicts happening at the operating system level represent competitive
situations where only one competitor obtains the resources, leaving all the others without
them. In our case, collaboration characterises the nature of the auction better: peers
participating in the delivery of a service will all get the goods (the delivery of the service),
but with varying degrees of satisfaction. Traditional auctions cannot be applied in this
setting, and a novel mechanism was required to deal with these conflicts.

4.5.2 Requirements Monitoring

The software engineering community has investigated the issue of conflicts too. Soft-
ware development environments [Engels et al., 1992, Emmerich, 1996] have devised mech-
anisms for specifying consistency constraints between artifacts. They are able to detect
static violations of these constraints and resolve them automatically (e.g., by propagating
changes to dependent documents). Inconsistencies are often found in requirements doc-
uments, indicating conflicts between the different stakeholders involved. Requirements
management methods and tools therefore include inconsistency detection and resolu-

90

Chapter 4 4.5 Related Work

tion mechanisms. The KAOS method [Dardenne et al., 1993] uses a goal-oriented ap-
proach to decompose requirements and formalises them using a temporal logic. Con-
flicts are detected by reasoning about the temporal logic formulae and conflict reso-
lution strategies [van Lamsweerde et al., 1998] can be applied so that requirement con-
flicts are not propagated to system design. Other requirements engineering approaches
[Hunter and Nuseibeh, 1998] leave inconsistencies in specifications and use an appropriate
logic to continue reasoning, even in the presence of an inconsistency.

These approaches, however, are of limited use in a mobile setting where the nature of
conflicts is such that they cannot be detected statically at the time an application is
designed but, instead, they can only be detected and resolved at run-time. Also, they
must be resolved, otherwise applications cannot execute.

Our work is more closely related to approaches that monitor requirements and assumptions
during the execution of systems. Fickas and Feather’s approach towards requirements mon-
itoring [Fickas and Feather, 1995] uses a Formal Language for Expressing Assumptions
(FLEA). FLEA is supported by a CLISP-based run-time environment, which can alert the
user of requirement violations. For mobile systems, however, this is insufficient and a more
proactive approach to resolving conflicts is required. [Robinson and Pawlowski, 1999] have
developed a so-called “requirements dialog meta-model”, which supports not only the def-
inition and monitoring of goals, but also the re-establishment of a dialog goal in case
of a goal failure. Goal monitoring is performed actively, so that violations are detected
immediately.

Monitoring application profiles actively, as done for goals by the previous approaches,
is however not feasible; this would require checking that the profile is conflict-free each
time it is modified. The more complex the profile (in terms of the number of policies
associated with a service, of contexts associated with policies, and of resources associated
with contexts), the heavier the check, with a consumption of resources (especially memory
and battery) that hand-held devices cannot bear. A more ‘passive’ solution is preferred in
our case; conflicts can exist inside a profile and they are treated only when a service that
incorporates a conflict is invoked.

4.5.3 Negotiation Mechanisms

In the Distributed Artificial Intelligence (DAI) community, game theory has been exten-
sively applied to treat negotiation issues. Negotiation mechanisms have been used both to
assign tasks to agents, to allocate resources, and to decide which problem solving tasks to
undertake (e.g., [Zlotkin and Rosenschein, 1996], [Zlotkin and Rosenschein, 1993]). These
scenarios typically involve a group of agents operating in a shared environment. Each agent
has its own private goal; a negotiation process is put in place that, through a sequence of
offers and counter-offers, explores the chances of agents achieving their (possibly conflict-

91

Chapter 4 4.5 Related Work

ing) goals, at the lowest cost. Despite similarities with our scenario, there are a number of
assumptions that differentiate our work from previous results obtained in the DAI com-
munity. In particular, in DAI the quality of the result is valued much more than the cost
of achieving it; as a consequence, negotiation mechanisms are usually iterative processes
which carry on until an (optimal) agreement is reached.

In a mobile setting, instead, resource constraints call for simple conflict resolution mecha-
nisms that do not waste (scarce) resources. Moreover, the nature of goals is fundamentally
different. In DAI, a goal can be seen as a task composed of atomic operations that the
negotiation mechanism is able to assign to different agents; in our setting, goals are rather
indivisible units that suggest the quality-of-service levels that applications are wishing to
achieve.

4.5.4 QoS Provision

Despite the extensive research that has been carried out within the mobile middleware
community, the issue of QoS conflicts has attracted little attention. On the one hand, many
systems do not support dynamic adaptation, and thus they avoid the problem of conflicts
a priori. On the other, systems which exploit reflection to improve flexibility and allow
dynamic reconfigurability [Ledoux, 1999, Blair et al., 1998] generally target a stationary
distributed environment, where context changes (and, consequently, adaptation) are much
less frequent than in a mobile setting, so that the problem of conflicts is less pressing.

A survey on quality-of-service provision in a mobile computing environment is provided
by [Chalmers and Sloman, 1999a]. QoS requirements are defined by all applications, and
a negotiation mechanism is put in place to reach an agreement between all parties; as a
result of context changes, a dynamic renegotiation of the contract may be necessary.

The approaches we have analysed usually target a specific domain (e.g., multimedia
applications over broadband cellular networks), mainly focusing on bandwidth alloca-
tion [Campbell, 1997]. Moreover, applications have a rather limited way of influencing the
policies that are chosen to meet QoS requirements. Our middleware aims to be general
and gives applications the power to influence the way adaptation is achieved. This may
lead to disagreements among applications to reach the quality-of-service level they wish.

4.5.5 Data Conflicts

In order to maximise data availability in mobile settings, where sudden disconnections may
happen frequently, even for long periods of time, systems such as
Coda [Satyanarayanan et al., 1990], its successor Odyssey [Satyanarayanan, 1996], Bayou
[Terry et al., 1995] and Xmiddle [Mascolo et al., 2002b] give users access to replicas. They

92

Chapter 4 4.6 Summary

differ in the way they ensure that replicas move towards eventual consistency, that is, in
the mechanisms they provide to detect and remove conflicts that naturally arise in mobile
systems. Bayou, for example, reconciles application-specific information in an application-
independent way, preventing the application from influencing the outcome of the reconcilia-
tion process. Xmiddle, on the contrary, exploits semantic knowledge about the information
(the elements) encoded in a document, and allows the mobile application engineer to asso-
ciate reconciliation policies to these elements, so that an application-specific reconciliation
strategy is pursued.

Data conflicts are fundamentally different from the QoS conflicts we treat, and therefore
these solutions can hardly be applied. In particular, inter-profile conflicts are not intrinsic
in any profile, but manifest themselves only in relation to (some) other profiles and in par-
ticular contexts. Therefore, the aim of our conflict resolution mechanism is to dynamically
solve them, not to remove them.

4.5.6 Policy Conflicts

To accommodate the dynamic change of behaviour of large-scale distributed systems,
policy-based approaches have been investigated, that separate the management policies
from the automated managers, so that the behaviour of the system can be dynamically
changed without recoding the managers. While performing these changes, policy conflicts
may arise. [Lupu and Sloman, 1999] describe an approach to policy-based management
and conflict resolution that has some similarities with our model. There is a parallel
between our (unchangeable) services, the (varying) policies with which they are delivered,
and the context configurations that enable the policies, and their (fixed) managers, the
(varying) policies, and the constraints that limit their applicability.

However, the approach to conflict resolution they undertake can hardly be applied in
our setting for the following reasons: first, they perform an off-line conflict detection
and resolution, based on static analysis techniques, while we argued in this chapter the
necessity of a dynamic solution. Moreover, their conflict resolution mechanism is based
on a static precedence relationship established between the policies, so that conflicts are
always resolved in the same manner, while customisation, and therefore the need to take
user’s preferences into account, is a fundamental requirement of our solution.

4.6 Summary

The reflective middleware model we have described in the previous chapter enhances the
development of context-aware mobile applications; however, it also opens the door to
conflicts. In this chapter we have presented a conflict resolution mechanism that enables

93

Chapter 4 4.6 Summary

the automatic detection and resolution of QoS conflicts in our mobile setting. We assess
that this mechanism is particularly well-suited for mobile computing scenarios as it meets
our requirements of dynamicity, simplicity and customisation.

Our conflict resolution mechanism is dynamic as it is used ‘on-demand’, whenever an
application invokes a service that involves a conflict. When an application profile is mod-
ified using the reflective meta-interface our middleware provides, no static analysis is
performed to check that the new configuration is conflict-free (for example, using the tool
that [Nentwich et al., 2002] describe), as this is not always possible (e.g., inter-profile con-
flicts), nor desirable, as mobile devices usually lack the resources necessary to run these
checks.

The microeconomic technique that forms the basis of our conflict resolution mechanism
has been inspired by traditional sealed bid auctions (e.g., first-price and second-price
sealed bid auction [Vickrey, 1961]). Unlike ascending bid auctions, such as the standard
English auction [Milgrom, 1989], where the auctioneer continuously raises the price of the
good until only one bidder is willing to meet the price called, sealed bid auctions consist
of a one-step bid that cuts down the computation and communication costs of iterative
procedures, when the auction is distributed over space and time, as in our mobile setting.
We can analytically assess that this meets also our requirement of simplicity, and we will
demonstrate it experimentally in Chapter 6.

In case applications do not agree on a common set of enabled policies (i.e., the solution set
is empty), our conflict resolution process fails and user intervention is required. Our auc-
tioning mechanism could be extended so that, upon failures, applications may weaken their
requirements, and enable a larger set of policies; a reward, in terms of quota recharging,
could be given. However, this (iterative) approach would seriously compromise efficiency,
and go against the simplicity requirement we advocated. We will discuss in Chapter 6
heuristics that considerably lower the risks of conflict resolution failures, without compro-
mising performance; in particular, having a ‘fall-back policy’ that is always enabled by all
peers, and that receives only very low bids, represents a good strategy.

Finally, our auctioning scheme meets the customisation requirement too, by means of util-
ity functions. As we discussed in Section 4.3.3, while policy specifications are fixed, utility
function specifications change over time. More precisely, applications can dynamically
alter the resources and QoS parameters encoded in a profile, together with the weights
they are associated with, in order to reflect current user needs. Application users therefore
have the power to influence the way conflicts are solved, by customising the information
encoded in utility functions. We will show in Chapter 6 how user’s preferences and needs
can be translated into utility function specifications.

94

Chapter 5

CARISMA Architecture

In the previous chapters, we have presented a middleware model that, based on the princi-
ples of reflection and metadata, facilitates the development of context-aware applications.
Applications encode in application profiles, that is, in middleware metadata, how they
wish context changes to be handled, and use the reflective mechanism provided to dynam-
ically change these preferences. In doing so, conflicts may arise. Whenever a service that
incorporates a conflict (i.e., that may be delivered using different policies in the current
context) is requested, a conflict resolution mechanism is executed, that selects and applies
the policy that delivers, on average, the best quality-of-service to the applications involved.

In this chapter, we discuss some relevant issues we tackled during the construction of
CARISMA, a mobile computing middleware architecture that realises our middleware
model. In particular, we describe how the conceptual model presented in Section 3.2 has
been mapped into a reflective architecture, and we analyse two different algorithms that
implement the distributed auction protocol illustrated in Section 4.3.2.

5.1 Reflective Architecture

The CARISMA architecture is made up of four main components, as shown in Figure 5.1:
the Core component provides basic functionalities, such as support for asynchronous com-
munication, service discovery, etc.; the Context Management component is responsible
for interacting with physical sensors and monitoring context changes; Core Services take
care of answering service requests with application-defined QoS levels; and the Application
Model defines a standard framework to create and run context-aware applications on top of
our middleware model. We now describe each of these components in more detail. In the
following figures, we use UML Component Diagrams [Rumbaugh et al., 1998] to illustrate
how each of these components has been realised.

95

Chapter 5 5.1 Reflective Architecture

C
A

R
IS

M
A

Application Model

Application/User Space

Network Operating System

Context Management Core

Core Services

Figure 5.1: Middleware Architecture.

5.1.1 Core

As we pointed out in Chapter 2, middleware can be structured into different layers. While
our research interests focus on high-level mechanisms to support application-driven adap-
tation of application behaviour, our architecture must include a lower-level core compo-
nent to provide basic functionalities, such as communication, service discovery, etc. As
Figure 5.2 illustrates, CARISMA Core comprises three main components: the Connector
component, the Publisher component, and the Register component.

Publisher

IRegister
Register ISearch

Connector

IPublisher

IConnector

Figure 5.2: Core Architecture.

Connector. The Connector component supports communication among distributed appli-
cations. It exports a well-defined interface so that changes at this component level do
not have repercussions on other high-level components. The current implementation of
CARISMA provides a basic message-passing asynchronous communication model.

Publisher. The Publisher component is responsible for advertising the host presence to
other peers, as well as the software components (e.g., applications, services, etc.) available
on the device. Also, it keeps track of the presence of other entities and software components
within reach.

96

Chapter 5 5.1 Reflective Architecture

Register. The Register component provides support for registering new entities on top of
CARISMA, where an entity may be a new application, new available policies to deliver a
service, new physical sensors CARISMA is able to deal with, and so on. Also, it main-
tains information about currently registered entities, and provides an interface to support
searches for specific entity information.

5.1.2 Context Management

As we have discussed in Chapter 3, in order to build context-aware applications we need
to break the principle of transparency, and provide applications with information about
their execution context. However, we do not want applications to deal with heteroge-
neous sensors to gather such information. In our architecture, the Context Management
component is responsible for doing so.

For each resource that the middleware monitors, a wrapper exists that is able to interact
with the physical sensor, and to process the information thus obtaining a value that the
application understands. Different wrappers may exist that interact with the same sensor,
but that process information in a different manner; or, vice versa, the same wrapper may
interact with various sensors, to synthesise context information in an application-specific
manner. Only wrappers of resources that the running applications are interested in are
loaded, to avoid wasting computational resources, already scarce on a portable device.
Figure 5.3 illustrates a Memory Wrapper, interacting with a Memory Sensor (in this case,
a primitive of the network operating system).

Context wrappers export an interface that is used for two main reasons: to register the
interest of an application in specific context conditions, and to find out what the current
context configuration is.

MemorySensor

MemoryEvent

MemoryWrapper

IWrapper

IEvent

MemoryValue IValue

Figure 5.3: Context Management Architecture.

97

Chapter 5 5.1 Reflective Architecture

Registering application’s interests. As we have seen, application profiles contain two kinds
of information: reactive metadata and proactive metadata. Whenever an application is
started, or whenever the profile of a running application is changed, the reactive metadata
it encodes is processed (we will see in Section 5.1.3 who is in charge of doing this processing)
and passed to the various wrappers; each wrapper periodically monitors the status of its
sensor(s), and, whenever a context change occurs that is relevant to the application, a
corresponding event is produced. As shown, wrappers, events and values export a set of
well-defined interfaces, so that new resources can be defined and monitored by CARISMA,
as long as suitable wrapper/event/value implementations are provided.

Querying current context. Whenever an application service request is issued, the set of
policies enabled in the current context have to be determined. In order to do so, wrappers
of relevant resources are queried, to obtain updated resource values. The decision of which
policies are then enabled is the responsibility of a different component (see Section 5.1.3).

5.1.3 Core Services

On top of the Core and the Context Management components, there are three Core
Services: the ContextController core service, the Executor core service and the Shell core
service (Figure 5.4).

ContextController. The ContextController core service manages context information. It
is responsible for activating/deactivating wrappers; it fetches the status of the current
context, by interacting with the various wrappers through their well-defined interfaces;
and it fires application-defined policies when particular context configurations are entered,
implementing the semantics for reactive metadata we defined in Chapter 3.

Context
Controller

<< code >>
CacheAbstract

Shell Executor

IPolicy

IShell IExecutor

IWrapper IEvent

IContext

Figure 5.4: Core Services Architecture.

98

Chapter 5 5.1 Reflective Architecture

Executor. CARISMA executes application service requests by means of the Executor core
service. Each time a service is invoked, the Executor fetches the profile of the requesting
application, interacts with the ContextController to get updated information about the
current context configuration, finds out which policy is suited in the current context and
finally delivers the service with the selected policy, possibly after resolving conflicts.

Shell. The Shell core service provides users with functionalities to start applications on
top of CARISMA, and to open/close network connections. Although the current imple-
mentation of CARISMA does not support it, the Shell core service may also be used to
allow users to install/un-install applications, policies, and so on.

5.1.4 Application Model

<<document>>

ApplicationProfile

Reflective
Meta−interface

Executor

ApplicationHandler

IExecutor

IHandler

Figure 5.5: Application Model Architecture.

The CARISMA Application Model (Figure 5.5) provides support for building and running
context-aware applications on top of our middleware model. Applications access middle-
ware functionality through an ApplicationHandler: each time an application is started,
an ApplicationHandler is created to allow interactions between the middleware and the
application itself. In particular, application handlers allow applications to request services
from the underlying middleware, and to access their own application profile through a
well-defined reflective meta-interface.

5.1.5 Example

Figure 5.6 shows the components that may be active at a particular moment of the exe-
cution of the conference application. Though most of the active components are the same
for any application, different configurations may occur at the context management level.
In particular, the figure shows three wrappers running at the moment and probing their

99

Chapter 5 5.2 Distributed Auction Protocol

Battery
Sensor

Infrared
Sensor

UserMood
Sensor

Wrapper
Battery Location

Wrapper
UserMood
Wrapper

Event
UserMood

Location
Event

Battery
Event

ApplicationProfile

<<document>>

Context
Controller

Application
Handler

Executor

ConferenceApplication

<<application>>

Shell

Alice

<<user>>

Connector

Publisher

Register

CARISMA CoreContext Management

Application Model

CARISMA Core
Services

Meta−interface
Reflective

IWrapper IEvent

Figure 5.6: Middleware Architecture Example.

associated sensors (i.e., battery, location and user mood); this means that the application
has encoded in its profile an interest in the status of these resources. The active wrappers
and sensors vary dynamically, as a result of changes occurring in the profile, as well as
activation and de-activation of applications.

5.2 Distributed Auction Protocol

In Chapter 4, we argued that the conflict resolution mechanism we have designed is ‘sim-
ple’, in the sense that the computation and communication overhead it imposes on mobile
devices is low. Providing a light-weight implementation of this mechanism on a single
machine, to solve intra-profile conflicts, is rather straightforward, as no communication
is required. However, designing a light-weight distributed algorithm to solve inter-profile
conflicts is not trivial, as minimising communication costs and minimising computation
costs turn out to be conflicting requirements. In the following sections, we first provide

100

Chapter 5 5.2 Distributed Auction Protocol

a brief presentation of two different algorithms, the first one that attempts to minimise
communication costs, and the second one that aims to minimise computation costs, and
then we discuss their similarities and, mainly, their differences. We use UML Sequence
Diagrams [Rumbaugh et al., 1998] to illustrate these algorithms.

5.2.1 Minimisation of Communication Costs

Our first attempt to design a distributed algorithm that implements our conflict resolu-
tion mechanism aims to minimise communication costs. This means both minimising the
amount of data that is sent around, as well as reducing the number of messages exchanged
among the involved hosts. Figure 5.7 illustrates the algorithm we designed. We assume
here that peer1 requests a service that involves the cooperation of n peers.

2
2

2
2

4 4
4 4

5

3 3 3 3

1

6
6

6
6

peer3:Peerpeer n:Peer peer m:Peer.peer2:Peer peer1:Peer

Figure 5.7: Algorithm for Minimisation of Communication Costs.

Step 1. When peer1 requests a service from the underlying middleware, the first step is
to compute the set of policies that are currently enabled to deliver the service, that
is, P1. Although no conflict has been detected yet, peer1 pre-computes a bid for
each of these policies, that is, it computes B1.

Step 2. A service request message is sent to the n− 1 participating peers, together with
P1 and B1.

Step 3. Each of the n−1 peers involved in the service delivery computes the set of locally
enabled policies Pi; also, for each policy in Pi ∩ P1, that is, for every policy agreed
with the requesting peer, a bid is computed. We refer to the set of bids placed by
peeri on the policies agreed by peeri and peer1 as Bi∩1.

101

Chapter 5 5.2 Distributed Auction Protocol

Step 4. Each of the n− 1 peers communicates Pi ∩ P1 and Bi∩1 back to peer1.

Step 5. Peer1 determines P ∗ and, in the case that a conflict is detected that can be
solved using our auctioning mechanism, it uses the pre-computed bids to determine
the winning policy p̃, as well as the sums fi, i ∈ [1, n] that each peer has to pay.

Step 6. Finally, peer1 sends back to each peer information about what policy has been
agreed to deliver the requested service, and how much money has to be paid.

We make the assumption that concurrent requests of the same service, originated by
different peers, are identified and resolved prior to the execution of the protocol; in other
words, leader election (i.e., peer1) is carried out before this protocol is started. Also,
we assume peer1 to be available throughout the protocol; if it fails, the entire service
request is aborted. We believe this assumption is reasonable, as peer1 is the only peer
to be in reach of all the others, and therefore in the position of being able to conduct
the conflict resolution process; because in an ad-hoc network connection is not transitive,
we cannot assume that the remaining n − 1 peers are connected among themselves, and
therefore able to carry out the process without peer1. On the contrary, individual failures
of other participating peers taking place during the protocol execution do not compromise
its success, as long as there are at least 0 < m ≤ n peers connected until the end of the
process (the minimum number of connected peers m is application dependent).

5.2.2 Minimisation of Computation Costs

The second algorithm that implements our conflict resolution scheme aims at minimising
the overall computation costs, that is, minimising the total time that elapses between
the service request and the final execution of the service itself. Figure 5.8 illustrates the
algorithm; once again, we assume here that peer1 requests a service that involves the
cooperation of n peers.

Step 1. First, a service request is sent by peer1 to all the peers participating in the service
delivery.

Step 2. All n peers, including the one that started the service request, evaluate the set
of policies that are locally enabled, that is, Pi, i ∈ [1, n]. As before, for each policy
in Pi they pre-compute a bid, thus determining Bi.

Step 3. Each of the n − 1 participating peers replies to peer1, communicating both Pi
and Bi.

Step 4. The requesting peer uses the information gathered to calculate the solution set
P ∗, and, in case a conflict is detected, it uses the pre-computed bids to determine
the winning policy p̃, as well as the sums fi, i ∈ [1, n] that each peer has to pay.

102

Chapter 5 5.2 Distributed Auction Protocol

peer1:Peer

1
1 1

1

5
5 5

5

3
3 3

3

peer2:Peer peer3:Peerpeer n:Peer peer m:Peer

4

2 2 2 2 2

.

Figure 5.8: Algorithm for Minimisation of Computation Costs.

Step 5. Finally, peer1 sends back to each peer information about what policy has been
agreed to deliver the requested service, and how much money has to be paid.

As before, individual failures of participating peers taking place during the protocol ex-
ecution do not compromise its success, as long as there are at least 0 < m ≤ n peers
connected until the end of the process. Again, m is an application-dependent parameter.
If the requesting peer fails, the entire service request needs to be aborted.

5.2.3 Comparison

As shown, both algorithms perform a pre-computation of bids (Step 1 and 3 for the first
algorithm, Step 3 for the second one) in order to avoid an extra round of messages once the
solution set P ∗ has been computed (Step 5 in the first algorithm, Step 4 in the second), in
case a conflict is detected. In this case, in fact, the requesting peer should communicate
to the other participating peers the solution set P ∗, and these should reply with their
bids, thus requiring 2 ∗ (n− 1) more messages to be sent around. As a drawback, bids are
computed even if they are not necessary (i.e., when no conflict is detected). However, we
consider this overhead negligible compared to the time taken by two additional message
rounds, so that, as the evaluation chapter will prove (Chapter 6), the pre-computation is
actually worthwhile.

The main difference between the two algorithms can be noticed in the early steps: while
the first algorithm computes the locally enabled policies on peer1 first, and then issues
a service request passing these values to the other peers, the second algorithm issues a

103

Chapter 5 5.2 Distributed Auction Protocol

service request first, and then all the peers, including the requesting one, evaluate their
locally enabled policies in parallel. By deferring the evaluation of P1, the second algorithm
maximises the parallelisation of computation of the various Pi, which we assume to be the
heaviest task of the whole service request process. Computing Pi requires, in fact, the
comparison of the current context configuration against all the ones encoded in the profile
and associated with the requested service. In the case of complex context configurations
and very detailed profiles (i.e., many contexts associated with a policy, and many policies
associated with a service), this task may become much more time-consuming (and resource
demanding) than an additional exchange of messages.

As far as communication is concerned, in case of interactions between n > 2 peers, both

peer1:Peer peer2:Peer

peer1:Peer peer2:Peer

Second Protocol

First Protocol

6

1

2

3

5

(no step 4 required)

1

2 2

3

4

5

Figure 5.9: Peer-to-peer Interactions

104

Chapter 5 5.3 Summary

protocols require three rounds of messages to be sent around; the advantage of the first
protocol over the second one is that, by pre-computing P1 in the first step, and by commu-
nicating this information to the n− 1 peers, computation of the solution set is distributed
among the various peers, so that the information each peer sends back to peer1 is smaller
(i.e., fewer enabled policies and associated bids), and therefore the time required by peer1

to compute the solution set and the winning policy should be smaller.

The difference in the communication costs of the two protocols is however more striking
when we consider peer-to-peer interactions, where only n = 2 peers are involved. In this
(very common) case, the whole service request process is resolved with just two messages
sent around if we use the first algorithm, while three messages are needed for the second
protocol (see Figure 5.9). In particular, at Step 2 of the first protocol, both P1 and B1 are
sent to peer2, so that peer2 has all the information needed to compute both the winning
policy and the payments, and instead of replying with P1 ∩ P2 and B1∩2, it replies with p̃
and f1, thus saving a third message round (step 4 is not required). On the contrary, three
messages are needed by the second protocol, as peer2 never gets any information about
peer1 enabled policies and bids.

In the next chapter, we will discuss the results of a thorough evaluation that we have
conducted, and analyse whether cutting down the number and size of messages sent is
more (or less) beneficial than parallelising computation.

5.3 Summary

In this chapter, we have presented how the reflective conceptual model of Chapter 3 can
be mapped onto the CARISMA architecture, and how the distributed conflict resolution
mechanism illustrated in Chapter 4 can be performed using two different distributed al-
gorithms.

As shown, CARISMA relies on a core to deliver basic functionalities, in particular, com-
munication and service discovery. On top of this core, a small number of CARISMA
components are provided, that implement the reflective model and the conflict resolution
mechanism. This architecture can be tailored to different application needs by dynamically
changing the set of running wrappers that monitor the execution context.

Different algorithms can be designed to implement the conflict resolution mechanism; we
have described two alternatives, one that minimises communication costs, and another
one that minimises the overall computation costs of a service request. In both cases, our
algorithms complete successfully even in the presence of failures, as required in a mobile
setting, where disconnections can be frequent.

In the next chapter, we briefly discuss our implementation of CARISMA. Based on this

105

Chapter 5 5.3 Summary

implementation, we illustrate the results of a systematic evaluation of our approach, as
far as usability of the system and performance are concerned.

106

Chapter 6

Implementation and Evaluation

In the previous chapter we have described CARISMA, a mobile middleware architecture
that realises both the reflective model discussed in Chapter 3, and the conflict resolution
mechanism illustrated in Chapter 4.

In this chapter, we provide insights into the implementation of CARISMA, and illustrate
the results of its thorough evaluation. The evaluation results are divided into qualitative
results and performance results. Our aim with regard to qualitative evaluation is to sup-
port the thesis that our model provides application engineers with powerful abstractions
that are easy to use in the development of context-aware applications. As for performance,
we aim to validate the thesis that our reflective middleware model can be realised through
a light-weight implementation whose overhead is small enough for mobile devices to bear.

6.1 Implementation

We have implemented CARISMA in Java using jdk 1.4.1, and have encoded application
profiles, utility functions and context information using the eXtensible Markup Language
(XML [Bray et al., 1998]). The reasons that motivated these choices are manifold: Java
is a portable language, it has embedded support for logical mobility and reflection, and
more and more mobile devices are being released with J2ME [Sun Microsystem, 2000]
technology enabled. Also, we have implemented CARISMA mainly as a proof of concept,
to demonstrate the applicability of our middleware model and its suitability to the mobile
setting; the many libraries available, as well as run-time support for Java have thus further
motivated our choice.

As for the use of XML, we believe this meta-language may enhance context-aware and
user-driven interactions between middleware and applications, supporting a representation

107

Chapter 6 6.2 Qualitative Evaluation

of information that can be both easily manipulated by machines, and readily understood
by humans. Also, XML related technologies have considerably reduced the development
time. In particular, we have based our implementation of the reflective meta-interface
on DOM [Apparao et al., 1998] and XPath [Clark and DeRose, 1999]; the parsing and
retrieval of information encoded in XML is based on Apache Xerces 1.4.3, and Apache
Xalan 1.2.2. Recently, new XML parsers (e.g., kXML2 [kObjects, 2002]) have been deliv-
ered that specifically target the mobile environment, as they are lighter and faster than
traditional parsers; the performance results we discuss in this chapter could therefore be
further improved by adopting these new technologies.

The middleware platform, including the Core, the Context Management, Core Services
and the Application Model, currently requires 110Kb of persistent storage, and less than
800Kb of memory (without considering the memory required by the Java Virtual Machine
and XML parser). The size of application profiles varies from a few hundreds of bytes,
for simple configurations (e.g., 400 bytes for a service with three policies associated with
one context, each with one resource), to tens of kilobytes, for very detailed configurations
(e.g., 20Kb for a service with five policies associated with five contexts, each with five
resources).

6.2 Qualitative Evaluation

One of the aim of the evaluation stage has been to support the thesis that our model
provides application engineers with powerful abstractions that ease the development of
context-aware applications. Validating this thesis is rather hard, as there are no quantita-
tive parameters we can compute by running a set of experiments. Instead, we assigned an
MSc student the task of implementing the Conference Application on top of CARISMA,
to estimate the usability and effectiveness of our middleware model, in developing and
running context-aware applications. In this section, we report on her experience.

One of the advantages of our middleware model is that application engineers do not have
to deal explicitly with physical sensors in order to get context information; adaptation
to context changes is carried out automatically by the middleware, using the information
encoded in the application profile. As we have argued in Chapter 3, these profiles are
dynamic, as they need to reflect user’s needs as faithfully as possible. The first challenge
the student (and application developers in general) has been exposed to, was therefore to
provide a mechanism to gather this information dynamically from the user, and to trans-
late it into XML meta-encoding, using the reflective meta-interface that our middleware
provides. The student’s experience in developing the conference application was that this
task was rather straightforward, as most of the information she needed had already been
obtained during the requirements elicitation process.

108

Chapter 6 6.2 Qualitative Evaluation

For the Conference Application, the student decided, during the requirements elicitation
stage, that the non-functional requirements of interest to the user were availability of
information, accuracy of information and privacy. In order to allow users to specify,
at any point in time, how much they care about these parameters, she developed the
“customisation window” shown in Figure 6.1.

Figure 6.1: Conference Application Customisation - Non-functional Requirements.

Similarly, through the customisation window, the user may assign different levels of impor-
tance to available resources, such as memory, battery, and bandwidth. (Figure 6.2). Also,
they may require notification when the availability of local resources fall below specific
values.

Figure 6.2: Conference Application Customisation - Resources.

Based on these preferences, the student implemented a synthesising algorithm to write

109

Chapter 6 6.2 Qualitative Evaluation

application profiles. For example, with reference to the preferences expressed by the user
as shown in Figure 6.2, the algorithm developed by the student exploited the meta-interface
that CARISMA provides to derive the reactive metadata encoded in Figure 6.3

<REACTIVE frequency="5000">
<POLICY name="lowMemoryAlert">

<CONTEXT id="1">
<RESOURCE name="memory">

<OPERATOR name="lessThan"/>
<STATUS value="20%"/>

</RESOURCE>
</CONTEXT>

</POLICY>

<POLICY name="lowBatteryAlert">
<CONTEXT id="2">

<RESOURCE name="battery">
<OPERATOR name="lessThan"/>
<STATUS value="10%"/>

</RESOURCE>
</CONTEXT>

</POLICY>
</REACTIVE>

Figure 6.3: XML Profile - Reactive Encoding.

As shown, the user requires notification when memory and battery availability fall below
20% and 10% respectively, while they are not interested in bandwidth values; frequency
represents the time interval in milliseconds between two consecutive context queries made
by the ContextController Core Service, in order to get updated context information. In
other words, it represents the speed of adaptation to context changes.

Figure 6.4 represents one of the possible XML proactive encodings for the ‘accessProceed-
ings’ service. Based on the information entered by the user through the customisation
windows shown in Figure 6.1 and 6.2, the student has derived an encoding that enables
the local replication of talk abstracts when memory availability is relatively high, repli-
cation of talk titles only when low on memory, and a network reference if running out of
memory, as a result of a strong user interest in data availability and in preserving mem-
ory. Note that frequency is not part of the proactive encoding, as context is queried
only ‘on-demand’, when the service is actually requested. Figure 6.5 shows the result of
requesting the accessProceedings service when available memory is between 10% and
20% (left-hand side), and when it is above 20% (right-hand side).

As another example, Figure 6.6 illustrates the XML encoding for the messagingService of
the Conference Application. As the user is not interested in privacy issues, the
encryptedMsg policy is never enabled; charMsg and compressedMsg are enabled in dif-
ferent contexts that depend on bandwidth and battery availability. plainMsg is always

110

Chapter 6 6.2 Qualitative Evaluation

<PROACTIVE>
<SERVICE name="accessProceedings">

<POLICY name="cacheAbstract">
<CONTEXT id="4">

<RESOURCE name="memory">
<OPERATOR name="greaterThan"/>
<STATUS value="20%"/>

</RESOURCE>
</CONTEXT>

</POLICY>

<POLICY name="cacheTitle">
<CONTEXT id="5">

<RESOURCE name="memory">
<OPERATOR name="inBetween"/>
<STATUS value="10%"/>
<STATUS value="20%"/>

</RESOURCE>
</CONTEXT>

</POLICY>

<POLICY name="networkReference">
<CONTEXT id="6">

<RESOURCE name="memory">
<OPERATOR name="lessThan"/>
<STATUS value="10%"/>

</RESOURCE>
</CONTEXT>

</POLICY>
</SERVICE>

. . .

</PROACTIVE>

Figure 6.4: XML Profile - Proactive Encoding (Access Proceedings).

enabled; always enabling a policy is a way to reduce the risk of ending a conflict resolution
process without an agreement. We will discuss in Section 6.3.6 heuristics on how to write
‘good’ profiles, that is, profiles with high chances of successfully completing a conflict res-
olution process, and that do not require heavy processing to determine which policy to
apply in any current context.

Figure 6.7 shows the result of exchanging messages between peers; unlike the ‘access
proceedings’ service, in this case it is transparent to the users which policy is actually
applied (a delay may be noticed if messages are sent encrypted or compressed, due to the
extra computation time required).

111

Chapter 6 6.2 Qualitative Evaluation

Figure 6.5: Conference Application Screenshot - Access Proceedings.

In the case that a service that involves a conflict is detected, the conflict resolution mech-
anism described in Chapter 4 is used to find out which policy to apply in the current
context. This mechanism is based on utility functions that represent the user’s needs as
faithfully as possible. As for application profiles, these preferences may change over time;
application developers must therefore provide a mechanism to gather this information
dynamically from the user, and translate it into an XML meta-encoding. The student
used the customisation window discussed before to achieve this task. Figure 6.8 illustrates
an XML-encoded utility function that represents the information shown in Figures 6.1
and 6.2. As shown, privacy is not listed as it is of no importance to the user (i.e., it
would have a weight equal to zero associated).

112

Chapter 6 6.2 Qualitative Evaluation

<PROACTIVE>
<SERVICE name="messagingService">

<POLICY name="charMsg">
<CONTEXT id="7">

<RESOURCE name="bandwidth">
<OPERATOR name="greaterThan"/>
<STATUS value="1"/>

</RESOURCE>
</CONTEXT>

</POLICY>

<POLICY name="plainMsg"/>

<POLICY name="compressedMsg">
<CONTEXT id="10">

<RESOURCE name="battery">
<OPERATOR name="greaterThan"/>
<STATUS value="30%"/>

</RESOURCE>
<RESOURCE name="bandwidth">

<OPERATOR name="lessThan"/>
<STATUS value="1"/>

</RESOURCE>
</CONTEXT>

</POLICY>
</SERVICE>

. . .

</PROACTIVE>

Figure 6.6: XML Profile - Proactive Encoding (Exchange of Messages).

Figure 6.7: Conference Application Screenshot - Exchange of Messages.

113

Chapter 6 6.2 Qualitative Evaluation

<UTILITY_FUNCTION name="ConferenceApplication">
<ADD>

<VALUE_OF name="memory"/>
<MULTIPLY_BY weight="4"/>

</ADD>
<ADD>

<VALUE_OF name="battery"/>
<MULTIPLY_BY weight="9"/>

</ADD>
<ADD>

<VALUE_OF name="bandwidth"/>
<MULTIPLY_BY weight="0"/>

</ADD>
<ADD>

<VALUE_OF name="availability"/>
<MULTIPLY_BY weight="8"/>

</ADD>
<ADD>

<VALUE_OF name="accuracy"/>
<MULTIPLY_BY weight="3"/>

</ADD>
</UTILITY_FUNCTION>

Figure 6.8: XML Utility Function.

The XML Schema that define the grammars of the languages used to encode application
profiles and utility functions are provided in Appendix B. In our implementation, however,
we do not make use of validation, as this is a rather resource-demanding task. The integrity
of profiles and utility functions is guaranteed by the interface our middleware provides to
application engineers to change this information (i.e., applications do not have direct access
to the XML encoding).

We can summarise the lessons we learnt from the student’s report as follows. Using the
abstractions and mechanisms that CARISMA provides is rather straightforward; the most
difficult task that application developers are faced with is to decide which non-functional
parameters the end-user should be allowed to tune, and to design a synthesising algorithm
that maps user’s preferences into application profiles. These tasks can be simplified with
the help of application-domain experts. The tedious task of querying heterogeneous sensors
to gather and maintain context information was completely transparent to application
developers instead.

So far we have mainly focused our discussion on the interaction between middleware
and applications, leaving the end-users of the system behind the scene. As Figure 6.9
illustrates, the middleware provides applications with a reflective API (i.e., meta-interface)
that they can exploit to inspect and alter application profiles. The target users of our
middleware model are therefore application developers. In customising an application’s

114

Chapter 6 6.3 Performance Evaluation

End−user
preferences

Application
Profile

End−user

Application

Middleware

Reflective

uses

uses

provides

provides

Customisation
Windows

API

Figure 6.9: Roles and Responsibilities in the Reflective Process.

behaviour, however, end-user preferences must be taken into consideration. We have shown
how applications built on top of CARISMA can capture end-users preferences by means
of customisation windows. An important question is how much effort is required by the
end-user to teach the system to behave according to his/her own expectations.

The answer to this question does not strictly depend on the middleware model we have
developed, but on the user interface provided by application developers to gather end-user
preferences, and on the synthesising algorithm used to translate these preferences into
application profiles (i.e., into application behaviours). Also, we believe this issue is not
intrinsic to our model, but applies, in general, to scenarios where adaptation to changing
contexts and user requirements is needed. We do not have a definite and general answer,
as we believe further research, that involves middleware, as well as HCI and requirement
elicitation experts, is needed. In developing and using the Conference Application, we
have learnt that the amount of human effort is in direct relation with the level of adapta-
tion to context required. If many resources are being considered, and many non-functional
requirements are taken into account, then it becomes difficult for the application devel-
oper to provide a mapping from user requirements to system behaviours (i.e., application
profiles) that fulfils user expectations, and therefore the right balance has to be found.

6.3 Performance Evaluation

The aim of the performance evaluation of CARISMA is to validate the thesis that our
reflective middleware requires only a very small overhead in terms of the elapsed time to
respond to a service request, compared to a non-reflective approach where service delivery
is not tailored to user’s preferences and context conditions. In order to validate this
hypothesis, we have implemented a synthetic benchmark (as defined by [Weicker, 1984]),

115

Chapter 6 6.3 Performance Evaluation

and used it to run a large number of experiments. We report the main results in this
section.

6.3.1 Experiment Design

Figure 6.10: Benchmark User Interface.

In order to evaluate the performance of CARISMA, we have implemented a benchmark;
the user interface we have developed to control benchmark executions is displayed in
Figure 6.10. As the picture shows, the benchmark user interface allows us to customise
both application profiles and utility functions; in particular, we can decide how many
policies to associate with each service, how many contexts to associate with each policy,
and how many resources with each context (each in a range [0, 20]), thus varying the extent
to which reflection and context-awareness are used in the profiles. Also, the benchmark
user interface allows us to tune the number of conflicting policies for each service, and
the number of utility function parameters (again, in a range [0, 20]), thus controlling
parameters that have an impact on the conflict resolution process. Once the application
profile and utility function have been set up, we can select the number of consecutive
service requests we are going to perform, and finally, by clicking on the buttons at the
top, we may request either a local service (only one peer involved), a client/server service
(two peers involved), or a distributed service (n > 2 peers involved).

Using this benchmark, we have run a large number of experiments and, in the following

116

Chapter 6 6.3 Performance Evaluation

sections, we will provide a full report of the impact of reflection, context-awareness, conflict
resolution, and distribution on CARISMA. The charts we are going to show represent
the average elapsed time of 20 consecutive service requests, between the instant when a
service request button is pressed, and the instant when a policy is selected and initialised
to deliver the service. These performance results do not consider the time necessary to
initialise a sensor and to process the information gathered through it. We assume, in
fact, that wrappers are already running and monitoring their associated resources, when
the Context Controller component queries them about current context, so that a resource
value is immediately returned (i.e., no extra overhead is required by the wrapper to gather
and process information from its sensors). We believe this approach is plausible, as sensors
may greatly vary in nature, and therefore may introduce overheads of different orders of
magnitude (e.g., knowing the amount of battery left requires much less time than gathering
and processing location information) that we cannot compare. For each experiment, we
have observed a standard deviation of approximately 20%.

All tests were performed on Dell Latitude laptops equipped with 128MB RAM, Intel Pen-
tium II processors rated at 300MHz, and connected in an ad-hoc network using Cisco
Aironet 340 10Mbps wireless cards. The operating system used was Microsoft’s Win-
dows2000 and the Java Virtual Machine version was 1.4.1. We believe these machines do
not outperform currently available portable devices. For example, the Sony Ericsson P800
mobile phone is equipped with 12Mb internal storage, plus external memory stick, and
ARM9 200MHz processor; the HP iPAQ Pocket PC h5450 is equipped with 64Mb RAM
and Intel 400MHz processor; COMPAQ Tablet PC TC1000 is already extremely powerful,
with 256MB RAM minimum and 1GHz processor. Therefore, the machines we used are
well-suited to estimate the performance of our middleware in (what we believe) the mobile
setting of the next 5-10 years.

In the following sections, we first consider a simple local service, i.e., a service that involves
a single device. In this simple scenario, we illustrate the basic run-time performance
overhead of reflection, by varying the number of policies associated with a service, of
context-awareness, by varying the number of contexts and resources associated with each
policy, and of the conflict resolution mechanism, by varying the number of conflicting
policies and utility function parameters. We then move to a distributed setting and we
analyse the run-time performance overhead introduced by distribution, while varying the
number of devices involved in a service request, and using the two different algorithms to
solve conflicts introduced in Chapter 5.

117

Chapter 6 6.3 Performance Evaluation

6.3.2 Impact of Reflection

One of the criticisms of reflection is it adds a level of indirection, and therefore reduces
performance. In this section, we explore the run-time performance implications of reflec-
tion.

Figure 6.11 illustrates the effect that reflection has on the elapsed time of a local service
request (i.e., a service that involves a single device), over a basic mechanism where a
service is statically associated with exactly one policy. This lower bound is represented
in the picture by the intersection of the curve with the Y axis. As the picture shows, the
elapsed time (in milliseconds) between the instant when a service request is issued, and
the instant when a policy is selected and initialised to answer the service request, is more
or less linear in the number of policies associated with the service. This overhead includes
also the evaluation of a simple context configuration made of one context with one resource
associated with each policy (these associations are necessary to avoid conflicts).

0

400

800

1200

1600

0 5 10 15 20

N. of Policies

m
s.

Figure 6.11: Impact of Reflection.

Note that, in realistic situations, it is unlikely that more than ten policies would be
associated with the same service. In this case, the performance of CARISMA is rather
good, as the elapsed time is below 1 second.

6.3.3 Impact of Context-Awareness

By increasing the number of resources associated with a context, and the number of
contexts associated with a policy, the information encoded in an application profile gets
very accurate, and adaptation more precisely tailored to application’s and user’s needs.
However, there is a trade-off between accuracy of context information encoded in a profile,
and performance. Increasing the number of contexts/resources implies increasing the
number of comparisons that the middleware has to perform against the current context,

118

Chapter 6 6.3 Performance Evaluation

0

2000

4000

6000

8000

10000

0 5 10 15 20

N. of Contexts

m
s.

1 policy, 1 resource

3 policies, 3 resources

5 policies, 5 resources

Figure 6.12: Impact of Context-Awareness - Contexts.

0

1000

2000

3000

4000

0 5 10 15 20

N. of Resources

m
s.

1 policy, 1 context

3 policies, 3 contexts

5 policies, 5 contexts

Figure 6.13: Impact of Context-Awareness - Resources.

to find out the set of enabled policies. Figures 6.12 and 6.13 illustrate the performance
trend, first when we increase the number of contexts associated with a policy, and then
when we increase the number of resources associated with a context.

As shown, increasing the number of contexts (while keeping the number of resources
associated with each of them constant) causes a significant drop in performance; the reason
is that all contexts have to be compared against the current one, as any of them could
enable the associated policy (∨ semantics). Increasing the number of resources associated
with a context has a lower impact, as the resources associated with a context follow the ∧
semantics, that is, as soon as one resource condition fails to be true, all remaining resource
conditions associated with the same context need not be evaluated.

Note that, the elapsed times only seriously degrade for profiles that contain more than
five to ten contexts associated with each policy. This means that CARISMA delivers good

119

Chapter 6 6.3 Performance Evaluation

performance even when rather detailed profiles are used (with up to five policies, each
with five to ten contexts, comprising up to five resources).

0

1000

2000

3000

4000

5000

0 2 4 6 8 10

N. of Policies

m
s.

1 context, 1 resource
3 contexts, 5 resources
5 contexts, 10 resources

Figure 6.14: Impact of Context-Awareness.

Figure 6.14 combines Figure 6.12 and 6.13 in a number of meaningful combinations of pair
values for the number of contexts and resources; we vary the number of policies associated
with a service in a range [1, 10], as we consider this value an upper bound on any plausible
profile. As shown, having five or more contexts for each policy, and ten or more resources
for each context, represents a boundary in the performance of CARISMA, in the sense that
the elapsed time to answer a service request becomes unacceptably high if more complex
profiles are used.

In our experience with the Conference Application, however, having five policies associated
with three contexts with five resources each, already represented the maximum level of
adaptation we needed (i.e., the worst-case scenario); in this case, the average amount of
time to request a local service is still below one second.

6.3.4 Impact of Conflict Resolution

In measuring the run-time performance overhead introduced by the conflict resolution
mechanism when executing a service locally, we found some interesting and encouraging
results.

First, as Figure 6.15 shows, the number of utility function parameters does not influence
the performance of a service request at all. Also, this chart depicts the performance of a
local service request when no context is associated with the policies (i.e., they are always
enabled), thus no context evaluation is performed. Let us compare this chart with the
one shown in Figure 6.11, where a simple context, made of just one resource condition,
was associated with each policy, so that only one policy was enabled at any time. The

120

Chapter 6 6.3 Performance Evaluation

0

100

200

300

400

500

0 5 10 15 20

Utility Function Parameters

m
s.

2 conflicting policies
5 conflicting policies
10 conflicting policies

Figure 6.15: Impact of Utility Function Parameters.

0

1000

2000

3000

4000

0 2 4 6 8 10

N. of Conflicts

m
s.

10 policies, 1 context,
1 resource

10 policies, 3 contexts,
5 resources

Figure 6.16: Impact of Conflict Resolution Mechanism - Number of Conflicting Policies.

0

500

1000

1500

2000

2500

0 5 10 15 20

N. of Policies/Conflicts

m
s. Without conflicts

With conflicts

Figure 6.17: Impact of Conflict Resolution Mechanism.

121

Chapter 6 6.3 Performance Evaluation

numbers show that the conflict resolution mechanism introduces a much lower overhead
than the simplest case of context-awareness. In fact, it takes about 900ms. to determine
which policy to apply out of ten, if a very simple, mutually exclusive (i.e., no conflict)
context is provided (one context with one resource), while it takes less than 400ms. if
no context is provided and the conflict resolution procedure has to be executed to select
which of the ten enabled policies to apply.

Second, the number of conflicting policies has almost no impact on the performance of
the conflict resolution mechanism. In fact, as Figure 6.16 illustrates, the amount of time
required to perform a service request is almost independent of the number of conflicting
policies. In other words, the time taken to compute the bids, sum them up, and select
the winning policy is little influenced by the cardinality of the solution set. Also, the con-
flict resolution mechanism adds only a negligible overhead over the standard mechanism,
represented by the intersection of the curves with the Y axes.

As Figure 6.17 shows more clearly, in the case that each policy is associated with the
same number of contexts and resources (in the picture, they are both set to 1), and all
the policies are conflicting, the overhead introduced by the conflicts resolution mechanism
is almost constant and in the order of 200ms. We will use these results to derive useful
guidelines for writing ‘good’ application profiles in Section 6.3.6.

6.3.5 Impact of Distribution

The last set of charts shows the performance of CARISMA in answering a service request
for some plausible profile configurations, while varying the number of devices involved
in the delivery of the service. As shown, both in the presence of conflicts (Figure 6.20
and 6.21) and in their absence (Figure 6.18 and 6.19), the run-time performance overhead

0

2000

4000

6000

8000

2 3 4 5 6 7

N. of Devices

m
s.

3 policies, 1 context, 1
resource

5 policies, 3 contexts, 5
resources

Figure 6.18: Impact of Reflection in a Distributed Setting - First Algorithm.

122

Chapter 6 6.3 Performance Evaluation

0

1000

2000

3000

4000

5000

2 3 4 5 6 7

N. of Devices

m
s.

3 policies, 1 context,
1 resource

5 policies, 3 contexts,
5 resources

Figure 6.19: Impact of Reflection in a Distributed Setting - Second Algorithm.

0

2000

4000

6000

8000

2 3 4 5 6 7

N. of Devices

m
s.

3 policies, 2 conflicts,
1 context, 1 resource

5 policies, 3 conflicts,
3 contexts, 5
resources

Figure 6.20: Impact of Conflicts in a Distributed Setting - First Algorithm.

0

1000

2000

3000

4000

5000

2 3 4 5 6 7

N. of Devices

m
s.

3 policies, 2 conflicts,
1 context, 1 resource

5 policies, 3 conflicts,
3 contexts, 5
resources

Figure 6.21: Impact of Conflicts in a Distributed Setting - Second Algorithm.

123

Chapter 6 6.3 Performance Evaluation

tends to be constant, and does not increase considerably when increasing the number of
devices involved. The results shown here do not consider peer failures though; if peer
failures are taken into account, the elapsed time depends on the timeout values used
before acknowledging a peer is no longer within reach. Also, these charts show us that
the evaluation of context and determination of the locally enabled policies is by far the
most time-consuming task of the whole service request and conflict resolution process, as
shown by the large gap between the two curves in each chart.

Figure 6.22 compares the performance of the two algorithms. The results strengthen our
thesis that context evaluation is by far the heaviest task performed by our middleware
model when responding to a service request. In fact, the second algorithm that maximises
parallelisation of computation of Pi outperforms the first one, even in the case of peer-to-
peer interactions, where the second algorithm requires one more step of communication. In
particular, using the second algorithm, where all Pi, i ∈ [1, n] are evaluated in parallel, it
takes almost half of the time to answer a service request, compared to the first algorithm,
where only n− 1 evaluations are executed in parallel.

0

2000

4000

6000

8000

2 3 4 5 6 7

N. of Devices

m
s.

3 policies, 3 conflicts, 3
contexts, 5 resources (1st
algorithm)

3 policies, 3 conflicts, 3
contexts, 5 resources (2nd
algorithm)

3

Figure 6.22: Algorithm Comparison.

We have also measured the size of the messages sent around during the conflict resolution
process: it varies between 150 bytes when only two policies are conflicting, and 635 bytes
when ten policies are enabled. The size of the information exchanged is therefore minimal.

6.3.6 Design Guidelines

From the performance evaluation results that we have presented in the previous sections,
we have derived some important guidelines that application engineers should adhere to
when developing applications on top of CARISMA.

First, a detailed and precise adaptation to context changes has a high impact on perfor-

124

Chapter 6 6.3 Performance Evaluation

mance. In fact, as Figures 6.12, 6.13 and 6.14 illustrate, the higher the number of resources
associated with a context, and of contexts associated with a policy, the heavier the perfor-
mance overhead, and therefore the worse the performance. Although we have only given
a flavour of how applications can derive application profiles from user preferences, leaving
this issue to future research, our experience in developing the Conference Application has
shown that synthesising detailed and precise context descriptions from user preferences
may become difficult when the number of resources and contexts increases. However, we
have found that meaningful context descriptions do not need to contain many details, and
having three to five contexts, with more or less five resources associated with each of them,
already enables a very high level of customisation.

Guideline 1 In developing mobile context-aware applications, context descriptions should
be as simple as possible, containing only the information that is needed to discriminate
between different policies.

Second, the conflict resolution mechanism we have designed and implemented adds a very
low performance overhead over a standard service request. In fact, as Figures 6.15 and 6.16
have illustrated, both the number of utility function parameters, and the number of con-
flicting policies, only marginally influence the performance of CARISMA. Also, gathering
information about user preferences (e.g., the importance the user gives to non-functional
requirements and resources) is a rather straightforward task, compared to deriving precise
context descriptions. This observation, combined with the previous one, has led us to the
following guideline.

Guideline 2 In developing mobile context-aware applications, only minimal context con-
figurations should be associated with the policies, letting the conflict resolution mechanism
efficiently solve potential conflicts.

In addition, to reduce the risk of ending a conflict resolution process with a failure, be-
cause no agreed policy could be found, a good strategy is to leave one or more policies
always enabled, if possible. These should be ‘harmless’ policies that, if applied, provide
reasonable benefit in any context, although different policies, in different contexts, would
have achieved a higher quality-of-service. These ‘better’ policies should be favoured during
the conflict resolution process by higher bids.

Guideline 3 In developing mobile context-aware applications, ‘harmless’ policies should
always be enabled, thus reducing the risk of conflict resolution failures. These policies will
however be less preferred than more context-specific ones.

Following these guidelines, the difficulties that application engineers are exposed to in
developing applications on top of CARISMA are rather limited; mainly, they must be able

125

Chapter 6 6.4 Summary

to gather numbers that represent the importance that users associate with non-functional
requirements and resources at run-time. Once non-functional requirements and relevant
resources have been isolated, this task can be easily accomplished using, for example,
the customisation windows shown in Figure 6.1 and 6.2. Deriving context configurations
that must be associated with different policies in different circumstances is more difficult,
as different preferences must be combined, taking also policy specifications into account.
However, adhering to the lessons we have elicited, only simple configurations are needed,
and therefore application engineers do not need to design complex synthesising (i.e., from
user preferences and policy specifications to application profiles) algorithms.

6.4 Summary

This chapter has presented the implementation of CARISMA, and discussed the results
of its evaluation. The Conference Application has been used to discuss qualitative results,
both in terms of usability and effectiveness, while a benchmark has been introduced and
used to discuss performance results in non-trivial situations.

In terms of qualitative results, we have shown that CARISMA offers powerful abstractions,
in particular, application profiles, that ease the development of context-aware mobile ap-
plications. Application engineers do not have to deal with heterogeneity of sensors, nor do
they have to directly query their status; on the other hand, the task they are required to
undertake is to gather information from the users about their preferences, and to process
this information to synthesise application profiles and utility functions. With the help of
application domain experts, who elicit non-functional application requirements, and with
the use of the design guidelines discussed in Section 6.3.6, this task does not represent a
burden.

As for performance results, we have demonstrated that the overhead imposed by CARISMA
is not too heavy, and can be accommodated by currently available mobile devices. Both
the reflective and conflict resolution mechanisms have an almost negligible impact on a
basic service request where a service is statically associated with a policy; also, distribu-
tion has an impact on performance that tends to be constant with the number of devices
involved in a service request. Supporting context-awareness is the most time-consuming
and resource-demanding task; however, the overhead imposed is acceptable in plausible
configurations.

We can conclude that CARISMA facilitates the development of context-aware mobile ap-
plications, exploiting powerful abstractions and efficient mechanisms that both ease the
task of application engineers, and impose very little overhead. As far as performance is con-
cerned, we are aware that this can be improved further, by adopting some new technologies
that have become available; for example, the kXML parser [kObjects, 2002], a lighter and

126

Chapter 6 6.4 Summary

faster parser than the Xerces parser we have used, that specifically targets the mobile en-
vironment, and J2ME [Sun Microsystem, 2000] or PersonalJava [Sun Microsystem, 1997],
instead of the heavier Java Standard Edition we have used. However, our goal in imple-
menting CARISMA was to prove the validity and applicability of the principles we have
discussed in Chapter 3 and 4 in a mobile setting, and we have achieved this, without
needing to update our code with these latest technologies.

127

Chapter 7

Conclusions and Future Work

The main goal of the work presented in this thesis has been the development of abstrac-
tions and mechanisms that, embedded in a mobile computing middleware software layer,
effectively enhance the construction and execution of context-aware mobile applications.
More specifically, we have modelled application adaptation to context changes by means
of a set of associations between the services that the application wishes to customise, the
policies used to deliver these services, and the context configurations that enable these
policies. We have then investigated the principle of reflection to allow applications to dy-
namically alter these associations, thus adapting their behaviour at run-time, in order to
deliver the best quality-of-service in varying contexts and according to different user needs.
In order to solve potential conflicts among the QoS needs of interacting applications, we
have designed a dynamic, simple and customisable conflict resolution mechanism based
on microeconomic techniques. Our work has resulted in CARISMA, a mobile distributed
architecture that realises both the reflective model and the conflict resolution mechanism.
We have provided an implementation of CARISMA and built applications on top of it,
to demonstrate its effectiveness in developing context-aware mobile applications, as well
as its suitability in resource-constrained settings. In this last chapter, we revise the main
contributions of this thesis, provide a critical evaluation of the goals attained, and, finally,
we discuss some open issues that we leave for future development.

7.1 Contributions

The contributions of this thesis to mobile computing middleware are summarised below.

128

Chapter 7 7.1 Contributions

Application Adaptation to Context Changes

Our work contributes the development of a model that, based on reflection and metadata,
enables both reactive and proactive application adaptation to context changes. Adaptation
takes place by means of metadata, or application profiles, that contain both reactive and
proactive associations. Reactive associations relate context configurations to policies that
have to be fired when such configurations occur; proactive associations relate the services
that applications wish to customise, to the policies that must be used to deliver the services,
and the context configurations that must hold in order for a policy to be enabled. Through
reflection, applications can dynamically alter the meta-information, thus adapting their
behaviour to varying context conditions and user needs.

We provide a general and flexible definition of context, that abstracts away from the het-
erogeneity of physical sensors and the information gathered through them. The middle-
ware, and not the applications, takes charge of dealing with a diversity of sensors, and
of encoding the information obtained in a uniform way. Applications then access this en-
coding through a well-defined interface; also, they exploit this flexible context abstraction
to easily customise the set of resources that make up the context of interest at run-time,
possibly adding application-specific resources too.

This model has been formalised and mapped onto the CARISMA reflective architecture.
This architecture has then be implemented and thoroughly evaluated, to prove its suit-
ability to the mobile setting.

Quality-of-Service Conflict Resolution

Our work contributes a mechanism for dynamically resolving QoS conflicts using microe-
conomic techniques. Applications participating in the delivery of the same service may
disagree on the policy that has to be used to deliver the service, that is, the QoS level
they are willing to achieve. In order to solve potential conflicts among (distributed) ap-
plications, we have designed a microeconomic mechanism; in this economy, applications
are consumers seeking to achieve their own goals, that is, to have a service delivered us-
ing the policy that achieves the best quality-of-service, according to application-specific
preferences. Our conflict resolution mechanism enables applications to express their own
preferences (i.e., to associate values with the use of each conflicting policy), and therefore
influence the way conflicts are resolved.

We have formalised the mechanism and designed distributed algorithms that realise it.
We have provided an implementation of these algorithms and finally evaluated them, to
prove the simplicity and effectiveness of our conflict resolution mechanism.

129

Chapter 7 7.2 Critical Evaluation

7.2 Critical Evaluation

As we have pointed out in Chapter 1, two fundamental requirements of mobile computing
middleware are to be light-weight and to support context-awareness. In this section we
evaluate CARISMA with respect to these criteria.

Light-Weight Middleware

The middleware model we have developed specifically targets mobile devices, that is, de-
vices with resource limitations, in terms, for example, of memory and processor speed.
Mobile computing middleware must therefore be light-weight, and impose the minimum
overhead possible. In Chapter 6, we have demonstrated that our middleware model im-
plementation meets this requirement.

Both reflection and the conflict resolution mechanism impose a very small overhead, both
in terms of elapsed time to answer a service request, and memory requirements. The
more resource-consuming task is the evaluation of context: the richer and more detailed
the context description, the heavier the evaluation. However, the complexity of context
configurations is limited in realistic situations, thus imposing an overhead that current
mobile devices can bear. Moreover, our empirical evaluation has suggested guidelines
(Section 6.3.6) that help in cutting down the overhead related to context-awareness further.

Context-Awareness

Our reflective middleware model supports context-awareness by means of powerful ab-
stractions that model application behaviour in different contexts in a flexible and easy-
to-manipulate manner. Proving the extent to which our middleware model fosters the
development and deployment of context-aware applications, that is, measuring its effec-
tiveness and usability, is rather hard, as there are no quantitative parameters we can
compute by running a set of experiments. However, as we have discussed in Section 6.2,
our experience in developing applications on top of CARISMA has revealed that both
goals have been attained.

As far as usability is concerned, application engineers are not exposed to the difficulties
of dealing with heterogeneous sensors, gathering and processing context information, etc.
The only task they are required to undertake is to map user preferences into application
profiles and utility functions: using the well-defined meta-interface our model provides,
this task does not represent a problem.

As for effectiveness, application adaptation to context changes can be easily achieved by
means of the abstractions provided. Context configurations of limited complexity (e.g.,

130

Chapter 7 7.3 Future Work

five resources associated with three contexts) were sufficient to capture the maximum level
of adaptation needed by the Conference Application.

7.3 Future Work

The work presented in this thesis establishes a theoretical foundation of middleware prim-
itives for enhancing the development and execution of context-aware mobile applications.
Based on this model, future developments include the following.

Improvement of Current Model

Our current model can be improved in several respects:

• Although our definition of context is general enough to capture any resource avail-
able in the physical environment, we have mainly exploited a view of context that
is local to the device, that is, it includes the information gathered from locally
available sensors only. When broadening this view outside the physical device, to
include context information gathered from any peer directly (or indirectly) con-
nected, other issues arise; in particular, it becomes necessary to deal with the bind-
ing and re-binding of external sensors while on the move. In [Roman et al., 2002,
Julien and Roman, 2002], a middleware that tackles the issues of a broad definition
and maintenance of context has been presented; however, a final solution to the
binding problem has not yet been found.

• To accommodate dynamicity requirements, services and policies may be installed
and uninstalled on the fly; moreover, different application needs may result in dif-
ferent system configurations that vary over time. The changing interactions among
distributed services and policies may alter the semantics of the applications built on
top of our reflective middleware. The development of safe customisable middleware
therefore becomes an issue. A first step towards the definition of a formal seman-
tics for specifying and reasoning about the properties of, and interactions among,
middleware components can be found in [Venkatasubramanian and Talcott, 1995].
These principles have been used, for example, in [Venkatasubramanian et al., 2001]
to manage changes in large-scale distributed systems while ensuring application QoS
requirements. The principles they use are based on a two-level architecture where
the application, at the base level, interacts with the middleware, at the meta-level,
via middleware-defined core services that are then used to initiate other activities.
The similarity of this approach with our architecture makes us think that similar
principles could be investigated to develop a formal semantics of composition within
our reflective middleware framework.

131

Chapter 7 7.3 Future Work

An alternative may be to use an architectural approach: an architecture specification,
containing constraints about how components are composed, is provided. During
the system lifetime, the run-time architecture enforces that insertion and removal of
components do not violate these constraints. Early work in this area can be found
in [Georgiadis et al., 2002]. They propose to associate configuration managers with
each component; these managers are in charge of verifying architectural constraints
each time the configuration changes (because of, for example, component join/leave
events, or because of binding/unbinding actions taken by component managers).
Many research issues remain open in this direction; for example, the dynamic nature
of the architectural constraints must be taken into account.

• Although we have paid little attention to the communication issue, it is important
to state that the message-passing communication paradigm we provide needs to be
improved, as it does not support persistence of message queues (i.e., it does not
support disconnections). An important engineering exercise would be, therefore, to
integrate available implementations of the Java Message Service for mobile settings,
for example [Softwired, 2002], within our middleware. Currently available imple-
mentations, however, only target nomadic networks; an important research issue
would be to port them to ad-hoc settings too.

Increased Flexibility through Logical Mobility

Despite being a very powerful concept, reflection enables adaptability and flexibility only
in those contexts that middleware designers have considered likely to be unstable at design
time. However, in a mobile ad-hoc setting, mobile hosts cannot forecast all the possible
contexts they are going to encounter, and therefore which behaviours (i.e., policies) they
are going to need. New behaviours may be delivered from time to time to cope with
unforeseen context configurations and new application needs.

A major future direction of research is to exploit mobile code techniques to overcome this
limitation, for example, by downloading new protocols either from a service provider or
from other peers within reach that use the same behaviour [Capra et al., 2001c]
[Zachariadis et al., 2002]. Moreover, only a minimum set of behaviours can be stored
on a device so as to avoid consuming memory; by exchanging information about what
services, code and resources are available with other peers, different behaviours can be
downloaded only when needed (if needed). Reflection can be combined with mobile code
techniques to allow applications to select where to download protocols from, based on
application-specific information (e.g., trusted hosts, quality-of-service parameters, etc.).

132

Chapter 7 7.3 Future Work

QoS-aware Service Discovery and Delivery

Another major direction of research is service discovery and delivery. Traditional nam-
ing and trading service discovery techniques developed for fixed distributed systems can-
not be successfully applied in mobile settings, where intermittent rather than contin-
uous network connection is the norm. However, service discovery for mobile settings
has not yet gained significant attention. Two notable exceptions are the Jini specifica-
tion [Arnold et al., 1999] and the work by Handorean and Roman
[Handorean and Roman, 2002]. A disadvantage of both approaches is that they do not
take quality-of-service requirements into account when deciding which service to use.

We believe that QoS-aware service discovery would fit naturally in our framework, where
application needs are made explicit and used to decide how a service should be delivered
in the current context. Currently, these needs are taken into account only locally; a
future direction of research would be to make use of this information to discover services
available in an entire ad-hoc network that would deliver to the user the best QoS, according
to current user-specific requirements.

133

Appendix A

Reflective API Semantics

A.1 Introspection

Semantics of readRP (Read Reactive Policy)

readRP : profile× P→ policy ∪ {null}
readRP [[(react proact, pn)]] = readRP [[(react, pn)]]

readRP [[((pn′ cL)pL, pn)]] =

{
(pn′ cL) if pn = pn′

readRP [[(pL, pn)]] otherwise

readRP [[(pn′ cL, pn)]] =

{
(pn′ cL) if pn = pn′

null otherwise

readRP [[(ε, pn)]] = null

Semantics of readRC (Read Reactive Context)

readRC : profile× P× N→ context ∪ {null}
readRCcl : contextList× N→ context ∪ {null}

readRC[[(react proact, pn, cid)]] = readRC[[(react, pn, cid)]]

readRC[[((pn′ cL)pL, pn, cid)]] =

{
readRCcl[[(cL, cid)]] if pn = pn′

readRC[[(pL, pn, cid)]] otherwise

readRC[[(pn′ cL, pn, cid)]] =

{
readRCcl[[(cL, cid)]] if pn = pn′

null otherwise

134

Appendix A A.1 Introspection

readRCcl[[((cid′ rL)cL, cid)]] =

{
(cid′ rL) if cid = cid′

readRCcl[[(cL, cid)]] otherwise

readRCcl[[(cid′ rL, cid)]] =

{
(cid′ rL) if cid = cid′

null otherwise

readRC[[(ε, pn, cid)]] = null

Semantics of readRR (Read Reactive Resource)

readRR : profile× P× N× R→ resource ∪ {null}
readRRcl : contextList× N× R→ resource ∪ {null}
readRRrl : resourceList× R→ resource ∪ {null}

readRR[[(react proact, pn, cid, rn)]] = readRR[[(react, pn, cid, rn)]]

readRR[[((pn′ cL)pL, pn, cid, rn)]] =

{
readRRcl[[(cL, cid, rn)]] if pn = pn′

readRR[[(pL, pn, cid, rn)]] otherwise

readRR[[(pn′ cL, pn, cid, rn)]] =

{
readRRcl[[(cL, cid, rn)]] if pn = pn′

null otherwise

readRRcl[[((cid′ rL)cL, cid, rn)]] =

{
readRRrl[[(rL, rn)]] if cid = cid′

readRRcl[[(cL, cid, rn)]] otherwise

readRRcl[[(cid′ rL, cid, rn)]] =

{
readRRrl[[(rL, rn)]] if cid = cid′

null otherwise

readRRrl[[((rn on vL)rL, rn)]] =

{
(rn on vL) if rn = rn′

readRRrl[[(rL, rn)]] otherwise

readRRrl[[((rn on vL), rn)]] =

{
(rn on vL) if rn = rn′

null otherwise

readRR[[(ε, pn, cid, rn)]] = null

Semantics of readPS (Read Proactive Service)

readPS : profile× S→ service ∪ {null}
readPS[[(react proact, sn)]] = readPS[[(proact, sn)]]

readPS[[((sn′ pL)sL, sn)]] =

{
(sn′ pL) if sn = sn′

readPS[[(sL, sn)]] otherwise

135

Appendix A A.1 Introspection

readPS[[(sn′ pL, sn)]] =

{
(sn′ pL) if sn = sn′

null otherwise

readPS[[(ε, sn)]] = null

Semantics of readPP (Read Proactive Policy)

readPP : profile× S× P→ policy ∪ {null}
readPPpl : policyList× P→ policy ∪ {null}

readPP [[(react proact, sn, pn)]] = readPP [[(proact, sn, pn)]]

readPP [[((sn′ pL)sL, sn, pn)]] =

{
readPPpl[[(pL, pn)]] if sn = sn′

readPP [[(sL, sn, pn)]] otherwise

readPP [[(sn′ pL, sn, pn)]] =

{
readPPpl[[(pL, pn)]] if sn = sn′

null otherwise

readPPpl[[((pn′ cL)pL, pn)]] =

{
(pn′ cL) if pn = pn′

readPPpl[[(pL, pn)]] otherwise

readPPpl[[(pn′ cL, pn)]] =

{
(pn′ cL) if pn = pn′

null otherwise

readPP [[(ε, sn, pn)]] = null

Semantics of readPC (Read Proactive Context)

readPC : profile× S× P× N→ context ∪ {null}
readPCpl : policyList× P× N→ context ∪ {null}
readPCcl : contextList× N→ context ∪ {null}

readPC[[(react proact, sn, pn, cid)]] = readPC[[(proact, sn, pn, cid)]]

readPC[[((sn′ pL)sL, sn, pn, cid)]] =

{
readPCpl[[(pL, pn, cid)]] if sn = sn′

readPC[[(sL, sn, pn, cid)]] otherwise

readPC[[(sn′ pL, sn, pn, cid)]] =

{
readPCpl[[(pL, pn, cid)]] if sn = sn′

null otherwise

readPCpl[[((pn′ cL)pL, pn, cid)]] =

{
readPCcl[[(cL, cid)]] if pn = pn′

readPCpl[[(pL, pn, cid)]] otherwise

136

Appendix A A.1 Introspection

readPCpl[[(pn′ cL, pn, cid)]] =

{
readPCcl[[(cL, cid)]] if pn = pn′

null otherwise

readPCcl[[((cid′ rL)cL, cid)]] =

{
(cid′ rL) if cid = cid′

readPCcl[[(cL, cid)]] otherwise

readPCcl[[(cid′ rL, cid)]] =

{
(cid′ rL) if cid = cid′

null otherwise

readPC[[(ε, sn, pn, cid)]] = null

Semantics of readPR (Read Proactive Resource)

readPR : profile× S× P× N× R→ resource ∪ {null}
readPRpl : policyList× P× N× R→ resource ∪ {null}
readPRcl : contextList× N× R→ resource ∪ {null}
readPRrl : resourceList× R→ resource ∪ {null}

readPR[[(react proact, sn, pn, cid, rn)]] = readPR[[(proact, sn, pn, cid, rn)]]

readPR[[((sn′ pL)sL, sn, pn, cid, rn)]] =

{
readPRpl[[(pL, pn, cid, rn)]] if sn = sn′

readPR[[(sL, sn, pn, cid, rn)]] otherwise

readPR[[(sn′ pL, sn, pn, cid, rn)]] =

{
readPRpl[[(pL, pn, cid, rn)]] if sn = sn′

null otherwise

readPRpl[[((pn′ cL)pL, pn, cid, rn)]] =

{
readPRcl[[(cL, cid, rn)]] if pn = pn′

readPRpl[[(pL, pn, cid, rn)]] otherwise

readPRpl[[(pn′ cL, pn, cid, rn)]] =

{
readPRcl[[(cL, cid, rn)]] if pn = pn′

null otherwise

readPRcl[[((cid′ rL)cL, cid, rn)]] =

{
readPRrl[[(rL, rn)]] if cid = cid′

readPRcl[[(cL, cid, rn)]] otherwise

readPRcl[[(cid′ rL, cid, rn)]] =

{
readPRrl[[(rL, rn)]] if cid = cid′

null otherwise

readPRrl[[((rn on vL)rL, rn)]] =

{
(rn on vL) if rn = rn′

readPRrl[[(rL, rn)]] otherwise

readPRrl[[((rn on vL), rn)]] =

{
(rn on vL) if rn = rn′

null otherwise

readPR[[(ε, sn, pn, cid, rn)]] = null

137

Appendix A A.2 Adaptation

A.2 Adaptation

A.2.1 Remove

Semantics of remRP (Remove Reactive Policy)

remRP : profile× P→ profile

remRP [[(react proact, pn)]] = remRP [[(react, pn)]] ∪ proact

remRP [[((pn′ cL)pL, pn)]] =

{
pL if pn = pn′

{(pn′ cL)} ∪ remRP [[(pL, pn)]] otherwise

remRP [[(pn′ cL, pn)]] =

{
∅ if pn = pn′

{(pn′ cL)} otherwise

remRP [[(ε, pn)]] = ∅

Semantics of remRC (Remove Reactive Context)

remRC : profile× P× N→ profile

remRCcl : contextList× N→ contextList

remRC[[(react proact, pn, cid)]] = remRC[[(react, pn, cid)]] ∪ proact

remRC[[((pn′ cL)pL, pn, cid)]] =

{
{(pn′ remRCcl[[(cL, cid)]])} ∪ pL if pn = pn′

{(pn′ cL)} ∪ remRC[[(pL, pn, cid)]] otherwise

remRC[[(pn′ cL, pn, cid)]] =

{
{(pn′ remRCcl[[(cL, cid)]])} if pn = pn′

{(pn′ cL)} otherwise

remRCcl[[((cid′ rL)cL, cid)]] =

{
cL if cid = cid′

{(cid′ rL)} ∪ remRCcl[[(cL, cid)]] otherwise

remRCcl[[(cid′ rL, cid)]] =

{
∅ if cid = cid′

{(cid′ rL)} otherwise

remRC[[(ε, pn, cid)]] = ∅

Semantics of remRR (Remove Reactive Resource)

remRR : profile× P× N× R→ profile

remRRcl : contextList× N× R→ contextList

138

Appendix A A.2 Adaptation

remRRrl : resourceList× R→ resourceList

remRR[[(react proact, pn, cid, rn)]] = remRR[[(react, pn, cid, rn)]] ∪ proact

remRR[[((pn′ cL)pL, pn, cid, rn)]] =

{(pn′ remRRcl[[(cL, cid, rn)]])} ∪ pL

if pn = pn′

{(pn′ cL)} ∪ remRR[[(pL, pn, cid, rn)]]
otherwise

remRR[[(pn′ cL, pn, cid, rn)]] =

{
{(pn′ remRRcl[[(cL, cid, rn)]])} if pn = pn′

{(pn′ cL)} otherwise

remRRcl[[((cid′ rL)cL, cid, rn)]] =

{(cid′ remRRrl[[(rL, rn)]])} ∪ cL

if cid = cid′

remRRcl[[(cL, cid, rn)]] otherwise

remRRcl[[(cid′ rL, cid, rn)]] =

{
{(cid′ remRRrl[[(rL, rn)]])} if cid = cid′

{(cid′ rL)} otherwise

remRRrl[[((rn′ on vL)rL, rn)]] =

rL if rn = rn′

{(rn′ on vL)} ∪ remRRrl[[(rL, rn)]]
otherwise

remRRrl[[((rn′ on vL), rn)]] =

{
∅ if rn = rn′

{(rn′ on vL)} otherwise

remRR[[(ε, pn, cid, rn)]] = ∅

Semantics of remPS (Remove Proactive Service)

remPS : profile× S→ profile

remPS[[(react proact, sn)]] = react ∪ remPS[[(proact, sn)]]

remPS[[((sn′ pL)sL, sn)]] =

{
sL if sn = sn′

{(sn′ pL)} ∪ remPS[[(sL, sn)]] otherwise

remPS[[(sn′ pL, sn)]] =

{
∅ if sn = sn′

{(sn′ pL)} otherwise

remPS[[(ε, sn)]] = ∅

Semantics of remPP (Remove Proactive Policy)

remPP : profile× S× P→ profile

139

Appendix A A.2 Adaptation

remPPpl : policyList× P→ policyList

remPP [[(react proact, sn, pn)]] = react ∪ remPP [[(proact, sn, pn)]]

remPP [[((sn′ pL)sL, sn, pn)]] =

{
{(sn′ remPPpl[[(pL, pn)]])} ∪ sL if sn = sn′

{(sn′ pL)} ∪ remPP [[(sL, sn, pn)]] otherwise

remPP [[(sn′ pL, sn, pn)]] =

{
{(sn′ remPPpl[[(pL, pn)]])} if sn = sn′

{(sn′ pL)} otherwise

remPPpl[[((pn′ cL)pL, pn)]] =

{
pL if pn = pn′

{(pn′ cL)} ∪ remPPpl[[(pL, pn)]] otherwise

remPPpl[[(pn′ cL, pn)]] =

{
∅ if pn = pn′

{(pn′ cL)} otherwise

remPP [[(ε, sn, pn)]] = ∅

Semantics of remPC (Remove Proactive Context)

remPC : profile× S× P× N→ profile

remPCpl : policyList× P× N→ policyList

remPCcl : contextList× N→ contextList

remPC[[(react proact, sn, pn, cid)]] = react ∪ remPC[[(proact, sn, pn, cid)]]

remPC[[((sn′ pL)sL, sn, pn, cid)]] =

{
{(sn′ remPCpl[[(pL, pn, cid)]])} ∪ sL if sn = sn′

{(sn′ pL)} ∪ remPC[[(sL, sn, pn, cid)]] otherwise

remPC[[(sn′ pL, sn, pn, cid)]] =

{
{(sn′ remPCpl[[(pL, pn, cid)]])} if sn = sn′

{(sn′ pL)} otherwise

remPCpl[[((pn′ cL)pL, pn, cid)]] =

{
{(pn′ remPCcl[[(cL, cid)]])} ∪ pL if pn = pn′

{(pn′ cL)} ∪ remPCpl[[(pL, pn, cid)]] otherwise

remPCpl[[(pn′ cL, pn, cid)]] =

{
{(pn′ remPCcl[[(cL, cid)]])} if pn = pn′

{(pn′ cL)} otherwise

remPCcl[[((cid′ rL)cL, cid)]] =

{
cL if cid = cid′

{(cid′ rL)} ∪ remPCcl[[(cL, cid)]] otherwise

remPCcl[[(cid′ rL, cid)]] =

{
∅ if cid = cid′

{(cid′ rL)} otherwise

remPC[[(ε, sn, pn, cid)]] = ∅

140

Appendix A A.2 Adaptation

Semantics of remPR (Remove Proactive Resource)

remPR : profile× S× P× N× R→ profile

remPRpl : policyList× P× N× R→ policyList

remPRcl : contextList× N× R→ contextList

remPRrl : resourceList× R→ resourceList

remPR[[(react proact, sn, pn, cid, rn)]]=react ∪ remPR[[(proact, sn, pn, cid, rn)]]

remPR[[((sn′ pL)sL, sn, pn, cid, rn)]]=

{(sn′ remPRpl[[(pL, pn, cid, rn)]])} ∪ sL

if sn = sn′

{(sn′ pL)} ∪ remPR[[(sL, sn, pn, cid, rn)]]
otherwise

remPR[[(sn′ pL, sn, pn, cid, rn)]]=

{
{(sn′ remPRpl[[(pL, pn, cid, rn)]])} if sn = sn′

{(sn′ pL)} otherwise

remPRpl[[((pn′ cL)pL, pn, cid, rn)]]=

{(pn′ remPRcl[[(cL, cid, rn)]])} ∪ pL

if pn = pn′

{(pn′ cL)} ∪ remPRpl[[(pL, pn, cid, rn)]]
otherwise

remPRpl[[(pn′ cL, pn, cid, rn)]]=

{
{(pn′ remPRcl[[(cL, cid, rn)]])} if pn = pn′

{(pn′ cL)} otherwise

remPRcl[[((cid′ rL)cL, cid, rn)]]=

{(cid′ remPRrl[[(rL, rn)]])} ∪ cL

if cid = cid′

remPRcl[[(cL, cid, rn)]] otherwise

remPRcl[[(cid′ rL, cid, rn)]]=

{
{(cid′ remPRrl[[(rL, rn)]])} if cid = cid′

{(cid′ rL)} otherwise

remPRrl[[((rn′ on vL)rL, rn)]]=

rL if rn = rn′

{(rn′ on vL)} ∪ remPRrl[[(rL, rn)]]
otherwise

remPRrl[[((rn′ on vL), rn)]]=

{
∅ if rn = rn′

{(rn′ on vL)} otherwise

remPR[[(ε, sn, pn, cid, rn)]]=∅

A.2.2 Add

Semantics of addRP (Add Reactive Policy)

addRP : profile× policy → profile

141

Appendix A A.2 Adaptation

addRP [[(react proact, pn cL)]] = addRP [[(react, pn cL)]] ∪ proact

addRP [[((pn′ cL′)pL, pn cL)]] =

{
{(pn′ cL′)} ∪ addRP [[(pL, pn cL)]] if pn 6= pn′

(pn′ cL′)pL otherwise

addRP [[(pn′ cL′, pn cL)]] =

{
{(pn′ cL′)} ∪ {(pn cL)} if pn 6= pn′

{(pn′ cL′)} otherwise

addRP [[(ε, pn cL)]] = {(pn cL)}

Semantics of addRC (Add Reactive Context)

addRC : profile× P× context→ profile

addRCcl : contextList× context→ contextList

addRC[[(react proact, pn, cid rL)]] = addRC[[(react, pn, cid rL)]] ∪ proact

addRC[[((pn′ cL)pL, pn, cid rL)]] =

{
{(pn′ cL)} ∪ addRC[[(pL, pn, cid rL)]] if pn 6= pn′

{(pn′ addRCcl[[(cL, cid rL)]])} ∪ pL otherwise

addRC[[(pn′ cL, pn, cid rL)]] =

{
{(pn′ cL)} if pn 6= pn′

{(pn′ addRCcl[[(cL, cid rL)]])} otherwise

addRCcl[[((cid′ rL′)cL, cid rL)]] =

{
{(cid′ rL′)} ∪ addRCcl[[(cL, cid rL)]] if cid 6= cid′

(cid′ rL′)cL otherwise

addRCcl[[(cid′ rL′, cid rL)]] =

{
{(cid′ rL′)} ∪ {(cid rL)} if cid 6= cid′

{(cid′ rL′)} otherwise

addRC[[(ε, pn, cid rL)]] = ∅

Semantics of addRR (Add Reactive Resource)

addRR : profile× P× N× resource→ profile

addRRcl : contextList× N× resource→ contextList

addRRrl : resourceList× resource→ resourceList

addRR[[(react proact, pn, cid,
(rn on vL))]]

= addRR[[(react, pn, cid, (rn on vL))]] ∪ proact

142

Appendix A A.2 Adaptation

addRR[[((pn′ cL)pL, pn, cid,
(rn on vL))]]

=

{(pn′ cL)} ∪ addRR[[(pL, pn, cid, (rn on vL))]]
if pn 6= pn′

{(pn′ addRRcl[[(cL, cid, (rn on vL))]])} ∪ pL
otherwise

addRR[[(pn′ cL, pn, cid, (rn on vL))]] =

{(pn′ cL)} if pn 6= pn′

{(pn′ addRRcl[[(cL, cid, (rn on vL))]])}
otherwise

addRRcl[[((cid′ rL)cL, cid, (rn on vL))]] =

{(cid′ rL)} ∪ addRRcl[[(cL, cid, (rn on vL))]]
if cid 6= cid′

{(cid′ addRRrl[[rL, (rn on vL)]])} ∪ cL
otherwise

addRRcl[[(cid′ rL, cid, (rn on vL))]] =

{(cid′ rL)} if cid 6= cid′

{(cid′ addRRrl[[(rL, (rn on vL))]])}
otherwise

addRRrl[[((rn′ on′ vL′)rL, (rn on vL))]] =

{(rn′ on′ vL′)}∪
addRRrl[[(rL, (rn on vL))]]

if rn 6= rn′

(rn′ on′ vL′)rL otherwise

addRRrl[[((rn′ on′ vL′), (rn on vL))]] =

{(rn′ on′ vL′)} ∪ {(rn on vL)}

if rn 6= rn′

{(rn′ on′ vL′)} otherwise

addRR[[(ε, pn, cid, (rn on vL))]] = ∅

Semantics of addPS (Add Proactive Service)

addPS : profile× service→ profile

addPS[[(react proact, sn pL)]] = react ∪ addPS[[(proact, sn pL)]]

addPS[[((sn′ pL′)sL, sn pL)]] =

{
{(sn′ pL′)} ∪ addPS[[(sL, sn pL)]] if sn 6= sn′

(sn′ pL′)sL otherwise

addPS[[(sn′ pL′, sn pL)]] =

{
{(sn′ pL′)} ∪ {(sn pL)} if sn 6= sn′

{(sn′ pL′)} otherwise

143

Appendix A A.2 Adaptation

addPS[[(ε, sn pL)]] = {(sn pL)}

Semantics of addPP (Add Proactive Policy)

addPP : profile× S× policy → profile

addPPpl : policyList× policy → policyList

addPP [[(react proact, sn, pn cL)]] = react ∪ addPP [[(proact, sn, pn cL)]]

addPP [[((sn′ pL′)sL, sn, pn cL)]] =

{
{(sn′ pL′)} ∪ addPP [[(sL, sn, pn cL)]] if sn 6= sn′

{(sn′ addPPpl[[(pL′, pn cL)]])} ∪ sL otherwise

addPP [[(sn′ pL′, sn, pn cL)]] =

{
{(sn′ pL′)} if sn 6= sn′

{(sn′ addPPpl[[(pL′, pn cL)]])} otherwise

addPPpl[[((pn′ cL′)pL, pn cL)]] =

{
{(pn′ cL′)} ∪ addPPpl[[(pL, pn cL)]] if pn 6= pn′

(pn′ cL′)pL otherwise

addPPpl[[(pn′ cL′, pn cL)]] =

{
{(pn′ cL′)} ∪ {(pn cL)} if pn 6= pn′

{(pn′ cL′)} otherwise

addPP [[(ε, sn, pn cL)]] = ∅

Semantics of addPC (Add Proactive Context)

addPC : profile× S× P× context→ profile

addPCpl : policyList× P× context→ policyList

addPCcl : contextList× context→ contextList

addPC[[(react proact, sn, pn, cid rL)]] = react ∪ addPC[[(proact, sn, pn, cid rL)]]

addPC[[((sn′ pL′)sL, sn, pn, cid rL)]] =

{(sn′ pL′)} ∪ addPC[[(sL, sn, pn, cid rL)]]

if sn 6= sn′

{(sn′ addPCpl[[(pL′, pn, cid rL)]])} ∪ sL
otherwise

addPC[[(sn′ pL′, sn, pn, cid rL)]] =

{
{(sn′ pL′)} if sn 6= sn′

{(sn′ addPCpl[[(pL′, pn, cid rL)]])} otherwise

addPCpl[[((pn′ cL′)pL, pn, cid rL)]] =

{(pn′ cL′)} ∪ addPCpl[[(pL, pn, cid rL)]]

if pn 6= pn′

{(pn′ addPCcl[[(cL′, cid rL)]])} ∪ pL
otherwise

144

Appendix A A.2 Adaptation

addPCpl[[(pn′ cL′, pn, cid rL)]] =

{
{(pn′ cL′)} if pn 6= pn′

{(pn′ addPCcl[[(cL′, cid rL)]])} otherwise

addPCcl[[((cid′ rL′)cL, cid rL)]] =

{(cid′ rL′)} ∪ addPCcl[[(cL, cid rL)]]

if cid 6= cid′

(cid′ rL′)cL otherwise

addPCcl[[(cid′ rL′, cid rL)]] =

{
{(cid′ rL′)} ∪ {(cid rL)} if cid 6= cid′

{(cid′ rL′)} otherwise

addPC[[(ε, sn, pn, cid rL)]] = ∅

Semantics of addPR (Add Proactive Resource)

addPR : profile× S× P× N× resource→ profile

addPRpl : policyList× P× N× resource→ policyList

addPRcl : contextList× N× resource→ contextList

addPRrl : resourceList× resource→ resourceList

addPR[[(react proact, sn, pn, cid,
(rn on vL))]]

=

{
react ∪
addPR[[(proact, sn, pn, cid, (rn on vL))]]

addPR[[((sn′ pL′)sL, sn, pn, cid,
(rn on vL))]]

=

{(sn′ pL′)}∪
addPR[[(sL, sn, pn, cid, (rn on vL))]]
if sn 6= sn′

{(sn′ addPRpl[[(pL′, pn, cid, (rn on vL))]])}
∪ sL otherwise

addPR[[(sn′ pL′, sn, pn, cid,
(rn on vL))]]

=

{(sn′ pL′)} if sn 6= sn′

{(sn′ addPRpl[[(pL′, pn, cid, (rn on vL))]])}
otherwise

addPRpl[[((pn′ cL′)pL, pn, cid,
(rn on vL))]]

=

{(pn′ cL′)}∪
addPRpl[[(pL, pn, cid, (rn on vL))]]
if pn 6= pn′

{(pn′ addPRcl[[(cL′, cid, (rn on vL))]])}
∪pL otherwise

145

Appendix A A.2 Adaptation

addPRpl[[(pn′ cL′, pn, cid, (rn on vL))]] =

{(pn′ cL′)} if pn 6= pn′

{(pn′ addPRcl[[(cL′, cid, (rn on vL))]])}
otherwise

addPRcl[[((cid′ rL′)cL, cid, (rn on vL))]] =

{(cid′ rL′)}∪
addPRcl[[(cL, cid, (rn on vL))]]
if cid 6= cid′

{(cid′ addPRrl[[(rL′, (rn oL vL))]])}
∪ cL otherwise

addPRcl[[(cid′ rL′, cid, (rn on vL))]] =

{(cid′ rL′)}
if cid 6= cid′

{(cid′ addPRrl[[rL′, (rn on vL)]])}
otherwise

addPRrl[[((rn′ on′ vL′)rL, (rn on vL))]] =

{(rn′ on′ vL′)}∪
addPRrl[[(rL, (rn on vL))]]

if rn 6= rn′

(rn′ on′ vL′)rL otherwise

addPRrl[[((rn′ on′ vL′), (rn on vL))]] =

{(rn′ on′ vL′)} ∪ {(rn on vL)}

if rn 6= rn′

{(rn′ on′ vL′)} otherwise

addPR[[(ε, sn, pn, cid, (rn on vL))]] = ∅

A.2.3 Update

Semantics of updRP (Update Reactive Policy)

updRP : profile× P× policy → profile

updRP [[(react proact, pn, pn cL)]] = addRP [[(remRP [[(react proact, pn)]], pn cL)]]

146

Appendix A A.2 Adaptation

Semantics of updRC (Update Reactive Context)

updRC : profile× P× N× context→ profile

updRC[[(react proact, pn, cid, cid rL)]] = addRC[[(remRC[[(react proact, pn, cid)]],

pn, cid rL)]]

Semantics of updRR (Update Reactive Resource)

updRR : profile× P× N× R× resource→ profile

updRR[[(react proact, pn, cid, rn, (rn on vL))]] = addRR[[(remRR[[(react proact, pn, cid, rn)]],

pn, cid, (rn on vL))]]

Semantics of updPS (Update Proactive Service)

updPS : profile× S× service→ profile

updPS[[(react proact, sn, sn pL)]] = addPS[[(remPS[[(react proact, sn)]], sn pL)]]

Semantics of updPP (Update Proactive Policy)

updPP : profile× S× P× policy → profile

updPP [[(react proact, sn, pn, pn cL)]] = addPP [[(remPP [[(react proact, sn, pn)]],

sn, pn cL)]]

Semantics of updPC (Update Proactive Context)

updPC : profile× S× P× N× context→ profile

updPC[[(react proact, sn, pn, cid, cid rL)]] = addPC[[(remPC[[(react proact, sn, pn, cid)]],

sn, pn, cid rL)]]

147

Appendix A A.3 policyStatusList Adaptation

Semantics of updPR (Update Proactive Resource)

updPR : profile× S× P× N× R× resource→ profile

updPR[[(react proact, sn, pn, cid, rn,

(rn on vL))]] = addPR[[(

remPR[[(react proact, sn, pn, cid, rn)]],

sn, pn, cid, (rn on vL))]]

A.3 policyStatusList Adaptation

A.3.1 Remove

Semantics of remPSP (Remove Policy Status Policy)

remPSP : policyStatusList× P→ policyStatusList

remPSP [[((pn csL)psL, pn′)]] =

{
{(pn csL)} ∪ remPSP [[(psL, pn′)]] if pn 6= pn′

psL otherwise

remPSP [[(pn csL, pn′)]] =

{
{(pn csL)} ifpn 6= pn′

∅ otherwise

remPSP [[(ε, pn)]] = ∅

Semantics of remPSC (Remove Policy Status Context)

remPSC : policyStatusList× P× N→ policyStatusList

remPSCcsl : contextStatusList× N→ contextStatusList

remPSC[[((pn csL)psL, pn′, cid′)]] =

{(pn csL)} ∪ remPSC[[(psL, pn′, cid′)]]

if pn 6= pn′

{(pn remPSCcsl[[(csL, cid′)]])} ∪ psL
otherwise

remPSC[[(pn csL, pn′, cid′)]] =

{
{(pn csL)} if pn 6= pn′

{(pn remPSCcsl[[(csL, cid′)]])} otherwise

148

Appendix A A.3 policyStatusList Adaptation

remPSCcsl[[((cid rsL)csL, cid′)]] =

{(cid rsL)} ∪ remPSCcsl[[(csL, cid′)]]

if cid 6= cid′

csL otherwise

remPSCcsl[[(cid rsL, cid′)]] =

{
{(cid rsL)} if cid 6= cid′

∅ otherwise

remPSC[[(ε, pn, cid)]] = ∅

Semantics of remPSR (Remove Policy Status Resource)

remPSR : policyStatusList× P× N× R→ policyStatusList

remPSRcsl : contextStatusList× N× R→ contextStatusList

remPSRrsl : resourceStatusList× R→ resourceStatusList

remPSR[[((pn csL)psL, pn′, cid′, rn′)]] =

{(pn csL)} ∪ remPSR[[(psL, pn′, cid′, rn′)]]
if pn 6= pn′

{(pn remPSRcsl[[(csL, cid′, rn′)]])}
∪psL otherwise

remPSR[[(pn csL, pn′, cid′, rn′)]] =

{
{(pn csL)} if pn 6= pn′

{(pn remPSRcsl[[(csL, cid′, rn′)]])} otherwise

remPSRcsl[[((cid rsL)csL, cid′, rn′)]] =

{(cid rsL)} ∪ remPSRcsl[[(csL, cid′, rn′)]]
if cid 6= cid′

{(cid remPSRrsl[[(rsL, rn′)]])}
∪csL otherwise

remPSRcsl[[(cid rsL, cid′, rn′)]] =

{
{(cid rsL)} if cid 6= cid′

{(cid remPSRrsl[[(rsL, rn′)]])} otherwise

remPSRrsl[[((rn′, on′, vL′, b)rsL, rn′)]] =

{(rn′, on′, vL′, b)} ∪ remPSRrsl[[(rsL, rn′)]]
if rn 6= rn′

rsL otherwise

remPSRrsl[[((rn′, on′, vL′, b), rn′)]] =

{
{(rn′, on′, vL′, b)} if rn 6= rn′

∅ otherwise

remPSR[[(ε, pn, cid, rn)]] = ∅

149

Appendix A A.3 policyStatusList Adaptation

A.3.2 Add

Semantics of addPSP (Add Policy Status Policy)

addPSP : policyStatusList× policy → policyStatusList

addPSP [[((pn csL)psL, pn′ cL)]] =

{
{(pn csL)} ∪ addPSP [[(psL, pn′ cL)]] if pn 6= pn′

(pn csL)psL otherwise

addPSP [[(pn csL, pn′ cL)]] =

{
{(pn csL)} ∪ init[[pn′ cL]] ifpn 6= pn′

{(pn csL)} otherwise

addPSP [[(ε, pn cL)]] = init[[pn cL]]

Semantics of addPSC (Add Policy Status Context)

addPSC : policyStatusList× P× context→ policyStatusList

addPSCcsl : contextStatusList× context→ contextStatusList

addPSC[[((pn csL)psL, pn′, cid′ rL′)]] =

{(pn csL)} ∪ addPSC[[(psL, pn′, cid′ rL′)]]

if pn 6= pn′

{(pn addPSCcsl[[(csL, cid′ rL)]])} ∪ psL

if pn = pn′

addPSC[[(pn csL, pn′, cid′ rL′)]] =

{
{(pn csL)} ifpn 6= pn′

{(pn addPSCcsl[[(csL, cid′ rL′)]])} otherwise

addPSCcsl[[((cid rsL)csL, cid′ rL′)]] =

{(cid rsL)} ∪ addPSCcsl[[(csL, cid′ rL′)]]

if cid 6= cid′

(cid rsL)csL otherwise

addPSCcsl[[(cid rsL, cid′ rL′)]] =

{
{(cid rsL)} ∪ initcl[[cid′ rL′]] if cid 6= cid′

{(cid rsL)} otherwise

addPSC[[(ε, pn, cid rL)]] = ∅

Semantics of addPSR (Add Policy Status Resource)

addPSR : policyStatusList× P× N× resource→ policyStatusList

addPSRcsl : contextStatusList× N× resource→ contextStatusList

addPSRrsl : resourceStatusList× resource→ resourceStatusList

150

Appendix A A.3 policyStatusList Adaptation

addPSR[[((pn csL)psL, pn′,
cid′, (rn′ on′ vL′))]]

=

{(pn csL)} ∪ addPSR[[(psL, pn′, cid′, (rn′ on′ vL′))]]
if pn 6= pn′

{(pn addPSRcsl[[(csL, cid′, (rn′ on′ vL′))]])} ∪ psL

if pn = pn′

addPSR[[(pn csL, pn′,
cid′, (rn′ on′ vL′))]]

=

{(pn csL)} if pn 6= pn′

{(pn addPSRcsl[[(csL, cid′, (rn′ on′ vL′))]])}
otherwise

addPSRcsl[[((cid rsL)csL,
cid′, (rn′ on′ vL′))]]

=

{(cid rsL)} ∪ addPSRcsl[[(csL, cid′, (rn′ on′ vL′))]]
if cid 6= cid′

{(cid addPSRrsl[[(rsL, (rn′ on′ vL′))]])} ∪ csL

otherwise

addPSRcsl[[(cid rsL,
cid′, (rn′ on′ vL′))]]

=

{(cid rsL)} if cid 6= cid′

{(cid addPSRrsl[[(rsL, (rn′ on′ vL′))]])}
otherwise

addPSRrsl[[((rn, on, vL, b)rsL,
(rn′ on′ vL′))]]

=

{(rn, on, vL, b)} ∪
addPSRrsl[[(rsL, (rn′ on′ vL′))]]
if rn 6= rn′

(rn, on, vL, b)rsL otherwise

addPSRrsl[[((rn, on, vL, b),
(rn′ on′ vL′))]]

=

{(rn, on, v, b)} ∪ initrl[[rn′ on′ vL′]]
if rn 6= rn′

{(rn, on, vL, b)} otherwise

addPSR[[(ε, pn, cid, (rn on vL))]] = ∅

A.3.3 Update

Semantics of updPSP (Update Policy Status Policy)

updPSP : policyStatusList× P× policy → policyStatusList

updPSP [[(psL, pn, pn cL)]] = addPSP [[(remPSP [[(psL, pn)]], pn cL)]]

151

Appendix A A.3 policyStatusList Adaptation

Semantics of updPSC (Update Policy Status Context)

updPSC : policyStatusList× P× N× context→ policyStatusList

updPSC[[(psL, pn, cid,
cid rL)]]

= addPSC[[(remPSC[[(psL, pn, cid)]], pn, cid rL)]]

Semantics of updPSR (Update Policy Status Resource)

updPSR : policyStatusList× P× N× R× resource→ policyStatusList

updPSR[[(psL, pn, cid,
(rn on vL))]]

= addPSR[[(remPSR[[(psL, pn, cid, rn)]], pn, cid, (rn on vL))]]

152

Appendix B

Metadata Encoding

B.1 Application Profile Schema Definition

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

<xs:element name="APPLICATION_PROFILE">

<xs:complexType>

<xs:all>

<xs:element ref="REACTIVE" minOccurs="1"/>

<xs:element ref="PROACTIVE" minOccurs="1"/>

</xs:all>

<xs:attribute name="name" type="xs:string" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="REACTIVE">

<xs:complexType>

<xs:sequence>

<xs:element ref="POLICY" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="frequency" type="xs:short" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="PROACTIVE">

<xs:complexType>

<xs:sequence>

153

Appendix B B.1 Application Profile Schema Definition

<xs:element ref="SERVICE" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="SERVICE">

<xs:complexType>

<xs:sequence>

<xs:element ref="POLICY" minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="name" type="xs:string" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="POLICY">

<xs:complexType>

<xs:sequence>

<xs:element ref="CONTEXT" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="name" type="xs:string" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="CONTEXT">

<xs:complexType>

<xs:sequence>

<xs:element ref="RESOURCE" minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="id" type="xs:positiveInteger" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="RESOURCE">

<xs:complexType>

<xs:sequence>

<xs:element ref="OPERATOR" minOccurs="1" maxOccurs="1"/>

<xs:element ref="STATUS" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="name" type="xs:string" use="required"/>

</xs:complexType>

</xs:element>

154

Appendix B B.2 Utility Function Schema Definition

<xs:element name="OPERATOR">

<xs:complexType>

<xs:attribute name="name" type="xs:string" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="STATUS">

<xs:complexType>

<xs:attribute name="value" type="xs:string" use="required"/>

</xs:complexType>

</xs:element>

</xs:schema>

B.2 Utility Function Schema Definition

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

<xs:element name="UTILITY_FUNCTION">

<xs:complexType>

<xs:sequence>

<xs:element ref="ADD" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="name" type="xs:string" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="ADD">

<xs:complexType>

<xs:all>

<xs:element ref="VALUE_OF" minOccurs="1"/>

<xs:element ref="MULTIPLY_BY" minOccurs="1"/>

</xs:all>

</xs:complexType>

</xs:element>

<xs:element name="VALUE_OF">

<xs:complexType>

<xs:attribute name="expr" type="xs:string" use="required"/>

</xs:complexType>

155

Appendix B B.2 Utility Function Schema Definition

</xs:element>

<xs:element name="MULTIPLY_BY">

<xs:complexType>

<xs:attribute name="rate" use="required">

<xs:simpleType>

<xs:restriction base="xs:integer">

<xs:minInclusive value="0"/>

<xs:maxInclusive value="10"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

</xs:complexType>

</xs:element>

</xs:schema>

156

Bibliography

[Alternis S.A., 2000] Alternis S.A. (2000). Solutions for Location Data Mediation.
http://www.alternis.com/.

[Angin et al., 1998] Angin, O., Campbell, A., Kounavis, M., and Liao, R. (1998). The
Mobiware Toolkit: Programmable Support for Adaptive Mobile Networking. Personal
Communications Magazine, Special Issue on Adapting to Network and Client Variabil-
ity, pages 32–44.

[ANSA, 1989] ANSA (1989). The Advanced Network Systems Architecture (ANSA). Ref-
erence manual, Architecture Project Management, Castle Hill, Cambridge, UK.

[Apparao et al., 1998] Apparao, V., Byrne, S., Champion, M., Isaacs, S., Jacobs, I.,
Hors, A. L., Nicol, G., Robie, J., Sutor, R., Wilson, C., and Wood, L. (1998).
Document Object Model (DOM) Level 1 Specification. W3C Recommendation
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001, World Wide Web Consor-
tium.

[Arnold et al., 1999] Arnold, K., O’Sullivan, B., Scheifler, R. W., Waldo, J., and Wollrath,
A. (1999). The Jini[tm] Specification. Addison-Wesley.

[Asthana and Krzyzanowski, 1994] Asthana, A. and Krzyzanowski, M. C. P. (1994). An
indoor wireless system for personalized shopping assistence. In Proceedings of IEEE
Workshop on Mobile Computing Systems and Applications, pages 69–74, Santa Cruz,
California. IEEE Computer Society Press.

[Baker, 1997] Baker, S. (1997). Corba Distributed Objects : Using Orbix. Addison-Wesley.

[Bakker et al., 1999] Bakker, A., van Steen, M., and Tanenbaum, A. (1999). From Remote
Objects to Physically Distributed Objects. In Proc. 7th IEEE Workshop on Future
Trends of Distributed Computing Systems, pages 47–52, Cape Town, South Africa. IEEE
Computer Society Press.

[Bennett et al., 1994] Bennett, F., Richardson, T., and Harter, A. (1994). Teleporting
- making applications mobile. In Proc. of the IEEE Workshop on Mobile Computing
Systems and Applications, pages 82–84, Santa Cruz, California. IEEE Computer Society
Press.

157

BIBLIOGRAPHY

[Binmore, 1992] Binmore, K. (1992). Fun and Games: a text on game theory. Lexington:
D.C. Heath.

[Blair et al., 2001] Blair, G., Coulson, G., Andersen, A., Blair, L., Clarke, M., Costa,
F., Duran-Limon, H., Fitzpatrick, T., Johnston, L., Moreira, R., Parlavantzas, N., and
Saikoski, K. (2001). The Design and Implementation of OpenORB V2. IEEE Distributed
Systems Online Journal, 2(6).

[Blair et al., 1998] Blair, G., Coulson, G., Robin, P., and Papathomas, M. (1998). An Ar-
chitecture for Next Generation Middleware. In Proc. of IFIP International Conference
on Distributed Systems Platforms and Open Distributed Processing, pages 191–206, The
Lake District, England, UK. Springer Verlag.

[Bray and Sturman, 2000] Bray, J. and Sturman, C. F. (2000). Bluetooth: Connect With-
out Cables. Prentice Hall.

[Bray et al., 1998] Bray, T., Paoli, J., and Sperberg-McQueen, C. M. (1998). Exten-
sible Markup Language. Recommendation http://www.w3.org/TR/1998/REC-xml-
19980210, World Wide Web Consortium.

[Brown, 1998] Brown, P. (1998). Triggering information by context. Personal Technolo-
gies, 2(1):1–9.

[Campbell, 1997] Campbell, A. (1997). Mobiware: Qos-aware middleware for mobile mul-
timedia communications. In 7th IFIP International Conference on High Performance
Networking, White Plains, NY.

[Capra et al., 2002a] Capra, L., Blair, G. S., Mascolo, C., Emmerich, W., and Grace,
P. (2002a). Exploiting Reflection in Mobile Computing Middleware. ACM Mobile
Computing and Communications Review, 6(4):34–44.

[Capra et al., 2001a] Capra, L., Emmerich, W., and Mascolo, C. (2001a). Middleware for
Mobile Computing: Awareness vs. Transparency (Position Summary). In Proceedings of
the 8th Workshop on Hot Topics in Operating Systems (HotOS-VIII), page 142, Schloss
Elmau, Germany.

[Capra et al., 2001b] Capra, L., Emmerich, W., and Mascolo, C. (2001b). Reflective
Middleware Solutions for Context-Aware Applications. In Proc. of REFLECTION
2001. The Third International Conference on Metalevel Architectures and Separation
of Crosscutting Concerns, volume 2192 of LNCS, pages 126–133, Kyoto, Japan.

[Capra et al., 2002b] Capra, L., Emmerich, W., and Mascolo, C. (2002b). A Micro-
Economic Approach to Conflict Resolution in Mobile Computing. In Proceedings of
the 10th International Symposium on the Foundations of Software Engineering (FSE-
10), pages 31–40, Charleston, South Carolina, USA. ACM Press.

158

BIBLIOGRAPHY

[Capra et al., 2003] Capra, L., Emmerich, W., and Mascolo, C. (2003). CARISMA:
Context-Aware Reflective mIddleware System for Mobile Applications. IEEE Trans-
actions on Software Engineering. To appear in the November issue.

[Capra et al., 2001c] Capra, L., Mascolo, C., Zachariadis, S., and Emmerich, W. (2001c).
Towards a Mobile Computing Middleware: a Synergy of Reflection and Mobile Code
Techniques. In In Proc. of the 8th IEEE Workshop on Future Trends of Distributed
Computing Systems (FTDCS’2001), pages 148–154, Bologna, Italy.

[CellPoint, Inc., 2000] CellPoint, Inc. (2000). The CellPoint System.
http://www.cellpt.com/thetechnology2.htm.

[Chalmers and Sloman, 1999a] Chalmers, D. and Sloman, M. (1999a). A Survey of Qual-
ity of Service in Mobile Computing Environments. IEEE Communications Surveys,
2(2):2–10.

[Chalmers and Sloman, 1999b] Chalmers, D. and Sloman, M. (1999b). QoS and Context
Awareness for Mobile Computing. In Workshop on Handheld Computing in the Field,
volume 1707 of LNCS, pages 380–382, Karlsruhe, Germany. Springer Verlag.

[Chalmers et al., 2001] Chalmers, D., Sloman, M., and Dulay, N. (2001). Map Adaptation
for Users of Mobile Systems. In Proceedings of the 10th International World Wide Web
Conference (WWW-10), pages 735–744, Hong Kong.

[Clark and DeRose, 1999] Clark, J. and DeRose, S. (1999). XML Path Language (XPath).
Technical Report http://www.w3.org/TR/xpath, World Wide Web Consortium.

[Coulson et al., 1992] Coulson, G., Blair, G. S., Davies, N., and Williams, N. (1992). Ex-
tensions to ANSA for Multimedia Computing. Computer Networks and ISDN Systems,
25(3):305–323.

[Cugola and Nitto, 2001] Cugola, G. and Nitto, E. D. (2001). Using a Publish/Subscribe
Middleware to Support Mobile Computing. In Proceedings of the Workshop on Middle-
ware for Mobile Computing, Heidelberg, Germany. In association with IFIP/ACM
Middleware 2001 Conference.

[Dardenne et al., 1993] Dardenne, A., van Lamsweerde, A., and Fickas, S. (1993). Goal-
Directed Requirements Acquisition. Science of Computer Programming, 20:3–50.

[Davies et al., 1999] Davies, N., Cheverst, K., Mitchell, K., and Friday, A. (1999). Caches
in the Air: Disseminating Information in the Guide System. In Proceedings of the 2nd

IEEE Workshop on Mobile Computing Systems and Applications (WMCSA ’99), pages
11–19, New Orleans, US.

[Davies et al., 1998] Davies, N., Friday, A., Wade, S., and Blair, G. (1998). L2imbo:
A Distributed Systems Platform for Mobile Computing. ACM Mobile Networks and

159

BIBLIOGRAPHY

Applications (MONET), Special Issue on Protocols and Software Paradigms of Mobile
Networks, 3(2):143–156.

[Dey et al., 1999] Dey, A., Futakawa, M., Salber, D., and Abowd, G. (1999). The Con-
ference Assistant: Combining Context-Awareness with Wearable Computing. In Proc.
of the 3rd International Symposium on wearable Computers (ISWC ’99), pages 21–28,
San Franfisco, California. IEEE Computer Society Press.

[Eisenstein et al., 2001] Eisenstein, J., Vanderonckt, J., and Puerta, A. (2001). Applying
Model-Based Techniques to the Development of UIs for Mobile Computers. In Interna-
tional Conference on Intelligent User Interfaces (IUI’01), pages 69–76, Santa Fe, New
Mexico.

[Eliassen et al., 1999] Eliassen, F., Andersen, A., Blair, G. S., Costa, F., Coulson, G.,
Goebel, V., Hansen, O., Kristensen, T., Plagemann, T., Rafaelsen, H. O., Saikoski,
K. B., and Yu, W. (1999). Next Generation Middleware: Requirements, Architecture
and Prototypes. In Proceedings of the 7th IEEE Workshop on Future Trends in Dis-
tributed Computing Systems, pages 60–65. IEEE Computer Society Press.

[Emmerich, 1996] Emmerich, W. (1996). Tool Specification with GTSL. In Proc. of the
8th Int. Workshop on Software Specification and Design, pages 26–35. IEEE Computer
Society Press.

[Emmerich, 2000] Emmerich, W. (2000). Engineering Distributed Objects. John Wiley &
Sons.

[Engels et al., 1992] Engels, G., Lewerentz, C., Nagl, M., Schäfer, W., and Schürr, A.
(1992). Building Integrated Software Development Environments — Part 1: Tool Spec-
ification. ACM Transactions on Software Engineering and Methodology, 1(2):135–167.

[ExoLab, 2001] ExoLab (2001). OpenORB. http://openorb.exolab.org/openorb.html.

[Ferguson et al., 1993] Ferguson, D., Nikolaou, C., and Yemini, Y. (1993). An Economy
for Managing Replicated Data in Autonomous Decentralised Systems. In Proc. of In-
ternational Symposium on Autonomous and Decentralised Systems, pages 367–375, Los
Alamitos, CA. IEEE Computer Society Press.

[Fickas and Feather, 1995] Fickas, S. and Feather, M. (1995). Requirements Monitoring
in Dynamic Environments. In Proc. of the 2nd IEEE Int. Symposium on Requirements
Engineering, pages 140–147. IEEE Computer Society Press.

[Fritsch et al., 2000] Fritsch, D., Klinec, D., and Volz, S. (2000). NEXUS Positioning and
Data Management Concepts for Location Aware Applications. In Proceedings of the 2nd

International Symposium on Telegeoprocessing, pages 171–184, Nice-Sophia-Antipolis,
France.

160

BIBLIOGRAPHY

[Georgiadis et al., 2002] Georgiadis, I., Magee, J., and Kramer, J. (2002). Self-Organising
Software Architectures for Distributed Systems. In Proceedings of the 1st Workshop on
Self-healing Systems, pages 33–38, Charleston, South Carolina.

[Guttman et al., 1999] Guttman, E., Perkins, C., Day, M., and Veizades, J. (1999). Service
location protocol, version 2. http://www.ietf.org/rfc/rfc2608.txt. RFC 2608.

[Hall, 1996] Hall, C. (1996). Building Client/Server Applications Using TUXEDO. John
Wiley & Son.

[Handorean and Roman, 2002] Handorean, R. and Roman, G.-C. (2002). Service Provi-
sion in Ad Hoc Networks. In Coordination 2002, volume 2315 of LNCS, pages 207–219,
York, UK. Springer Verlag.

[Hanssen and Eliassen, 1999] Hanssen, Ø. and Eliassen, F. (1999). A Framework for Policy
Bindings. In Proceedings of International Symposium on Distributed Objects and Ap-
plications (DOA’99), pages 2–11, Edinburgh, Scotland. IEEE Computer Society Press.

[Held, 2000] Held, G. (2000). Data Over Wireless Networks: Bluetooth, WAP, and Wire-
less Lans. McGraw-Hill.

[Hudders, 1994] Hudders, E. (1994). CICS: A Guide to Internal Structure. John Wiley &
Son.

[Hunter and Nuseibeh, 1998] Hunter, A. and Nuseibeh, B. (1998). Managing Inconsistent
Specifications: Reasoning, Analysis, and Action. ACM Trans. on Software Engineering
and Methodology, 7(4):335–367.

[Julien and Roman, 2002] Julien, C. and Roman, G.-C. (2002). Egocentric Context-Aware
Programming in Ad Hoc Mobile Environments. In Proceedings of the 10th Interna-
tional Symposium on the Foundations of Software Engineering (FSE-10), pages 21–30,
Charleston, South Carolina. ACM Press.

[Kiczales et al., 1991] Kiczales, G., des Rivires, J., and Bobrow, D. (1991). The Art of
the Metaobject Protocol. MIT Press.

[kObjects, 2002] kObjects (2002). kXML2. http://kxml.org.

[Kon et al., 2000a] Kon, F., Campbell, R., Mickunas, M., Nahrstedt, K., and Ballesteros,
F. (2000a). 2k: A Distributed Operating System for Dynamic Heterogeneous Envi-
ronments. In 9th IEEE International Symposium on High Performance Distributed
Computing, pages 201–210, Pittsburgh. IEEE Computer Society Press.

[Kon et al., 2000b] Kon, F., Román, M., Liu, P., Mao, J., Yamane, T., aes, L. M., and
Cambpell, R. (2000b). Monitoring, Security, and Dynamic Configuration with the dy-
namicTAO Reflective ORB. In International Conference on Distributed Systems Plat-
forms and Open Distributed Processing (Middleware’2000), pages 121–143, New York.
ACM/IFIP.

161

BIBLIOGRAPHY

[Ledoux, 1999] Ledoux, T. (1999). OpenCorba: a Reflective Open Broker. In Reflec-
tion’99, volume 1616 of LNCS, pages 197–214, Saint-Malo, France. Springer.

[Leonhardt and Magee, 1996] Leonhardt, U. and Magee, J. (1996). Towards a General
Location Service for Mobile Environments. In Proceedings of the 3rd IEEE Workshop
on Services in Distributed and Networked Environments, pages 43–50, Macau.

[Long et al., 1996] Long, S., Kooper, R., Abowd, G., and Atkenson, C. (1996). Rapid
prototyping of mobile context-aware applications: the Cyberguide case study. In Pro-
ceedings of the Second Annual International Conference on Mobile Computing and Net-
working, pages 97–107, White Plains, NY. ACM Press.

[Lupu and Sloman, 1999] Lupu, E. and Sloman, M. (1999). Conflicts in Policy-Based Dis-
tributed Systems Management. IEEE Transactions on Software Engineering, 25(6):852–
869.

[Maes, 1987] Maes, P. (1987). Concepts and Experiments in Computational Reflection. In
Proceedings of OOPSLA ’87, pages 147–155, Orlando, Florida. ACM Sigplan Notices.

[Malone et al., 1988] Malone, T. W., Fikes, R. E., Grant, K. R., and Howard, M. T.
(1988). Enterprise: A market-like task scheduler for distributed computing environ-
ments. In Huberman, B. A., editor, The Ecology of Computation, pages 177–205.
North-Holland, Amsterdam.

[Mas-Colell et al., 1995] Mas-Colell, A., Whinston, M. D., and Green, J. R. (1995). Mi-
croeconomic Theory. Oxford University Press.

[Mascolo et al., 2002a] Mascolo, C., Capra, L., and Emmerich, W. (2002a). Middleware
for mobile computing (a survey). In Gregori, E., Anastasi, G., and Basagni, S., editors,
Neworking 2002 Tutorial Papers, volume 2497 of LNCS, pages 20–58. Springer.

[Mascolo et al., 2002b] Mascolo, C., Capra, L., Zachariadis, S., and Emmerich, W.
(2002b). XMIDDLE: A Data-Sharing Middleware for Mobile Computing. Int. Journal
on Personal and Wireless Communications, 21(1):77–103.

[McAffer, 1996] McAffer, J. (1996). Meta-Level Architecture Support for Distributed Ob-
jects. In Kiczales, G., editor, Reflection 96, pages 39–62, San Francisco, California.
ACM Press.

[Milgrom, 1989] Milgrom, P. (1989). Auctions and Bidding: A Primer. Journal of Eco-
nomic Perspectives, 3(3):3–22.

[Monson-Haefel, 2000] Monson-Haefel, R. (2000). Enterprise Javabeans. O’Reilly & As-
sociates.

[Monson-Haefel et al., 2000] Monson-Haefel, R., Chappell, D. A., and Loukides, M.
(2000). Java Message Service. O’Reilly & Associates.

162

BIBLIOGRAPHY

[Murphy et al., 2001] Murphy, A. L., Picco, G. P., and Roman, G.-C. (2001). Lime: A
Middleware for Physical and Logical Mobility. In Proceedings of the 21st International
Conference on Distributed Computing Systems (ICDCS-21), pages 524–536, Mesa, AZ.
IEEE Computer Society Press.

[Natarajan et al., 2000] Natarajan, V., Reich, S., and Vasudevan, B. (2000). Programming
With Visibroker : A Developer’s Guide to Visibroker for Java. John Wiley & Sons.

[Nentwich et al., 2002] Nentwich, C., Capra, L., Emmerich, W., and Finkelstein, A.
(2002). xlinkit: a consistency checking and smart link generation service. ACM Trans-
actions on Internet Technology (TOIT), 2(2):151–185.

[Networks, 2000] Networks, E. B. R. A. (2000). ETSI HIPERLAN/2 Standard.
http://portal.etsi.org/bran/kta/Hiperlan/hiperlan2.asp.

[Okamura et al., 1992] Okamura, H., Ishikawa, Y., and Tokoro, M. (1992). AL-1/D: A
Distributed Programming System with Multi-Model Reflection Framework. In Work-
shop on New Models for Software Architecture. ACM Sigplan.

[OMG, 1997] OMG (1997). CORBA Component Model. http://www.omg.org/cgi-
bin/doc?orbos/97-06-12.

[Oracle Technology Network, 2000] Oracle Technology Network (2000). Oracle9i Appli-
cation Server Wireless. http://technet.oracle.com/products/iaswe/content.html.

[Pitt and McNiff, 2001] Pitt, E. and McNiff, K. (2001). Java.rmi : The Remote Method
Invocation Guide. Addison Wesley.

[Plagemann et al., 1999] Plagemann, T., Eliassen, F., Goebel, V., Kristensen, T., and
Rafaelsen, H. (1999). Adaptive QoS Aware Binding of Persistent Objects. In Proceedings
of International Symposium on Distributed Objects and Applications (DOA’99), pages
306–317, Edinburgh, Scotland. IEEE Computer Society Press.

[Pope, 1998] Pope, A. (1998). The Corba Reference Guide : Understanding the Common
Object Request Broker Architecture. Addison-Wesley.

[Psinaptic, 2001] Psinaptic (2001). JMatos. http://www.psinaptic.com/.

[Redbooks, 1999] Redbooks, I. (1999). MQSeries Version 5.1 Administration and Pro-
gramming Examples. IBM Corporation.

[Robinson and Pawlowski, 1999] Robinson, W. N. and Pawlowski, S. D. (1999). Managing
requirements inconsistency with development goal monitors. IEEE Transactions on
Software Engineering, 25(6):816–835.

[Rogerson, 1997] Rogerson, D. (1997). Inside COM. Microsoft Press.

163

BIBLIOGRAPHY

[Roman et al., 2002] Roman, G.-C., Julien, C., and Huang, Q. (2002). Network Abstrac-
tions for Context Aware Mobile Computing. In Proceedings of the 24th International
Conference on Software Engineering (ICSE), pages 363–373, Orlando, Florida. ACM
Press.

[Román et al., 2002] Román, M., Hess, C. K., Cerqueira, R., Ranganathan, A., Campbell,
R. H., and Nahrstedt, K. (2002). Gaia: A Middleware Infrastructure to Enable Active
Spaces. IEEE Pervasive Computing, pages 74–83.

[Román et al., 2001] Román, M., Kon, F., and Campbell, R. (2001). Reflective Middle-
ware: From your Desk to your Hand. IEEE Distributed Systems Online Journal, 2(5).

[Román et al., 2000] Román, M., Mickunas, D., Kon, F., and Campbell, R. H. (2000).
LegORB and Ubiquitous CORBA. In IFIP/ACM Middleware 2000 - Workshop on
Reflective Middleware, IBM Palisades Executive Conference Center, NY.

[Rumbaugh et al., 1998] Rumbaugh, J., Jacobson, I., and Booch, G. (1998). The Unified
Modeling Language Reference Manual. Addison Wesley.

[Sairamesh et al., 1995] Sairamesh, J., Ferguson, D., and Yemini, Y. (1995). An Ap-
proach to Pricing, Optimal Allocation and Quality of Service Provisioning in High-
speed Packet Networks. In Proc. of Conference on Computer Communications, Boston,
Massachusetts.

[Salber et al., 1999] Salber, D., Dey, A. K., and Abowd, G. D. (1999). The Context
Toolkit: Aiding the Development of Context-Enabled Applications. In ACM SIGCHI
Conference on Human Factors in Computing Systems (CHI ’99), pages 434–441.

[Salutation Consortium, 1999] Salutation Consortium (1999). Salutation.
http://www.salutation.org/.

[Satyanarayanan, 1996] Satyanarayanan, M. (1996). Mobile Information Access. IEEE
Personal Communications, 3(1):26–33.

[Satyanarayanan et al., 1990] Satyanarayanan, M., Kistler, J., Kumar, P., Okasaki, M.,
Siegel, E., and Steere, D. (1990). Coda: A Highly Available File System for a Distributed
Workstation Environment. IEEE Transactions on Computers, 39(4):447–459.

[Schilit et al., 1994] Schilit, B., Adams, N., and Want, R. (1994). Context-Aware Com-
puting Applications. In Proc. of the Workshop on Mobile Computing Systems and
Applications, pages 85–90, Santa Cruz, CA. IEEE Computer Society Press.

[Schmidt et al., 1999] Schmidt, A., Beigl, M., and Gellersen, H.-W. (1999). There is more
to Context than Location. Computers and Graphics, 23(6):893–901.

[Segall and Arnold, 1997] Segall, W. and Arnold, D. (1997). Elvin Has Left the Building:
A Publish/Subscribe Notification Service with Quenching. In Australian UNIX Users
Group 97, pages 373–380, Brisbane, Australia. ACM Press.

164

BIBLIOGRAPHY

[SignalSoft, 2000] SignalSoft (2000). Wireless Location services.
http://www.signalsoftcorp.com/.

[Smith, 1982] Smith, B. (1982). Reflection and Semantics in a Procedural Programming
Language. Phd thesis, MIT.

[Softwired, 2002] Softwired (2002). iBus Mobile. http://www.softwired-
inc.com/products/mobile/mobile.html.

[Sun Microsystem, 1997] Sun Microsystem, I. (1997). PersonalJavaTM Application Envi-
ronment. http://java.sun.com/products/personaljava/.

[Sun Microsystem, 2000] Sun Microsystem, I. (2000). Java 2 Platform, Micro Edition.
http://java.sun.com/j2me/.

[Terry et al., 1995] Terry, D., Theimer, M., Petersen, K., Demers, A., Spreitzer, M., and
Hauser, C. (1995). Managing Update Conflicts in Bayou, a Weakly Connected Repli-
cated Storage System. In Proceedings of the 15th ACM Symposium on Operating Systems
Principles (SOSP-15), pages 172–183, Cooper Mountain, Colorado. ACM Press.

[UPnP Forum, 1998] UPnP Forum (1998). Universal Plug and Play.
http://www.upnp.org/.

[van Lamsweerde et al., 1998] van Lamsweerde, A., Darimont, R., and Letier, E. (1998).
Managing Conflicts in Goal-Driven Requirements Engineering. IEEE Transactions on
Software Engineering, 24(11):908–926.

[van Steen et al., 1999] van Steen, M., Hauck, F., Homburg, P., and Tanenbaum, A.
(1999). Globe: a Wide-Area Distributed System. IEEE Concurrency, 7(1):70–78.

[Venkatasubramanian et al., 2001] Venkatasubramanian, N., Deshpande, M., Mahopatra,
S., Gutierrez-Nolasco, S., and Wickramasuriya, J. (2001). Design and implementation
of a Composable Reflective Middleware Framework. In Proceedings of the IEEE Inter-
national Conference on Distributed Computer Systems, pages 644–653, Mesa, AZ. IEEE
Computer Society Press.

[Venkatasubramanian and Talcott, 1995] Venkatasubramanian, N. and Talcott, C. (1995).
Meta-architectures for resource management in open distributed systems. In Proceedings
of the ACM Symposium on Principles of Distributed Computing, pages 144–153, Ottawa,
Ontario, Canada. ACM Press.

[Vickrey, 1961] Vickrey, W. (1961). Counterspeculation, auctions and competitive sealed
tenders. Journal of Finance, 16(1):8–37.

[Waldo, 1998] Waldo, J. (1998). Javaspaces specification 1.0. Technical report, Sun Mi-
crosystems.

165

BIBLIOGRAPHY

[Watanabe and Yonezawa, 1988] Watanabe, T. and Yonezawa, A. (1988). Reflection in
an Object-Oriented Concurrent Language. In OOPSLA 88, volume 23, pages 306–415.
ACM Press.

[Weicker, 1984] Weicker, R. P. (1984). Dhrystone: a synthetic systems programming
benchmark. Communications of the ACM, 27(10):1013–1030.

[Welling and Badrinath, 1998] Welling, G. and Badrinath, B. (1998). An Architecture
for Exporting Environment Awareness to Mobile Computing. IEEE Transactions on
Software Engineering, 24(5):391–400.

[Wyckoff et al., 1998] Wyckoff, P., McLaughry, S. W., Lehman, T. J., and Ford, D. A.
(1998). T Spaces. IBM Systems Journal, 37(3):454–474.

[Yokote, 1992] Yokote, Y. (1992). The Apertos reflective operating system: The concept
and its implementation. In Proceedings of OOPSLA’92, pages 414–434, Vancouver,
British Columbia, Canada. ACM Press.

[Zachariadis et al., 2002] Zachariadis, S., Mascolo, C., and Emmerich, W. (2002). Ex-
ploiting Logical Mobility in Mobile Computing Middleware. In Proceedings of IEEE
Workshop on Mobile Team Work. Co-located with ICDCS02, pages 385–386, Vienna,
Austria.

[Zlotkin and Rosenschein, 1993] Zlotkin, G. and Rosenschein, J. S. (1993). A Domain
Theory for Task Oriented negotiation. In Proceedings of the Thirteenth International
Joint Conference on Artificial Intelligence, pages 416–422, Chambery, France.

[Zlotkin and Rosenschein, 1996] Zlotkin, G. and Rosenschein, J. S. (1996). Mechanisms
for Automated Negotiation in State Oriented Domains. Journal of Artificial Intelligence
Research, 5:163–238.

166

