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Abstract. In this thesis, we construct a half-integral weight multiplier system

on the group SU(2, 1). In order to do so, we first find a formula for a 2-cocycle

representing the double cover of SU(2, 1)(k), where k is a local field. For

each non-archimedean local field k, we describe how the cocycle splits on a

compact open subgroup. The multiplier system is then expressed in terms of

the product of the local splittings at each prime.
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1.4. The adèle group of SU(2, 1) 33

Chapter 2. With reference to Deodhar’s paper 37

2.1. Some properties of SU(2, 1)(k) 37

2.2. The universal topological central extension 40

2.3. A section for π : ˜SU(2, 1)→ SU(2, 1)(k) 42

2.4. k as a local field 43

Chapter 3. Some properties of quadratic extensions 45

3.1. The Hilbert symbol 45

3.2. Non-split and split quadratic extensions 47

Part 2. The 2-cocycle of the universal central extension of

SU(2, 1)(k) 50

Chapter 4. The 2-cocycle on T (k) 51

5



CONTENTS 6

4.1. Initial results 52

4.2. Some useful lemmas 56

4.3. A slightly more general result 70

4.4. The most general case 77

Chapter 5. The 2-cocycle on the rest of SU(2, 1)(k) 113

5.1. The easy cases 113

5.2. The difficult case 117

Chapter 6. The 2-cocycle of the double cover 132

Part 3. The local Kubota symbol 154

Chapter 7. The compact open subgroup on which the quadratic 2-cocycle

splits 155

7.1. The odd primes 156

7.2. The even split primes 159

Chapter 8. Calculation of the Kubota symbol 161

8.1. The unipotent matrices of the compact open subgroup 162

8.2. The elements of the torus 172

8.3. Other elements of the compact open subgroup 181

Part 4. The half-integral weight multiplier system 188

Chapter 9. The global Kubota symbol 189

Chapter 10. A section for the 2-cocycle on SU(2, 1)(R) 192

Bibliography 199



Introduction

Modular forms of half-integral weight have been known to exist for some time,

and standard examples may be found in the form of theta functions and the

Dedekind eta function. But although modular forms of half-integral weight have

been found on groups such as special linear groups, symplectic groups and orthog-

onal groups, it is not possible to obtain modular forms of half-integral weight on

the group SU(2, 1) by restriction, even though they are known to exist.

This thesis is concerned with finding a half-integral weight multiplier system

on SU(2, 1). With this half-integral weight multiplier system in place, it would be

possible to write down a modular form of half-integral weight on SU(2, 1).

Modular forms on SL2

We first recall the definition of a modular form on the group SL2. The modular

group is defined to be

SL2(Z) =


a b

c d

 : a, b, c, d ∈ Z, ad− bc = 1

 .

This group acts on the upper half-plane

H = {τ ∈ C : Im(τ) > 0}

by fractional linear transformations, i.e.

γ =

a b

c d

 : τ → γ(τ) =
aτ + b

cτ + d
.

Let k be a positive integer. A modular form of weight k is a holomorphic function

f : H → C such that for each γ ∈ SL2(Z),

f(γ(τ)) = (cτ + d)kf(τ),

7



MODULAR FORMS ON SU(2, 1) 8

and such that f is holomorphic at the cusp ∞.

Now let k/2 be a half-integer and let Γ ⊂ SL2(Z) be a subgroup of finite index.

By a weight k/2 multiplier system, we shall mean a continuous function

j : Γ×H → C,

such that for γ, γ′ ∈ Γ, τ ∈ H,

j(γγ′, τ) = j(γ, γ′(τ)) · j(γ′, τ),

and

j(γ, τ)2 = (cτ + d)k, γ =

a b

c d

 .

A modular form of weight k/2 on Γ is defined to be a function f : H → C such that

for γ ∈ Γ and τ ∈ H, we have

f(γ(τ)) = j(γ, τ)f(τ),

and such that f is holomorphic on H and the cusps of Γ. An example of a half-

integral weight modular form on SL2 is the Dedekind eta function

η(z) = q1/24
∞∏
1

(1− qn),

where q = e2πiz, and it can be shown that for γ =

a b

c d

 ∈ SL2(Z),

η

(
az + b

cz + d

)
= ε(γ)(cz + d)1/2η(z),

where ε(γ) is a 24th root of unity (see Section 1.3 of [3]). When one restricts to

elements γ in the commutator subgroup Γ = [SL2(Z),SL2(Z)] we have ε(γ) = ±1.

Modular forms on SU(2, 1)

We can define similar notions for the group SU(2, 1). To describe this group,

let θ0 =
√
−d, where d ≥ 2 is a square-free natural number (fixed once and for all).
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We shall write the non-trivial Galois automorphism of Q(θ0) by

a+ bθ0 = a− bθ0.

We define SU(2, 1) as an algebraic group over Q as follows: for a commutative

Q-algebra A we let

SU(2, 1)(A) = {ν ∈ SL3(A⊗Q Q(θ0)) : νtJ ′ν = J ′}.

In this definition, the matrix J ′ is given by

J ′ =


0 0 1

0 1 0

1 0 0

 .

The notation νt denotes the transpose of ν, and ν denoted the image of ν under

conjugation in Q(θ0). We shall also on occasion regard SU(2, 1) as a group scheme

over Z, defined (for a commutative ring A) by

SU(2, 1)(A) = {ν ∈ SL3(A⊗Z OQ(θ0)) : νtJ ′ν = J ′}.

Here OQ(θ0) denotes the ring of algebraic integers in Q(θ0).

Consider the Hermitian form on the vector space V = C3 defined by

〈u, v〉 = utJ ′v.

The group SU(2, 1)(R) acts on V , and hence on X = P2(C) in an obvious way.

Furthermore SU(2, 1)(R) preserves the subsets

X− = {[v] ∈ P2(C) : 〈v, v〉 < 0},

V − = {v ∈ C3 : 〈v, v〉 < 0},

where [v] denotes the image in projective space of a vector v. Hence V − is the

preimage of X− in V \0.

Let k be a positive integer. We define a weight k modular form on an arithmetic

subgroup Γ ⊂ SU(2, 1)(Q) as follows. Let F : V − → C be a holomorphic function
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such that

F (γv) = F (v), for all γ ∈ Γ,

F (λv) = λ−kF (v), for all λ ∈ C.

It turns out that no growth conditions at the cusps are required.

We shall now explain how this definition is related to the definition for SL2(Z).

Any point of X− has a unique representative in V − of the form


τ1

τ2

1

, where

N (τ2) + Tr (τ1) < 0. Here we are using the notation N (x) = xx and Tr (x) = x+ x

for a complex number x. We let HC be the set of all such pairs

τ1
τ2

, so we have a

bijection X− ∼= HC. Given a modular form F in the sense just described, we define

a function f on HC by

f


τ1
τ2


 = F



τ1

τ2

1


 .

The action of SU(2, 1)(R) on X− gives us an action on HC, which we will now

examine. Let

g =


g11 g12 g13

g21 g22 g23

g31 g32 g33

 ∈ SU(2, 1)(R).

We decompose this matrix into blocks as follows:

A =

g11 g12

g21 g22

 , B =

g13

g23

 , C =
(
g31 g32

)
, D = g33.

This implies that

g =

A B

C D

 .

The action of SU(2, 1)(R) on HC is described by

g(τ) =
Aτ +B

Cτ +D
, τ =

τ1
τ2

 ∈ HC.
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Now let f be as above, and suppose that g is in the arithmetic group Γ. Then we

have:

f(g(τ)) = F


Aτ+B
Cτ+D

1




= (Cτ +D)kF


Aτ +B

Cτ +D




= (Cτ +D)kF

g
τ

1




= (Cτ +D)kF


τ

1




= (Cτ +D)kf(τ).

We can thus similarly define a weight k/2 multiplier system on SU(2, 1) as a

holomorphic function j : Γ×HC → C such that for γ, γ′ ∈ Γ, τ ∈ HC, and γ defined

in the same way as g above:

j(γγ′, τ) = j(γ, γ′(τ)) · j(γ′, τ),

and

j(γ, τ)2 = (Cτ +D)k, γ =

A B

C D

 .

We may also define half-integral weight modular forms on SU(2, 1) entirely

analogous to the case of SL2. However, no example of a half-integral weight modular

form on SU(2, 1) has ever been found. There are no standard examples such as

theta series. The other standard way of writing down a half-integral weight form

would be to write down an Eisenstein series. However, this cannot be done without

knowing the multiplier system in advance, and no example of a half-integral weight

multiplier system has previously been found (although they were known to exist;

see [5]). The aim of this thesis is to give a half-integral weight multiplier system

on SU(2, 1).
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Strategy for constructing the multiplier system

Let A denote the adèle ring of Q and write µ2 for the group {1,−1}. The group

SU(2, 1)(A) has a canonical double cover, called the “metaplectic cover”:

1 −→ µ2 −→ ˜SU(2, 1)(A) −→ SU(2, 1)(A) −→ 1.

This is a central extension of topological groups. It is a “cover” in the following

sense: there is a neighbourhood U of the identity in SU(2, 1)(A), such that the

restriction preimage of U is topologically a product U×µ2. The word “metaplectic”

means that the extension splits over the rational points SU(2, 1)(Q). In fact, every

reductive group over a number field has a canonical mateplectic cover, with kernel

the roots of unity in the field (see [5]).

For a place p of Q we shall write ˜SU(2, 1)(Qp) for the pre-image of SU(2, 1)(Qp)

in ˜SU(2, 1)(A). This means that we have local extensions:

1 −→ µ2 −→ ˜SU(2, 1)(Qp) −→ SU(2, 1)(Qp) −→ 1.

Our first aim is to describe a 2-cocycle σp on SU(2, 1)(Qp) corresponding to this

extension. In fact, our cocycle will be expressed in terms of Hilbert symbols

(−,−)Qp,2. This has the consequence (by the quadratic reciprocity law) that for

g, g′ ∈ SU(2, 1)(Q) we have ∏
p

σp(g, g′) = 1.

This product formula reflects the fact that our extension splits on the rational

points.

One cannot define a cocycle σA on SU(2, 1)(A) to be simply the product of the

local cocycles, since this product will usually have infinite support. However, we

can do something rather similar. For each finite prime p, there is a compact open

subgroup Γp ⊂ SU(2, 1)(Qp) on which the extension splits, and for almost all p we

may take Γp = SU(2, 1)(Zp). This means that there is a function κp : Γp → µ2,

such that for g, g′ ∈ Γp we have

σp(g, g′) = ∂κp(g, g′) =
κp(gg′)

κp(g)κp(g′)
.
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The functions κp : Γp → µ2 are called “local Kubota symbols”. If we extend κp in

some arbitrary way to SU(2, 1)(Qp), then we may now form the product

σA(g, g′) = σ∞(g∞, g′∞)
∏

p finite

σp(gp, g′p)
∂κp(gp, g′p)

, g, g′ ∈ SU(2, 1)(A).

This product does have finite support, and is a 2-cocycle representing the full

metaplectic extension. The second main aim of the thesis is to calculate the local

Kubota symbols.

Now consider the following congruence subgroup:

Γ = SU(2, 1)(Q) ∩
(

SU(2, 1)(R)×
∏
p

Γp
)
.

We define a map κ : Γ→ µ2 (called the “global Kubota symbol”) by

κ(γ) =
∏
p<∞

κp(γ).

From the formulae above, we immediately have

σ∞(γ, γ′) =
κ(γ)κ(γ′)
κ(γγ′)

.

Our next step is to examine the cocycle σ∞ more closely. It turns out that

there is another way of constructing the group ˜SU(2, 1)(R). Let

˜SU(2, 1)(R) =
{(
g, φ : HC → C×

)
: g ∈ SU(2, 1)(R)

}
,

where φ is continuous, and for every

g =

A B

C D

 ∈ SU(2, 1)(R)

(as defined earlier), we have φ(τ)2 = Cτ+D. Multiplication in this group is defined

by

(g, φ)(g′, φ′) = (gg′, (φ ◦ g′)φ′).

There is an obvious homomorphism (g, φ) 7→ g, which makes this group a double

cover of SU(2, 1)(R). We prove in Chapter 10 that this is the unique connected

double cover of SU(2, 1)(R) and is isomorphic to the local factor at infinity of the
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metaplectic group. The final aim of the thesis is to describe explicitely a section

g 7→ (g, φg), which corresponds to the 2-cocycle σ∞. In more elementary terms this

means

σ∞(g, g′) =
φg(g′(τ))φg′(τ)

φgg′(τ)
, g, g′ ∈ SU(2, 1)(R), τ ∈ HC.

If we now define for γ ∈ Γ,

j(γ, τ) = κ(γ)φγ(τ),

then the formulae above show that j(γ, τ) is a multiplier system of weight 1/2.

In fact we shall work almost entirely in a more general setting than was de-

scribed above. We shall replace the rational numbers by an arbitrary number field

l and Q(θ0) by an arbitrary quadratic extension L/l. In the case that l is totally

complex, the cocycles σp for complex places p are all trivial, and hence the global

Kubota symbol κ is a group homomorphism.

The plan of the thesis is divided into four parts. In order to calculate the local

Kubota symbol, we will first need to find an explicit formula in terms of quadratic

Hilbert symbols for the 2-cocycle representing ˜SU(2, 1)(Qp), for p finite. Deodhar

worked on the computation of the fundamental group of quasi-split groups in [6].

We will be extending the methods described in this paper to find the explicit formula

of the 2-cocycle that we need. Hence, the first part of the thesis is concerned with

establishing some important facts and results for later use. In the second part, we

will give an explicit formula for the 2-cocycle representing ˜SU(2, 1)(Qp). The third

part concerns the calculation of the local Kubota symbol for every finite prime p.

In the fourth part, we will look at some calculations of the global Kubota symbol,

and find the section for SU(2, 1)(R). We will then establish what the half-integral

weight multiplier system is.

Summary of the results of the thesis

We shall fix once and for all a number field l and a quadratic extension L =

l(θ0). We define our group over l by

SU(2, 1)(−) = {ν ∈ SL3(−⊗l L) : νtJ ′ν = J ′}.
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Let k = lp be a local completion of l, either archimedean or non-archimedean and

let K = k⊗l L. Thus K is either a quadratic extension of k or a sum of two copies

of k. Recall that we have a double cover ˜SU(2, 1)(k) of the group SU(2, 1)(k). We

begin by specifying a section δ′ : SU(2, 1)(k)→ ˜SU(2, 1)(k). This section defines a

2-cocycle σ corresponding to the cover:

σ(g, h) = δ′(g)δ′(h)δ′(gh)−1, g, h ∈ SU(2, 1)(k).

Our first results are an expression for σ in terms of quadratic Hilbert symbols on

k. In the case that K/k is a field extension, our result completely describes σ. In

the split case, we obtain expressions which are valid on (a) the maximal torus and

(b) the subgroup SU(2, 1)(l). This will be enough for our purposes.

The cocycle on the torus. Let k be a local field and let K = k(θ0) be either

a quadratic extension of k or a sum of two copies of k. As before, we write λ 7→ λ

for the non-trivial Galois automorphism when K is a field. When K = k ⊕ k, this

notation will mean

(x, y) = (y, x).

We shall also use the following notation in either case:

Tr (λ) = λ+ λ, N (λ) = λλ.

We shall always assume that Tr (θ0) = 0. The symbol (−,−)k,2 will be the quadratic

Hilbert symbol on k. When K is a field, we shall write (−,−)K,2 for the quadratic

Hilbert symbol on K. In the case that K = k ⊕ k, this symbol will be defined as

follows:

((x, y) , (x′, y′))K,2 = (x, x′)k,2 · (y, y
′)k,2 .

Before describing the cocycle σ in general, we first study its restriction to the

following maximal torus

T (k) = {hα (λ) : λ ∈ K×},
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where

hα (λ) =


λ 0 0

0 λ/λ 0

0 0 λ
−1

 .

Theorem. For λ, µ ∈ K× we have

σ (hα (λ) , hα (µ))

=



(λ, µ)k,2 , if λ, µ ∈ k×;

(Tr (λθ0) , µ)k,2 , if λ /∈ k×, µ ∈ k×;

(λ, µ)K,2 · (λ,Tr (µθ0))k,2 , if λ ∈ k×, µ /∈ k×;

(λ, µ)K,2 · (λµ,−Tr (λθ0))k,2 , if λ 6∈ k×, µ /∈ k×, λµ ∈ k×;

(N (λ) ,N (µ))k,2 · (Tr (λθ0) N (µ) ,Tr (µθ0))k,2

· (Tr (λµθ0) ,−Tr (λθ0) N (µ) Tr (µθ0))k,2 , otherwise.

Along the way, we also find the following formula for the commutator of the

cocycle on T (k):
σ (hα (λ) , hα (µ))
σ (hα (µ) , hα (λ))

= (λ, µ)K,2.

The cocycle on the whole group. Let N be the following unipotent sub-

group of SU(2, 1):

N(k) = {xα (r,m) ∈ SU(2, 1)(k) : r,m ∈ K and N (r) + Tr (m) = 0},

where

xα (r,m) :=


1 r m

0 1 −r

0 0 1

 .

The section δ′ : SU(2, 1)(k) → ˜SU(2, 1)(k) is chosen in such a way that for g ∈

SU(2, 1)(k) and n ∈ N(k) we always have

δ′(gn) = δ′(g)δ′(n) and δ′(ng) = δ′(n)δ′(g).
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As a consequence, our cocycle σ satisfies the following:

σ(g, n) = σ(n, g) = 1, n ∈ N(k), g ∈ SU(2, 1)(k).

Combining this property with the Bruhat decomposition, we are able to calculate

σ on the bigger group SU(2, 1)(k), at least when K is a field. For the moment we

assume that K/k is a field extension rather than a sum of two copies of k. We shall

discuss how the results must be modified in the split case later.

In order to describe the cocycle, we first introduce some notation. For λ, µ ∈

K× we define

u (λ, µ) =


(λ,−µ)k,2 , if λ, µ ∈ k×;

(N (λ) ,−N (µ))k,2 , otherwise.

We also define a function δ2 : K× → k×θ0 by

δ2 (λ) =


1

λ− λ
, if λ /∈ k×;

θ0, if λ ∈ k×.

Given an element

γ =


∗ ∗ ∗

∗ ∗ ∗

g h j

 ∈ SU(2, 1)(k),

we define X(γ) ∈ K× by

X(γ) =


(gθ0)−1, if g 6= 0;

j
−1
, if g = 0.

We prove the following in Chapter 6:

Theorem. Let γi ∈ SU(2, 1)(k), where i = 1, 2, 3, with γ3 = γ1γ2 and

γi =


∗ ∗ ∗

∗ ∗ ∗

gi hi ji

 .
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If X(γ3)/(X(γ1)X(γ2)) ∈ k×, then we have

σ (γ1, γ2) = u

(
X(γ3)
X(γ2)

, X(γ1)X(γ2)
)
·
(
δ2 (X(γ3))
δ2 (X(γ2))

,−N (X(γ2)) δ2 (X(γ2))
δ2 (X(γ1))

)
k,2

·
(

X(γ3)
X(γ1)X(γ2)

,
δ2 (X(γ1)) δ2 (X(γ2))

δ2 (X(γ3)) θ0

)
k,2

.

If on the other hand X(γ3)/(X(γ1)X(γ2)) /∈ k×, then we let

r = r(γ1, γ2) =
h2g3 − h3g2

g1g2
.

And we have

σ (γ1, γ2) =
(
−δ2

(
− rX(γ3)
X(γ1)X(γ2)

)
θ−1

0 ,N
(
− rX(γ3)
X(γ1)X(γ2)

))
k,2

·
(

N (r) ,
δ2 (r)
θ0

)
k,2

· u
(
X(γ1),

X(γ3)
X(γ2)

)
· u
(
X(γ3)
X(γ2)

, X(γ3)
)

·
(
δ2 (X(γ3)/(X(γ1)X(γ2)))

δ2 (X(γ3)/X(γ2))
,

− N (X(γ3)/(X(γ1)X(γ2))) δ2 (X(γ3)/(X(γ1)X(γ2)))
δ2 (X(γ1))

)
k,2

·
(
δ2 (X(γ2))
δ2 (X(γ3))

,−N (X(γ2)) δ2 (X(γ2))
δ2 (X(γ3)/X(γ2))

)
k,2

.

In fact we obtain a more general theorem describing a cocycle corresponding

to an n-fold cover of SU(2, 1)(k), where k contains a primitive n-th root of unity;

however this cocycle is a little more complicated and is not required for our main

aim, which is to produce a half-integral weight multiplier system.

Fortunately, our formula for the local Kubota symbols will be rather simpler

than the formula for σ. Nevertheless, we require the formula for σ in order to

calculate the Kubota symbol.

The split case. In the case K = k⊕k the theorem above does not completely

describe the cocycle σ. This is because there are numbers in K which are neither

zero nor invertible, and so there are a number of extra cases to consider. One can

see why this happens from a different point of view: the group SU(2, 1) has rank

1 over l, and so there are two cells in the Bruhat decomposition of SU(2, 1)(l).

However if K is split, then SU(2, 1)(k) is isomorphic to SL3(k), which has 6 cells

in its Bruhat decomposition (one for each element of the Weyl group, which in
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this case is S3). There are therefore four Bruhat cells in SU(2, 1)(k) which contain

no elements of SU(2, 1)(l). In fact only the biggest and the smallest Bruhat cells

of SU(2, 1)(k) contain elements of SU(2, 1)(l). Our formula for σ (γ1, γ2) is valid

whenever γ1, γ2, γ3 = γ1γ2 are in one of these two cells. We may ignore these extra

cells since we are interested in the restriction of σ to SU(2, 1)(l).

The level of the multiplier system. Let k be a non-archimedean local field,

and assume again that K/k is either a quadratic extension of local fields, or that

K is a sum of two copies of k. Before we can calculate the local Kubota symbols

and the multiplier system, we must first determine the compact open subgroups Γ̂p

on which each local extension splits. These compact open subgroups determine the

arithmetic subgroup on which the multiplier system will be defined. Our result is

the following:

Theorem. • If K/k is unramified or split and k has odd residue char-

acteristic then the cocycle σ splits on SU(2, 1)(Ok).

• Suppose K/k is a ramified field extension and k has odd residue charac-

teristic. Let P be a prime in K. Then the cocycle σ splits on the subgroup

SU(2, 1)(Ok,P) = {g ∈ SU(2, 1)(Ok) : g ≡ I3 mod P}.

• If k has even residue characteristic and K = k ⊕ k then the cocycle splits

on the subgroup

SU(2, 1)(Ok, 4) = {g ∈ SU(2, 1)(Ok) : g ≡ I3 mod 4}.

Note that if L/l is a quadratic extension of number fields in which every

even prime splits, then the theorem determines the compact open subgroups Γ̂p ⊂

SU(2, 1)(lp) at all primes p.

The local Kubota symbol. Let p be the maximal ideal of k. Recall that the

local Kubota symbol κp is a map Γ̂p → µ2, satisfying the following:

σ(g, h) =
κp (g)κp (h)
κp (gh)

.
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This condition does not always determine the local Kubota symbol, since we may

always multiply by a character of Γ̂p. We therefore let Γp be the intersection of

the kernels of the homomorphisms Γ̂p → µ2. The restriction of the Kubota symbol

to Γp is unique, and we shall only calculate this restriction. Fortunately we have

not lost much, since for all odd primes we have Γp = Γ̂p. Suppose p is even. If we

assume (as is the case for split primes) that the cocycle splits at level 4, then we

will have

Γp = SU(2, 1)(Ok, 8) = {g ∈ SU(2, 1)(Ok) : g ≡ I3 mod 8}.

We will also assume that when K/k is ramified, θ0 is a prime element of K.

Recall that N denotes a unipotent subgroup of SU(2, 1) described above. Our

first observation is the following:

Proposition. For any n ∈ Γp∩N(k) we have κp (n) = 1. More generally, for

any g ∈ Γp we have

κp (ng) = κp (gn) = κp (g) .

The relation κp (ng) = κp (g) implies that κp (g) is determined by the bottom

row of the matrix g. The other relation shows that κp (g) is unchanged by certain

column operations. To describe our next result we need a little more notation. Let

xα (r,m) :=


1 r m

0 1 −r

0 0 1

 , x−α (r,m) :=


1 0 0

r 1 0

m −r 1


be elements of SU(2, 1)(k). This entails r, m ∈ K and Tr (m) = −N (r). For a

number λ ∈ K× we shall write

ρ (λ) =


(−Tr (λ) ,N (λθ0))k,2 , if Tr (λ) 6= 0;

1, otherwise.

Proposition. Let x−α (s1, n1) ∈ Γp with s1, n1 ∈ L. Then we have

κp (x−α (s1, n1)) = ρ (s1) · ρ
(
−s1θ0

n1

)
.

(If n1 = 0 then s1 must also be zero, and κp (x−α (s1, n1)) = 1.)
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We next consider elements of the maximal torus T (k). Our results for such

elements are as follows:

Proposition. If p is odd and unramified (either inert or split), then for λ ∈

O×K , we have

κp (hα (λ)) =


(a, b)k,2 , if λ = a+ bθ0, a, b 6= 0 and b /∈ O×k ;

1, otherwise.

If p is even or ramified in K, then for hα (λ) ∈ T (k) ∩ Γp we have

κp (hα (λ)) = 1.

We next obtain an expression for the Kubota symbol, expressed in terms of the

special cases already described. The following theorem is proven in Section 8.3:

Theorem. Let

γ =


∗ ∗ ∗

∗ ∗ ∗

g h j

 ∈ Γp.

Then

κp (γ) =



κp

(
hα

(
j
−1
))

, if g = 0;

κp

(
hα
(
(gθ0)−1

))
, if g ∈ O×K ;

κp

(
hα

(
j
−1
))
· κp

(
x−α

(
−h
j
,
g

j

))
· σ
(
hα

(
j
−1
)
, hα

(
j

gθ0

))
, if g 6= 0, g /∈ O×K and j ∈ O×K .

Again, note that if p is split, then we have not covered all possibilities since it is

possible for neither g nor j to be a unit in this case (and only in this case). However,

note that if g is not a unit then there is always an element xα (s1, n1) ∈ N ∩ Γp

such that (
g h j

)
· xα (s1, n1) =

(
g h′ j′

)
,

where j′ is a unit, and we will always have

κp (γ) = κp (γ · xα (s1, n1)) .
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We may apply the theorem to calculate κp (γ · xα (s1, n1)).

The section over the real points, and the half-integral weight mul-

tiplier system. As was described above, we shall choose for each element g ∈

SU(2, 1)(R) a continuous square root φg(τ) of the function τ 7→ Cτ +D, satisfying

the condition

φg(g′(τ))φg′(τ) = σ∞(g, g′)φgg′(τ).

In fact there is only one such choice, since any two choices would differ by a ho-

momorphism SU(2, 1)(R) → µ2 and SU(2, 1)(R) is generated by commutators. In

Chapter 10 we determine the signs of these square roots. Our result is:

Theorem. Let n1, n2 ∈ N(R), h = hα (λ) ∈ T (R) and let w =


0 0 i

0 1 0

i 0 0

.

The assignment g 7→ φg defined above is given by:

• φh·n1(τ) = λ
−1/2

, where arg
(
λ
−1/2

)
∈ (−π/2, π/2];

• arg(φw(τ)) ∈ (−π/2, 0);

• φn2·w·h·n1(τ) = φw((h · n1)(τ))φh·n1(τ).

In particular, this means that we always have arg(φg(τ)) ∈ (−π/2, π/2]. As a

consequence, we have the following:

Theorem. Suppose Q(θ0) is a quadratic extension in which the prime 2 splits.

Define, for γ ∈ SU(2, 1)(Z, 8θ0),

j(γ, τ) = φγ(τ)
∏
p<∞

κp(γ).

Then j(γ, τ) is a multiplier system of weight 1/2.

Verification of the results

The thesis contains rather a lot of calculations, and it would be useful to know

that the results are genuinely correct, rather than perhaps being out by a sign here

and there. To give some evidence of this, we can look at the restriction of the global

Kubota symbol to some subgroups to check that it has the expected properties.
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Restriction to the torus. We examine first the restriction of the Kubota

symbol to Γ∩T (l), where Γ is the level 8θ0 principal congruence subgroup described

above. This intersection consists of elements hα (λ) where λ is a unit in OL and is

congruent to 1 modulo 8θ0.

Recall that for elements a, b ∈ Ol with b coprime to 2a, the quadratic Legendre

symbol is defined by (a
b

)
l,2

=
∏
p|b

(a, b)lp,2.

Our results imply the following:

Proposition. Let λ = a+bθ0 be a unit in L congruent to 1 modulo 8θ0. Then

we have

κ(hα (λ)) =


(
b

a

)
l,2

·
∏
p|∞

(a, b)lp,2, if b 6= 0;

1, otherwise.

In the case that l is totally complex, this implies that the map a+ bθ0 7→
(
b
a

)
l,2

is a group homomorphism. This is indeed the case, and can be verified directly

using the quadratic reciprocity law in k.

Restriction to SL2. The group SL2 embeds into SU(2, 1) as follows:

a b

c d

 7→


a 0 bθ0

0 1 0

c/θ0 0 d

 .

We may therefore examine the restriction of the Kubota symbol to SL2(Ol, 8θ2
0).

Our results imply the following:

κ


a b

c d


 =


( c
d

)
l,2
, c 6= 0;

1, c = 0.

When l is totally complex, our results imply that this map is a homomorphism.

Again, this turns out to be true, as was shown by Kubota (see [10]).



Part 1

Preliminaries



CHAPTER 1

The group SU(2, 1)

In this chapter, we will outline the definition of the group SU(2, 1) that we will

use along with some of its subgroups, the adèle group, the Bruhat decomposition

of SU(2, 1) and the Iwahori factorisation.

1.1. The structure of SU(2, 1)

Let k be an arbitrary field of characteristic zero, and K/k is a quadratic exten-

sion where K = k(θ0), θ0 =
√
−d, d ∈ k×. Then the Galois group Gal(K/k) has

two elements, and the non-trivial element may be described by

a+ bθ0 7→ a− bθ0.

To describe SU(2, 1), suppose A is a k-algebra. Then

SU(2, 1)(A) = {ν ∈ SL3(A⊗k K) : νtJν = J},

where

J =


1 0 0

0 1 0

0 0 −1

 ,

and νt denotes the transpose of a matrix ν. This is the “usual” definition of SU(2, 1),

but there are other definitions which are isomorphic to the above. In fact, we will

work with another definition, where J is replaced by

J ′ =


0 0 1

0 1 0

1 0 0

 ,

25
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as it is a more convenient presentation of SU(2, 1). (It is possible to show that if

V =


1 0 −1

1 1 −1

0 −1 1

 ,

then J = V tJ ′V .)

Let G = SU(2, 1). We consider

(1.1) G(k) = {ν ∈ SL3(k ⊗k K) : νtJ ′ν = J ′}.

Let S be a maximal k-split torus of G, with T a maximal torus of G containing S.

By Section 2.5 of [6], we may choose these as follows:

S(k) :=




t 0 0

0 1 0

0 0 t−1

 : t ∈ k×


as a maximal k-split torus of G(k), and

T (k) :=




λ 0 0

0 λ/λ 0

0 0 λ
−1

 : λ ∈ K×


as a maximal torus of G(k). As T (k) ∼= K×, we will denote an element in T (k) by

hα (λ) =


λ 0 0

0 λ/λ 0

0 0 λ
−1

 ,

where λ ∈ K×, and α is defined below.

The root system of G with respect to S, Φ, consists of 4 roots with one simple

root which we will call α. Thus, Φ = {α, 2α,−α,−2α} and α may be described by

α(hα (t)) = t,
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where t ∈ k×. This implies that if we let g be the Lie algebra of G, and for β ∈ Φ,

let

gβ = {X ∈ g : (Ad s)(X) = β(s) ·X ∀s ∈ S}

be the corresponding root space, then

g0 =




a 0 0

0 a− a 0

0 0 −a

 : a ∈ K

 ,

gα =




0 b 0

0 0 −b

0 0 0

 : b ∈ K

 ,

g2α =




0 0 tθ0

0 0 0

0 0 0

 : t ∈ k

 ,

g−α =




0 0 0

b 0 0

0 −b 0

 : b ∈ K

 ,

g−2α =




0 0 0

0 0 0

tθ0 0 0

 : t ∈ k

 .

Thus, the root space decomposition of g is

g = g0 ⊕
⊕
β∈Φ

gβ .

1.2. The Bruhat decomposition of SU(2, 1)

Recall that G = SU(2, 1). We shall use the following system of positive roots:

Φ+ = {α, 2α}. Let N , denoted as U+ in [6], be the unipotent algebraic subgroup

of G whose Lie algebra is
⊕

β∈Φ+ gβ (and similarly N , denoted by U− in [6], is the

unipotent algebraic subgroup of G whose Lie algebra is
⊕
−β∈Φ+ gβ). Hence, since
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G(k) = SU(2, 1)(k), N(k) and N(k) may be explicitly described, i.e.

N(k) =




1 r m

0 1 −r

0 0 1

 : (r,m) ∈ K ×K, Tr (m) = −N (r)

 ,

N(k) =




1 0 0

r 1 0

m −r 1

 : (r,m) ∈ K ×K, Tr (m) = −N (r)

 ,

where N (s) = ss and Tr (s) = s + s are the norm and trace of s ∈ K over k. We

will let

xα (r,m) :=


1 r m

0 1 −r

0 0 1

 , x−α (r,m) :=


1 0 0

r 1 0

m −r 1

 ,

where r, m ∈ K and Tr (m) = −N (r).

By Proposition 2.7 of [6], if we define

(1.2) wα (r,m) = xα (r,m) · x−α
(
r

m
,

1
m

)
· xα

(
r · m

m
,m

)
,

then

wα (r,m) ·N(k) · wα (r,m)−1 = N(k).

Thus by the above definitions for xα (r,m) and x−α (r,m),

wα (r,m) =


0 0 m

0 −m/m 0

m−1 0 0

 .

(This would imply for any m ∈ K such that for r, r′ ∈ K, Tr (m) = −N (r) =

−N (r′), wα (r,m) = wα (r′,m).)

If NG(S) is the normaliser of S in G, and ZG(S) is the centraliser of S in G,

we define W0 = NG(S)/ZG(S) as the Weyl group in G. Thus, we may choose (as

we need this to define the section for the 2-cocycle in Section 2.3)

W = {1, wα (0, θ0)}
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as a complete set of representatives for the Weyl group in G(k) (this is the same

Weyl group chosen by Deodhar in Section 2.21 in [6]). Thus, by V.21.29 of [2], the

Bruhat decomposition may be described as

G(k) = N(k) · T (k) tN(k) · T (k) · wα (0, θ0) ·N(k).

This implies that a matrix in G(k) is either upper triangular or has a non-zero

(3, 1)-entry. It can be easily shown that for a, b, c, d, e ∈ K such that

ac+ ac = −N (b) , ec+ ec = −N (d) ,

the Bruhat decomposition of any matrix of G(k) with a non-zero (3, 1)-entry (i.e.

c 6= 0) may be described as

(1.3)


a ∗ ∗

b ∗ ∗

c d e

 = xα

(
−b
c
,
a

c

)
· hα

(
1
cθ0

)
· wα (0, θ0) · xα

(
d

c
,
e

c

)
.

Otherwise, an upper triangular matrix (i.e. an element of the Borel subgroup of

G) will have the Bruhat decomposition

(1.4)


f g h

0 f/f −g/f

0 0 f
−1

 = hα (f) · xα
(
g

f
,
h

f

)
= xα

(
gf

f
, hf

)
· hα (f)

where h, f , g ∈ K with hf + hf = −N (g).

1.3. The Iwahori factorisation

In this section, we shall assume that k is a non-archimedean local field. We

shall write Ok for the valuation ring in k. We shall use the notation

(1.5) G(Ok) = {ν ∈ SL3(Ok ⊗Ok OK) : νtJ ′ν = J ′},
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where J ′ is as defined in Section 1.1. Let a be an ideal of OK , and let

G(Ok)0(a) =




a b c

d e f

g h j

 ∈ G(Ok) : d ≡ g ≡ h ≡ 0 (a)

 ,

G(Ok)1(a) =




a b c

d e f

g h j

 ∈ G(Ok) :
b ≡ c ≡ d ≡ f ≡ g ≡ h ≡ 0 (a),

a ≡ e ≡ j ≡ 1 (a)

 .

We may define

T (Ok) = T (k) ∩G(Ok),

N(Ok) = N(k) ∩G(Ok),

N(Ok) = N(k) ∩G(Ok).

Let us also define

T (a) =




λ 0 0

0 λ/λ 0

0 0 λ
−1

 ∈ T (Ok) : λ ≡ 1 (a)

 ,

N(a) =




1 r m

0 1 −r

0 0 1

 ∈ N(Ok) : r ≡ m ≡ 0 (a)

 ,

N(a) =




1 0 0

r 1 0

m −r 1

 ∈ N(Ok) : r ≡ m ≡ 0 (a)

 .

Proposition 1.1. We have the Iwahori factorisations

G(Ok)0(a) = N(Ok) · T (Ok) ·N(a),

G(Ok)1(a) = N(a) · T (a) ·N(a).
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Proof. Let 
a b c

d e f

g h j

 ∈ G(Ok)0(a)

(resp. G(Ok)1(a)), where g 6= 0. Consider the Hermitian form 〈−,−〉 defined by

〈u, v〉 = ut


0 0 1

0 1 0

1 0 0

 v,

where u, v ∈ K3. Since 〈
c

f

j

 ,


c

f

j


〉

= 0,

this implies that

Tr
(
c

j

)
= −N

(
f

j

)
.

Thus, xα
(
f/j, c/j

)
∈ N(Ok) (resp. N(a)), and hence

xα

(
f

j
,
c

j

)
·


a b c

d e f

g h j

 =


a+ df/j + cg/j b+ ef/j + ch/j 0

d− fg/j e− fh/j 0

g h j

 .

But 〈
a+ df/j + cg/j

b+ ef/j + ch/j

0

 ,


a+ df/j + cg/j

b+ ef/j + ch/j

0


〉

= 0,

which implies that b+ ef/j + ch/j = 0, i.e.

xα

(
f

j
,
c

j

)
·


a b c

d e f

g h j

 =


a+ df/j + cg/j 0 0

d− fg/j e− fh/j 0

g h j

 .
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Since j ∈ O×k and hα
(
j
)
∈ T (Ok) (resp. T (a)), we have

hα
(
j
)
· xα

(
f

j
,
c

j

)
·


a b c

d e f

g h j

 =


aj + df + cg 0 0

dj/j − fg/j ej/j − fh/j 0

g/j h/j 1

 .

But 〈
a

d

g

 ,


c

f

g


〉

= 1,

i.e. aj + df + cg = 1. This implies that ej/j − fh/j = 1, so that

hα
(
j
)
· xα

(
f

j
,
c

j

)
·


a b c

d e f

g h j

 =


1 0 0

dj/j − fg/j 1 0

g/j h/j 1

 .

As 〈
1

dj/j − fg/j

g/j

 ,


0

1

h/j


〉

= 0,

this implies that dj/j − fg/j = −h/j. Thus,

hα
(
j
)
· xα

(
f

j
,
c

j

)
·


a b c

d e f

g h j

 =


1 0 0

−h/j 1 0

g/j h/j 1

 = x−α

(
−h
j
,
g

j

)
.

Note that x−α
(
−h/j, g/j

)
∈ N(Ok) (resp. N(a)), so we have in the end

a b c

d e f

g h j

 = xα

(
−f
j
,
c

j

)
· hα

(
j
−1
)
· x−α

(
−h
j
,
g

j

)
.

If g = 0, then we have, by (1.4),
j
−1 −f/j c

0 j/j f

0 0 j

 = xα

(
−f
j
,
c

j

)
· hα

(
j
−1
)
,
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where xα
(
bj/j, c/j

)
∈ N(Ok) (resp. N(a)) and hα

(
j
−1
)
∈ T (Ok) (resp. T (a)).

This completes the proof of the Iwahori factorisation. �

1.4. The adèle group of SU(2, 1)

1.4.1. Some notation for the local field. Using the notation of Section V.1

of [13], we first let vk be the discrete valuation normalised by vk(k×) = Z, for any

local field k. This implies that the valuation ring may be described by

Ok = {b ∈ k : vk(b) ≥ 0},

with maximal ideal

p = pk = {b ∈ k : vk(b) > 0}.

By defining q = |Ok/pk|, we have the normalised p-adic absolute value (multiplica-

tive valuation)

|b|p = q−vk(b),

where b ∈ k. This implies that

Ok = {b ∈ k : |b|p ≤ 1},

and

pk = {b ∈ k : |b|p < 1}.

We define a prime element of k, π = πk, such that vk(π) = 1. This implies that

pk = πOk.

We also have the following lemma from Section 11 of [4]:

Lemma 1.2. Let k be complete with respect to the normalised valuation | · |

and let K be an extension of k of degree [K : k] = N < ∞. Then the normalised

valuation ‖ · ‖ of K which is equivalent to the unique extension of | · | to K is given

by the formula

‖b‖ = |NK/k(b)|,

where b ∈ K and NK/k is the norm of an element of K over k.

Lemma 1.2 will be useful as we can work out the normalised valuation of K by

only knowing what the normalised valuation of k is.
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1.4.2. The adèle ring. Now let l be any global field. Recall (see Section VI.1

of [13]) that an adèle is a family

a = (ap),

of elements ap ∈ lp, where p runs through all the primes of l, lp is the completion

of l with respect to p, and ap is integral in lp for almost all p. (Note that p is thus

the maximal ideal of Olp , as defined in the previous subsection.) The adèles form

a ring

Al =
∏′

p

lp,

where Al is the restricted product of the lp with respect to the subrings Olp ⊆ lp.

Addition and multiplication are defined componentwise. Let Alf denote the finite

component of Al, i.e. let

Alf =
∏′

p finite

lp,

and we similarly define the infinite component of Al as

Al∞ =
∏′

p infinite

lp.

As stated in Section 10 of [4], there is a natural mapping

l→ Al

b 7→ (b),

i.e. an injective map of l into Al since b ∈ Olp for almost all p and the map of l

into any lp is an injection. The image of l under this map is the ring of principal

adèles, and we can identify l with this ring. Hence l is a subring of Al.

1.4.3. A description of the adèle group SU(2, 1)(Al). Now let L be a

quadratic extension of our global field l. We are interested in

G(Al) = {ν ∈ SL3(Al ⊗l L) : νtJ ′ν = J ′},

where J ′ is as defined in Section 1.1. We want to calculate the global Kubota

symbol on an arithmetic subgroup of G(Alf ). In order to do so, we will need to
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calculate the local Kubota symbol on a compact open subgroup of

G(lp) = {ν ∈ SL3(lp ⊗l L) : νtJ ′ν = J ′},

where p is finite. Thus, we want to calculate the Kubota symbol on a subgroup of

G(Olp) = {ν ∈ SL3(Olp ⊗Ol OL) : νtJ ′ν = J ′}.

We should first describe Lp := lp ⊗l L in order to understand G(lp). Let

θ0 =
√
−d, where d ∈ Ol such that −d is not a square in l and L = l(θ0). Then

the theorem in Section 10 of [4] states that there are at most 2 extensions of the

valuation | · |p to L, and if P is a prime above p in L (written as P | p), we have

Lp = lp ⊗l L =
⊕
P|p

LP,

where LP denotes the completion of L with respect to P. This implies that for a

finite prime p,

Lp =


lp(θ0), if pOL does not split in OL;

lp ⊕ lp, if pOL splits in OL.

Thus for every finite prime p, we have to consider if the extension Lp/lp is

non-split (hence unramified or ramified) or split. Also, note that the first lemma

in Section 14 of [4] states that

Al ⊗l L = AL,

in both an algebraic and a topological sense, and l ⊗l L = L ⊂ Al ⊗l L, where

l ⊂ Al, is mapped identically on to L ⊂ AL. This implies that

G(Al) =
{
ν ∈ SL3 (AL) : νtJ ′ν = J ′

}
,

and hence for a finite prime p,

G(Olp) = {ν ∈ SL3(OLp) : νtJ ′ν = J ′}.
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Note that we will be putting k = lp and K = Lp as defined in Section 1.1 in

Part 3, hence we get the same definition for G(lp) and G(Olp) using (1.1) and (1.5).

We will also assume that when Lp/lp is ramified, θ0 is a prime element of Lp.



CHAPTER 2

With reference to Deodhar’s paper

As stated in the Introduction, [6] is heavily relied upon when calculating the

2-cocycle of the universal central extension of G(k). We need to establish a few

more facts from [6] in order to show that our result will be valid.

2.1. Some properties of SU(2, 1)(k)

As before, we let k be an arbitrary field of characteristic zero and K = k(θ0) a

quadratic extension of k. Proposition 2.11 of [6] states the following:

Proposition 2.1. There exists a well-defined function δ = (δ1, δ2) : K× →

L× L2, where

L = {m ∈ K× : Tr (m) = −N (r) for some r ∈ K}

and

L2 = {qθ0 : q ∈ k×} ⊂ L

as follows:

(i) If λ ∈ k×, then

δ1 (λ) = λθ0, δ2 (λ) = θ0.

(ii) If λ = a+ bθ0, b 6= 0, then

δ1 (λ) = −1
2
− a

2bθ0
, δ2 (λ) = − 1

2bθ0
.

(Note that L has also been defined as a field, but there should be no overlap in

notation as the definition of L as used in this section will not occur elsewhere.)

As a consequence, λ = δ1 (λ) /δ2 (λ). Also, for any m ∈ δ1 (K×) with m /∈ k×

and m′ ∈ δ2 (K×),

δ1

(m
m′

)
= m, δ2

(m
m′

)
= m′.

37
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Proposition 2.1 implies that for λ ∈ K×, we have

hα (λ) = wα (y(λ), δ1 (λ)) · wα (0, δ2 (λ))−1
,

where

(2.1) y(λ) =


0, if λ ∈ k×;

1, otherwise.

Thus by (1.2) and the above, all elements of T (k) are generated by elements of

N(k) and N(k). This in turn implies that by the Bruhat decomposition for G(k)

(see (1.3) and (1.4)), every element of SU(2, 1)(k) is generated by N(k) and N(k).

This verifies the theorem obtained from Sections 1.2 and 2.3 of [6]:

Theorem 2.2. If a group G is quasi-split, then G(k) is generated by the unipo-

tent elements in G(k) which belong to the radical of a parabolic subgroup P defined

over k.

We also have the following definition:

Definition 2.3. A perfect group G is a group which is its own commutator

subgroup, i.e. if we express the commutator of g, h ∈ G as

[g, h] = g · h · g−1 · h−1,

then

G = [G,G].

Recall that we have set G = SU(2, 1). As stated in Section 1.1 of [6], a necessary

and sufficient condition for an abstract group to have a universal central extension

is that the group is perfect. As N(k) and N(k) consist of commutators, and G(k)

is generated by N(k) and N(k), this implies that G(k) is perfect. Thus there is a

universal central extension of G(k), which may be expressed by

1 −→ π1 −→ G̃
π−−→ G(k) −→ 1,

where π1 denotes the kernel of π : G̃ → G(k). (Note that π1 is also known as the

Schur multiplier or the fundamental group of G(k), and it is central in G̃.)
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By Lemma 1.10 of [6], there is a unique lift of N(k) to G̃. This implies that we

can write for xα (r,m) ∈ N(k) the corresponding element in G̃ by x̃α (r,m), and if

we define

Ñ(k) = {x̃α (r,m) : xα (r,m) ∈ N(k)},

then π : Ñ(k) → N(k) is an isomorphism. Similarly π : Ñ(k) → N(k) is also an

isomorphism, and we may define the corresponding element of x−α (r,m) in G̃ as

x̃−α (r,m). Thus we may define, similar to (1.2), the element

w̃α (r,m) = x̃α (r,m) · x̃−α
(
r

m
,
m

m

)
· x̃α

(
r · m

m
,m

)
.

Furthermore, Proposition 2.9 of [6] lists a few relations relevant to our discus-

sion. We list the most important relations for reference here.

Proposition 2.4. Let

(2.2) A = {(r,m) ∈ K ×K : (r,m) 6= (0, 0),Tr (m) = −N (r)},

and define f , g : A→ K ×K by

f(r,m) =
(
r

m
,

1
m

)
, g(r,m) =

(
r

m
,

1
m

)
.

The following hold in G̃, and hence in G(k) too:

(1) w̃α (r,m) = x̃α (r,m) · x̃−α
(
r

m
,

1
m

)
· x̃α

(
r · m

m
,m

)
,

w̃α (r,m)−1 = w̃α (−r,m),

w̃α (r,m) = w̃α

(
r · m

m
,m

)
= w̃α((g ◦ f)i(r,m)) ∀i

= w̃−α

(
r

m
,

1
m

)
= w̃−α((f ◦ g)i(f(r,m))) ∀i.

(2) w̃α (r,m) · x̃α (r′,m′) · w̃α (r,m)−1 = x̃−α

(
r′ ·m
m2

,
m′

N (m)

)
.

(3) w̃α (r,m) · x̃−α (r′,m′) · w̃α (r,m)−1 = x̃α

(
r′ ·m2

m
,m′ ·N (m)

)
.

(4) w̃α (r,m) · w̃α (r′,m′) · w̃α (r,m)−1 = w̃−α

(
r′ ·m
m2

,
m′

N (m)

)

= w̃α

(
r′ ·m2

m′ ·m
,

N (m)
m′

)
= w̃α

(
r′ ·m2

m′ ·m
,

N (m)
m′

)
.
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(5) [w̃α (p1, l1) · w̃α (p′1, l
′
1)] · w̃α (r,m) · w̃α (r′,m′) · [w̃α (p1, l1) · w̃α (p′1, l

′
1)]−1

= w̃α

(
rl′1l

2
1

(l′1)2l1
,
mN (l1)
N (l′1)

)
· w̃α

(
r′l′1l

2
1

(l′1)2l1
,
m′N (l1)

N (l′1)

)
.

Note that we will use the above definition of A when we are finding an equation

for the 2-cocycle of the universal central extension of G(k). We can also define A

as

(2.3) A = {(z,−N (z) /2 + tθ0) ∈ K ×K : t ∈ k, (z,−N (z) /2 + tθ0) 6= (0, 0)}.

This definition will be useful later in Part 3.

2.2. The universal topological central extension

In this section we assume that k is a non-archimedean local field. We shall

regard G(k) as a locally compact topological group, in which the topology is given

by the norm on k. We shall write Hi
m for measurable cohomology as defined by

Calvin Moore in [12], and we shall write Hi for continuous cohomology.

In Deodhar’s paper, G(k) is first regarded as an abstract group when construct-

ing the universal central extension. It is subsequently regarded as a topological

group, with the topology given by the norm on k. It was shown in that paper that

the universal topological covering group for G(k) exists and that the topological

fundamental group is a quotient of µ(k), where µ(k) is the group of roots of unity

of k.

We first recall what a topological central extension is. This is a central extension

of topological groups

1 −→ K −→ G̃top −→ G −→ 1,

where G̃top is the universal topological covering group of G, and in which K is dis-

crete and there is a neighbourhood U of the identity in G, such that the projection

Ũ → U is topologically isomorphic to K × U → U .

We now turn to a paper by Prasad and Raghunathan which was published in

two parts, [15] and [16]. In 10.3 of [16], we have the following proposition:

Proposition 2.5. Let G be a locally compact, second countable topological

group. Assume that G = [G,G], and H2
m(G,R/Z) is a finite group. Then G admits
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a universal topological covering and its topological fundamental group is isomorphic

to the dual of H2
m(G,R/Z).

We first note that G(k) is a locally compact second countable group, and we

have already noted that G(k) = [G(k), G(k)]. In order to use the above proposition,

we must show H2
m(G(k),R/Z) is a finite group, and that the dual of this group is

equal to the fundamental group π1 = µ(k).

Theorem 1 of [19] states the following:

Theorem 2.6. Let G be a topological group, and A be a G-module. If G is a

locally compact, σ-compact, zero-dimensional, then Hi
m(G,A) ∼= Hi(G,A).

In other words, the cohomology groups based on continuous cochains and the

cohomology groups based on measurable cochains coincide for our group G(k).

This implies that H2
m(G(k),R/Z) ∼= H2(G(k),R/Z). In 5.10 and 5.11 of [15], it

was established that if G is an absolutely simple, simply connected group defined

and quasi-split over F (where F is a non-archimedean local field) and H is the

F -subgroup of G, F -isomorphic to SL2 and determined by a long root, then the

following theorem holds:

Theorem 2.7. The restriction H2(G(F ),R/Z) → H2(H(F ),R/Z) is an iso-

morphism. Hence, H2(G(F ),R/Z) is isomorphic to µ̂(F ) = Hom(µ(F ),R/Z), the

Pontrjagin dual.

Theorem 2.7 shows that H2(G(k),R/Z) = µ̂(k), i.e. H2(G(k),R/Z) is finite.

Thus using Theorem 2.6, by Proposition 2.5 H2
m(G(k),R/Z) is a finite group and

thus G(k) admits a universal covering and its topological fundamental group is

isomorphic to the dual of H2
m(G(k),R/Z) = µ̂(k), i.e. the topological fundamental

group is isomorphic to µ(k).

We should also mention the cases when k = R and k = C. In these cases, G(k)

is a connected Lie group, and its universal cover G̃, in the topological sense, has

the structure of a Lie group and is the universal topological central extension. If

we denote the topological fundamental group of G(k) as πtop1 , then when k = R we

have πtop1 = Z and when k = C we have πtop1 = 1.
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2.3. A section for π : ˜SU(2, 1)→ SU(2, 1)(k)

Again let k be a local field and let G̃ be the universal topological central ex-

tension of G(k). We can now define the section δ : G(k)→ G̃ as in Section 2.21 of

[6]. This section will give rise to a 2-cocycle σu defined by

σu (g, h) = δ(g) · δ(h) · δ(g · h)−1,

where g, h ∈ G(k).

By the Bruhat decomposition (see Section 1.2), any element of G(k) can be

uniquely written in the form uhwv, where h ∈ T (k), w ∈ W (recall that W is the

set of representatives of the Weyl group of G(k)) and u, v ∈ N(k). We will choose,

as in [6], wα (0, θ0) as the representative of the non-trivial element of W . So we may

define δ(wα (0, θ0)) = w̃α (0, θ0), and since π : Ñ(k)→ N(k) is an isomorphism, we

may choose δ(xα (r,m)) = x̃α (r,m) (see Section 2.1).

As for h ∈ T (k), suppose that h = hα (λ). Then we define

(2.4) δ (hα (λ)) = w̃α (y(λ), δ1 (λ)) · w̃α (0, δ2 (λ))−1
,

where y(λ) is defined as in (2.1).

Thus, for uhwv ∈ G(k), we may define δ(uhwv) = δ(u) · δ(h) · δ(w) · δ(v), and

hence δ is a section for π.

Our next aim will be to express the 2-cocycle σu in terms of K2 symbols.

Deodhar performed this calculation on the split torus, but we shall need to extend

his formula to the whole group.

For λ, µ ∈ K×, let us define

(2.5) bα (λ, µ) = δ (hα (λ)) · δ (hα (µ)) · δ (hα (λµ))−1
,
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i.e. bα (λ, µ) = σu (hα (λ) , hα (µ)). It is established in Section 2.30 of [6] that

bα (s, t) · bα (st, r) = bα (s, tr) · bα (t, r) , ∀s, t, r ∈ k×;(2.6)

bα (1, 1) = 1;

bα (s, t) = bα
(
t−1, s

)
, ∀s, t ∈ k×;(2.7)

bα (s, t) = bα (s,−st) , ∀s, t ∈ k×;(2.8)

bα (s, t) = bα (s, (1− s)t) , ∀s, t ∈ k×, s 6= 1.(2.9)

Indeed these relations all hold in the universal central extension, and so they are

also true in the universal topological central extension. Note that the section δ is

continuous on the split torus S(k), and thus the restriction of bα to k× × k× is

continuous. It is also established that π1 (as opposed to πtop1 ) is given in terms of

generators and relations as

π1 =
〈
{bα (s, t) : s, t ∈ k×} | (2.6) - (2.9)

〉
.

Since bα (λ, µ) ∈ πtop1 for any λ, µ ∈ K× (by the proof of Lemma 2.12 of [6]), this

implies that bα (λ, µ) can be written in terms of these bα (s, t)’s.

Thus, we would establish what σu is on T (k). Unfortunately in [6], Deodhar

only proves that the bα (s, t)’s (s, t ∈ k×) satisfy the relations above, and not what

bα (λ, µ) is explicitly for all values of λ, µ ∈ K×. But we can adapt the methods

used in [6] to achieve this goal, and by using the section δ, we will be able to express

what σu is on the whole of G(k) in terms of bα (s, t)’s, where s, t ∈ k×.

2.4. k as a local field

Let k be a non-archimedean local field. We first note that by Theorem 3.1 of

[12], that bα (s, t), for s, t ∈ k×, is bilinear, i.e. for s, t, r ∈ k×,

bα (st, r) = bα (s, r) · bα (t, r) ,(2.10)

bα (s, tr) = bα (s, t) · bα (s, r) ,

since bα (s, t) is continuous (as k is a local field; see previous section). A corollary

of the abovementioned theorem is that the n-th power Hilbert symbol (−,−)k,n
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(where n is the number of roots of unity of k) and its powers are the only functions

which are continuous and satisfy the equations (2.6) – (2.9) (a definition of the

Hilbert symbol may be found in Chapter 3). We have the following proposition:

Proposition 2.8. For any local field k, if n denotes the number of roots of unity

in k and µn denotes the group of n-th roots of unity of k, then πtop1
∼= µ(k) = µn,

and the isomorphism may be described by

Φ: πtop1
∼= µn

bα (s, t) 7→ (s, t)k,n ,

where s, t ∈ k× and (−,−)k,n is the n-th power Hilbert symbol.

Proof. We have shown that there is an isomorphism of the form bα (s, t) 7→

(s, t)rk,n for some r. However, the result of Prasad and Raghunathan shows that

the order of the topological fundamental group is n. Hence we may take r = 1. �

Thus from Chapter 4 onwards, when both s, t ∈ k×, we will use the Hilbert

symbol (s, t)k,n instead of bα (s, t). This implies that when we apply Φ to (2.10)

and (2.7) – (2.9), we get

(st, r)k,n = (s, r)k,n · (t, r)k,n ,(2.11)

(s, tr)k,n = (s, t)k,n · (s, r)k,n , ∀s, t ∈ k×;

(s, t)k,n =
(
t−1, s

)
k,n

, ∀s, t ∈ k×;(2.12)

(s, t)k,n = (s,−st)k,n , ∀s, t ∈ k×;(2.13)

(s, t)k,n = (s, (1− s)t)k,n , ∀s, t ∈ k×, s 6= 1.(2.14)



CHAPTER 3

Some properties of quadratic extensions

In this chapter, we gather some information to be used in later chapters, mostly

to do with quadratic field extensions.

3.1. The Hilbert symbol

We define the n-th power Hilbert symbol, where the group µn of n-th roots

of unity is contained in a local field k, with n a natural number relatively prime

to the characteristic of k. This definition may be found in Section V.3 of [13].

Letting K = k
(
n
√
k×
)

be the maximal abelian extension of exponent n, it has been

established that Gal(K/k) ∼= k×/(k×)n and Hom(Gal(K/k), µn) ∼= k×/(k×)n. The

bilinear map

Gal(K/k)×Hom(Gal(K/k), µn)→ µn, (γ, χ) 7→ χ(γ)

therefore defines a nondegenerate bilinear pairing

(−,−)k,n : k×/(k×)n × k×/(k×)n → µn,

which we call the n-th power Hilbert symbol. Now using the notation introduced

in Subsection 1.4.1, let p be the characteristic of the residue field Ok/pk, and

q = |Ok/pk|. We have the following proposition:

Proposition 3.1. If n and p are relatively prime and a, b ∈ k×, then

(a, b)k,n ≡
(

(−1)vk(a)vk(b) · b
vk(a)

avk(b)

)(q−1)/n

(pk).

A proof of the above proposition may be found in V.3.4 of [13]. When n and

p are relatively prime, we call this the case of the tame Hilbert symbol, as defined

above. Note that a consequence of the tame Hilbert symbol is that whenever a,

b ∈ O×k , (a, b)k,n = 1.

45
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We should also note that the Hilbert symbol obeys the product formula, which

is proved in Theorem VI.8.1 of [13]. We state this theorem for later reference.

Theorem 3.2. Let l be a global field, p a prime of l with lp the localisation of

l at p. Also, let l contain the group µn of n-th roots of unity. Then for a, b ∈ l×,

∏
p

(a, b)lp,n = 1,

where p runs through all the primes of l.

In our case, we are more interested in quadratic Hilbert symbols (i.e. when

n = 2). It has been established that the quadratic Hilbert symbol has a more

concrete meaning:

(a, b)k,2 = 1 ⇐⇒ aX2 + bY 2 − Z2 = 0 has a non-trivial solution (X,Y, Z) in k3.

(See Chapter III of [17].)

Now using our usual definition of k and K, we list the properties of quadratic

Hilbert symbols here for convenient reference later, a proof of which may be found

in Section V.3 of [13]. For s, t, r ∈ k×, m ∈ Z,

(s, t)k,2 = (s, t)−1
k,2 =

(
s−1, t

)
k,2

=
(
s, t−1

)
k,2

= (t, s)k,2 ;(3.1)

(s, t)k,2 = (s,−st)k,2 = (−st, t)k,2 ;(3.2)

(s, t)k,2 = (s, (1− s)t)k,2 = ((1− t)s, t)k,2 , (for s 6= 1);(3.3)

(st, r)k,2 = (s, r)k,2 · (t, r)k,2 ,(3.4)

(s, tr)k,2 = (s, t)k,2 · (s, r)k,2 ;

(s, t)mk,2 = (s, tm)k,2 = (sm, t)k,2 ;(3.5)

(s, t)2
k,2 =

(
s, t2

)
k,2

=
(
s2, t

)
k,2

= 1.(3.6)

(Note that the above is true for any field.) In addition, for all λ ∈ k×, µ ∈ K×,

(3.7) (λ,N (µ))k,2 = (λ, µ)K,2 = (µ, λ)K,2 = (N (µ) , λ)k,2 .
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(A statement and proof of this may be found in Chapter 2, Section 1, Theorem 2.14

on Page 101 of [14]. In fact,

(λ,N (µ))k,n = (λ, µ)K,n ,(3.8)

(N (µ) , λ)k,n = (µ, λ)K,n(3.9)

by the same statement and proof.)

3.2. Non-split and split quadratic extensions

Recall that in Subsection 1.4.3, we established that we will be calculating the

local Kubota symbol on a compact open subgroup of

G(lp) = {ν ∈ SL3(Lp) : νtJ ′ν = J ′},

where J ′ is as described in Section 1.1, l is a global field, p is a finite prime of l, lp

is the completion of l with respect to p, L = l(θ0), θ0 =
√
−d, d ∈ Ol such that −d

is not a square in l, and Lp = lp ⊗l L.

In our calculation of the Kubota symbol, we will often use the properties of

the extension Lp/lp. We gather the statements of these properties in the next two

subsections.

3.2.1. The non-split case. Consider any local field k. Let K be a finite

extension of k. Then using the notation of Subsection 1.4.1, there is only one prime

pK above pk, i.e. pK | pk and

pkOK = peK ,

where e = e(K/k) ∈ N is called the ramification index of the extension K/k. If we

define the residue class degree of the extension K/k as

f = f(K/k) = [OK/pK : Ok/pk],

then it has been established in Proposition 3 of Section 5 of [7] that

[K : k] = e(K/k)f(K/k).
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An extension of local fields K/k is ramified if e(K/k) > 1 (and unramified or

inert if e(K/k) = 1), and is totally ramified if e(K/k) = [K : k].

From Section 6 of [7], an Eisenstein polynomial in k[X] is defined as a separable

polynomial

E(X) = Xm + bm−1X
m−1 + · · ·+ b1X + b0,

with

vk(bi) ≥ 1 for i = 1, . . . ,m− 1, and vk(b0) = 1.

We have the following theorem (Theorem 1 in Section 6 of [7]):

Theorem 3.3. (i) An Eisenstein polynomial E(X) is irreducible. If Π is a

root of E(X), then K = k[Π] is totally ramified and vK(Π) = 1.

(ii) If K is totally ramified over k and vK(Π) = 1, then the minimal polynomial

of Π over k is Eisenstein and

OK = Ok[Π], K = k[Π].

The above theorem implies that since we have a prime element π = πLp ∈ OLp

such that vLp(π) = 1, then if Lp/lp is totally ramified,

OLp = Olp [π], Lp = lp(π).

We can find an analogue for the unramified case of the above theorem. Let

the image of an element a ∈ Ok in the residue class field Ok/pk be denoted by

â and similarly let the image of an element f(X) ∈ Ok[X] in the polynomial

ring (Ok/pk)[X] be denoted by f̂(X). Proposition 1 of Section 7 of [7] states the

following:

Proposition 3.4. (i) Suppose K to be unramified over k. Then there exists

an element c ∈ OK with OK/pK = (Ok/pk)[ĉ]. If c is such an element and

f(X) is its minimal polynomial over k, then OK = Ok[c], K = k[c] and f̂(X)

is irreducible in (Ok/pk)[X] and separable.

(ii) Suppose f(X) is a monic polynomial in Ok[X], such that f̂(X) is irreducible

in (Ok/pk)[X] and separable. If c is a root of f(X) then K = k[c] is unramified

over k and OK/pK = (Ok/pk)[ĉ].
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We will be using the above to establish whether Lp/lp is ramified or unramified

if pOLp is not split. We will also need to use Hensel’s Lemma. Appendix C of [4]

states this lemma, which we will write as a theorem.

Theorem 3.5 (Hensel’s Lemma). Let k be a field complete with respect to the

non-archimedean valuation | · | and let

f(X) ∈ Ok[X].

Let a0 ∈ Ok be such that

|f(a0)| < |f ′(a0)|2,

where f ′(X) is the (formal) derivative of f(X). Then there is a solution of

f(a) = 0, |a− a0| ≤
|f(a0)|
|f ′(a0)|

.

a0 is known as the approximate root of the polynomial f(X). The above lemma

will be useful when we want to apply Hensel’s Lemma with respect to our field Lp,

as we will know the normalised valuation of lp but may not know directly the

normalised valuation on Lp.

3.2.2. The split case. In the split case, we have θ0 ∈ Olp ⊂ lp, and Lp =

lp ⊕ lp. We can think of Lp as being isomorphic to lp(θ0) by the bijective map

lp(θ0) ∼= lp ⊕ lp

a+ bθ0 7→ (a+ bθ0, a− bθ0)(3.10)

for any a, b ∈ lp. Hence, we identify lp with {(a, a) ∈ Lp : a ∈ lp}. Note that where

no confusion can occur, we will denote an element (a, a) ∈ Lp as a ∈ lp and an

element (a+ bθ0, a− bθ0) ∈ Lp as a+ bθ0 ∈ Lp.

Also, the norm and trace of (a, b) ∈ Lp are defined respectively as

N ((a, b)) = ab, Tr ((a, b)) = a+ b.

Thus, for any element a ∈ lp, we can always choose an element in c ∈ Lp such that

N (c) = a. An obvious choice would be c = (a, 1).
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The 2-cocycle of the universal

central extension of SU(2, 1)(k)



CHAPTER 4

The 2-cocycle on T (k)

Suppose that k is a local field containing an n-th root of unity and let G =

SU(2, 1). Recall that we have a homomorphism π1(G(k))→ µn given by bα(s, t) 7→

(s, t)k,n for s, t ∈ k×. This map gives rise to a central extension

1→ µn → G̃→ G(k)→ 1.

We have seen that if k is non-archimedean and n is the number of roots of unity

in k, then this extension is the universal topological central extension of G(k). We

have described a section δ : G(k)→ G̃. This section gives rise to a 2-cocycle σu on

G(k) with values in µn.

Recall that we are actually interested in the 2-cocycle corresponding to the

double cover of G(k), which represents a cohomology class σ ∈ H2(G(k), µ2). By

the existence of a universal central extension we have (by Theorem 1.1 of [12]) for

any trivial G(k)-module A,

H2(G(k), A) = Hom(π1, A) = Hom(µn, A).

This implies that

H2(G(k), µ2) = Hom(µn, µ2) = Z/2.

Thus, σ = σ
n/2
u . We will use this fact in Chapter 6 to describe the cocycle σ.

We will first calculate the cocycle σu on SU(2, 1)(k). This calculation is divided

into 2 chapters. This chapter introduces the notation we will use, cites a few results,

and we will calculate the 2-cocycle on a maximal torus T (k) of G(k). Recall that

we write (s, t)k,n instead of bα (s, t) when both s, t ∈ k×. Also, recall the definitions

of δ1 and δ2 as stated in Proposition 2.1. We will get the following theorem:

51
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Theorem. For λ, µ ∈ K×,

σu (hα (λ) , hα (µ))

=



(λ, µ)k,n , if λ, µ ∈ k×;

(µ,−δ2 (λ) /θ0)k,n , if λ /∈ k×, µ ∈ k×;(
λ, µδ1 (µ)/θ0

)
k,n

, if λ ∈ k×, µ /∈ k×;

(−1,N (λ))k,n ·

(
−λδ1 (λ)

θ0
, λµ

)
k,n

, if λ, µ /∈ k×, λµ ∈ k×;(
−N (δ1 (µ))

N (δ1 (λ))
,

N (λ)
q2

)
k,n

·

(
q,
µδ1 (µ)
δ2 (λ)

)
k,n

· Σ′(λ, µ), otherwise,

where, if λ = a+ bθ0, µ = c+ dθ0, with a, c ∈ k, b, d ∈ k×,

q = a+
bc

d
,

and

Σ′(λ, µ) =



(
− N (λ)

4a2 N (δ1 (µ))
,

(N (λ))2b4θ4
0

((a− q)a− b2θ2
0)4

)
k,n

, if λ /∈ k×θ0, aq 6= N (λ);(
(N (λ))2b4θ4

0

((a− q)a+ b2θ2
0)4

,− N (λ)
4a2 N (δ1 (µ))

)
k,n

, if λ /∈ k×θ0, aq = N (λ);

1, if λ ∈ k×θ0.

It should be noted that the right-hand side is given in terms of n-th power

Hilbert symbols on k.

The next chapter will use the results of this chapter to prove what the 2-

cocycle is on the whole of G(k). We will then get an expression for the 2-cocycle σ

corresponding to the double cover of G(k) using the relation above.

4.1. Initial results

We first note that for all s, t ∈ k×, by (2.11),

(4.1) (s, t)mk,n = (sm, t)k,n = (s, tm)k,n ,

for m ∈ Z.
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For s ∈ k×, since
(
s,−s−1

)
k,n

= 1, by (2.5),

(4.2) δ (hα (s))−1 = δ

(
hα

(
−1
s

))
· δ (hα (−1))−1

.

Also, by Proposition 2.4, for s, t ∈ k×,

[w̃α (0, sθ0) · w̃α (0,−θ0)] · w̃α (0, tθ0) · w̃α (0,−θ0) · [w̃α (0, sθ0) · w̃α (0,−θ0)]−1

= w̃α

(
0,

(tθ0)(−s2θ2
0)

−θ2
0

)
· w̃α

(
0,

(−θ0)(−s2θ2
0)

−θ2
0

)
;

i.e. by (2.4),

δ (hα (s)) · δ (hα (t)) · δ (hα (s))−1

= w̃α
(
0, s2tθ0

)
· w̃α

(
0,−s2θ0

)
= w̃α

(
0, s2tθ0

)
·
[
w̃α (0, θ0)−1 · w̃α (0, θ0)

]
· w̃α

(
0, s2θ0

)−1

= δ
(
hα
(
s2t
))
· δ
(
hα
(
s2
))−1

.

Thus by (2.5), (2.12) and (4.1),

(4.3) δ (hα (s)) · δ (hα (t)) · δ (hα (s))−1 · δ (hα (t))−1 =
(
t, s2

)−1

k,n
=
(
s, t2

)
k,n

.

Also, since (s, t)k,n is central in G̃ for all s, t ∈ k×, the above implies that

(4.4) δ (hα (s)) · δ (hα (t)) · δ (hα (s))−1 · δ (hα (t))−1

= δ (hα (t))−1 · δ (hα (s)) · δ (hα (t)) · δ (hα (s))−1
.

Remark 4.1. By (4.1),
(
−1, s2

)
k,n

= 1 for all s ∈ k×. This implies, by (4.3)

and (4.4), that δ (hα (−1)) commutes with δ (hα (s)) for all s ∈ k×.

Hence by the above, we can now work out the “easy” cases, which are sum-

marised in the following proposition based on Lemma 2.23 of [6]:

Proposition 4.2. For q ∈ k×, λ /∈ k×,

(i) bα (λ, q) = (q,−δ2 (λ) /θ0)k,n,

(ii) bα (q, λ) =
(
q, λδ1 (λ)/θ0

)
k,n

.
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Proof. We first prove (i). We have by (2.5) that

bα (λ, q) = δ (hα (λ)) · δ (hα (q)) · δ (hα (λq))−1
,

and by (2.4),

bα (λ, q) = w̃α (1, δ1 (λ)) · w̃α (0, δ2 (λ))−1 · δ (hα (q)) · w̃α (0, δ2 (λq))

· w̃α (1, δ1 (λq))−1

= w̃α (1, δ1 (λ)) · w̃α (0, δ2 (λ))−1 · δ (hα (q)) · w̃α (0, δ2 (λq))

·
[
w̃α (0, θ0)−1 · w̃α (0, θ0)

]
·
[
w̃α (0, qδ2 (λq))−1

· w̃α (0, qδ2 (λq))
]
· w̃α (1, δ1 (λq))−1

= w̃α (1, δ1 (λ)) · w̃α (0, δ2 (λ))−1 · δ (hα (q)) · δ (hα (δ2 (λq) /θ0))

· δ (hα (qδ2 (λq) /θ0))−1 · w̃α (0, qδ2 (λq)) · w̃α (1, δ1 (λq))−1
.

Hence by (2.5) again,

bα (λ, q) = (q, δ2 (λq) /θ0)k,n · w̃α (1, δ1 (λ)) · w̃α (0, δ2 (λ))−1

· w̃α (0, qδ2 (λq)) · w̃α (1, δ1 (λq))−1
.

But since q ∈ k× and λ /∈ k×, we have by Proposition 2.1 that

δ1 (λq) = δ1 (λ) ,(4.5)

δ2 (λq) = (1/q)δ2 (λ) .(4.6)

Thus,

bα (λ, q) = (q, δ2 (λ) /(qθ0))k,n · w̃α (1, δ1 (λ)) · w̃α (0, δ2 (λ))−1

· w̃α (0, δ2 (λ)) · w̃α (1, δ1 (λ))−1

= (q,−δ2 (λ) /θ0)k,n

by (2.13). Similarly for (ii), by (2.5),

bα (q, λ) = δ (hα (q)) · δ (hα (λ)) · δ (hα (λq))−1
.
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Thus,

bα (q, λ) = δ (hα (q)) · w̃α (1, δ1 (λ)) · w̃α (0, δ2 (λ))−1 · w̃α (0, δ2 (λq))

· w̃α (1, δ1 (λq))−1

by (2.4). By Proposition 2.4,

w̃α (1, δ1 (λ)) · w̃α (0, δ2 (λ))−1 · w̃α (1, δ1 (λ))−1 = w̃α (0,N (δ1 (λ)) /δ2 (λ)) .

With the above and (4.6), the equation becomes

bα (λ, q) = δ (hα (q)) · w̃α
(

0,
N (δ1 (λ))
δ2 (λ)

)
· w̃α (1, δ1 (λ))

· w̃α (0, δ2 (λ) /q) · w̃α (1, δ1 (λ))−1
.

Also by Proposition 2.4,

w̃α (1, δ1 (λ)) · w̃α (0, δ2 (λ) /q) · w̃α (1, δ1 (λ))−1 = w̃α

(
0,N (δ1 (λ)) q/δ2 (λ)

)
= w̃α (0,N (δ1 (λ)) q/δ2 (λ))−1

.

This implies by (2.4) that

bα (λ, q) = δ (hα (q)) · w̃α
(

0,
N (δ1 (λ))
δ2 (λ)

)
· w̃α

(
0,

N (δ1 (λ)) q
δ2 (λ)

)−1

= δ (hα (q)) · w̃α
(

0,
N (δ1 (λ))
δ2 (λ)

)
·
[
w̃α (0, θ0)−1 · w̃α (0, θ0)

]
· w̃α

(
0,

N (δ1 (λ)) q
δ2 (λ)

)−1

= δ (hα (q)) · δ
(
hα

(
λδ1 (λ)/θ0

))
· δ
(
hα

(
λδ1 (λ)q/θ0

))−1

,

since λ = δ1 (λ) /δ2 (λ). Hence,

bα (λ, q) =
(
q, λδ1 (λ)/θ0

)
k,n

by (2.5). �

Thus we are left with finding an explicit expression for bα (λ, µ) where λ, µ /∈

k×, in terms of (s, t)k,n’s, with s, t ∈ k×. But before proving the main theorem,

we must first establish a few lemmas.
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4.2. Some useful lemmas

Lemma 2.15 of [6] states (with some change in notation) that

Lemma 4.3. For (r,m), (0,m′) ∈ A (see (2.2)),

(i) w̃α (r,m) · w̃α (0,m′) = w̃α (u, v) · w̃α (u′, v′), with

u =
rmm′

m(m+m′)
, v =

mm′

m+m′
, u′ =

rm′

m+m′
, v′ =

N (m′)
m+m′

.

(ii) w̃α (0,m′) · w̃α (r,m) = w̃α (u, v) · w̃α (u′′, v′′), with u, v the same as in (i) and

u′′ =
rm

m+m′
, v′′ =

N (m)
m+m′

.

Thus, using the above, we will prove the following:

Lemma 4.4. For a general (s1, n1) ∈ A, t ∈ K×,

w̃α (s1, n1)−1 · w̃α
(
s1

t
,
n1

N (t)

)

=



δ

(
hα

(
−n1

θ0

))
· δ
(
hα

(
− n1

N (t) θ0

))−1

, if n1 ∈ k×θ0;

δ

(
hα

(
−N (n1)

θ2
0

))
· δ
(
hα

(
−N (n1)

tθ2
0

))−1

· δ (hα (t)) , if t ∈ k×;(
− n1

tθ0
,N (t)

)
k,n

· δ (hα (N (t))) , if n1 ∈ k×, t ∈ k×θ0.

Otherwise for n1 = a+ bθ0, t = c+ dθ0, a, d ∈ k×, b, c ∈ k, if

q1 = c+
bdθ2

0

a
6= 0,

then

w̃α (s1, n1)−1 · w̃α
(
s1

t
,
n1

N (t)

)
=
(
− a2 N (t)
d2 N (n1) θ2

0

, q1

)
k,n

·
(
−dN (n1)

a
,N (t)

)
k,n

· δ (hα (N (t))) .

If q1 = 0, then we let

s′ =
s1

t
, n′ =

n1

N (t)
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so that

w̃α (s1, n1)−1 · w̃α
(
s1

t
,
n1

N (t)

)
=
[
w̃α (s′, n′)−1 · w̃α (s′t, n′N (t))

]−1

,

and calculate w̃α (s′, n′)−1 · w̃α (s′t, n′N (t)) instead, using the above results.

Proof. Recall from Proposition 2.4 that for any (r,m) ∈ A (where A is as in

(2.2)),

(4.7) w̃α (r,m)−1 = w̃α (−r,m) .

If n1 ∈ k×θ0, then let n1 = bθ0, where b ∈ k×. Then s1 = 0, and by (4.7),

w̃α (s1, n1)−1 · w̃α
(
s1

t
,
n1

N (t)

)
= w̃α (0, bθ0)−1 · w̃α

(
0,

bθ0

N (t)

)
= w̃α (0,−bθ0) · w̃α

(
0,− bθ0

N (t)

)−1

.

Hence by (2.4),

w̃α (s1, n1)−1 · w̃α
(
s1

t
,
n1

N (t)

)
= w̃α (0,−bθ0) ·

[
w̃α (0, θ0)−1 · w̃α (0, θ0)

]
· w̃α

(
0,− bθ0

N (t)

)−1

= δ (hα (−b)) · δ
(
hα

(
− b

N (t)

))−1

= δ

(
hα

(
−n1

θ0

))
· δ
(
hα

(
− n1

N (t) θ0

))−1

.

So assume that n1 /∈ k×θ0, so that s1 6= 0. Let t ∈ k×. Then we know by (4.7)

and applying Proposition 2.4 twice for v, v′ ∈ k×, that

[w̃α (0, vθ0) · w̃α (0, v′θ0)] · w̃α (s1, n1) · [w̃α (0, vθ0) · w̃α (0, v′θ0)]−1(4.8)

= w̃α

(
s1(v′θ0)(vθ0)2

(−v′θ0)2(−vθ0)
,
n1(−v2θ2

0)
−v′2θ2

0

)
= w̃α

(
−s1v

v′
,
n1v

2

v′2

)
.

By Proposition 2.4, for t′ ∈ k×,

(4.9) w̃α (0,−t′θ0) · w̃α (s1, n1) = w̃α (s1, n1) · w̃α
(

0,
N (n1)
t′θ0

)
.
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This implies that if we let v = 1, v′ = −t, then (4.8) becomes

w̃α

(s1

t
,
n1

t2

)
= [w̃α (0, θ0) · w̃α (0,−tθ0)] · w̃α (s1, n1) · [w̃α (0, θ0) · w̃α (0,−tθ0)]−1

.

By using (4.9) twice, we get

w̃α

(s1

t
,
n1

t2

)
= w̃α (s1, n1)·w̃α

(
0,

N (n1)
−θ0

)
·w̃α

(
0,

N (n1)
tθ0

)
·w̃α (0, tθ0)·w̃α (0,−θ0) .

Hence,

w̃α

(s1

t
,
n1

t2

)
= w̃α (s1, n1) · w̃α

(
0,

N (n1)
−θ0

)
·
[
w̃α (0, θ0)−1 · w̃α (0, θ0)

]
· w̃α

(
0,−N (n1)

tθ0

)−1

· w̃α (0, tθ0) · w̃α (0,−θ0)

= w̃α (s1, n1) · δ
(
hα

(
−N (n1)

θ2
0

))
· δ
(
hα

(
−N (n1)

tθ2
0

))−1

· δ (hα (t))

by (4.7) and (2.4); i.e.

w̃α (s1, n1)−1 · w̃α
(s1

t
,
n1

t2

)
= δ

(
hα

(
−N (n1)

θ2
0

))
· δ
(
hα

(
−N (n1)

tθ2
0

))−1

· δ (hα (t)) .

(Note that the above also applies to n1 ∈ k×θ0: for if n1 = bθ0, b ∈ k×, by using

(2.5) several times,

w̃α (0, bθ0)−1 · w̃α
(

0,
bθ0

t2

)
= δ

(
hα

(
−−b

2θ2
0

θ2
0

))
· δ
(
hα

(
−−b

2θ2
0

tθ2
0

))−1

· δ (hα (t))

= δ
(
hα
(
b2
))
· δ
(
hα

(
b2

t

))−1

·
[
δ (hα (t))−1 · δ (hα (t))

]
· δ (hα (t)) ·

[
δ
(
hα
(
t2
))−1 · δ

(
hα
(
t2
))]

·

[
δ

(
hα

(
− b

t2

))
· δ (hα (−b))−1 · δ (hα (−b)) · δ

(
hα

(
− b

t2

))−1
]

=
(
t,
b2

t

)−1

k,n

· (t, t)k,n ·
(
t2,− b

t2

)
k,n

· δ (hα (−b)) · δ
(
hα

(
− b

t2

))−1

.
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Now it is a matter of using (2.11), (2.13) and (4.1) to get

w̃α (0, bθ0)−1 · w̃α
(

0,
bθ0

t2

)
=
(
t,−b−2

)
k,n
· (t,−1)k,n ·

(
t2, b

)
k,n
· δ (hα (−b)) · δ

(
hα

(
− b

t2

))−1

=
(
t−2, b

)
k,n
·
(
t2, b

)
k,n
· δ (hα (−b)) · δ

(
hα

(
− b

t2

))−1

= δ (hα (−b)) · δ
(
hα

(
− b

t2

))−1

.

Thus the two abovementioned cases coincide for n1 ∈ k×θ0, t ∈ k×.)

Let t /∈ k×, i.e. t = c + dθ0 with c ∈ k, d ∈ k×. Also, let n1 = a + bθ0, with

a ∈ k×, b ∈ k.

It is sufficient to find an explicit formula for

w̃α
(
s1q, n1q

2
)−1 · w̃α

(
s1

t
,
n1

N (t)

)
,

for some q ∈ k×, since we know from previous calculation that

(4.10) w̃α (s1, n1)−1 · w̃α
(
s1q, n1q

2
)

= δ

(
hα

(
−N (n1)

θ2
0

))
· δ
(
hα

(
−N (n1) q

θ2
0

))−1

· δ
(
hα

(
1
q

))
.

By the proof of Lemma 2.16 of [6], assume that we can choose q ∈ k× such

that

Tr
(

(qt− 1)
n1

N (t)

)
= 0.

Then,

(qt− 1)n1 = (q(c+ dθ0)− 1)(a+ bθ0)

= ((qc− 1) + qdθ0)(a+ bθ0)

= ((qc− 1)a+ qbdθ2
0) + (qad+ (qc− 1)b)θ0.

Hence, since (qc− 1)a+ qbdθ2
0 = 0,

q−1 = c+
bdθ2

0

a
.
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Let m = (qt− 1)n1/(N (t)), l1 = q(qt− 1)n1/t and p1 = (qt− 1)s1/t. Then (0,m),

(p1, l1) ∈ A, hence w̃α (p1, l1) and w̃α (0,m) are well-defined. Using Lemma 4.3, we

know that

p1m

l1 +m
=

(qt− 1)(s1/t)m
(qt− 1)m

=
s1

t
,

N (m)
l1 +m

=
N (m)

(qt− 1)m
=

m

(qt− 1)
=

n1

N (t)
,

p1l1

l1 +m
=

p1m

l1 +m
· l1
m

=
s1

t
· (qt) = s1q,

N (l1)
l1 +m

=
N (m)
l1 +m

· N (l1)
N (m)

=
n1

N (t)
· (qt)(qt) = n1q

2,

so

w̃α
(
s1q, n1q

2
)−1 · w̃α

(
s1

t
,
n1

N (t)

)
= w̃α (p1, l1)−1 · w̃α (0,m)−1 · w̃α (p1, l1) · w̃α (0,m)

by Lemma 4.3. By Proposition 2.4,

w̃α (p1, l1)−1 · w̃α (0,m)−1 · w̃α (p1, l1) = w̃α (0,N (l1) /m)−1
,

thus by (4.7),

w̃α
(
s1q, n1q

2
)−1 · w̃α

(
s1

t
,
n1

N (t)

)
= w̃α

(
0,

N (l1)
m

)−1

· w̃α (0,m)

= w̃α
(
0, q2(qt− 1)n1

)−1 · w̃α
(

0, (qt− 1)
n1

N (t)

)
= w̃α

(
0, q2(qt− 1)n1

)
· w̃α

(
0, (qt− 1)

n1

N (t)

)−1

.

Also,

w̃α
(
s1q, n1q

2
)−1 · w̃α

(
s1

t
,
n1

N (t)

)
= w̃α

(
0, q2(qt− 1)n1

)
·
[
w̃α (0, θ0)−1 · w̃α (0, θ0)

]
· w̃α

(
0, (qt− 1)

n1

N (t)

)−1

= δ

(
hα

(
q2(qt− 1)n1

θ0

))
· δ
(
hα

(
(qt− 1)n1

N (t) θ0

))−1
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by (2.4). This implies, using (4.10), that

w̃α (s1, n1)−1 · w̃α
(
s1

t
,
n1

N (t)

)

=

[
δ

(
hα

(
−N (n1)

θ2
0

))
· δ
(
hα

(
−N (n1) q

θ2
0

))−1

· δ
(
hα

(
1
q

))]

·

[
δ

(
hα

(
q2(qt− 1)n1

θ0

))
· δ
(
hα

(
(qt− 1)n1

N (t) θ0

))−1
]
.

Also, by (4.2),

δ

(
hα

(
−N (n1) q

θ2
0

))−1

= δ

(
hα

(
θ2

0

N (n1) q

))
· δ (hα (−1))−1

.

Hence,

w̃α (s1, n1)−1 · w̃α
(
s1

t
,
n1

N (t)

)
= δ

(
hα

(
−N (n1)

θ2
0

))
·
[
δ

(
hα

(
θ2

0

N (n1) q

))
· δ (hα (−1))−1

]
· δ
(
hα

(
1
q

))
· δ
(
hα

(
q2(qt− 1)n1

θ0

))
· δ
(
hα

(
(qt− 1)n1

N (t) θ0

))−1

.

Since by Remark 4.1,

δ (hα (−1))−1 · δ (hα (t′)) = δ (hα (t′)) · δ (hα (−1))−1

for all t′ ∈ k×, this implies that

w̃α (s1, n1)−1 · w̃α
(
s1

t
,
n1

N (t)

)
= δ

(
hα

(
−N (n1)

θ2
0

))
· δ
(
hα

(
θ2

0

N (n1) q

))
· δ
(
hα

(
1
q

))
· δ
(
hα

(
q2(qt− 1)n1

θ0

))
· δ (hα (−1))−1 · δ

(
hα

(
(qt− 1)n1

N (t) θ0

))−1

.
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Use (2.5) several times to get

w̃α (s1, n1)−1 · w̃α
(
s1

t
,
n1

N (t)

)

= δ

(
hα

(
−N (n1)

θ2
0

))
· δ
(
hα

(
θ2

0

N (n1) q

))
·

[
δ

(
hα

(
−1
q

))−1

· δ
(
hα

(
−1
q

))]

· δ
(
hα

(
1
q

))
·

[
δ

(
hα

(
− 1
q2

))−1

· δ
(
hα

(
− 1
q2

))]

· δ
(
hα

(
q2(qt− 1)n1

θ0

))
·

[
δ

(
hα

(
− (qt− 1)n1

θ0

))−1

· δ
(
hα

(
− (qt− 1)n1

θ0

))]
· δ (hα (−1))−1 ·

[
δ

(
hα

(
(qt− 1)n1

θ0

))−1

· δ
(
hα

(
(qt− 1)n1

θ0

))]
· δ
(
hα

(
(qt− 1)n1

N (t) θ0

))−1

·
[
δ (hα (N (t)))−1 · δ (hα (N (t)))

]
=
(
−N (n1)

θ2
0

,
θ2

0

N (n1) q

)
k,n

·
(
−1
q
,

1
q

)
k,n

·
(
− 1
q2
,
q2(qt− 1)n1

θ0

)
k,n

·
(

(qt− 1)n1

θ0
,−1

)−1

k,n

·
(

N (t) ,
(qt− 1)n1

N (t) θ0

)−1

k,n

· δ (hα (N (t))) .

By using (2.12), (2.13), (4.1) and (2.11) in the above,

w̃α (s1, n1)−1 · w̃α
(
s1

t
,
n1

N (t)

)
=
(
− n1

(qt− 1)2n1
,

1
q

)
k,n

·
(
− (qt− 1)n1

θ0
,N (t)

)
k,n

· δ (hα (N (t))) .

Since qt− 1 = n1dθ0/(ac+ bdθ2
0),

w̃α (s1, n1)−1 · w̃α
(
s1

t
,
n1

N (t)

)
=
(
− n1

(n1dθ0/(ac+ bdθ2
0))2n1

,
ac+ bdθ2

0

a

)
k,n

·
(
− (n1dθ0/(ac+ bdθ2

0))n1

θ0
,N (t)

)
k,n

· δ (hα (N (t)))

=
(
− (ac+ bdθ2

0)2

d2 N (n1) θ2
0

,
ac+ bdθ2

0

a

)
k,n

·
(
− dN (n1)
ac+ bdθ2

0

,N (t)
)
k,n

· δ (hα (N (t))) .
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By (2.13),
(
s−2, s

)
k,n

= 1 for all s ∈ k×, hence by also using (2.11),

w̃α (s1, n1)−1 · w̃α
(
s1

t
,
n1

N (t)

)
=
(
− a2

d2 N (n1) θ2
0

,
ac+ bdθ2

0

a

)
k,n

·
(

a

ac+ bdθ2
0

,N (t)
)
k,n

·
(
−dN (n1)

a
,N (t)

)
k,n

· δ (hα (N (t))) .

Lastly, by (2.12) and (2.11),

w̃α (s1, n1)−1 · w̃α
(
s1

t
,
n1

N (t)

)
=
(
− a2 N (t)
d2 N (n1) θ2

0

,
ac+ bdθ2

0

a

)
k,n

·
(
−dN (n1)

a
,N (t)

)
k,n

· δ (hα (N (t))) .

Thus, the above method applies for t /∈ k×, n1 /∈ k×θ0 such that

q1 := c+
bdθ2

0

a
6= 0,

so that

(4.11)

w̃α (s1, n1)−1 · w̃α
(
s1

t
,
n1

N (t)

)
=
(
− a2 N (t)
d2 N (n1) θ2

0

, q1

)
k,n

·
(
−dN (n1)

a
,N (t)

)
k,n

· δ (hα (N (t))) .

If q1 = 0, for the majority of these cases, we can interchange (s1, n1) and

(s1/t, n1/(N (t))) to get the result, i.e. let

s′ =
s1

t
, n′ =

n1

N (t)

and apply the above to

w̃α (s′, n′)−1 · w̃α (s′t, n′N (t)) .

The only exception is when c = bdθ2
0/a = 0, i.e. when c = 0, b = 0. Hence,

t = dθ0 and n1 ∈ k×, where d ∈ k×. Let t′ = 1 + θ0, and let s′′, n′′ ∈ K× be such

that
s′′

s1/t
= t′,

n′′

n1/(N (t))
= N (t′) ;
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i.e.

s′′ = s1 ·
t′

t
, n′′ = n1 ·

N (t′)
N (t)

.

Since s′′/(s1/t), s1/s
′′ /∈ k×, k×θ0, we will be able to work out w̃α (s1, n1)−1 ·

w̃α (s′′, n′′) and w̃α (s′′, n′′)−1 · w̃α (s1/t, n1/(N (t))) using (4.11); then

w̃α (s1, n1)−1 · w̃α
(
s1

t
,
n1

N (t)

)
=
[
w̃α (s1, n1)−1 · w̃α (s′′, n′′)

]
·
[
w̃α (s′′, n′′)−1 · w̃α

(
s1

t
,
n1

N (t)

)]
.

Let us calculate w̃α (s1, n1)−1 · w̃α (s′′, n′′) first: since

s1

s′′
=

t

t′
=

dθ0

1 + θ0
=
−dθ2

0 + dθ0

N (t′)
, n1 ∈ k×,

then in this case, using (4.11),

q1 =
−dθ2

0

1− θ2
0

= − tθ0

N (t′)
,

and therefore,

w̃α (s1, n1)−1 · w̃α (s′′, n′′)

=
(
− n

2
1 N (t) /(N (t′))

(d/(N (t′)))2n2
1θ

2
0

, q1

)
k,n

·
(
− (d/(N (t′)))n2

1

n1
,

N (t)
N (t′)

)
k,n

· δ
(
hα

(
N (t)
N (t′)

))
=
(

N (t′) ,− tθ0

N (t′)

)
k,n

·
(
− tn1

N (t′) θ0
,

N (t)
N (t′)

)
k,n

· δ
(
hα

(
N (t)
N (t′)

))
.

Thus,

(4.12) w̃α (s1, n1)−1 · w̃α (s′′, n′′)

= (N (t′) , tθ0)k,n ·
(
− n1

tθ0
,

N (t)
N (t′)

)
k,n

· δ
(
hα

(
N (t)
N (t′)

))

by (2.13). As for w̃α (s′′, n′′)−1 · w̃α (s1/t, n1/(N (t))),

s′′

s1/t
= t′ = 1 + θ0, n′′ =

n1 N (t′)
N (t)

∈ k×,
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which implies that by (4.11), q1 = 1 so that

w̃α (s′′, n′′)−1 · w̃α
(
s1

t
,
n1

N (t)

)
=
(
−n
′′2 N (t′)

12n′′2θ2
0

, 1
)
k,n

·
(
−1 · n′′2

n′′
,N (t′)

)
k,n

δ (hα (N (t′))) ,

i.e.

(4.13) w̃α (s′′, n′′)−1 · w̃α
(
s1

t
,
n1

N (t)

)
=
(
−n1 N (t′)

N (t)
,N (t′)

)
k,n

· δ (hα (N (t′))) .

Therefore, by (4.12) and (4.13),

w̃α (s1, n1)−1 · w̃α
(
s1

t
,
n1

N (t)

)
=
[
w̃α (s1, n1)−1 · w̃α (s′′, n′′)

]
·
[
w̃α (s′′, n′′)−1 · w̃α

(
s1

t
,
n1

N (t)

)]

=

[
(N (t′) , tθ0)k,n ·

(
− n1

tθ0
,

N (t)
N (t′)

)
k,n

· δ
(
hα

(
N (t)
N (t′)

))]

·

[(
−n1 N (t′)

N (t)
,N (t′)

)
k,n

· δ (hα (N (t′)))

]
;

and by (2.11) and (4.1),

w̃α (s1, n1)−1 · w̃α
(
s1

t
,
n1

N (t)

)
=
(

1
tθ0

,N (t′)
)
k,n

·
(
− n1

tθ0
,N (t)

)
k,n

·
(
− n1

tθ0
,N (t′)

)−1

k,n

·
(
−n1 N (t′)

N (t)
,N (t′)

)
k,n

· δ
(
hα

(
N (t)
N (t′)

))
· δ (hα (N (t′)))

·
[
δ (hα (N (t)))−1 · δ (hα (N (t)))

]
.

Again by (2.11) as well as (2.5),

w̃α (s1, n1)−1 · w̃α
(
s1

t
,
n1

N (t)

)
=
(

N (t′)
N (t)

,N (t′)
)
k,n

·
(
− n1

tθ0
,N (t)

)
k,n

·
(

N (t)
N (t′)

,N (t′)
)
k,n

· δ (hα (N (t))) .

Hence we have

w̃α (s1, n1)−1 · w̃α
(
s1

t
,
n1

N (t)

)
=
(
− n1

tθ0
,N (t)

)
k,n

· δ (hα (N (t)))
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by (2.11) again. Thus the lemma is proved. �

Lemma 4.5. If (r,m), (r′,m) ∈ A, then

r′

r
=
t

t
,

for some (non-unique) t ∈ K×.

Hence, if r′/r 6= 1 and m = a+ bθ0, t = c+ dθ0 such that a, b, c, d ∈ k, then

w̃α (r,m) · w̃α (r′,m)−1

=



(
−1,−N (m)

θ2
0

)
k,n

, if c = 0;(
a2 N (t)

d2 N (m) θ2
0

,

(
ac− bdθ2

0

)2
a2 N (t)

)
k,n

, if c 6= 0, ac− bdθ2
0 6= 0;((

ac+ bdθ2
0

)2
a2 N (t)

,
a2 N (t)

d2 N (m) θ2
0

)
k,n

, if c 6= 0, ac− bdθ2
0 = 0.

Proof. Since Tr (m) = −N (r) = −N (r′), it is necessary and sufficient that

N
(
r′

r

)
= 1.

Thus, the existence of t is Hilbert’s Theorem 90. A reference for this theorem is

II.1.2 Proposition 1 of [18].

We may assume that r 6= r′, otherwise there is nothing to prove. So either

r′/r = −1 or r′/r = e+ fθ0, where e, f ∈ k×, therefore it is possible to choose

t =


θ0, if r′/r = −1;

−(1 + e) + fθ0, otherwise.

Note that these are not the only choices for t. The sequel is not dependent on the

choice of t, thus we may choose any t which satisfies r′/r = t/t.

Firstly, if r′/r = −1 (so t ∈ k×θ0), then by Lemma 4.4,

w̃α (r,m) · w̃α (r′,m)−1

= w̃α (r,m) · w̃α
(
r

−1
,

m

(−1)2

)−1

= δ

(
hα

(
−N (m)

θ2
0

))
· δ
(
hα

(
− N (m)

(−1) · θ2
0

))−1

· δ (hα (−1)) .
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And since by Remark 4.1, δ (hα (−1)) commutes with δ (hα (s)), s ∈ k×,

w̃α (r,m) · w̃α (r′,m)−1 = δ (hα (−1)) · δ
(
hα

(
−N (m)

θ2
0

))
· δ
(
hα

(
N (m)
θ2

0

))−1

.

This implies that by (2.5),

w̃α (r,m) · w̃α (r′,m)−1 =
(
−1,−N (m)

θ2
0

)
k,n

.

By Lemma 2.12 of [6], for arbitrary (s1, n1), (p1, l1) ∈ A, t ∈ K×,

w̃α (s1, n1) · w̃α (p1, l1) · w̃α
(
p1

t
,
l1

N (t)

)−1

· w̃α
(
s1

t
,
n1

N (t)

)−1

∈ π1.

By choosing s1 = r, n1 = m, p1 = rt and l1 = mN (t), by Lemma 2.18 of [6], the

above is equal to w̃α (r,m) · w̃α (r′,m)−1.

By Proposition 2.4,

w̃α (r,m) · w̃α
(
rt,mN (t)

)
· w̃α (r,m)−1 = w̃α

(
rt ·m2

mN (t) ·m
,

N (m)
mN (t)

)
,

w̃α (r,m) · w̃α
(
rt

t
,m

)−1

· w̃α (r,m)−1 = w̃α

(
−r(t/t) ·m

2

m ·m
,

N (m)
m

)
.

Hence,

w̃α (r,m) · w̃α (r′,m)−1

= w̃α (r,m) · w̃α
(
rt,mN (t)

)
· w̃α

(
rt

t
,m

)−1

· w̃α
(
r

t
,
m

N (t)

)−1

= w̃α

(
rt ·m2

mN (t) ·m
,

N (m)
mN (t)

)
· w̃α

(
−r(t/t) ·m

2

m ·m
,

N (m)
m

)
· w̃α (r,m)

· w̃α
(
−r
t
,
m

N (t)

)
.

Thus by (4.7),

(4.14) w̃α (r,m) · w̃α (r′,m)−1 =

[
w̃α

(
−rm
tm

,
m

N (t)

)−1

· w̃α
(
−rtm
tm

,m

)]

·
[
w̃α (−r,m)−1 · w̃α

(
−r
t
,
m

N (t)

)]
.

As in Lemma 4.4, there are a few cases to consider. We may assume that

(r,m) 6= (r′,m), otherwise there is nothing to prove; therefore m /∈ k×θ0. Also,
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t /∈ k×, since r 6= r′. We have already looked at the case where t ∈ k×θ0. Thus,

there is only one last case.

Let m = a+ bθ0 and t = c+ dθ0, where a, d ∈ k×, c, d ∈ k. We first consider

w̃α

(
−rm
tm

,
m

N (t)

)−1

· w̃α
(
−rtm
tm

,m

)
.

By Lemma 4.4,

w̃α

(
−rm
tm

,
m

N (t)

)−1

· w̃α
(
−rtm
tm

,m

)
=
(
− (a/(N (t)))2(1/(N (t)))

(d/(N (t)))2(N (m) /(N (t))2)θ2
0

,
c

N (t)
+

(−b/N (t))(d/N (t))θ2
0

a/N (t)

)
k,n

·
(
− (d/(N (t)))(N (m) /(N (t))2)

a/(N (t))
,

1
N (t)

)
k,n

· δ
(
hα

(
1

N (t)

))
=
(
− a2 N (t)
d2 N (m) θ2

0

,
ac− bdθ2

0

aN (t)

)
k,n

·
(
− dN (m)
a(N (t))2

,
1

N (t)

)
k,n

· δ
(
hα

(
1

N (t)

))
;

note that this is only valid if ac− bdθ2
0 6= 0 (we will deal with the other case later

in the proof). Hence

(4.15) w̃α

(
−rm
tm

,
m

N (t)

)−1

· w̃α
(
−rtm
tm

,m

)
=
(
− a2 N (t)
d2 N (m) θ2

0

,
ac− bdθ2

0

aN (t)

)
k,n

·
(
−dN (m)

a
,

1
N (t)

)
k,n

· δ
(
hα

(
1

N (t)

))
by (2.13). Similarly, for

w̃α (−r,m)−1 · w̃α
(
−r
t
,
m

N (t)

)
,

Lemma 4.4 gives

(4.16) w̃α (−r,m)−1 · w̃α
(
−r
t
,
m

N (t)

)
=
(
− a2 N (t)
d2 N (m) θ2

0

, c+
(−b)dθ2

0

a

)
k,n

·
(
−dN (m)

a
,N (t)

)
k,n

· δ (hα (N (t))) .
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Using (4.14), (4.15) and (4.16),

w̃α (r,m) · w̃α (r′,m)−1

=

[(
− a2 N (t)
d2 N (m) θ2

0

,
ac− bdθ2

0

aN (t)

)
k,n

·
(
−dN (m)

a
,

1
N (t)

)
k,n

· δ
(
hα

(
1

N (t)

))]

·

[(
− a2 N (t)
d2 N (m) θ2

0

, c+
(−b)dθ2

0

a

)
k,n

·
(
−dN (m)

a
,N (t)

)
k,n

· δ (hα (N (t)))

]
.

We simplify the above using (2.11) and (2.5) to get

w̃α (r,m) · w̃α (r′,m)−1 =

(
− a2 N (t)
d2 N (m) θ2

0

,

(
ac− bdθ2

0

aN (t)

)2

·N (t)

)
k,n

·
(
−dN (m)

a
, 1
)
k,n

·
(

1
N (t)

,N (t)
)
k,n

.

Thus by (2.11) and (2.13),

w̃α (r,m) · w̃α (r′,m)−1

=

(
a2 N (t)

d2 N (m) θ2
0

,

(
ac− bdθ2

0

)2
a2 N (t)

)
k,n

·

(
−1,

(
ac− bdθ2

0

)2
a2 N (t)

)
k,n

· (−1,N (t))k,n .

By using (2.11) and the fact that
(
−1, s2

)
k,n

= 1 for all s ∈ k× by (4.1), we finally

get

w̃α (r,m) · w̃α (r′,m)−1 =

(
a2 N (t)

d2 N (m) θ2
0

,

(
ac− bdθ2

0

)2
a2 N (t)

)
k,n

.

If ac− bdθ2
0 = 0, we may instead use the above for

w̃α (r′,m) · w̃α (r,m)−1
.

This would imply that since
r

r′
=
t

t
=
t′

t′
,

where t′ = t = c− dθ0, replacing t by t′ would give

w̃α (r′,m) · w̃α (r,m)−1 =
(

a2 N (t)
(−d)2 N (m) θ2

0

,
(ac− b(−d)θ2

0)2

a2 N (t)

)
k,n

=
(

a2 N (t)
d2 N (m) θ2

0

,
(ac+ bdθ2

0)2

a2 N (t)

)
k,n

.
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Therefore,

w̃α (r,m) · w̃α (r′,m)−1 =
[
w̃α (r′,m) · w̃α (r,m)−1

]−1

=
(

a2 N (t)
d2 N (m) θ2

0

,
(ac+ bdθ2

0)2

a2 N (t)

)−1

k,n

=
(

(ac+ bdθ2
0)2

a2 N (t)
,

a2 N (t)
d2 N (m) θ2

0

)
k,n

by (2.12). �

4.3. A slightly more general result

Now that we have established a few lemmas, we can work on bα (λ, µ) for the

cases where both λ, µ /∈ k×.

Lemma 4.6. For all λ /∈ k×,

bα
(
λ, λ−1

)
= (−1,N (λ))k,n .

Proof. We know by Proposition 2.1 that λ = δ1 (λ) /δ2 (λ). Thus,

λ−1 =
δ2 (λ)
δ1 (λ)

=
δ1 (λ)

N (λ) δ2 (λ)
.

This implies that δ1
(
λ−1

)
= δ1 (λ) and δ2

(
λ−1

)
= N (λ) δ2 (λ). Hence, by (2.5)

and (2.4),

bα
(
λ, λ−1

)
= δ (hα (λ)) · δ

(
hα
(
λ−1

))
= w̃α (1, δ1 (λ)) · w̃α (0, δ2 (λ))−1 · w̃α

(
1, δ1 (λ)

)
· w̃α

(
0,N (λ) δ2 (λ)

)−1

.

By Proposition 2.4,

w̃α (0, δ2 (λ))−1 · w̃α
(

1, δ1 (λ)
)

= w̃α

(
1, δ1 (λ)

)
· w̃α

(
0,

N (δ1 (λ))
δ2 (λ)

)
,
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which implies that

bα
(
λ, λ−1

)
= w̃α (1, δ1 (λ)) · w̃α

(
1, δ1 (λ)

)
· w̃α

(
0,

N (δ1 (λ))
δ2 (λ)

)
· w̃α

(
0,N (λ) δ2 (λ)

)−1

= w̃α (1, δ1 (λ)) · w̃α (−1, δ1 (λ))−1
.

So by Lemma 4.5,

bα
(
λ, λ−1

)
=
(
−1,−N (δ1 (λ))

θ2
0

)
k,n

.

Also, for s ∈ k×,
(
−1, s2

)
k,n

= 1 by (4.1), hence

(
−1,− θ2

0

N (δ2 (λ))

)
k,n

= 1,

which implies, using (2.11), that

bα
(
λ, λ−1

)
=
(
−1,−N (δ1 (λ))

θ2
0

)
k,n

·
(
−1,− θ2

0

N (δ2 (λ))

)
k,n

= (−1,N (λ))k,n . �

Lemma 4.7. For all λ, µ /∈ k×, q1, q2 ∈ k×,

bα (λ, µ) = bα (λq1, µq2) ·

(
−µδ1 (µ)q2

δ2 (λ)
, q1

)
k,n

· a(q1, q2, λ, µ),

where

a(q1, q2, λ, µ) =


(
δ2 (λµ)
δ2 (µ)

, q1q2

)
k,n

, if λµ /∈ k×;(
− θ0

λµδ2 (µ)
, q1q2

)
k,n

, if λµ ∈ k×.

Proof. We have, by (2.5) and (2.4),

bα (λ, µ) = δ (hα (λ)) · δ (hα (µ)) · δ (hα (λµ))−1

= w̃α (1, δ1 (λ)) · w̃α (0, δ2 (λ))−1 · w̃α (1, δ1 (µ)) · w̃α (0, δ2 (µ))−1

· w̃α (0, δ2 (λµ)) · w̃α (y(λµ), δ1 (λµ))−1
,

where the function y is as defined in (2.1). Since by Proposition 2.4,

w̃α (1, δ1 (µ))−1 · w̃α (0, δ2 (λ))−1 · w̃α (1, δ1 (µ)) = w̃α

(
0,

N (δ1 (µ))
δ2 (λ)

)
,
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the equation for bα (λ, µ) becomes

(4.17) bα (λ, µ) = w̃α (1, δ1 (λ)) · w̃α (1, δ1 (µ)) · w̃α
(

0,
N (δ1 (µ))
δ2 (λ)

)
· w̃α (0, δ2 (µ))−1 · w̃α (0, δ2 (λµ)) · w̃α (y(λµ), δ1 (λµ))−1

.

Now, for any q1, q2 ∈ k×, by (2.4),

w̃α

(
0,

N (δ1 (µ))
δ2 (λ)

)
· w̃α (0, δ2 (µ))−1 · w̃α (0, δ2 (λµ))

· w̃α
(

0,
δ2 (λµ)
q1q2

)−1

· w̃α
(

0,
δ2 (µ)
q2

)
· w̃α

(
0,
q1 N (δ1 (µ))

δ2 (λ)

)−1

= w̃α

(
0,

N (δ1 (µ))
δ2 (λ)

)
·
[
w̃α (0, θ0)−1 · w̃α (0, θ0)

]
· w̃α (0, δ2 (µ))−1

· w̃α (0, δ2 (λµ)) ·
[
w̃α (0, θ0)−1 · w̃α (0, θ0)

]
· w̃α

(
0,
δ2 (λµ)
q1q2

)−1

· w̃α
(

0,
δ2 (µ)
q2

)
·
[
w̃α (0, θ0)−1 · w̃α (0, θ0)

]
· w̃α

(
0,
q1 N (δ1 (µ))

δ2 (λ)

)−1

= δ

(
hα

(
N (δ1 (µ))
δ2 (λ) θ0

))
· δ
(
hα

(
δ2 (µ)
θ0

))−1

· δ
(
hα

(
δ2 (λµ)
θ0

))
· δ
(
hα

(
δ2 (λµ)
q1q2θ0

))−1

· δ
(
hα

(
δ2 (µ)
q2θ0

))
· δ
(
hα

(
q1 N (δ1 (µ))
δ2 (λ) θ0

))−1

.

We find by using (4.2) that

w̃α

(
0,

N (δ1 (µ))
δ2 (λ)

)
· w̃α (0, δ2 (µ))−1 · w̃α (0, δ2 (λµ))

· w̃α
(

0,
δ2 (λµ)
q1q2

)−1

· w̃α
(

0,
δ2 (µ)
q2

)
· w̃α

(
0,
q1 N (δ1 (µ))

δ2 (λ)

)−1

= δ

(
hα

(
N (δ1 (µ))
δ2 (λ) θ0

))
·
[
δ

(
hα

(
− θ0

δ2 (µ)

))
· δ (hα (−1))−1

]
· δ
(
hα

(
δ2 (λµ)
θ0

))
·
[
δ

(
hα

(
− q1q2θ0

δ2 (λµ)

))
· δ (hα (−1))−1

]
· δ
(
hα

(
δ2 (µ)
q2θ0

))
· δ
(
hα

(
q1 N (δ1 (µ))
δ2 (λ) θ0

))−1

.
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Since by Remark 4.1, δ (hα (−1)) commutes with δ (hα (s)), s ∈ k×,

w̃α

(
0,

N (δ1 (µ))
δ2 (λ)

)
· w̃α (0, δ2 (µ))−1 · w̃α (0, δ2 (λµ))

· w̃α
(

0,
δ2 (λµ)
q1q2

)−1

· w̃α
(

0,
δ2 (µ)
q2

)
· w̃α

(
0,
q1 N (δ1 (µ))

δ2 (λ)

)−1

= δ

(
hα

(
N (δ1 (µ))
δ2 (λ) θ0

))
· δ
(
hα

(
− θ0

δ2 (µ)

))
·

δ(hα(−µδ1 (µ)
δ2 (λ)

))−1

· δ

(
hα

(
−µδ1 (µ)
δ2 (λ)

)) · δ(hα(δ2 (λµ)
θ0

))

·

δ(hα(−µδ1 (µ)δ2 (λµ)
δ2 (λ) θ0

))−1

· δ

(
hα

(
−µδ1 (µ)δ2 (λµ)

δ2 (λ) θ0

))
· δ
(
hα

(
− q1q2θ0

δ2 (λµ)

))
·

δ(hα(q1q2µδ1 (µ)
δ2 (λ)

))−1

· δ

(
hα

(
q1q2µδ1 (µ)
δ2 (λ)

)) · δ(hα(δ2 (µ)
q2θ0

))

· δ
(
hα

(
q1 N (δ1 (µ))
δ2 (λ) θ0

))−1

· δ (hα (−1))−1 · δ (hα (−1))−1 ;

and so by (2.5),

w̃α

(
0,

N (δ1 (µ))
δ2 (λ)

)
· w̃α (0, δ2 (µ))−1 · w̃α (0, δ2 (λµ))

· w̃α
(

0,
δ2 (λµ)
q1q2

)−1

· w̃α
(

0,
δ2 (µ)
q2

)
· w̃α

(
0,
q1 N (δ1 (µ))

δ2 (λ)

)−1

=
(

N (δ1 (µ))
δ2 (λ) θ0

,− θ0

δ2 (µ)

)
k,n

·

(
−µδ1 (µ)
δ2 (λ)

,
δ2 (λµ)
θ0

)
k,n

·

(
−µδ1 (µ)δ2 (λµ)

δ2 (λ) θ0
,− q1q2θ0

δ2 (λµ)

)
k,n

·

(
q1q2µδ1 (µ)
δ2 (λ)

,
δ2 (µ)
q2θ0

)
k,n

· (−1,−1)−1
k,n .
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Hence it is a matter of simplifying using (2.11), (2.12) and (2.13) to get

w̃α

(
0,

N (δ1 (µ))
δ2 (λ)

)
· w̃α (0, δ2 (µ))−1 · w̃α (0, δ2 (λµ))

· w̃α
(

0,
δ2 (λµ)
q1q2

)−1

· w̃α
(

0,
δ2 (µ)
q2

)
· w̃α

(
0,
q1 N (δ1 (µ))

δ2 (λ)

)−1

=

(
−µδ1 (µ)q2

δ2 (λ)
, q1

)
k,n

·
(
δ2 (λµ)
δ2 (µ)

, q1q2

)
k,n

.

Therefore,

w̃α

(
0,

N (δ1 (µ))
δ2 (λ)

)
· w̃α (0, δ2 (µ))−1 · w̃α (0, δ2 (λµ))

=

(
−µδ1 (µ)q2

δ2 (λ)
, q1

)
k,n

·
(
δ2 (λµ)
δ2 (µ)

, q1q2

)
k,n

· w̃α
(

0,
q1 N (δ1 (µ))

δ2 (λ)

)

· w̃α
(

0,
δ2 (µ)
q2

)−1

· w̃α
(

0,
δ2 (λµ)
q1q2

)
.

Replacing the above in (4.17) gives

bα (λ, µ) = w̃α (1, δ1 (λ)) · w̃α (1, δ1 (µ)) ·

[(
−µδ1 (µ)q2

δ2 (λ)
, q1

)
k,n

·
(
δ2 (λµ)
δ2 (µ)

, q1q2

)
k,n

· w̃α
(

0,
q1 N (δ1 (µ))

δ2 (λ)

)
· w̃α

(
0,
δ2 (µ)
q2

)−1

· w̃α
(

0,
δ2 (λµ)
q1q2

)]
· w̃α (y(λµ), δ1 (λµ))−1

,

and since by Proposition 2.4,

w̃α (1, δ1 (µ)) · w̃α
(

0,
q1 N (δ1 (µ))

δ2 (λ)

)
= w̃α

(
0,
δ2 (λ)
q1

)−1

· w̃α (1, δ1 (µ)) ,

using this in the equation above gives

bα (λ, µ) =

(
−µδ1 (µ)q2

δ2 (λ)
, q1

)
k,n

·
(
δ2 (λµ)
δ2 (µ)

, q1q2

)
k,n

· w̃α (1, δ1 (λ))

· w̃α
(

0,
δ2 (λ)
q1

)−1

· w̃α (1, δ1 (µ)) · w̃α
(

0,
δ2 (µ)
q2

)−1

· w̃α
(

0,
δ2 (λµ)
q1q2

)
· w̃α (y(λµ), δ1 (λµ))−1

.
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By (4.5) and (4.6),

bα (λ, µ) =

(
−µδ1 (µ)q2

δ2 (λ)
, q1

)
k,n

·
(
δ2 (λµ)
δ2 (µ)

, q1q2

)
k,n

· w̃α (1, δ1 (λq1))

· w̃α (0, δ2 (λq1))−1 · w̃α (1, δ1 (µq2)) · w̃α (0, δ2 (µq2))−1

· w̃α
(

0,
δ2 (λµ)
q1q2

)
· w̃α (y(λµ), δ1 (λµ))−1

,

and using (2.4) on the right-hand side gives

bα (λ, µ) =

(
−µδ1 (µ)q2

δ2 (λ)
, q1

)
k,n

·
(
δ2 (λµ)
δ2 (µ)

, q1q2

)
k,n

· δ (hα (λq1)) · δ (hα (µq2))

· w̃α
(

0,
δ2 (λµ)
q1q2

)
· w̃α (y(λµ), δ1 (λµ))−1

.

By (4.5), (4.6), Proposition 2.1 and (2.4),

w̃α

(
0,
δ2 (λµ)
q1q2

)
· w̃α (y(λµ), δ1 (λµ))−1

=


w̃α (0, δ2 (λµq1q2)) · w̃α (1, δ1 (λµq1q2))−1

, if λµ /∈ k×;

w̃α

(
0,

θ0

q1q2

)
· w̃α (0, λµθ0)−1

, if λµ ∈ k×,

=


δ (hα (λµq1q2))−1

, if λµ /∈ k×;

δ

(
hα

(
1
q1q2

))
· δ (hα (λµ))−1

, if λµ ∈ k×.

So if λµ /∈ k×,

bα (λ, µ) =

(
−µδ1 (µ)q2

δ2 (λ)
, q1

)
k,n

·
(
δ2 (λµ)
δ2 (µ)

, q1q2

)
k,n

· δ (hα (λq1)) · δ (hα (µq2))

· δ (hα (λµq1q2))−1

=

(
−µδ1 (µ)q2

δ2 (λ)
, q1

)
k,n

·
(
δ2 (λµ)
δ2 (µ)

, q1q2

)
k,n

· bα (λq1, µq2)

by (2.5). If λµ ∈ k×,

bα (λ, µ) =

(
−µδ1 (µ)q2

δ2 (λ)
, q1

)
k,n

·
(
δ2 (λµ)
δ2 (µ)

, q1q2

)
k,n

· δ (hα (λq1)) · δ (hα (µq2))

·
[
δ (hα (λµq1q2))−1 · δ (hα (λµq1q2))

]
· δ
(
hα

(
1
q1q2

))
· δ (hα (λµ))−1

,
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and since by Proposition 2.1, δ2 (λµ) = θ0, this shows by using (2.5) that

bα (λ, µ) =

(
−µδ1 (µ)q2

δ2 (λ)
, q1

)
k,n

·
(

θ0

δ2 (µ)
, q1q2

)
k,n

· bα (λq1, µq2)

·
(
λµq1q2,

1
q1q2

)
k,n

.

Thus,

bα (λ, µ) =

(
−µδ1 (µ)q2

δ2 (λ)
, q1

)
k,n

·
(
− θ0

λµδ2 (µ)
, q1q2

)
k,n

· bα (λq1, µq2)

by (2.12), (2.13) and (2.11). Therefore we have proven our result. �

Proposition 4.8. For λ /∈ k×, q ∈ k×,

bα
(
λ, λ−1q

)
= (−1,N (λ))k,n ·

(
−λδ1 (λ)

θ0
, q

)
k,n

.

Proof. This is easily proved using Lemmas 4.6 and 4.7.

By Lemma 4.6,

bα
(
λ, λ−1

)
= (−1,N (λ))k,n ,

and by Lemma 4.7,

bα
(
λ, λ−1

)
= bα

(
λ · 1, λ−1q

)
·

(
−λ
−1δ1 (λ−1)q
δ2 (λ)

, 1

)
k,n

·
(
− θ0

λλ−1δ2 (λ−1)
, 1 · q

)
k,n

.

Hence,

bα
(
λ, λ−1q

)
= (−1,N (λ))k,n ·

(
− θ0

δ2 (λ−1)
, q

)−1

k,n

.

By the proof of Lemma 4.6, δ2
(
λ−1

)
= N (λ) δ2 (λ). The right-hand side becomes

bα
(
λ, λ−1q

)
= (−1,N (λ))k,n ·

(
− θ0

N (λ) δ2 (λ)
, q

)−1

k,n

,

and so

bα
(
λ, λ−1q

)
= (−1,N (λ))k,n ·

(
−λδ1 (λ)

θ0
, q

)
k,n

by (4.1), since λ = δ1 (λ) /δ2 (λ). �
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Remark 4.9. Proposition 4.8 shows that for λ, µ /∈ k× such that λµ ∈ k×,

bα (λ, µ) = (−1,N (λ))k,n ·

(
−λδ1 (λ)

θ0
, λµ

)
k,n

.

Therefore we may assume that λ, µ, λµ /∈ k× for the last section.

4.4. The most general case

Before we can calculate bα (λ, µ) for λ, µ, λµ /∈ k×, we must first calculate the

commutator of the 2-cocycle σu on T (k).

Let us define what a commutator is. Let σ be a 2-cocycle on an abelian group

T with values in µn. Then the commutator of σ is defined by

[x, y] = σ(x, y)/σ(y, x),

where x, y ∈ T . The commutator of σ is both bimultiplicative, i.e. for x, x′, y,

y′ ∈ T ,

[xx′, y] = [x, y][x′, y] and [x, yy′] = [x, y][x, y′];

and skew-symmetric, i.e.

[x, x] = 1.

These are the standard properties of the commutator of σ. The commutator of σ

depends only on the cohomology class of σ, and if T is a locally compact topological

group and σ is measurable then the commutator of σ is continuous.

Lemma 4.10. Let λ, µ ∈ K×, and the commutator of the 2-cocycle σu on T (k)

be

[λ, µ]σu =
σu (hα (λ) , hα (µ))
σu (hα (µ) , hα (λ))

= δ (hα (λ)) · δ (hα (µ)) · δ (hα (λ))−1 · δ (hα (µ))−1
.

Then

[λ, µ]σu = (λ, µ)2
K,n · (λ, µ)−1

K,n .

Proof. We first assume that K = k ⊕ k, i.e. K/k is a split extension. In this

case, SU(2, 1)(k) ∼= SL3(k). Let λ = (λ1, λ2) and µ = (µ1, µ2), where λ, µ ∈ K×.
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The isomorphism on T (k) may be described by

T (k) ∼=




x 0 0

0 y 0

0 0 z

 ∈ SL3(k) : x, y, z ∈ k×, xyz = 1


λ 0 0

0 λ/λ 0

0 0 λ
−1

 7→

λ1 0 0

0 λ2/λ1 0

0 0 λ−1
2

 .

It has been established in Section 0.1 of [8] that the commutator of the 2-

cocycle σ′ ∈ H2(SL3, µ(k)) on the diagonal elements of SL3(k) may be described

as

σ′



h1 0 0

0 h2 0

0 0 h3

 ,


h′1 0 0

0 h′2 0

0 0 h′3




σ′



h′1 0 0

0 h′2 0

0 0 h′3

 ,


h1 0 0

0 h2 0

0 0 h3




= (h1, h
′
1)k,n · (h2, h

′
2)k,n · (h3, h

′
3)k,n .

Since σ′ differs from σu by at most a 1-coboundary, this implies that we may use

the above equation to calculate [λ, µ]σu in the case where K/k is a split extension.

Thus

[λ, µ]σu = (λ1, µ1)k,n · (λ2/λ1, µ2/µ1)k,2 ·
(
λ−1

2 , µ−1
2

)
k,n

.

By (2.11) and (4.1),

[λ, µ]σu = (λ1, µ1)k,n ·
[
(λ2, µ2)k,n · (λ1, µ2)−1

k,n · (λ2, µ1)−1
k,n · (λ1, µ1)k,n

]
· (λ2, µ2)k,n

=
[
(λ1, µ1)k,n · (λ2, µ2)k,n

]2
·
[
(λ1, µ2)k,n · (λ2, µ1)k,n

]−1

.

Let us define (as in the Introduction)

(λ, µ)K,n = (λ1, µ1)k,n · (λ2, µ2)k,n .
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Since µ = (µ2, µ1), this implies that

[λ, µ]σu = (λ, µ)2
K,n · (λ, µ)−1

K,n .

We want to show that the above equation holds for all quadratic extensions

K/k. In order to do so, we first assume that π is the prime element of K and

that n is coprime to π. By the properties of the commutator of the 2-cocycle, the

commutator of the 2-cocycle σu on the torus is a map

∧2 (
K×/(K×)n

)
→ µn.

When π does not divide n, this means that

K×/(K×)n ∼= Z/n⊕ Z/n,

and therefore ∧2 (
K×/(K×)n

) ∼= Z/n,

which is generated by the element a∧π, where a is a generator for (OK/π)×/n. In

particular, a is a unit. Thus, [−,−]σu is determined by [a, π]σu , and we only need

to check first that

[a, π]σu = (a, π)2
K,n · (a, π)−1

K,n ,

and second that the right hand side of this equation is bimultiplicative and skew-

symmetric. We will demonstrate the bimultiplicativity and skew-symmetry at the

end of this proof.

For λ, µ ∈ K×, we have by (2.5) that

[λ, µ]σu = δ (hα (λ)) · δ (hα (µ)) · δ (hα (λ))−1 · δ (hα (µ))−1
.
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By Proposition 2.4,

δ (hα (λ)) · δ (hα (µ)) · δ (hα (λ))−1

=
[
w̃α (y(λ), δ1 (λ)) · w̃α

(
0, δ2 (λ)

)]
· w̃α (y(µ), δ1 (µ)) · w̃α

(
0, δ2 (µ)

)
·
[
w̃α (y(λ), δ1 (λ)) · w̃α

(
0, δ2 (λ)

)]−1

= w̃α

(
y(µ)δ2 (λ)δ1 (λ)2

δ2 (λ)2
δ1 (λ)

,
δ1 (µ) N (δ1 (λ))

N (δ2 (λ))

)
· w̃α

(
0,
δ2 (µ) N (δ1 (λ))

N (δ2 (λ))

)

where y is defined as in (2.1), and hence

δ (hα (λ)) · δ (hα (µ)) · δ (hα (λ))−1

= w̃α

(
y(µ)λ2

λ
,N (λ) δ1 (µ)

)
· w̃α (0,N (λ) δ2 (µ))−1

.

Therefore, if λ /∈ k×, µ ∈ k×, then y(µ) = 0, hence by the above,

[λ, µ]σu = w̃α (0,N (λ) δ1 (µ)) · w̃α (0,N (λ) δ2 (µ))−1 · δ (hα (µ))−1
.

By Proposition 2.1, δ1 (µ) = µθ0 and δ2 (µ) = θ0. Hence by (2.4),

[λ, µ]σu = w̃α (0,N (λ)µθ0) · w̃α (0,N (λ) θ0)−1 · δ (hα (µ))−1

= w̃α (0,N (λ)µθ0) ·
[
w̃α (0, θ0)−1 · w̃α (0, θ0)

]
· w̃α (0,N (λ) θ0)−1

· δ (hα (µ))−1

= δ (hα (N (λ)µ)) · δ (hα (N (λ)))−1 · δ (hα (µ))−1
.

This implies by (2.5) that

[λ, µ]σu = (µ,N (λ))−1
k,n ;

hence by (4.1) and (2.12),

[λ, µ]σu = (N (λ) , µ)k,n .

In the case where K/k is an unramified extension, we may take π ∈ k. So

assuming that K/k is an unramified extension and that π is coprime to n, we have

[a, π]σu = (N (a) , π)k,n .
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Hence by the above and (3.9),

[a, π]σu = (a, π)K,n = (a, π)2
K,n · (a, π)−1

K,n = (a, π)2
K,n · (a, π)−1

K,n ,

and hence for all unramified extensions K/k with π coprime to n,

[λ, µ]σu = (λ, µ)2
K,n · (λ, µ)−1

K,n .

We now use the product formula to show that the above is true for all quadratic

extensions K/k. We will need to use the adèle group (see Subsection 1.4.3). We

define some notation. Let L/l ⊃ µn be a global quadratic extension. Let p be

a prime of l, lp the localisation of l at p, and just as in Subsection 1.4.3, let

Lp = lp ⊗l L, i.e.

Lp =


lp(θ0), if pOL does not split in OL;

lp ⊕ lp, if pOL splits in OL.

Now let σp ∈ H2(G(lp), µn) such that σp = σu when k = lp and K = Lp. Then for

almost all primes p of l, we know that for λ, µ ∈ L×p ,

[λ, µ]σp = (λ, µ)2
Lp,n · (λ, µ)−1

Lp,n
.

We also know that since
∏

p σp splits on G(l), if λ, µ ∈ L×, then

∏
p

[λ, µ]σp = 1.

In addition, by the product formula (Theorem 3.2), for λ, µ ∈ L×,

∏
p

(
(λ, µ)2

Lp,n · (λ, µ)−1
Lp,n

)
= 1.

Now choose a prime p that is not unramified and coprime to n, and also not

split. Let λ, µ ∈ L×p , and choose λ′, µ′ ∈ L× close to λ and µ respectively such

that

[λ, µ]σp = [λ′, µ′]σp , (λ, µ)2
Lp,n · (λ, µ)−1

Lp,n
= (λ′, µ′)2

Lp,n · (λ
′, µ′)−1

Lp,n
;
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and such that λ′, µ′ are close to 1 in Lq for all other primes q which are not

unramified and coprime to n and also not split, i.e.

[λ′, µ′]σq = 1 = (λ′, µ′)2
Lq,n · (λ

′, µ′)−1
Lq,n

.

Then by the product formula,

(λ′, µ′)2
Lp,n · (λ

′, µ′)−1
Lp,n

=
∏
v6=p

(
(λ′, µ′)2

Lv,n · (λ
′, µ′)−1

Lv,n

)−1

=
∏
q

(
(λ′, µ′)2

Lq,n · (λ
′, µ′)−1

Lq,n

)−1

=
∏
q

[λ′, µ′]−1
σq

=
∏
v 6=p

[λ′, µ′]−1
σv

= [λ′, µ′]σp .

The above implies that for all local quadratic extensions K/k, λ, µ ∈ K×, we

have

[λ, µ]σu = (λ, µ)2
K,n · (λ, µ)−1

K,n ,

but as stated earlier, we should show that the map (λ, µ) 7→ (λ, µ)2
K,n · (λ, µ)−1

K,n

is indeed a map
∧2

(K×/(K×)n) → µn. Thus, we need to show that the map is

bimultiplicative and skew-symmetric.

It is trivial to show that the map is bimultiplicative. To show skew-symmetry,

we first note that by (2.13),

(λ, λ)2
K,n = (λ,−1)2

K,n ;

and by (4.1),

(λ,−1)2
K,n =

(
λ, (−1)2

)
K,n

= 1.

Now assume that Tr (λ) = 0. Then λ = −λ, and by (2.13),

(
λ, λ

)
K,n

= (λ,−λ)K,n = 1.

Hence in this case, (λ, λ)2
K,n ·

(
λ, λ

)−1

K,n
= 1.
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As for the case where Tr (λ) 6= 0, let λ = sλ′, where s ∈ k× and Tr (λ′) = 1.

Then λ′ = 1− λ′, and hence by (2.11),

(
λ, λ

)
K,n

= (sλ′, s(1− λ′))K,n = (s, s)K,n · (s, 1− λ
′)K,n · (λ

′, s)K,n · (λ
′, 1− λ′)K,n .

By (2.12), (2.13) and (2.14),

(
λ, λ

)
K,n

= (s,−1)K,n ·
(
s, λ′

)
K,n
·
(
s, λ′−1

)
K,n
· 1;

and by (2.11), (
λ, λ

)
K,n

=
(
s,−λ

′

λ′

)
K,n

.

Hence by (3.8), (
λ, λ

)
K,n

=
(
s,N

(
−λ
′

λ′

))
k,n

= 1.

Therefore (λ, λ)2
K,n ·

(
λ, λ

)−1

K,n
= 1 in this case as well, i.e. the map (λ, µ) 7→

(λ, µ)2
K,n · (λ, µ)−1

K,n is skew-symmetric and hence the formula for the commutator

on the torus is indeed [λ, µ]σu = (λ, µ)2
K,n · (λ, µ)−1

K,n. �

We are now ready to find the explicit formula for bα (λ, µ), with λ, µ, λµ /∈ k×.

Proposition 4.11. For λ, µ /∈ k× such that λµ /∈ k×,

bα (λ, µ) =
(
−N (δ1 (µ))

N (δ1 (λ))
,

N (λ)
q2

)
k,n

·

(
q,
µδ1 (µ)
δ2 (λ)

)
k,n

· Σ′(λ, µ),

where, if λ = a+ bθ0, µ = c+ dθ0, with a, c ∈ k, b, d ∈ k×,

q = a+
bc

d
,

and

Σ′(λ, µ) =



(
− N (λ)

4a2 N (δ1 (µ))
,

(N (λ))2b4θ4
0

((a− q)a− b2θ2
0)4

)
k,n

, if λ /∈ k×θ0, aq 6= N (λ);(
(N (λ))2b4θ4

0

((a− q)a+ b2θ2
0)4

,− N (λ)
4a2 N (δ1 (µ))

)
k,n

, if λ /∈ k×θ0, aq = N (λ);

1, if λ ∈ k×θ0.
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Proof. This proof will follow closely the methods used in Section 2.29 of [6].

For some (pi, li), (ri,mi) ∈ A, ti ∈ K×, i = 1, 2, 3, define

g2((pi, li), ti, (ri,mi)) = xα (pi, li) · hα (ti) · wα (0, θ0) · xα (ri,mi) ,

and let

ei = g2((pi, li), ti, (ri,mi)).

We will consider the case when (rj ,mj) 6= (−pj+1, lj+1), j = 1, 2. For any

(p′, l′), (r′,m′) ∈ A, let (p′, l′) ◦ (r′,m′) be defined as the element (s′, n′) ∈ A such

that xα (s′, n′) = xα (p′, l′) ·xα (r′,m′), i.e. (p′, l′)◦ (r′,m′) = (p′+r′, l′+m′−p′r′).

(Clearly the operation is associative.)

As a first step, we let

(r1,m1) ◦ (p2, l2) = (s1, n1).

Then,

δ(e1) · δ(e2) = x̃α (p1, l1) · δ (hα (t1)) · w̃α (0, θ0) · x̃α (s1, n1) · δ (hα (t2))

· w̃α (0, θ0) · x̃α (r2,m2) .

By Proposition 2.4,

w̃α (0, θ0) · x̃α (s1, n1) · w̃α (0, θ0)−1 = x̃−α

(
−s1

θ0
,−n1

θ2
0

)
.

This implies that

δ(e1) · δ(e2) = x̃α (p1, l1) · δ (hα (t1)) · x̃−α
(
−s1

θ0
,−n1

θ2
0

)
· w̃α (0, θ0)

· δ (hα (t2)) · w̃α (0, θ0) · x̃α (r2,m2) .

By Proposition 2.4 again,

w̃α

(
−s1θ0

n1
,− θ

2
0

n1

)
= x̃α

(
−s1θ0

n1
,− θ

2
0

n1

)
· x̃−α

(
−s1

θ0
,−n1

θ2
0

)
· x̃α

(
−s1θ0

n1
,− θ

2
0

n1

)
.
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Hence inserting the above into our equation,

δ(e1) · δ(e2) = x̃α (p1, l1) · δ (hα (t1)) · x̃α
(
s1θ0

n1
,− θ

2
0

n1

)
· w̃α

(
−s1θ0

n1
,− θ

2
0

n1

)
· x̃α

(
s1θ0

n1
,− θ

2
0

n1

)
· w̃α (0, θ0) · δ (hα (t2)) · w̃α (0, θ0)

· x̃α (r2,m2) .

By Proposition 2.4, for arbitrary (r,m), (r′,m′), (p′, l′) ∈ A,

[w̃α (r,m) · w̃α (r′,m′)] · xα (p′, l′) · [w̃α (r,m) · w̃α (r′,m′)]−1

= w̃α (r,m) · x̃−α
(
p′ ·m′
(m′)2

,
l′

N (m′)

)
· w̃α (r,m)−1

= x̃α

(
p′ ·m′

(m′)2
· m

2

m
,

l′

N (m′)
·N (m)

)
,

therefore by the above, (2.4) and (4.7),

δ (hα (t1)) · x̃α
(
s1θ0

n1
,− θ

2
0

n1

)
· δ (hα (t1))−1

=
[
w̃α (y(t1), δ1 (t1)) · w̃α (0, δ2 (t1))−1

]
· x̃α

(
s1θ0

n1
,− θ

2
0

n1

)
·
[
w̃α (y(t1), δ1 (t1)) · w̃α (0, δ2 (t1))−1

]−1

=
[
w̃α (y(t1), δ1 (t1)) · w̃α

(
0, δ2 (t1)

)]
· x̃α

(
s1θ0

n1
,− θ

2
0

n1

)
·
[
w̃α (y(t1), δ1 (t1)) · w̃α

(
0, δ2 (t1)

)]−1

= x̃α

(
s1t

2
1θ0

n1t1
,−N (t1) θ2

0

n1

)
,
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where y is as defined in (2.1). Also by the same method,

[w̃α (0, θ0) · δ (hα (t2)) · w̃α (0, θ0)]−1 · x̃α
(
s1θ0

n1
,− θ

2
0

n1

)
· [w̃α (0, θ0) · δ (hα (t2)) · w̃α (0, θ0)]

=
[
w̃α (0,−θ0) · w̃α (0, δ2 (t2)) · w̃α

(
−y(t2), δ1 (t1)

)
· w̃α (0,−θ0)

]
· x̃α

(
s1θ0

n1
,− θ

2
0

n1

)
·
[
w̃α (0,−θ0) · w̃α (0, δ2 (t2)) · w̃α

(
−y(t2), δ1 (t1)

)
· w̃α (0,−θ0)

]−1

= [w̃α (0,−θ0) · w̃α (0, δ2 (t2))] · x̃α

s1θ0

n1
·
−
(
δ1 (t2)

)2

δ1 (t2) θ0
,− θ

2
0

n1
· N (δ1 (t2))
−θ2

0


· [w̃α (0,−θ0) · w̃α (0, δ2 (t2))]−1

= x̃α

−s1

(
δ1 (t2)

)2

n1δ1 (t2)
· δ2 (t2) θ0(
δ2 (t2)

)2 ,
N (δ1 (t2))

n1
· −θ2

0

N (δ2 (t2))


= x̃α

(
−s1(t2)2θ0

n1t2
,−N (t2) θ2

0

n1

)
.

Using these in the equation for δ(e1) · δ(e2),

(4.18) δ(e1) · δ(e2) = x̃α (p1, l1) · x̃α
(
s1t

2
1θ0

n1t1
,−N (t1) θ2

0

n1

)
· δ (hα (t1))

· w̃α
(
−s1θ0

n1
,− θ

2
0

n1

)
· w̃α (0, θ0) · δ (hα (t2)) · w̃α (0, θ0)

· x̃α
(
−s1(t2)2θ0

n1t2
,−N (t2) θ2

0

n1

)
· x̃α (r2,m2) .

Also, since the above applies also in the group G(k) with the corresponding

group elements, and

wα

(
−s1θ0

n1
,− θ

2
0

n1

)
· wα (0, θ0) = hα

(
θ0

n1

)
,

this implies that

e1e2 = xα (p1, l1) · xα
(
s1t

2
1θ0

n1t1
,−N (t1) θ2

0

n1

)
· hα

(
t1t2θ0

n1

)
· wα (0, θ0)

· xα
(
−s1(t2)2θ0

n1t2
,−N (t2) θ2

0

n1

)
· xα (r2,m2) ;
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i.e.

(4.19) e1e2 = g2

[
(p1, l1) ◦

(
s1t

2
1θ0

n1t1
,−N (t1) θ2

0

n1

)
,
t1t2θ0

n
,

(
−s1(t2)2θ0

n1t2
,−N (t2) θ2

0

n1

)
◦ (r2,m2)

]
.

Let λ = a+ bθ0, with a ∈ k, b ∈ k×. Define

n1 = δ1 (λ) = −1
2
− a

2bθ0
, n′ = δ2 (λ) = − 1

2bθ0
.

If λ ∈ k×θ0, then n1 ∈ k×. As we will see later, this implies that there are two

cases to consider.

Let t3 = n′/θ0, t−1
1 = t2 = n1/θ0. Choose (r1,m1), (p2, r2) ∈ A such that

(r1,m1) ◦ (p2, l2) = (1, n1),

which is always possible. Also, choose (r2,m2) and (p3, l3) ∈ A such that

(r2,m2) ◦ (p3, l3) = (0, n′).

Then by (4.19),

e1e2 = g2

(
(p1, l1) ◦

(
− θ

2
0

n2
1

,
θ4

0

n2
1n1

)
,
θ0

n1
,

(
− (n1)2

n2
1

, n1

)
◦ (r2,m2)

)
,

e2e3 = g2

(
(p2, l2) ◦

(
0,

N (n1)
n′

)
,
n1

θ0
,
(
0, n′

)
◦ (r3,m3)

)
.

Let[(
− (n1)2

n2
1

, n1

)
◦ (r2,m2)

]
◦ (p3, l3) =

(
− (n1)2

n2
1

, n1

)
◦ (0, n′) = (− (n1)2

n2
1

, n′′),

so that

n′′ = n1 + n′ 6= 0;

and let

(r1,m1) ◦
[
(p2, l2) ◦

(
0,

N (n1)
n′

)]
= (1, n1) ◦

(
0,

N (n1)
n′

)
= (1, n′′′),

so that

n′′′ = n1 +
N (n1)
n′

6= 0.
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This implies that by (4.19),

e1e2 · e3 = g2

[
(p1, l1) ◦

(
− θ

2
0

n2
1

,
θ4

0

n2
1n1

)
◦
(

θ2
0

n1n′′
,

θ4
0

N (n1)n′′

)
,
n′θ0

n1n′′
,(

− (n1)2n′

n2
1n
′′ ,

N (n′)
n′′

)
◦ (r3,m3)

]
,

e1 · e2e3 = g2

[
(p1, l1) ◦

(
− n1θ

2
0

n2
1n
′′′
,

θ4
0

N (n1)n′′′

)
,
θ0

n′′′
,(

− (n1)2

n′′′n1
,

N (n1)
n′′′

)
◦
(
0, n′

)
◦ (r3,m3)

]
.

Since for all g, g′ ∈ G(k),

σu (g, g′) = δ(g) · δ(g′) · δ(gg′)−1,

we will work out σu (e1, e2), σu (e1e2, e3), σu (e2, e3) and σu (e1, e2e3) and use the

2-cocycle condition to get our result.

We first assume that λ /∈ k×θ0, so that n1 /∈ k×. Firstly, by (4.18),

δ(e1) · δ(e2) = x̃α (p1, l1) · x̃α
(
− θ

2
0

n2
1

,
θ4

0

n2
1n1

)
· δ
(
hα

(
θ0

n1

))
· w̃α

(
− θ0

n1
,− θ

2
0

n1

)
· w̃α (0, θ0) · δ

(
hα

(
n1

θ0

))
· w̃α (0, θ0) · x̃α

(
− (n1)2

n2
1

, n1

)
· x̃α (r2,m2) .

Consider (using (4.7))

w̃α (1, n1) · w̃α
(
− θ0

n1
,− θ

2
0

n1

)−1

= w̃α (−1, n1)−1 · w̃α
(
θ0

n1
,− θ

2
0

n1

)
.

By Lemma 4.4,

w̃α (1, n1) · w̃α
(
− θ0

n1
,− θ

2
0

n1

)−1

= w̃α (−1, n1)−1 · w̃α
(
θ0

n1
,− θ

2
0

n1

)
=
(
− (−1/2)2 N (n1/θ0)

(1/(2θ2
0))2 N (n1) θ2

0

,− a

2bθ2
0

+
(a/(2bθ2

0))(1/(2θ2
0))θ2

0

−1/2

)
k,n

·
(
− (1/(2θ2

0)) N (n1)
−1/2

,N
(
n1

θ0

))
k,n

· δ
(
hα

(
N
(
n1

θ0

)))
=
(

1,− a

bθ2
0

)
k,n

·
(

N (n1)
θ2

0

,−N (n1)
θ2

0

)
k,n

· δ
(
hα

(
−N (n1)

θ2
0

))
;
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and hence by (2.13),

w̃α (1, n1) · w̃α
(
− θ0

n1
,− θ

2
0

n1

)−1

= δ

(
hα

(
−N (n1)

θ2
0

))
.

(Note that the calculation of

w̃α

(
− θ0

n1
,− θ

2
0

n1

)
· w̃α (1, n1)−1 = w̃α

(
θ0

n1
,− θ

2
0

n1

)−1

· w̃α (−1, n1)

is unsuitable as it gives q1 = 0 in Lemma 4.4.) Hence,

(4.20) w̃α

(
− θ0

n1
,− θ

2
0

n1

)
= δ

(
hα

(
−N (n1)

θ2
0

))−1

· w̃α (1, n1) ,

and this clearly applies to any n1 ∈ δ1 (K×) with n1 /∈ k×. By our previous

calculations in this proof, we have

(4.21) σu (e1, e2) = x̃α (p1, l1) · x̃α
(
− θ

2
0

n2
1

,
θ4

0

n2
1n1

)
· δ
(
hα

(
θ0

n1

))
· w̃α

(
− θ0

n1
,− θ

2
0

n1

)
· w̃α (0, θ0) · δ

(
hα

(
n1

θ0

))
· δ
(
hα

(
θ0

n1

))−1

· x̃α
(
− θ

2
0

n2
1

,
θ4

0

n2
1n1

)−1

· x̃α (p1, l1)−1
.

Applying (4.20) to the above,

σu (e1, e2) = x̃α (p1, l1) · x̃α
(
− θ

2
0

n2
1

,
θ4

0

n2
1n1

)
· δ
(
hα

(
θ0

n1

))

·

[
δ

(
hα

(
−N (n1)

θ2
0

))−1

· w̃α (1, n1)

]
· w̃α (0, θ0) · δ

(
hα

(
n1

θ0

))

· δ
(
hα

(
θ0

n1

))−1

· x̃α
(
− θ

2
0

n2
1

,
θ4

0

n2
1n1

)−1

· x̃α (p1, l1)−1 ;

and since σu (g, g′) is central in G̃, the first two terms must cancel the last two

terms, giving

σu (e1, e2) = δ

(
hα

(
θ0

n1

))
· δ
(
hα

(
−N (n1)

θ2
0

))−1

· w̃α (1, n1) · w̃α (0, θ0)

· δ
(
hα

(
n1

θ0

))
· δ
(
hα

(
θ0

n1

))−1

.
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By (4.7),

σu (e1, e2) = δ

(
hα

(
θ0

n1

))
· δ
(
hα

(
−N (n1)

θ2
0

))−1

· w̃α (1, n1) · w̃α (0,−θ0)−1

· δ
(
hα

(
n1

θ0

))
· δ
(
hα

(
θ0

n1

))−1

,

which implies by (2.4) that

σu (e1, e2) = δ

(
hα

(
θ0

n1

))
· δ
(
hα

(
−N (n1)

θ2
0

))−1

· δ
(
hα

(
−n1

θ0

))
· δ
(
hα

(
n1

θ0

))
· δ
(
hα

(
θ0

n1

))−1

.

We have by (2.5) that

bα

(
−N (n1)

θ2
0

,
θ0

n1

)
= δ

(
hα

(
−N (n1)

θ2
0

))
· δ
(
hα

(
θ0

n1

))
· δ
(
hα

(
−n1

θ0

))−1

,

i.e.

δ

(
hα

(
−N (n1)

θ2
0

))−1

· δ
(
hα

(
−n1

θ0

))
= bα

(
−N (n1)

θ2
0

,
θ0

n1

)−1

· δ
(
hα

(
θ0

n1

))
.

Replacing the above in the equation for σu (e1, e2),

σu (e1, e2) = δ

(
hα

(
θ0

n1

))
·

[
bα

(
−N (n1)

θ2
0

,
θ0

n1

)−1

· δ
(
hα

(
θ0

n1

))]

· δ
(
hα

(
n1

θ0

))
· δ
(
hα

(
θ0

n1

))−1

.

Using the notation in Lemma 4.10,

σu (e1, e2) = bα

(
−N (n1)

θ2
0

,
θ0

n1

)−1

· δ
(
hα

(
θ0

n1

))
·

[ [
θ0

n1
,
n1

θ0

]
σu

· δ
(
hα

(
n1

θ0

))
· δ
(
hα

(
θ0

n1

))]
· δ
(
hα

(
θ0

n1

))−1

= bα

(
−N (n1)

θ2
0

,
θ0

n1

)−1

·
[
θ0

n1
,
n1

θ0

]
σu

· δ
(
hα

(
θ0

n1

))
· δ
(
hα

(
n1

θ0

))
,

thus by (2.5),

σu (e1, e2) = bα

(
−N (n1)

θ2
0

,
θ0

n1

)−1

·
[
θ0

n1
,
n1

θ0

]
σu

· bα
(
θ0

n1
,
n1

θ0

)
.
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By Lemma 4.10, [
θ0

n1
,
n1

θ0

]
σu

=
(
θ0

n1
,
n1

θ0

)2

K,n

·
(
θ0

n1
,−n1

θ0

)−1

K,n

.

Using the properties of Hilbert symbols, by (2.13),(
θ0

n1
,
n1

θ0

)
K,n

=
(
θ0

n1
,−n1

θ0
· n1

θ0

)
K,n

;

and by (3.9) and (2.13),(
θ0

n1
,
n1

θ0

)
K,n

=
(

N
(
θ0

n1

)
,N
(
n1

θ0

))
k,n

=
(

N
(
θ0

n1

)
,−1

)
k,n

.

Therefore by (4.1), (
θ0

n1
,
n1

θ0

)2

K,n

=
(

N
(
θ0

n1

)
, (−1)2

)
k,n

= 1.

Also by (2.13), (
θ0

n1
,−n1

θ0

)
K,n

= 1.

Hence, we have [
θ0

n1
,
n1

θ0

]
σu

= 1.

By Proposition 4.2,

bα

(
−N (n1)

θ2
0

,
θ0

n1

)−1

=

(
−N (n1)

θ2
0

,
(θ0/n1)δ1 (θ0/n1)

θ0

)−1

k,n

=
(
−N (n1)

θ2
0

, 1
)−1

k,n

= 1.

Thus,

σu (e1, e2) = bα

(
θ0

n1
,
n1

θ0

)
.
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Using (4.18) also gives

σu (e1e2, e3) = [δ(e1e2) · δ(e3)] · δ(e1e2 · e3)−1

= x̃α (p1, l1) · x̃α
(
− θ

2
0

n2
1

,
θ4

0

n2
1n1

)
· x̃α

(
θ2

0

n1n′′
,

θ4
0

N (n1)n′′

)
· δ
(
hα

(
θ0

n1

))
· w̃α

(
(n1)2θ0

n2
1n
′′
,− θ

2
0

n′′

)
· w̃α (0, θ0) · δ

(
hα

(
n′

θ0

))

· δ
(
hα

(
n′θ0

n1n′′

))−1

·
[
x̃α (p1, l1) · x̃α

(
− θ

2
0

n2
1

,
θ4

0

n2
1n1

)
· x̃α

(
θ2

0

n1n′′
,

θ4
0

N (n1)n′′

)]−1

,

and since σu (e1e2, e3) is a central element of G̃,

(4.22) σu (e1e2, e3) = δ

(
hα

(
θ0

n1

))
· w̃α

(
(n1)2θ0

n2
1n
′′
,− θ

2
0

n′′

)
· w̃α (0, θ0)

· δ
(
hα

(
n′

θ0

))
· δ
(
hα

(
n′θ0

n1n′′

))−1

.

Consider

w̃α

(
(n1)2θ0

n2
1n
′′
,− θ

2
0

n′′

)
· w̃α

(
θ0

n′′
,− θ

2
0

n′′

)−1

=

[
w̃α

(
(n1)2θ0

n2
1n
′′
,− θ

2
0

n′′

)
· w̃α

(
n1θ0

n1n′′
,− θ

2
0

n′′

)−1
]

·

[
w̃α

(
n1θ0

n1n′′
,− θ

2
0

n′′

)
· w̃α

(
θ0

n′′
,− θ

2
0

n′′

)−1
]
.

By Lemma 4.5, it is obvious that

w̃α

(
(n1)2θ0

n2
1n
′′
,− θ

2
0

n′′

)
·w̃α

(
n1θ0

n1n′′
,− θ

2
0

n′′

)−1

= w̃α

(
n1θ0

n1n′′
,− θ

2
0

n′′

)
·w̃α

(
θ0

n′′
,− θ

2
0

n′′

)−1

,

so this implies that

w̃α

(
(n1)2θ0

n2
1n
′′
,− θ

2
0

n′′

)
· w̃α

(
θ0

n′′
,− θ

2
0

n′′

)−1

=

[
w̃α

(
n1θ0

n1n′′
,− θ

2
0

n′′

)
· w̃α

(
θ0

n′′
,− θ

2
0

n′′

)−1
]2

.
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Hence, by Lemma 4.5,

w̃α

(
n1θ0

n1n′′
,− θ

2
0

n′′

)
· w̃α

(
θ0

n′′
,− θ

2
0

n′′

)−1

=

( (
θ2

0/(2 N (n′′))
)2 N (n1)

(a/ (2bθ2
0))2 N

(
−θ2

0/n
′′
)
θ2

0

,

((
θ2

0/(2 N (n′′))
)

(−1/2)− (−(a− 1)/ (2bN (n′′)))
(
a/
(
2bθ2

0

))
θ2

0

)2
(θ2

0/(2 N (n′′)))2 N (n1)

)
k,n

=
(
b2 N (n1) θ2

0

a2 N (n′′)
,

((a− 1)a− b2θ2
0)2

4b4 N (n1) θ4
0

)
k,n

if (a− 1)a− b2θ2
0 6= 0 (we will deal with the case (a− 1)a− b2θ2

0 = 0 later). Since

λ = n1/n
′ and n′ = −1/(2bθ0),

w̃α

(
n1θ0

n1n′′
,− θ

2
0

n′′

)
· w̃α

(
θ0

n′′
,− θ

2
0

n′′

)−1

=
(
− N (λ)

4a2 N (n′′)
,− ((a− 1)a− b2θ2

0)2

N (λ) b2θ2
0

)
k,n

.

This implies that

w̃α

(
(n1)2θ0

n2
1n
′′
,− θ

2
0

n′′

)
· w̃α

(
θ0

n′′
,− θ

2
0

n′′

)−1

=
(
− N (λ)

4a2 N (n′′)
,− ((a− 1)a− b2θ2

0)2

N (λ) b2θ2
0

)2

k,n

=
(

N (λ)
4a2 N (n′′)

,
((a− 1)a− b2θ2

0)4

(N (λ))2b4θ4
0

)
k,n

by (4.1).

If (a− 1)a− b2θ2
0 = 0, then by Lemma 4.5,

w̃α

(
n1θ0

n1n′′
,− θ

2
0

n′′

)
· w̃α

(
θ0

n′′
,− θ

2
0

n′′

)−1

=

(((
θ2

0/(2 N (n′′))
)

(−1/2) + (−(a− 1)/ (2bN (n′′)))
(
a/
(
2bθ2

0

))
θ2

0

)2
(θ2

0/(2 N (n′′)))2 N (n1)
,

(
θ2

0/(2 N (n′′))
)2 N (n1)

(a/ (2bθ2
0))2 N

(
−θ2

0/n
′′
)
θ2

0

)
k,n

=
(

((a− 1)a+ b2θ2
0)2

4b4 N (n1) θ4
0

,
b2 N (n1) θ2

0

a2 N (n′′)

)
k,n

.

Since λ = n1/n
′ and n′ = −1/(2bθ0),

w̃α

(
n1θ0

n1n′′
,− θ

2
0

n′′

)
· w̃α

(
θ0

n′′
,− θ

2
0

n′′

)−1

=
(
− ((a− 1)a+ b2θ2

0)2

N (λ) b2θ2
0

,− N (λ)
4a2 N (n′′)

)
k,n

,
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thus

w̃α

(
(n1)2θ0

n2
1n
′′
,− θ

2
0

n′′

)
· w̃α

(
θ0

n′′
,− θ

2
0

n′′

)−1

=
(
− ((a− 1)a+ b2θ2

0)2

N (λ) b2θ2
0

,− N (λ)
4a2 N (n′′)

)2

k,n

=
(

((a− 1)a+ b2θ2
0)4

(N (λ))2b4θ4
0

,− N (λ)
4a2 N (n′′)

)
k,n

by (4.1). Let c1 denote the function

c1(λ) =


(
− N (λ)

4a2 N (n′′)
,

((a− 1)a− b2θ2
0)4

(N (λ))2b4θ4
0

)
k,n

, if (a− 1)a− b2θ2
0 6= 0;(

((a− 1)a+ b2θ2
0)4

(N (λ))2b4θ4
0

,− N (λ)
4a2 N (n′′)

)
k,n

, if (a− 1)a− b2θ2
0 = 0.

By (4.7) and Lemma 4.4,

w̃α (1, n′′) · w̃α
(
θ0

n′′
,− θ

2
0

n′′

)−1

= w̃α
(
−1, n′′

)−1 · w̃α
(
− θ0

n′′
,− θ

2
0

n′′

)
=
(
− (−1/2)2(−N (n′′) /(θ2

0))
(−1/(2θ2

0))2 N (n′′) θ2
0

,−a− 1
2bθ2

0

+
(−(a− 1)/(2bθ2

0))(−1/(2θ2
0))θ2

0

−1/2

)
k,n

·
(
− (−1/(2θ2

0)) N (n′′)
−1/2

,−N (n′′)
θ2

0

)
k,n

· δ
(
hα

(
−N (n′′)

θ2
0

))
=
(

1,
a− 1
bθ2

0

)
k,n

·
(
−N (n′′)

θ2
0

,−N (n′′)
θ2

0

)
k,n

· δ
(
hα

(
−N (n′′)

θ2
0

))
if a 6= 1. (Note that

w̃α

(
θ0

n′′
,− θ

2
0

n′′

)
· w̃α (1, n′′)−1 = w̃α

(
− θ0

n′′
,− θ

2
0

n′′

)−1

· w̃α
(
−1, n′′

)
gives q1 = 0 in Lemma 4.4.) This implies that by (2.13),

w̃α (1, n′′) · w̃α
(
θ0

n′′
,− θ

2
0

n′′

)−1

=
(
−N (n′′)

θ2
0

,−1
)
k,n

· δ
(
hα

(
−N (n′′)

θ2
0

))
,

i.e.

(4.23) w̃α

(
θ0

n′′
,− θ

2
0

n′′

)
=
(
−N (n′′)

θ2
0

,−1
)
k,n

· δ
(
hα

(
−N (n′′)

θ2
0

))−1

· w̃α (1, n′′)

(by (4.1)).
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If a = 1, then n′′ = −1/2. This implies that by (4.7) and Lemma 4.4,

w̃α

(
θ0

n′′
,− θ

2
0

n′′

)
· w̃α (1, n′′)−1 = w̃α

(
−2θ0, 2θ2

0

)
· w̃α

(
1,−1

2

)−1

= w̃α
(
2θ0, 2θ2

0

)−1 · w̃α
(
−1,−1

2

)
=
(
− 2θ2

0

(−2θ0)θ0
,N (−2θ0)

)
k,n

· δ (hα (N (−2θ0)))

= δ (hα (N (−2θ0))) ,

so that

w̃α

(
θ0

n′′
,− θ

2
0

n′′

)
= δ

(
hα
(
−4θ2

0

))
· w̃α

(
1,−1

2

)
.

Thus, let c2 be the function

c2(λ) =


(
−N (n′′)

θ2
0

,−1
)
k,n

· δ
(
hα

(
−N (n′′)

θ2
0

))−1

· w̃α (1, n′′) , if a 6= 1;

δ
(
hα
(
−4θ2

0

))
· w̃α

(
1,−1

2

)
, if a = 1.

This implies that

w̃α

(
(n1)2θ0

n2
1n
′′
,− θ

2
0

n′′

)

=

[
w̃α

(
(n1)2θ0

n2
1n
′′
,− θ

2
0

n′′

)
· w̃α

(
θ0

n′′
,− θ

2
0

n′′

)−1
]
· w̃α

(
θ0

n′′
,− θ

2
0

n′′

)
= c1(λ) · c2(λ).

By the above, there are three cases to consider: (a − 1)a − b2θ2
0 6= 0, a 6= 1;

(a− 1)a− b2θ2
0 = 0, a 6= 1; and (a− 1)a− b2θ2

0 6= 0, a = 1.

We can consider the first two cases together, as they differ only by c1(λ) which

is a central element in G̃. Thus,

σu (e1e2, e3) = δ

(
hα

(
θ0

n1

))
·

[
c1(λ) ·

(
−N (n′′)

θ2
0

,−1
)
k,n

· δ
(
hα

(
−N (n′′)

θ2
0

))−1

· w̃α (1, n′′)

]
· w̃α (0, θ0) · δ

(
hα

(
n′

θ0

))
· δ
(
hα

(
n′θ0

n1n′′

))−1

.
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Since by (4.7), w̃α (0, θ0) = w̃α (0,−θ0)−1, this implies by (2.4) that

σu (e1e2, e3) = c1(λ) ·
(
−N (n′′)

θ2
0

,−1
)
k,n

· δ
(
hα

(
θ0

n1

))
· δ
(
hα

(
−N (n′′)

θ2
0

))−1

· δ
(
hα

(
−n
′′

θ0

))
· δ
(
hα

(
n′

θ0

))
· δ
(
hα

(
n′θ0

n1n′′

))−1

.

By (2.5),

bα

(
−N (n′′)

θ2
0

,
θ0

n′′

)−1

· δ
(
hα

(
θ0

n′′

))
= δ

(
hα

(
−N (n′′)

θ2
0

))−1

· δ
(
hα

(
−n
′′

θ0

))
,

which implies that

σu (e1e2, e3) = c1(λ) ·
(
−N (n′′)

θ2
0

,−1
)
k,n

· δ
(
hα

(
θ0

n1

))
·

[
bα

(
−N (n′′)

θ2
0

,
θ0

n′′

)−1

· δ
(
hα

(
θ0

n′′

))]
· δ
(
hα

(
n′

θ0

))
· δ
(
hα

(
n′θ0

n1n′′

))−1

.

By Lemma 4.10,

σu (e1e2, e3) = c1(λ) ·
(
−N (n′′)

θ2
0

,−1
)
k,n

· bα
(
−N (n′′)

θ2
0

,
θ0

n′′

)−1

· δ
(
hα

(
θ0

n1

))

·

[[
θ0

n′′
,
n′

θ0

]
σu

· δ
(
hα

(
n′

θ0

))
· δ
(
hα

(
θ0

n′′

))]

· δ
(
hα

(
n′θ0

n1n′′

))−1

.

Hence by (2.5),

σu (e1e2, e3) = c1(λ) ·
(
−N (n′′)

θ2
0

,−1
)
k,n

· bα
(
−N (n′′)

θ2
0

,
θ0

n′′

)−1

·
[
θ0

n′′
,
n′

θ0

]
σu

· δ
(
hα

(
θ0

n1

))
· δ
(
hα

(
n′

θ0

))
·

[
δ

(
hα

(
1
λ

))−1

· δ
(
hα

(
1
λ

))]

· δ
(
hα

(
θ0

n′′

))
· δ
(
hα

(
n′θ0

n1n′′

))−1

= c1(λ) ·
(
−N (n′′)

θ2
0

,−1
)
k,n

· bα
(
−N (n′′)

θ2
0

,
θ0

n′′

)−1

·
[
θ0

n′′
,
n′

θ0

]
σu

· bα
(
θ0

n1
,
n′

θ0

)
· bα

(
1
λ
,
θ0

n′′

)
.
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By Proposition 4.2 and (4.1),

bα

(
−N (n′′)

θ2
0

,
θ0

n′′

)−1

=

(
−N (n′′)

θ2
0

,
(θ0/n′′)δ1

(
θ0/n′′

)
θ0

)−1

k,n

=
(
−N (n′′)

θ2
0

, 1
)−1

k,n

= 1,

bα

(
θ0

n1
,
n′

θ0

)
=
(
n′

θ0
,−δ2 (θ0/n1)

θ0

)
k,n

=
(
n′

θ0
,−N (n1)

θ2
0

)
k,n

.

Also, Lemma 4.10 shows that[
θ0

n′′
,
n′

θ0

]
σu

=
(
θ0

n′′
,
n′

θ0

)2

K,n

·
(
θ0

n′′
,−n

′

θ0

)−1

K,n

.

Since n′/θ0 ∈ k×, by (2.11) and (3.9), we have[
θ0

n′′
,
n′

θ0

]
σu

=
(
− θ2

0

N (n′′)
,
n′

θ0

)
k,n

.

Therefore by (2.12) and (2.11),

σu (e1e2, e3) = c1(λ) ·
(
−N (n′′)

θ2
0

,−1
)
k,n

· 1 ·
(
− θ2

0

N (n′′)
,
n′

θ0

)
k,n

·
(
n′

θ0
,−N (n1)

θ2
0

)
k,n

· bα
(

1
λ
,
θ0

n′′

)

= c1(λ) ·
(
−N (n′′)

θ2
0

,−1
)
k,n

·
(
n′

θ0
,

N (n1) N (n′′)
θ4

0

)
k,n

· bα
(

1
λ
,
θ0

n′′

)
.

As for the last case ((a − 1)a − b2θ2
0 6= 0, a = 1), recall that in this case

n′′ = −1/2. This implies that

σu (e1e2, e3) = δ

(
hα

(
θ0

n1

))
·
[
c1(λ) · δ

(
hα
(
−4θ2

0

))
· w̃α

(
1,−1

2

)]
· w̃α (0, θ0)

· δ
(
hα

(
n′

θ0

))
· δ
(
hα

(
−2n′θ0

n1

))−1

.

Since by (4.7), w̃α (0, θ0) = w̃α (0,−θ0)−1, this implies by (2.4) that

σu (e1e2, e3) = c1(λ) · δ
(
hα

(
θ0

n1

))
· δ
(
hα
(
−4θ2

0

))
· δ
(
hα

(
1

2θ0

))

· δ
(
hα

(
n′

θ0

))
· δ
(
hα

(
−2n′θ0

n1

))−1

.
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By (2.5),

bα

(
−4θ2

0,
1

2θ0

)
· δ (hα (−2θ0)) = δ

(
hα
(
−4θ2

0

))
· δ
(
hα

(
1

2θ0

))
.

Hence, the equation we have becomes

σu (e1e2, e3) = c1(λ) · δ
(
hα

(
θ0

n1

))
·
[
bα

(
−4θ2

0,
1

2θ0

)
· δ (hα (−2θ0))

]

· δ
(
hα

(
n′

θ0

))
· δ
(
hα

(
−2n′θ0

n1

))−1

.

Using Lemma 4.10, we get

σu (e1e2, e3) = c1(λ) · bα
(
−4θ2

0,
1

2θ0

)
· δ
(
hα

(
θ0

n1

))
·

[ [
−2θ0,

n′

θ0

]
σu

· δ
(
hα

(
n′

θ0

))
· δ (hα (−2θ0))

]
· δ
(
hα

(
−2n′θ0

n1

))−1

.

Thus by (2.5),

σu (e1e2, e3) = c1(λ) · bα
(
−4θ2

0,
1

2θ0

)
·
[
−2θ0,

n′

θ0

]
σu

· δ
(
hα

(
θ0

n1

))

· δ
(
hα

(
n′

θ0

))
·

[
δ

(
hα

(
1
λ

))−1

· δ
(
hα

(
1
λ

))]

· δ (hα (−2θ0)) · δ
(
hα

(
−2n′θ0

n1

))−1

= c1(λ) · bα
(
−4θ2

0,
1

2θ0

)
·
[
−2θ0,

n′

θ0

]
σu

· bα
(
θ0

n1
,
n′

θ0

)
· bα

(
1
λ
,−2θ0

)
.

By Proposition 4.2,

bα

(
−4θ2

0,
1

2θ0

)
=

(
−4θ2

0,
(1/(2θ0))δ1 (1/(2θ0))

θ0

)
k,n

(4.24)

=
(
−4θ2

0,−
1

4θ2
0

)
k,n

,

and by (2.13), (
−4θ2

0,−
1

4θ2
0

)
k,n

=
(
−4θ2

0,−1
)
k,n

.
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Therefore by our previous calculations,

σu (e1e2, e3) = c1(λ) ·
(
−4θ2

0,−1
)
k,n
·
(
−4θ2

0,
n′

θ0

)
k,n

·
(
n′

θ0
,−N (n1)

θ2
0

)
k,n

· bα
(

1
λ
,−2θ0

)
,

and by (2.12) and (2.11),

σu (e1e2, e3) = c1(λ) ·
(
−4θ2

0,−1
)
k,n
·
(
n′

θ0
,

N (n1)
4θ4

0

)
k,n

· bα
(

1
λ
,−2θ0

)
.

In fact,

c1(λ) ·
(
−4θ2

0,−1
)
k,n
·
(
n′

θ0
,

N (n1)
4θ4

0

)
k,n

· bα
(

1
λ
,−2θ0

)

= c1(λ) ·
(
−N (n′′)

θ2
0

,−1
)
k,n

·
(
n′

θ0
,

N (n1) N (n′′)
θ4

0

)
k,n

· bα
(

1
λ
,
θ0

n′′

)
;

i.e. we can use the same equation

(4.25) σu (e1e2, e3) = c1(λ) ·
(
−N (n′′)

θ2
0

,−1
)
k,n

·
(
n′

θ0
,

N (n1) N (n′′)
θ4

0

)
k,n

· bα
(

1
λ
,
θ0

n′′

)
for all three cases.

Also, by similar methods to the above, we can show that

σu (e1, e2e3) = δ

(
hα

(
θ0

n1

))
· w̃α

(
− θ0

n′′′
,− θ2

0

n′′′

)
· w̃α (0, θ0)

· δ
(
hα

(
n1

θ0

))
· δ
(
hα

(
θ0

n′′′

))−1

.

We know that

n′′′ = n1 +
N (n1)
n′

=
a+ bθ0

−2bθ0
+N

(
a+ bθ0

−2bθ0

)
·
(
− 1

2bθ0

)−1

= −1
2

+
a(a− 1)− b2θ2

0

2bθ0
.

There are two cases to consider: a(a− 1)− b2θ2
0 6= 0; and a(a− 1)− b2θ2

0 = 0.

When a(a− 1)− b2θ2
0 6= 0, we can use (4.20) to get

w̃α

(
− θ0

n′′′
,− θ2

0

n′′′

)
= δ

(
hα

(
−N (n′′′)

θ2
0

))−1

· w̃α (1, n′′′) ,
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thus

σu (e1, e2e3) = δ

(
hα

(
θ0

n1

))
·

[
δ

(
hα

(
−N (n′′′)

θ2
0

))−1

· w̃α (1, n′′′)

]
· w̃α (0, θ0)

· δ
(
hα

(
n1

θ0

))
· δ
(
hα

(
θ0

n′′′

))−1

.

Since by (4.7), w̃α (0, θ0) = w̃α (0,−θ0)−1, by (2.4) the equation becomes

σu (e1, e2e3) = δ

(
hα

(
θ0

n1

))
· δ
(
hα

(
−N (n′′′)

θ2
0

))−1

· δ
(
hα

(
−n
′′′

θ0

))
· δ
(
hα

(
n1

θ0

))
· δ
(
hα

(
θ0

n′′′

))−1

.

Using (2.5),

bα

(
−N (n′′′)

θ2
0

,
θ0

n′′′

)−1

·δ
(
hα

(
θ0

n′′′

))
= δ

(
hα

(
−N (n′′′)

θ2
0

))−1

·δ
(
hα

(
−n
′′′

θ0

))
.

We thus get

σu (e1, e2e3) = δ

(
hα

(
θ0

n1

))
·

[
bα

(
−N (n′′′)

θ2
0

,
θ0

n′′′

)−1

· δ
(
hα

(
θ0

n′′′

))]

· δ
(
hα

(
n1

θ0

))
· δ
(
hα

(
θ0

n′′′

))−1

.

By Lemma 4.10,

σu (e1, e2e3) = bα

(
−N (n′′′)

θ2
0

,
θ0

n′′′

)−1

· δ
(
hα

(
θ0

n1

))
·

[ [
θ0

n′′′
,
n1

θ0

]
σu

· δ
(
hα

(
n1

θ0

))
· δ
(
hα

(
θ0

n′′′

))]
· δ
(
hα

(
θ0

n′′′

))−1

,

and hence by (2.5),

σu (e1, e2e3) = bα

(
−N (n′′′)

θ2
0

,
θ0

n′′′

)−1

·
[
θ0

n′′′
,
n1

θ0

]
σu

· bα
(
θ0

n1
,
n1

θ0

)
.
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By Proposition 4.2,

bα

(
−N (n′′′)

θ2
0

,
θ0

n′′′

)−1

=

(
−N (n′′′)

θ2
0

,
(θ0/n′′′)δ1

(
θ0/n′′′

)
θ0

)−1

k,n

=
(
−N (n′′′)

θ2
0

, 1
)−1

k,n

= 1.

Also, by Lemma 4.10,[
θ0

n′′′
,
n1

θ0

]
σu

=
(
θ0

n′′′
,
n1

θ0

)2

K,n

·
(
θ0

n′′′
,−n1

θ0

)−1

K,n

.

Since n′′′ = n1 + N (n1) /n′ = n1(1− λ) and n1 = λn′, we have

[
θ0

n′′′
,
n1

θ0

]
σu

=
(
− θ0

λn′(1− λ)
,
λn′

θ0

)2

K,n

·
(
− θ0

λn′(1− λ)
,
λn′

θ0

)−1

K,n

.

By (2.11),

[
θ0

n′′′
,
n1

θ0

]
σu

=

[(
− θ0

λn′(1− λ)
, λ

)
K,n

·
(
− θ0

λn′(1− λ)
,
n′

θ0

)
K,n

]2

·

[(
− θ0

λn′(1− λ)
, λ

)
K,n

·
(
− θ0

λn′(1− λ)
,
n′

θ0

)
K,n

]−1

=
(
− θ0

λn′(1− λ)
, λ

)2

K,n

·
(
− θ0

λn′(1− λ)
, λ

)−1

K,n

·
(
− θ0

λn′(1− λ)
,
n′

θ0

)
K,n

.

By (2.13), [
θ0

n′′′
,
n1

θ0

]
σu

=
(

θ0

N (λ)n′(1− λ)
, λ

)2

K,n

·
(

θ0

n′(1− λ)
, λ

)−1

K,n

·
(

1
λ(1− λ)

,
n′

θ0

)
K,n

.

Using (2.14), we have[
θ0

n′′′
,
n1

θ0

]
σu

=
(

θ0

N (λ)n′
, λ

)2

K,n

·
(

θ0

n′N (1− λ)
, λ

)−1

K,n

·
(

1
λ(1− λ)

,
n′

θ0

)
K,n

.
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By (3.8) and (3.9),[
θ0

n′′′
,
n1

θ0

]
σu

=
(

θ0

N (λ)n′
,N (λ)

)2

k,n

·
(

θ0

n′N (1− λ)
,N (λ)

)−1

k,n

·
(

1
N (λ) N (1− λ)

,
n′

θ0

)
k,n

.

Using (2.11) again,

[
θ0

n′′′
,
n1

θ0

]
σu

=

[(
1

N (λ)
,N (λ)

)
k,n

·
(
θ0

n′
,N (λ)

)
k,n

]2

·

[(
1

N (1− λ)
,N (λ)

)
k,n

·
(
θ0

n′
,N (λ)

)
k,n

]−1

·
(

1
N (λ) N (1− λ)

,
n′

θ0

)
k,n

=
(

1
N (λ)

,N (λ)
)2

k,n

·
(

1
N (1− λ)

,N (λ)
)−1

k,n

·
(
θ0

n′
,N (λ)

)
k,n

·
(

1
N (λ) N (1− λ)

,
n′

θ0

)
k,n

.

By (2.13),[
θ0

n′′′
,
n1

θ0

]
σu

= (−1,N (λ))2
k,n ·

(
1

N (1− λ)
,N (λ)

)−1

k,n

·
(
θ0

n′
,N (λ)

)
k,n

·
(

1
N (λ) N (1− λ)

,
n′

θ0

)
k,n

.

By (2.12) and (4.1),[
θ0

n′′′
,
n1

θ0

]
σu

= (N (1− λ) ,N (λ))k,n ·
(

1
N (λ)

,
θ0

n′

)
k,n

·
(

N (λ) N (1− λ) ,
θ0

n′

)
k,n

.

Hence by (2.11) again,[
θ0

n′′′
,
n1

θ0

]
σu

=
(

N (1− λ) ,
N (λ) θ0

n′

)
k,n

=
(

N (n′′′)
N (n)

,
N (λ) θ0

n′

)
k,n

.

Therefore,

σu (e1, e2e3) =
(

N (n′′′)
N (n1)

,
N (λ) θ0

n′

)
k,n

· bα
(
θ0

n1
,
n1

θ0

)
.
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As for the case a(a− 1)− b2θ2
0 = 0, we have n′′′ = −1/2. This implies that

σu (e1, e2e3) = δ

(
hα

(
θ0

n1

))
· w̃α

(
2θ0, 2θ2

0

)
· w̃α (0, θ0) · δ

(
hα

(
n1

θ0

))
· δ (hα (−2θ0))−1

.

By (4.7) and Lemma 4.4,

w̃α
(
2θ0, 2θ2

0

)
· w̃α

(
1,−1

2

)−1

= w̃α
(
−2θ0, 2θ2

0

)−1 · w̃α
(
−1,−1

2

)
=
(
− 2θ2

0

(2θ0)θ0
,N (2θ0)

)
k,n

· δ (hα (N (2θ0)))

=
(
−1,−4θ2

0

)
k,n
· δ
(
hα
(
−4θ2

0

))
,

i.e.

(4.26) w̃α
(
2θ0, 2θ2

0

)
=
(
−1,−4θ2

0

)
k,n
· δ
(
hα
(
−4θ2

0

))
· w̃α

(
1,−1

2

)
.

Thus,

σu (e1, e2e3) = δ

(
hα

(
θ0

n1

))
·
[(
−1,−4θ2

0

)
k,n
· δ
(
hα
(
−4θ2

0

))
· w̃α

(
1,−1

2

)]
· w̃α (0, θ0) · δ

(
hα

(
n1

θ0

))
· δ (hα (−2θ0))−1

.

Since by (4.7), w̃α (0, θ0) = w̃α (0,−θ0)−1, utilising (2.4) makes the above equation

become

σu (e1, e2e3) =
(
−1,−4θ2

0

)
k,n
· δ
(
hα

(
θ0

n1

))
· δ
(
hα
(
−4θ2

0

))
· δ
(
hα

(
1

2θ0

))
· δ
(
hα

(
n1

θ0

))
· δ (hα (−2θ0))−1

.

By (2.5),

bα

(
−4θ2

0,
1

2θ0

)
· δ (hα (−2θ0)) = δ

(
hα
(
−4θ2

0

))
· δ
(
hα

(
1

2θ0

))
,

hence

σu (e1, e2e3) =
(
−1,−4θ2

0

)
k,n
· δ
(
hα

(
θ0

n1

))
·
[
bα

(
−4θ2

0,
1

2θ0

)
· δ (hα (−2θ0))

]
· δ
(
hα

(
n1

θ0

))
· δ (hα (−2θ0))−1

.
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We can use Lemma 4.10 to get

σu (e1, e2e3) =
(
−1,−4θ2

0

)
k,n
· bα

(
−4θ2

0,
1

2θ0

)
· δ
(
hα

(
θ0

n1

))
·

[ [
−2θ0,

n1

θ0

]
σu

· δ
(
hα

(
n1

θ0

))
· δ (hα (−2θ0))

]
· δ (hα (−2θ0))−1

.

Hence by (2.5) and (4.24),

σu (e1, e2e3) =
(
−1,−4θ2

0

)
k,n
·
(
−4θ2

0,−
1

4θ2
0

)
k,n

·
[
−2θ0,

n1

θ0

]
σu

· bα
(
θ0

n1
,
n1

θ0

)
.

But since n′′′ = −1/2, we have[
−2θ0,

n1

θ0

]
σu

=
[
θ0

n′′′
,
n1

θ0

]
σu

.

This implies that we can use our previous result for n′′′ 6= −1/2 so that[
−2θ0,

n1

θ0

]
σu

=
(

N (n′′′)
N (n1)

,
N (λ) θ0

n′

)
k,n

.

In the end,

σu (e1, e2e3) =
(
−1,−4θ2

0

)
k,n
·
(
−4θ2

0,−
1

4θ2
0

)
k,n

·
(

N (n′′′)
N (n1)

,
N (λ) θ0

n′

)
k,n

· bα
(
θ0

n1
,
n1

θ0

)
,

which simplifies by (2.13) and (2.11) to

σu (e1, e2e3) =
(

N (n′′′)
N (n1)

,
N (λ) θ0

n′

)
k,n

· bα
(
θ0

n1
,
n1

θ0

)
.

Thus, we may use the above equation for both cases.

Similarly for σu (e2, e3),

σu (e2, e3) = δ

(
hα

(
n1

θ0

))
· w̃α

(
0,−θ

2
0

n′

)
· w̃α (0, θ0) · δ

(
hα

(
n′

θ0

))
· δ
(
hα

(
n1

θ0

))−1

.
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By (2.4),

σu (e2, e3) = δ

(
hα

(
n1

θ0

))
· w̃α

(
0,−θ

2
0

n′

)
·
[
w̃α (0, θ0)−1 · w̃α (0, θ0)

]
· w̃α (0, θ0) · δ

(
hα

(
n′

θ0

))
· δ
(
hα

(
n1

θ0

))−1

= δ

(
hα

(
n1

θ0

))
· δ
(
hα

(
−θ0

n′

))
· δ (hα (−1))−1 · δ

(
hα

(
n′

θ0

))
· δ
(
hα

(
n1

θ0

))−1

.

Thus using (4.2),

σu (e2, e3) = δ

(
hα

(
n1

θ0

))
· δ
(
hα

(
n′

θ0

))−1

· δ
(
hα

(
n′

θ0

))
· δ
(
hα

(
n1

θ0

))−1

= 1.

Hence by the 2-cocycle condition, i.e.

σu (e1, e2) · σu (e1e2, e3) = σu (e1, e2e3) · σu (e2, e3) ,

we have

bα

(
θ0

n1
,
n1

θ0

)
·

[
c1(λ) ·

(
−N (n′′)

θ2
0

,−1
)
k,n

·
(
n′

θ0
,

N (n1) N (n′′)
θ4

0

)
k,n

· bα
(

1
λ
,
θ0

n′′

)]
=

[(
N (n′′′)
N (n1)

,
N (λ) θ0

n′

)
k,n

· bα
(
θ0

n1
,
n1

θ0

)]
· 1.

Also, n′′′ = λn′′ and λ = n1/n
′, hence we can rearrange the above as follows:

bα

(
1
λ
,
θ0

n′′

)
=

[
c1(λ) ·

(
−N (n′′)

θ2
0

,−1
)
k,n

·
(
n′

θ0
,

N (n1) N (n′′)
θ4

0

)
k,n

]−1

·
(

N (n′′)
N (n′)

,
N (λ) θ0

n′

)
k,n

.

Thus by (4.1) and (2.12),

bα

(
1
λ
,
θ0

n′′

)
= c1(λ)−1 ·

(
−N (n′′)

θ2
0

,−1
)
k,n

·
(

N (n1) N (n′′)
θ4

0

,
n′

θ0

)
k,n

·
(

N (n′′)
N (n′)

,
N (λ) θ0

n′

)
k,n

.
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By (2.11),

bα

(
1
λ
,
θ0

n′′

)
= c1(λ)−1 ·

(
−N (n′′)

θ2
0

,−1
)
k,n

·
(
−N (n′′)

θ2
0

,
n′

θ0

)
k,n

·
(
−N (n1)

θ2
0

,
n′

θ0

)
k,n

·
(
−N (n′′)

θ2
0

,
N (λ) θ0

n′

)
k,n

·
(
− θ2

0

N (n′)
,N (λ)

)
k,n

·
(
− θ2

0

N (n′)
,
θ0

n′

)
k,n

= c1(λ)−1 ·
(
−N (n′′)

θ2
0

,N (λ)
)
k,n

·
(
−N (n1)

θ2
0

,
n′

θ0

)
k,n

·
(
− θ2

0

N (n′)
,N (λ)

)
k,n

·
(
− θ2

0

N (n′)
,
θ0

n′

)
k,n

= c1(λ)−1 ·
(

N (n′′)
N (n′)

,N (λ)
)
k,n

·
(
−N (n1)

θ2
0

,
n′

θ0

)
k,n

·
(
− θ2

0

N (n′)
,
θ0

n′

)
k,n

.

By (2.13), (
−N (n1)

θ2
0

,
n′

θ0

)
k,n

=
(

N (n1)
n′θ0

,
n′

θ0

)
k,n

=
(

N (λ) ,
n′

θ0

)
k,n

,(
− θ2

0

N (n′)
,
θ0

n′

)
k,n

=
(
−θ0

n′
,
θ0

n′

)
k,n

= 1.

This implies that

bα

(
1
λ
,
θ0

n′′

)
= c1(λ)−1 ·

(
N (n′′)
N (n′)

,N (λ)
)
k,n

·
(

N (λ) ,
n′

θ0

)
k,n

;

thus by (2.13) and (2.11),

bα

(
1
λ
,
θ0

n′′

)
= c1(λ)−1 ·

(
N (n′′)
N (n′)

,N (λ)
)
k,n

·
(
θ0

n′
,N (λ)

)
k,n

= c1(λ)−1 ·
(

N (n′′) θ0

(n′)3
,N (λ)

)
k,n

.
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We will now use Lemma 4.7 to get our desired result. Firstly,

bα

(
λ,
n′′

θ0

)
= bα

(
1
λ
·N (λ) ,

θ0

n′′
· N (n′′)

θ2
0

)

= bα

(
λ · 1

N (λ)
,
n′′

θ0
· θ2

0

N (n′′)

)
·

(
− (n′′/θ0)δ1 (n′′/θ0)(θ2

0/N (n′′))
n′

,
1

N (λ)

)
k,n

·
(
δ2 (λ(n′′/θ0))
δ2 (n′′/θ0)

,
1

N (λ)
· θ2

0

N (n′′)

)
k,n

,

since λ(n′′/θ0) /∈ k×. Simplifying the above using the properties of Hilbert symbols,

we get

bα

(
λ,
n′′

θ0

)
= bα

(
1
λ
,
θ0

n′′

)
·
(
−θ0

n′
,

1
N (λ)

)
k,n

.

Inserting the equation we have for bα
(
1/λ, θ0/n′′

)
, we have

bα

(
λ,
n′′

θ0

)
= c1(λ)−1 ·

(
N (n′′) θ0

(n′)3
,N (λ)

)
k,n

·
(
−θ0

n′
,

1
N (λ)

)
k,n

,

and by (2.12),

bα

(
λ,
n′′

θ0

)
= c1(λ)−1 ·

(
N (n′′) θ0

(n′)3
,N (λ)

)
k,n

·
(
−n
′

θ0
,N (λ)

)
k,n

.

Thus by (2.11),

bα

(
λ,
n′′

θ0

)
= c1(λ)−1 ·

(
N (n′′)
N (n′)

,N (λ)
)
k,n

,

and using (2.13) again,

bα

(
λ,
n′′

θ0

)
= c1(λ)−1 ·

(
−N (n′′)

N (n1)
,N (λ)

)
k,n

.

Let q ∈ k× and replace λ with λ/q. This implies that by (4.5) and (4.6),

bα

(
λ

q
,
n1 + qn′

θ0

)
= c1

(
λ

q

)−1

·
(
−N (n1 + qn′)

N (n1)
,

N (λ)
q2

)
k,n

.

Therefore, choose q, q′ ∈ k× such that µ = (n1 + qn′)/(q′θ0), which is always

possible due to Proposition 2.1. This implies by the same proposition that

δ1 (µ) = n1 + qn′, δ2 (µ) = q′θ0.
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Hence,

bα

(
λ

q
,
δ1 (µ)
θ0

)
= c1

(
λ

q

)−1

·
(
−N (δ1 (µ))

N (n1)
,

N (λ)
q2

)
k,n

.

We know that by Lemma 4.7, since λµ /∈ k×,

bα (λ, µ) = bα

(
λ

q
· q, δ1 (µ)

θ0
· 1
q′

)

= bα

(
λ · 1

q
, µ · q′

)
·

(
−µδ1 (µ)q′

n′
,

1
q

)
k,n

·
(
δ2 (λµ)
q′θ0

,
1
q
· q′
)
k,n

.

It can be shown that δ2 (λµ) = q′θ0/q, thus with what we have so far the equation

becomes

bα (λ, µ) = c1

(
λ

q

)−1

·
(
−N (δ1 (µ))

N (n1)
,

N (λ)
q2

)
k,n

·

(
−µδ1 (µ)q′

n′
,

1
q

)
k,n

·
(

1
q
,
q′

q

)
k,n

.

By (2.11),

bα (λ, µ) = c1

(
λ

q

)−1

·
(
−N (δ1 (µ))

N (n1)
,

N (λ)
q2

)
k,n

·

[(
µδ1 (µ)
n′

,
1
q

)
k,n

·
(
−q′, 1

q

)
k,n

]
·
(

1
q
,
q′

q

)
k,n

;

and by (2.12),

bα (λ, µ) = c1

(
λ

q

)−1

·
(
−N (δ1 (µ))

N (n1)
,

N (λ)
q2

)
k,n

·

(
µδ1 (µ)
n′

,
1
q

)
k,n

·
(

1
q
,− 1

q′

)
k,n

·
(

1
q
,
q′

q

)
k,n

.

Thus by (2.11),

bα (λ, µ) = c1

(
λ

q

)−1

·
(
−N (δ1 (µ))

N (n1)
,

N (λ)
q2

)
k,n

·

(
µδ1 (µ)
n′

,
1
q

)
k,n

·
(

1
q
,−1

q

)
k,n

.

By (2.13), (
1
q
,−1

q

)
k,n

=
(

1
q
, 1
)
k,n

= 1;

hence by also using (2.12), we finally get

bα (λ, µ) = c1

(
λ

q

)−1

·
(
−N (δ1 (µ))

N (n1)
,

N (λ)
q2

)
k,n

·

(
q,
µδ1 (µ)
n′

)
k,n

,
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i.e.

(4.27) bα (λ, µ) = c1

(
λ

q

)−1

·
(
−N (δ1 (µ))

N (δ1 (λ))
,

N (λ)
q2

)
k,n

·

(
q,
µδ1 (µ)
δ2 (λ)

)
k,n

.

So if µ = c+ dθ0, where c ∈ k, d ∈ k×, then q = a+ (bc)/d, and by (4.1),

c1

(
λ

q

)−1

=


(
− N (λ)

4a2 N (δ1 (µ))
,

(N (λ))2b4θ4
0

((a− q)a− b2θ2
0)4

)
k,n

, if (a− q)a− b2θ2
0 6= 0;(

(N (λ))2b4θ4
0

((a− q)a+ b2θ2
0)4

,− N (λ)
4a2 N (δ1 (µ))

)
k,n

, if (a− q)a− b2θ2
0 = 0.

We are left with the case when λ ∈ k×θ0. This case is slightly different from

the above because n1 = −1/2 ∈ k×, which alters σu (e1, e2) and σu (e1e2, e3).

Firstly, by (4.21), we know that

σu (e1, e2) = δ

(
hα

(
θ0

n1

))
· w̃α

(
− θ0

n1
,− θ

2
0

n1

)
· w̃α (0, θ0) · δ

(
hα

(
n1

θ0

))
· δ
(
hα

(
θ0

n1

))−1

= δ (hα (−2θ0)) · w̃α
(
2θ0, 2θ2

0

)
· w̃α (0, θ0) · δ

(
hα

(
− 1

2θ0

))
· δ (hα (−2θ0))−1

.

By (4.26),

σu (e1, e2) = δ (hα (−2θ0)) ·
[(
−1,−4θ2

0

)
k,n
· δ
(
hα
(
−4θ2

0

))
· w̃α

(
1,−1

2

)]
· w̃α (0, θ0) · δ

(
hα

(
− 1

2θ0

))
· δ (hα (−2θ0))−1

.

Since by (4.7), w̃α (0, θ0) = w̃α (0,−θ0)−1, by (2.4),

σu (e1, e2) =
(
−1,−4θ2

0

)
k,n
· δ (hα (−2θ0)) · δ

(
hα
(
−4θ2

0

))
· δ
(
hα

(
1

2θ0

))
· δ
(
hα

(
− 1

2θ0

))
· δ (hα (−2θ0))−1

.
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Hence by (2.5),

σu (e1, e2) =
(
−1,−4θ2

0

)
k,n
· δ (hα (−2θ0)) · δ

(
hα
(
−4θ2

0

))
· δ
(
hα

(
1

2θ0

))
·
[
δ (hα (−2θ0))−1 · δ (hα (−2θ0))

]
· δ
(
hα

(
− 1

2θ0

))
· δ (hα (−2θ0))−1

=
(
−1,−4θ2

0

)
k,n
· δ (hα (−2θ0)) · bα

(
−4θ2

0,
1

2θ0

)
· bα

(
−2θ0,−

1
2θ0

)
· δ (hα (−2θ0))−1

=
(
−1,−4θ2

0

)
k,n
· bα

(
−4θ2

0,
1

2θ0

)
· bα

(
−2θ0,−

1
2θ0

)
.

By (4.24),

σu (e1, e2) =
(
−1,−4θ2

0

)
k,n
·
(
−4θ2

0,−
1

4θ2
0

)
k,n

· bα
(
−2θ0,−

1
2θ0

)
.

Thus by (2.13) and (2.11),

σu (e1, e2) =
(
−1,−4θ2

0

)
k,n
·
(
−1,− 1

4θ2
0

)
k,n

· bα
(
−2θ0,−

1
2θ0

)
= bα

(
−2θ0,−

1
2θ0

)
= bα

(
θ0

n1
,
n1

θ0

)
,

which coincides with the case when λ /∈ k×θ0.

As for σu (e1e2, e3), by (4.22), we know that since n1 = n1,

σu (e1e2, e3) = δ

(
hα

(
θ0

n1

))
· w̃α

(
θ0

n′′
,− θ

2
0

n′′

)
· w̃α (0, θ0) · δ

(
hα

(
n′

θ0

))

· δ
(
hα

(
n′θ0

n1n′′

))−1

.

Since n′′ /∈ k×, we can still use (4.23) in the above to obtain

σu (e1e2, e3) = δ

(
hα

(
θ0

n1

))
·

[(
−N (n′′)

θ2
0

,−1
)
k,n

· δ
(
hα

(
−N (n′′)

θ2
0

))−1

· w̃α (1, n′′)

]
· w̃α (0, θ0) · δ

(
hα

(
n′

θ0

))
· δ
(
hα

(
n′θ0

n1n′′

))−1

,



4.4. THE MOST GENERAL CASE 111

and in a similar fashion to what we have done previously in the first case when

λ /∈ k×θ0, we can show that

σu (e1e2, e3) =
(
−N (n′′)

θ2
0

,−1
)
k,n

·
(
n′

θ0
,
n2

1 N (n′′)
θ4

0

)
k,n

· bα
(

1
λ
,
θ0

n′′

)
.

If we compare the above with (4.25), we can see that they only differ by a factor

c1(λ) which only exists if a 6= 0. Consequently, since it can be checked that both

σu (e1, e2e3) and σu (e2, e3) remain unchanged, by same method we used above for

λ /∈ k×θ0, this shows that for λ ∈ k×θ0,

σu (λ, µ) =
(
−N (δ1 (µ))

N (δ1 (λ))
,

N (λ)
q2

)
k,n

·

(
q,
µδ1 (µ)
δ2 (λ)

)
k,n

,

where for λ = bθ0, µ = c + dθ0, b, c, d ∈ k×, q = bc/d, i.e. the above only differs

from (4.27) by c1(λ/q)−1. �

Our results from Proposition 4.2, Remark 4.9 and Proposition 4.11 can be

summarised by the following theorem:

Theorem 4.12. For λ, µ ∈ K×,

σu (hα (λ) , hα (µ))

=



(λ, µ)k,n , if λ, µ ∈ k×;

(µ,−δ2 (λ) /θ0)k,n , if λ /∈ k×, µ ∈ k×;(
λ, µδ1 (µ)/θ0

)
k,n

, if λ ∈ k×, µ /∈ k×;

(−1,N (λ))k,n ·

(
−λδ1 (λ)

θ0
, λµ

)
k,n

, if λ, µ /∈ k×, λµ ∈ k×;(
−N (δ1 (µ))

N (δ1 (λ))
,

N (λ)
q2

)
k,n

·

(
q,
µδ1 (µ)
δ2 (λ)

)
k,n

· Σ′(λ, µ), otherwise,

where, if λ = a+ bθ0, µ = c+ dθ0, with a, c ∈ k, b, d ∈ k×,

q = a+
bc

d
,
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and

Σ′(λ, µ) =



(
− N (λ)

4a2 N (δ1 (µ))
,

(N (λ))2b4θ4
0

((a− q)a− b2θ2
0)4

)
k,n

, if λ /∈ k×θ0, aq 6= N (λ);(
(N (λ))2b4θ4

0

((a− q)a+ b2θ2
0)4

,− N (λ)
4a2 N (δ1 (µ))

)
k,n

, if λ /∈ k×θ0, aq = N (λ);

1, if λ ∈ k×θ0.



CHAPTER 5

The 2-cocycle on the rest of SU(2, 1)(k)

Recall that we have set G = SU(2, 1). We have defined a section δ : G(k) →

G̃ in Section 2.3. Hence, we can use this section and Theorem 4.12 to find the

universal 2-cocycle on G(k). Note that by (2.5) and Theorem 4.12, we already

know explicitly what bα (−,−) is on K× ×K× in terms of (s, t)k,n’s for s, t ∈ k×;

so from this subsection onwards we will only use (−,−)k,n as a function on k××k×,

and otherwise use σu as described by (2.5).

5.1. The easy cases

To start with, let (r,m), (r′,m′) ∈ A, where A is defined as in (2.2). It is

obvious that for g, g′ ∈ G(k),

σu (xα (r,m) · g, g′ · xα (r′,m′)) = σu (g, g′) ,

σu (g, xα (r,m) · g′) = σu (g · xα (r,m) , g′) ,

σu (g, xα (r,m)) = σu (xα (r,m) , g′) = 1.

Therefore, since for λ ∈ K×,

hα (λ) · xα (r,m) = xα

(
rλ2

λ
,mN (λ)

)
· hα (λ) ,

the above implies that

σu (g, xα (r,m) · hα (λ)) = σu

(
g, hα (λ) · xα

(
rλ

λ2
,
m

N (λ)

))
= σu (g, hα (λ)) ,

σu (hα (λ) · xα (r,m) , g′) = σu

(
xα

(
rλ2

λ
,mN (λ)

)
· hα (λ) , g′

)
= σu (hα (λ) , g′) .

Also, if µ ∈ k×, by (2.4),

δ (hα (µ)) = w̃α (0, µθ0) · w̃α (0, θ0)−1
.

113
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Thus by (4.7),

w̃α (0, θ0) · δ (hα (µ)) · w̃α (0, θ0)−1

= w̃α (0, θ0) ·
[
w̃α (0, µθ0) · w̃α (0, θ0)−1

]
· w̃α (0, θ0)−1

=
[
w̃α (0,−µθ0) · w̃α (0, θ0)−1

]−1

·
[
w̃α (0,−θ0) · w̃α (0, θ0)−1

]
.

Thus by (2.4) again,

w̃α (0, θ0) · δ (hα (µ)) · w̃α (0, θ0)−1 = δ (hα (−µ))−1 · δ (hα (−1)) ;

and this implies by (4.2) that

(5.1) w̃α (0, θ0) · δ (hα (µ)) · w̃α (0, θ0)−1 = δ

(
hα

(
1
µ

))
.

As a result, for λ ∈ K×,

σu (hα (λ) · wα (0, θ0) , hα (µ) · wα (0, θ0))

= [δ (hα (λ)) · w̃α (0, θ0)] · [δ (hα (µ)) · w̃α (0, θ0)]

· δ [hα (λ) · wα (0, θ0) · hα (µ) · wα (0, θ0)]−1

= δ (hα (λ)) ·
[
δ

(
hα

(
1
µ

))
· w̃α (0, θ0)

]
· w̃α (0, θ0) · δ

(
hα

(
−λ
µ

))−1

.

(Note that for any λ, µ ∈ K×, hα (λ) · wα (0, θ0) · hα (µ) · wα (0, θ0) = hα (−λ/µ).)

By (2.4), we have

σu (hα (λ) · wα (0, θ0) , hα (µ) · wα (0, θ0))

= δ (hα (λ)) · δ
(
hα

(
1
µ

))
· δ (hα (−1))−1 · δ

(
hα

(
−λ
µ

))−1

.
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Thus by (2.5),

σu (hα (λ) · wα (0, θ0) , hα (µ) · wα (0, θ0))

= δ (hα (λ)) · δ
(
hα

(
1
µ

))
·

[
δ

(
hα

(
λ

µ

))−1

· δ
(
hα

(
λ

µ

))]

· δ (hα (−1))−1 · δ
(
hα

(
−λ
µ

))−1

= σu

(
hα (λ) , hα

(
1
µ

))
· σu

(
hα

(
−λ
µ

)
, hα (−1)

)−1

.

If µ /∈ k×, by (2.4),

δ (hα (µ))−1 · w̃α (0, θ0) · δ (hα (µ))

=
[
w̃α (1, δ1 (µ)) · w̃α (0, δ2 (µ))−1

]−1

· w̃α (0, θ0)

·
[
w̃α (1, δ1 (µ)) · w̃α (0, δ2 (µ))−1

]
.

Thus by (4.7),

δ (hα (µ))−1 · w̃α (0, θ0) · δ (hα (µ)) = w̃α (0, δ2 (µ)) · w̃α
(
−1, δ1 (µ)

)
· w̃α (0, θ0)

· w̃α
(
−1, δ1 (µ)

)−1

· w̃α (0, δ2 (µ))−1
,

and by using Proposition 2.4 twice,

δ (hα (µ))−1 · w̃α (0, θ0) · δ (hα (µ)) = w̃α (0, δ2 (µ)) · w̃α

0,−
N
(
δ1 (µ)

)
θ0


· w̃α (0, δ2 (µ))−1

(5.2)

= w̃α

(
0,

θ0

N (µ)

)
.

Thus for λ ∈ K×,

σu (hα (λ) · wα (0, θ0) , hα (µ) · wα (0, θ0))

= δ (hα (λ)) · w̃α (0, θ0) · δ (hα (µ)) · w̃α (0, θ0)

· δ[hα (λ) · wα (0, θ0) · hα (µ) · wα (0, θ0)]−1

= δ (hα (λ)) ·
[
δ (hα (µ)) · w̃α

(
0,

θ0

N (µ)

)]
· w̃α (0, θ0) · δ

(
hα

(
−λ
µ

))−1

.
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Thus by (2.4),

σu (hα (λ) · wα (0, θ0) , hα (µ) · wα (0, θ0))

= δ (hα (λ)) · δ (hα (µ)) · w̃α
(

0,
θ0

N (µ)

)
·
[
w̃α (0, θ0)−1 · w̃α (0, θ0)

]
· w̃α (0, θ0)

· δ
(
hα

(
−λ
µ

))−1

= δ (hα (λ)) · δ (hα (µ)) · δ
(
hα

(
1

N (µ)

))
· δ (hα (−1))−1 · δ

(
hα

(
−λ
µ

))−1

,

hence by (2.5),

σu (hα (λ) · wα (0, θ0) , hα (µ) · wα (0, θ0))

= δ (hα (λ)) · δ (hα (µ)) ·
[
δ (hα (λµ))−1 · δ (hα (λµ))

]
· δ
(
hα

(
1

N (µ)

))

·

[
δ

(
hα

(
λ

µ

))−1

· δ
(
hα

(
λ

µ

))]
· δ (hα (−1))−1 · δ

(
hα

(
−λ
µ

))−1

= σu (hα (λ) , hα (µ)) · σu
(
hα (λµ) , hα

(
1

N (µ)

))
· σu

(
hα

(
−λ
µ

)
, hα (−1)

)−1

.

Similarly, since hα (λ) · wα (0, θ0) · hα (µ) = hα (λ/µ) · wα (0, θ0),

σu (hα (λ) · wα (0, θ0) , hα (µ))

= δ (hα (λ)) · w̃α (0, θ0) · δ (hα (µ)) ·
[
δ

(
hα

(
λ

µ

))
· w̃α (0, θ0)

]−1

.

Thus using (5.1), (5.2) and (2.4),

σu (hα (λ) · wα (0, θ0) , hα (µ))

=


δ (hα (λ)) · δ

(
hα

(
1
µ

))
· δ
(
hα

(
λ

µ

))−1

, if µ ∈ k×;

δ (hα (λ)) · δ (hα (µ)) · δ
(
hα

(
1

N (µ)

))
· δ
(
hα

(
λ

µ

))−1

, if µ /∈ k×.
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Therefore by (2.5),

σu (hα (λ) · wα (0, θ0) , hα (µ))

=


σu

(
hα (λ) , hα

(
1
µ

))
, if µ ∈ k×;

σu (hα (λ) , hα (µ)) · σu
(
hα (λµ) , hα

(
1

N (µ)

))
, if µ /∈ k×.

Also, note that by the definition of our section,

σu (hα (λ) , hα (µ) · wα (0, θ0)) = σu (hα (λ) , hα (µ)) .

5.2. The difficult case

We are now left with the most difficult case, i.e. the next proposition.

Proposition 5.1. For λ, µ ∈ K×, with (r,m) ∈ A, where r = a + bθ0,

m = c+ dθ0 for a, b, c, d ∈ k,

σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

= Σu(r,m) · σu
(
hα (λ) , hα

(
θ0

m

))
· σu

(
hα

(
λθ0

m

)
, hα (µ)

)
,

where

Σu(r,m)

=



(
θ0

m
,−1

)
k,n

, if m ∈ k×θ0;(
−N (m)

θ2
0

,−rθ0

m

)
k,n

, if −rθ0

m
∈ k×;(

r,− θ2
0

m2

)
k,n

, if r, m ∈ k×;(
ac+ bdθ2

0

c
,
−c2 N (r)
b2 N (m) θ2

0

)
k,n

·
(

N (r) ,
−bθ2

0

c

)
k,n

, if b, c 6= 0, −rθ0

m
/∈ k×;(

r,− θ2
0

N (m)

)
k,n

, otherwise.
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Proof. Our proof will use similar methods used in Proposition 4.11. By (4.18)

and (4.19),

σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

= x̃α

(
rλ2θ0

mλ
,−N (λ) θ2

0

m

)
· δ (hα (λ)) · w̃α

(
−rθ0

m
,−θ

2
0

m

)
· w̃α (0, θ0)

· δ (hα (µ)) · δ
(
hα

(
λµθ0

m

))−1

· x̃α
(
rλ2θ0

mλ
,−N (λ) θ2

0

m

)−1

;

hence simplifying the above gives

(5.3) σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

= δ (hα (λ)) · w̃α
(
−rθ0

m
,−θ

2
0

m

)
· w̃α (0, θ0) · δ (hα (µ)) · δ

(
hα

(
λµθ0

m

))−1

.

There are two cases to consider: when r = 0; and when r 6= 0.

When r = 0, this implies that m ∈ k×θ0. Thus, (5.3) becomes

w̃α

(
−rθ0

m
,−θ

2
0

m

)
= w̃α

(
0,−θ

2
0

m

)
;

and by (2.4),

σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

= δ (hα (λ)) · w̃α
(

0,−θ
2
0

m

)
·
[
w̃α (0, θ0)−1 · w̃α (0, θ0)

]
· w̃α (0, θ0)

· δ (hα (µ)) · δ
(
hα

(
λµθ0

m

))−1

= δ (hα (λ)) · δ
(
hα

(
−θ0

m

))
· δ (hα (−1))−1 · δ (hα (µ)) · δ

(
hα

(
λµθ0

m

))−1

.

By (2.5), (
θ0

m
,−1

)−1

k,n

· δ
(
hα

(
θ0

m

))
= δ

(
hα

(
−θ0

m

))
· δ (hα (−1))−1 ;
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therefore the equation becomes

σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

= δ (hα (λ)) ·

[(
θ0

m
,−1

)−1

k,n

· δ
(
hα

(
θ0

m

))]
· δ (hα (µ)) · δ

(
hα

(
λµθ0

m

))−1

.

By (2.5) again,

σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

=
(
θ0

m
,−1

)−1

k,n

· δ (hα (λ)) · δ
(
hα

(
θ0

m

))
·

[
δ

(
hα

(
λθ0

m

))−1

· δ
(
hα

(
λθ0

m

))]
· δ (hα (µ)) · δ

(
hα

(
λµθ0

m

))−1

=
(
θ0

m
,−1

)
k,n

· σu
(
hα (λ) , hα

(
θ0

m

))
· σu

(
hα

(
λθ0

m

)
, hα (µ)

)
.

(Note that (s,−1)−1
k,n = (s,−1)k,n for any s ∈ k× by (4.1).)

Now let r 6= 0. We want to consider

z′(r,m) = w̃α

(
−rθ0

m
,−θ

2
0

m

)
· w̃α

(
1,

m

N (r)

)−1

.

The above implies that (5.3) becomes

σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

= δ (hα (λ)) · z′(r,m) · w̃α
(

1,
m

N (r)

)
· w̃α (0, θ0) · δ (hα (µ)) · δ

(
hα

(
λµθ0

m

))−1

;

and since by (4.7), w̃α (0, θ0) = w̃α (0,−θ0)−1, by (2.4),

(5.4) σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

= δ (hα (λ)) · z′(r,m) · δ
(
hα

(
− m

N (r) θ0

))
· δ (hα (µ)) · δ

(
hα

(
λµθ0

m

))−1

.

We first note that

z′(r,m) = w̃α

(
rθ0

m
,−θ

2
0

m

)−1

· w̃α
(
−1,

m

N (r)

)
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by (4.7). Let

n1 = −θ
2
0

m
, t = −rθ0

m
;

then

z′(r,m) = w̃α

(
rθ0

m
,n1

)−1

· w̃α
(
rθ0

mt
,
n1

N (t)

)
.

By Lemma 4.4, there are four cases to consider: t ∈ k×; n1 ∈ k×, t ∈ k×θ0;

n1 = a′ + b′θ0, t = c′ + d′θ0, a′, d′ ∈ k×, b′, c′ ∈ k, c′ + b′d′θ2
0/a
′ 6= 0; and

n1 = a′ + b′θ0, t = c′ + d′θ0, a′, d′ ∈ k×, b′, c′ ∈ k, c′ + b′d′θ2
0/a
′ = 0.

Let t ∈ k×, i.e. −rθ0/m ∈ k×. By Lemma 4.4,

z′(r,m) = δ

(
hα

(
−N (n1)

θ2
0

))
· δ
(
hα

(
−N (n1)

tθ2
0

))−1

· δ (hα (t))

= δ

(
hα

(
− θ2

0

N (m)

))
· δ
(
hα

(
θ0

rm

))−1

· δ
(
hα

(
−rθ0

m

))
.

Using the above in (5.4),

σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

= δ (hα (λ)) ·

[
δ

(
hα

(
− θ2

0

N (m)

))
· δ
(
hα

(
θ0

rm

))−1

· δ
(
hα

(
−rθ0

m

))]

· δ
(
hα

(
− m

N (r) θ0

))
· δ (hα (µ)) · δ

(
hα

(
λµθ0

m

))−1

.

By (2.5),(
θ0

rm
,−r

2m

m

)−1

k,n

· δ
(
hα

(
−r

2m

m

))
= δ

(
hα

(
θ0

rm

))−1

· δ
(
hα

(
−rθ0

m

))
;

thus

σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

= δ (hα (λ)) · δ
(
hα

(
− θ2

0

N (m)

))
·

[(
θ0

rm
,−r

2m

m

)−1

k,n

· δ
(
hα

(
−r

2m

m

))]

· δ
(
hα

(
− m

N (r) θ0

))
· δ (hα (µ)) · δ

(
hα

(
λµθ0

m

))−1

.



5.2. THE DIFFICULT CASE 121

By (4.1),

σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

=
(
rm

θ0
,−r

2m

m

)
k,n

· δ (hα (λ)) · δ
(
hα

(
− θ2

0

N (m)

))
· δ
(
hα

(
−r

2m

m

))

· δ
(
hα

(
− m

N (r) θ0

))
· δ (hα (µ)) · δ

(
hα

(
λµθ0

m

))−1

.

Also, since t = −rθ0/m ∈ k×, t2 = −N (r) θ2
0/(N (m)), hence by (2.5),

σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

=
(
rm

θ0
,−r

2m

m

)
k,n

· δ (hα (λ)) · δ
(
hα

(
− θ2

0

N (m)

))
· δ
(
hα

(
−r

2m

m

))

·

[
δ

(
hα

(
−N (r) θ2

0

N (m)

))−1

· δ
(
hα

(
−N (r) θ2

0

N (m)

))]
· δ
(
hα

(
− m

N (r) θ0

))

·

[
δ

(
hα

(
θ0

m

))−1

· δ
(
hα

(
θ0

m

))]
· δ (hα (µ)) · δ

(
hα

(
λµθ0

m

))−1

=
(
rm

θ0
,−r

2m

m

)
k,n

· δ (hα (λ)) ·
(
− θ2

0

N (m)
,−r

2m

m

)
k,n

· σu
(
hα

(
−N (r) θ2

0

N (m)

)
, hα

(
− m

N (r) θ0

))
· δ
(
hα

(
θ0

m

))

·

[
δ

(
hα

(
λθ0

m

))−1

· δ
(
hα

(
λθ0

m

))]
· δ (hα (µ)) · δ

(
hα

(
λµθ0

m

))−1

=
(
rm

θ0
,−r

2m

m

)
k,n

·
(
− θ2

0

N (m)
,−r

2m

m

)
k,n

· σu
(
hα

(
−N (r) θ2

0

N (m)

)
, hα

(
− m

N (r) θ0

))
· σu

(
hα (λ) , hα

(
θ0

m

))
· σu

(
hα

(
λθ0

m

)
, hα (µ)

)
.

By (2.11),

σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

=
(
−rθ0

m
,−r

2m

m

)
k,n

· σu
(
hα

(
−N (r) θ2

0

N (m)

)
, hα

(
− m

N (r) θ0

))
· σu

(
hα (λ) , hα

(
θ0

m

))
· σu

(
hα

(
λθ0

m

)
, hα (µ)

)
.
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By Theorem 4.12, (2.13) and (2.12),

(5.5) σu

(
hα

(
−N (r) θ2

0

N (m)

)
, hα

(
− m

N (r) θ0

))

=

(
−N (r) θ2

0

N (m)
,

(−m/(N (r) θ0))δ1 (−m/(N (r) θ0))
θ0

)
k,n

=
(
−N (r) θ2

0

N (m)
,− N (m)

(N (r))2θ2
0

)
k,n

=
(
−N (r) θ2

0

N (m)
,− 1

N (r)

)
k,n

=
(
− θ2

0

N (m)
,− 1

N (r)

)
k,n

=
(
− 1

N (r)
,−N (m)

θ2
0

)
k,n

.

Also, by (2.13),(
−rθ0

m
,−r

2m

m

)
k,n

=

(
−rθ0

m
,−r

2m

m
·
(
− m

rθ0

)2
)
k,n

=
(
−rθ0

m
,−N (m)

θ2
0

)
k,n

.

Therefore by (2.11),(
−rθ0

m
,−r

2m

m

)
k,n

· σu
(
hα

(
−N (r) θ2

0

N (m)

)
, hα

(
− m

N (r) θ0

))
=
(
−rθ0

m
,−N (m)

θ2
0

)
k,n

·
(
− 1

N (r)
,−N (m)

θ2
0

)
k,n

=
(
θ0

rm
,−N (m)

θ2
0

)
k,n

.

Since θ0/(rm) ∈ k×, θ0/(rm) = −θ0/(rm), hence by (2.13),(
−rθ0

m
,−r

2m

m

)
k,n

· σu
(
hα

(
−N (r) θ2

0

N (m)

)
, hα

(
− m

N (r) θ0

))
=
(
θ0

rm
·
(
−N (m)

θ2
0

)
,−N (m)

θ2
0

)
k,n

=
(
− m

rθ0
,−N (m)

θ2
0

)
k,n

.



5.2. THE DIFFICULT CASE 123

Thus,

(
−rθ0

m
,−r

2m

m

)
k,n

· σu
(
hα

(
−N (r) θ2

0

N (m)

)
, hα

(
− m

N (r) θ0

))
=
(
−N (m)

θ2
0

,−rθ0

m

)
k,n

by (2.12). This implies that

σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

=
(
−N (m)

θ2
0

,−rθ0

m

)
k,n

· σu
(
hα (λ) , hα

(
θ0

m

))
· σu

(
hα

(
λθ0

m

)
, hα (µ)

)
.

If instead n1 ∈ k×, t ∈ k×θ0, i.e. −θ2
0/m ∈ k×, −rθ0/m ∈ k×θ0, this implies

that both r, m ∈ k×. Also, by Lemma 4.4 and (2.12),

z′(r,m) =
(
− n1

tθ0
,N (t)

)
k,n

· δ (hα (N (t)))

=
(
− (−θ2

0/m)
(−rθ0/m)θ0

,−r
2θ2

0

m2

)
k,n

· δ
(
hα

(
−r

2θ2
0

m2

))
=
(
−1
r
,−r

2θ2
0

m2

)
k,n

· δ
(
hα

(
−r

2θ2
0

m2

))
=
(
−r

2θ2
0

m2
,−r

)
k,n

· δ
(
hα

(
−r

2θ2
0

m2

))
.

Using the above in (5.4),

σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

= δ (hα (λ)) ·

[(
−r

2θ2
0

m2
,−r

)
k,n

· δ
(
hα

(
−r

2θ2
0

m2

))]
· δ
(
hα

(
− m

r2θ0

))

· δ (hα (µ)) · δ
(
hα

(
λµθ0

m

))−1

,
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and by (2.5),

σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

=
(
−r

2θ2
0

m2
,−r

)
k,n

· δ (hα (λ)) · δ
(
hα

(
−r

2θ2
0

m2

))
· δ
(
hα

(
− m

r2θ0

))

·

[
δ

(
hα

(
θ0

m

))−1

· δ
(
hα

(
θ0

m

))]
· δ (hα (µ)) · δ

(
hα

(
λµθ0

m

))−1

=
(
−r

2θ2
0

m2
,−r

)
k,n

· δ (hα (λ)) · σu
(
hα

(
−r

2θ2
0

m2

)
, hα

(
− m

r2θ0

))

· δ
(
hα

(
θ0

m

))
·

[
δ

(
hα

(
λθ0

m

))−1

· δ
(
hα

(
λθ0

m

))]
· δ (hα (µ))

· δ
(
hα

(
λµθ0

m

))−1

=
(
−r

2θ2
0

m2
,−r

)
k,n

· σu
(
hα

(
−r

2θ2
0

m2

)
, hα

(
− m

r2θ0

))
· σu

(
hα (λ) , hα

(
θ0

m

))
· σu

(
hα

(
λθ0

m

)
, hα (µ)

)
.

By Theorem 4.12 and (2.13), we know that

σu

(
hα

(
−r

2θ2
0

m2

)
, hα

(
− m

r2θ0

))
=

(
−r

2θ2
0

m2
,

(−m/(r2θ0))δ1 (−m/(r2θ0))
θ0

)
k,n

=
(
−r

2θ2
0

m2
,− m2

r4θ2
0

)
k,n

=
(
−r

2θ2
0

m2
,− 1

r2

)
k,n

.

Hence by (2.11),

σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

=
(
−r

2θ2
0

m2
,−r

)
k,n

·
(
−r

2θ2
0

m2
,− 1

r2

)
k,n

· σu
(
hα (λ) , hα

(
θ0

m

))
· σu

(
hα

(
λθ0

m

)
, hα (µ)

)
=
(
−r

2θ2
0

m2
,

1
r

)
k,n

· σu
(
hα (λ) , hα

(
θ0

m

))
· σu

(
hα

(
λθ0

m

)
, hα (µ)

)
.

But by (2.12), (
−r

2θ2
0

m2
,

1
r

)
k,n

=
(
r,−r

2θ2
0

m2

)
k,n

,
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and by (2.13),(
r,−r

2θ2
0

m2

)
k,n

=
(
r,−r

2θ2
0

m2
· r−2

)
k,n

=
(
r,− θ2

0

m2

)
k,n

.

Thus,

σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

=
(
r,− θ2

0

m2

)
k,n

· σu
(
hα (λ) , hα

(
θ0

m

))
· σu

(
hα

(
λθ0

m

)
, hα (µ)

)
.

Otherwise, let r = a+ bθ0, m = c+ dθ0, where a, b, c, d ∈ k, with c 6= 0 since

m /∈ k×θ0. This implies that

n1 = − cθ2
0

N (m)
+

dθ3
0

N (m)
, t = − (ad+ bc)θ2

0

N (m)
− (ac+ bdθ2

0)θ0

N (m)
.

Then by Lemma 4.4, the equation

z′(r,m) =
(
− (−cθ2

0/N (m))2 N (−rθ0/m)
(−(ac+ bdθ2

0)/N (m))2 N (−θ2
0/m) θ2

0

,

− (ad+ bc)θ2
0

N (m)
+

(dθ2
0/N (m))(−(ac+ bdθ2

0)/N (m))θ2
0

−cθ2
0/N (m)

)
k,n

·

(
−

(−(ac+ bdθ2
0)/N (m)) N

(
−θ2

0/m
)

−cθ2
0/N (m)

,N
(
−rθ0

m

))
k,n

· δ
(
hα

(
N
(
−rθ0

m

)))
=
(

c2 N (r)
(ac+ bdθ2

0)2
,−bθ

2
0

c

)
k,n

·
(
− (ac+ bdθ2

0)θ2
0

cN (m)
,−N (r) θ2

0

N (m)

)
k,n

· δ
(
hα

(
−N (r) θ2

0

N (m)

))
is valid if we have b 6= 0. Thus, assume b 6= 0. By (2.11),

z′(r,m) =
(

c2

(ac+ bdθ2
0)2

,−bθ
2
0

c

)
k,n

·
(

N (r) ,−bθ
2
0

c

)
k,n

·
(
ac+ bdθ2

0

c
,−N (r) θ2

0

N (m)

)
k,n

·
(
− θ2

0

N (m)
,− θ2

0

N (m)

)
k,n

·
(
− θ2

0

N (m)
,N (r)

)
k,n

· δ
(
hα

(
−N (r) θ2

0

N (m)

))
;
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and by (2.12),

z′(r,m) =
(

(ac+ bdθ2
0)2

c2
,− c

bθ2
0

)
k,n

·
(

N (r) ,−bθ
2
0

c

)
k,n

·
(
ac+ bdθ2

0

c
,−N (r) θ2

0

N (m)

)
k,n

·
(
− θ2

0

N (m)
,− θ2

0

N (m)

)
k,n

·
(

N (r) ,−N (m)
θ2

0

)
k,n

· δ
(
hα

(
−N (r) θ2

0

N (m)

))
.

By (4.1),(
(ac+ bdθ2

0)2

c2
,− c

bθ2
0

)
k,n

=

(
ac+ bdθ2

0

c
,

(
− c

bθ2
0

)2
)
k,n

=
(
ac+ bdθ2

0

c
,
c2

b2θ4
0

)
k,n

;

and by (2.13), (
− θ2

0

N (m)
,− θ2

0

N (m)

)
k,n

=
(
− θ2

0

N (m)
,−1

)
k,n

.

Therefore by (2.11),

z′(r,m) =
(
ac+ bdθ2

0

c
,− c2 N (r)

b2 N (m) θ2
0

)
k,n

·
(

N (r) ,
bN (m)

c

)
k,n

·
(
− θ2

0

N (m)
,−1

)
k,n

· δ
(
hα

(
−N (r) θ2

0

N (m)

))
.

Replacing the above in (5.4),

σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

= δ (hα (λ)) ·

[(
ac+ bdθ2

0

c
,− c2 N (r)

b2 N (m) θ2
0

)
k,n

·
(

N (r) ,
bN (m)

c

)
k,n

·
(
− θ2

0

N (m)
,−1

)
k,n

· δ
(
hα

(
−N (r) θ2

0

N (m)

))]
· δ
(
hα

(
− m

N (r) θ0

))

· δ (hα (µ)) · δ
(
hα

(
λµθ0

m

))−1

.
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By (2.5),

σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

=
(
ac+ bdθ2

0

c
,− c2 N (r)

b2 N (m) θ2
0

)
k,n

·
(

N (r) ,
bN (m)

c

)
k,n

·
(
− θ2

0

N (m)
,−1

)
k,n

· δ (hα (λ)) · δ
(
hα

(
−N (r) θ2

0

N (m)

))
· δ
(
hα

(
− m

N (r) θ0

))
·

[
δ

(
hα

(
θ0

m

))−1

· δ
(
hα

(
θ0

m

))]
· δ (hα (µ)) · δ

(
hα

(
λµθ0

m

))−1

=
(
ac+ bdθ2

0

c
,− c2 N (r)

b2 N (m) θ2
0

)
k,n

·
(

N (r) ,
bN (m)

c

)
k,n

·
(
− θ2

0

N (m)
,−1

)
k,n

· δ (hα (λ)) · σu
(
hα

(
−N (r) θ2

0

N (m)

)
, hα

(
− m

N (r) θ0

))
· δ
(
hα

(
θ0

m

))

·

[
δ

(
hα

(
λθ0

m

))−1

· δ
(
hα

(
λθ0

m

))]
· δ (hα (µ)) · δ

(
hα

(
λµθ0

m

))−1

=
(
ac+ bdθ2

0

c
,− c2 N (r)

b2 N (m) θ2
0

)
k,n

·
(

N (r) ,
bN (m)

c

)
k,n

·
(
− θ2

0

N (m)
,−1

)
k,n

· σu
(
hα

(
−N (r) θ2

0

N (m)

)
, hα

(
− m

N (r) θ0

))
· σu

(
hα (λ) , hα

(
θ0

m

))
· σu

(
hα

(
λθ0

m

)
, hα (µ)

)
.

By (5.5),

σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

=
(
ac+ bdθ2

0

c
,− c2 N (r)

b2 N (m) θ2
0

)
k,n

·
(

N (r) ,
bN (m)

c

)
k,n

·
(
− θ2

0

N (m)
,−1

)
k,n

·
(
− 1

N (r)
,−N (m)

θ2
0

)
k,n

· σu
(
hα (λ) , hα

(
θ0

m

))
· σu

(
hα

(
λθ0

m

)
, hα (µ)

)
.

But by (2.11),(
− 1

N (r)
,−N (m)

θ2
0

)
k,n

=
(
−1,−N (m)

θ2
0

)
k,n

·
(

1
N (r)

,−N (m)
θ2

0

)
k,n

;
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and by (2.12),

(
−1,−N (m)

θ2
0

)
k,n

·
(

1
N (r)

,−N (m)
θ2

0

)
k,n

=
(
− θ2

0

N (m)
,−1

)
k,n

·
(

N (r) ,− θ2
0

N (m)

)
k,n

.

This implies that

σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

=
(
ac+ bdθ2

0

c
,− c2 N (r)

b2 N (m) θ2
0

)
k,n

·
(

N (r) ,
bN (m)

c

)
k,n

·
(
− θ2

0

N (m)
,−1

)
k,n

·

[(
− θ2

0

N (m)
,−1

)
k,n

·
(

N (r) ,− θ2
0

N (m)

)
k,n

]
· σu

(
hα (λ) , hα

(
θ0

m

))

· σu
(
hα

(
λθ0

m

)
, hα (µ)

)
.

By (2.11),

σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

=
(
ac+ bdθ2

0

c
,− c2 N (r)

b2 N (m) θ2
0

)
k,n

·
(

N (r) ,−bθ
2
0

c

)
k,n

·
(
− θ2

0

N (m)
,−1

)2

k,n

· σu
(
hα (λ) , hα

(
θ0

m

))
· σu

(
hα

(
λθ0

m

)
, hα (µ)

)
;

thus by (4.1),

σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

=
(
ac+ bdθ2

0

c
,− c2 N (r)

b2 N (m) θ2
0

)
k,n

·
(

N (r) ,−bθ
2
0

c

)
k,n

· σu
(
hα (λ) , hα

(
θ0

m

))
· σu

(
hα

(
λθ0

m

)
, hα (µ)

)
.

If b = 0, then r ∈ k×. Consequently, d 6= 0, otherwise m ∈ k×, which is a case

we have already dealt with. Consider

z′(r,m)−1 = w̃α

(
1,
m

r2

)
· w̃α

(
−rθ0

m
,−θ

2
0

m

)−1

.
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By (4.7),

z′(r,m)−1 = w̃α

(
−1,

m

r2

)−1

· w̃α
(
rθ0

m
,−θ

2
0

m

)
,

and thus by Lemma 4.4,

z′(r,m)−1 =
(
− (c/r2)2(−N (m) /(r2θ2

0))
(−c/(rθ2

0))2(N (m) /(r4))θ2
0

,
d

r
+

(−d/r2)(−c/(rθ2
0))θ2

0

c/r2

)
k,n

·
(
− (−c/(rθ2

0))(N (m) /(r4))
c/(r2)

,−N (m)
r2θ2

0

)
k,n

· δ
(
hα

(
−N (m)
r2θ2

0

))
=
(

1,
2d
r

)
k,n

·
(

N (m)
r3θ2

0

,−N (m)
r2θ2

0

)
k,n

· δ
(
hα

(
−N (m)
r2θ2

0

))
,

which is valid since d 6= 0. By using (2.13),

z′(r,m)−1 =
(

1
r
,−N (m)

r2θ2
0

)
k,n

· δ
(
hα

(
−N (m)
r2θ2

0

))
=
(

1
r
,−N (m)

θ2
0

)
k,n

· δ
(
hα

(
−N (m)
r2θ2

0

))
.

This implies that by (4.1),

z′(r,m) =

[(
1
r
,−N (m)

θ2
0

)
k,n

· δ
(
hα

(
−N (m)
r2θ2

0

))]−1

=
(
r,−N (m)

θ2
0

)
k,n

· δ
(
hα

(
−N (m)
r2θ2

0

))−1

.

Hence in (5.4),

σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

= δ (hα (λ)) ·

[(
r,−N (m)

θ2
0

)
k,n

· δ
(
hα

(
−N (m)
r2θ2

0

))−1
]
· δ
(
hα

(
− m

r2θ0

))

· δ (hα (µ)) · δ
(
hα

(
λµθ0

m

))−1

.

By (2.5),

σu

(
hα

(
−N (m)
r2θ2

0

)
, hα

(
θ0

m

))−1

· δ
(
hα

(
θ0

m

))
= δ

(
hα

(
−N (m)
r2θ2

0

))−1

· δ
(
hα

(
− m

r2θ0

))
.



5.2. THE DIFFICULT CASE 130

Therefore,

σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

=
(
r,−N (m)

θ2
0

)
k,n

· δ (hα (λ)) ·

[
σu

(
hα

(
−N (m)
r2θ2

0

)
, hα

(
θ0

m

))−1

· δ
(
hα

(
θ0

m

))]
· δ (hα (µ)) · δ

(
hα

(
λµθ0

m

))−1

.

Thus by (2.5),

σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

=
(
r,−N (m)

θ2
0

)
k,n

· σu
(
hα

(
−N (m)
r2θ2

0

)
, hα

(
θ0

m

))−1

· δ (hα (λ))

· δ
(
hα

(
θ0

m

))
·

[
δ

(
hα

(
λθ0

m

))−1

· δ
(
hα

(
λθ0

m

))]
· δ (hα (µ))

· δ
(
hα

(
λµθ0

m

))−1

=
(
r,−N (m)

θ2
0

)
k,n

· σu
(
hα

(
−N (m)
r2θ2

0

)
, hα

(
θ0

m

))−1

· σu
(
hα (λ) , hα

(
θ0

m

))
· σu

(
hα

(
λθ0

m

)
, hα (µ)

)
.

But by Theorem 4.12,

σu

(
hα

(
−N (m)
r2θ2

0

)
, hα

(
θ0

m

))−1

=

(
−N (m)
r2θ2

0

,
(θ0/m)δ1 (θ0/m)

θ0

)−1

k,n

=
(
−N (m)
r2θ2

0

,
θ0

m
· m
r2
· 1
θ0

)−1

k,n

=
(
−N (m)
r2θ2

0

,
1
r2

)−1

k,n

;

and by (2.13), (
−N (m)
r2θ2

0

,
1
r2

)−1

k,n

=
(

N (m)
θ2

0

,
1
r2

)−1

k,n

,
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therefore by (4.1),

σu

(
hα

(
−N (m)
r2θ2

0

)
, hα

(
θ0

m

))−1

=
(

N (m)
θ2

0

,
1
r2

)−1

k,n

=
(

θ2
0

N (m)
,

1
r2

)
k,n

=

((
θ2

0

N (m)

)2

,
1
r

)
k,n

.

This implies that by (2.12),

σu

(
hα

(
−N (m)
r2θ2

0

)
, hα

(
θ0

m

))−1

=

(
r,

(
θ2

0

N (m)

)2
)
k,n

;

thus by (2.11),

σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

=
(
r,−N (m)

θ2
0

)
k,n

·

(
r,

(
θ2

0

N (m)

)2
)
k,n

· σu
(
hα (λ) , hα

(
θ0

m

))

· σu
(
hα

(
λθ0

m

)
, hα (µ)

)
=
(
r,− θ2

0

N (m)

)
k,n

· σu
(
hα (λ) , hα

(
θ0

m

))
· σu

(
hα

(
λθ0

m

)
, hα (µ)

)
.

Our result is proved. �



CHAPTER 6

The 2-cocycle of the double cover

Recall that at the beginning of Chapter 4, we stated that

σn/2u = σ,

where σ ∈ H2(G(k), µ2) corresponds to the non-trivial double cover and n is the

number of roots of unity of k. Also, by Proposition 2.8, we know that without loss

of generality, we can replace bα (s, t) by (s, t)k,n for all s, t ∈ k×.

We know that

(s, t)n/2k,n = (s, t)k,2 ,

for all s, t ∈ k× since n is always even for a local field k of characteristic zero.

Hence, by Proposition 2.8, we have a homomorphism

Ψ: π1 → µ2(6.1)

bα (s, t) 7→ (s, t)k,2 .

This implies that if we let Ψ′ be the map (s, t)k,n 7→ (s, t)k,2 for all s, t ∈ k×, then

we can state that Ψ′(σu) = σ.

Using the above as well as Theorem 4.12 and Chapter 5, we have the following

proposition:

132
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Proposition 6.1. For λ, µ ∈ K×,

σ (hα (λ) , hα (µ))

=



(λ, µ)k,2 , if λ, µ ∈ k×;

(µ,−δ2 (λ) /θ0)k,2 , if λ /∈ k×, µ ∈ k×;(
λ, µδ1 (µ)/θ0

)
k,2
, if λ ∈ k×, µ /∈ k×;

(−1,N (λ))k,2 ·

(
−λδ1 (λ)

θ0
, λµ

)
k,2

, if λ, µ /∈ k×, λµ ∈ k×;

(N (λ) ,N (µ))k,2 ·

(
q,
µδ1 (µ)
δ2 (λ)

)
k,2

, otherwise,

where, if λ = a+ bθ0, µ = c+ dθ0, with a, c ∈ k, b, d ∈ k×,

q = a+
bc

d
.

Also, for (r,m), (r′,m′) ∈ A, g, g′ ∈ G,

σ (xα (r,m) · g, g′ · xα (r,m)) = σ (g, g′) ,

σ (g, xα (r,m) · g′) = σ (g · xα (r,m) , g′) ,

σ (g, xα (r,m)) = σ (xα (r,m) , g′) = 1;

and

(1) σ (hα (λ) · wα (0, θ0) , hα (µ) · wα (0, θ0))

= σ (hα (λ) , hα (µ)) · σ
(
hα (λµ) , hα

(
1

N (µ)

))
· σ
(
hα

(
−λ
µ

)
, hα (−1)

)
,

(2) σ (hα (λ) · wα (0, θ0) , hα (µ))

= σ (hα (λ) , hα (µ)) · σ
(
hα (λµ) , hα

(
1

N (µ)

))
,

(3) σ (hα (λ) , hα (µ) · wα (0, θ0)) = σ (hα (λ) , hα (µ)),
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(4) σ (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

= Σ(r,m) · σ
(
hα (λ) , hα

(
θ0

m

))
· σ
(
hα

(
λθ0

m

)
, hα (µ)

)
,

where for r = a′ + b′θ0, m = c′ + d′θ0, a′, b′, c′, d′ ∈ k,

Σ(r,m)

=



(
θ0

m
,−1

)
k,2

, if m ∈ k×θ0;(
−N (m)

θ2
0

,−rθ0

m

)
k,2

, if −rθ0

m
∈ k×;

(
r,−θ2

0

)
k,2
, if r, m ∈ k×;(

a′c′ + b′d′θ2
0

c′
,− N (r)

N (m) θ2
0

)
k,2

·
(

N (r) ,−b
′θ2

0

c′

)
k,2

, if b′, c′ 6= 0,

−rθ0/m /∈ k×;(
r,− θ2

0

N (m)

)
k,2

, otherwise.

Proof. Note that we will use the properties of the Hilbert symbol (3.1) – (3.7)

as stated in Section 3.1. We first apply Ψ′ to Theorem 4.12. The first four cases

cannot be further simplified after applying Ψ′; but when we look at the last case,

i.e. when λ, µ, λµ /∈ k×, we see that by (3.6),

Ψ′(Σ′(λ, µ)) = 1.

Also,

Ψ′
((
−N (δ1 (µ))

N (δ1 (λ))
,

N (λ)
q2

)
k,n

)
=
(
−N (δ1 (µ))

N (δ1 (λ))
,

N (λ)
q2

)
k,2

.

By (3.4),

Ψ′
((
−N (δ1 (µ))

N (δ1 (λ))
,

N (λ)
q2

)
k,n

)
=
(
−N (δ1 (µ))

N (δ1 (λ))
,N (λ)

)
k,2

·
(
−N (δ1 (µ))

N (δ1 (λ))
,

1
q2

)
k,2

;

and since N (δ2 (λ)) /N (δ2 (µ)) ∈ (k×)2, by (3.6),

Ψ′
((
−N (δ1 (µ))

N (δ1 (λ))
,

N (λ)
q2

)
k,n

)
=
(
−N (δ1 (µ))

N (δ1 (λ))
,N (λ)

)
k,2

·
(

N (δ2 (λ))
N (δ2 (µ))

,N (λ)
)
k,2

.

Hence by (3.4),

Ψ′
((
−N (δ1 (µ))

N (δ1 (λ))
,

N (λ)
q2

)
k,n

)
=
(
−N (µ)

N (λ)
,N (λ)

)
k,2

;
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thus using (3.2) and (3.1),

Ψ′
((
−N (δ1 (µ))

N (δ1 (λ))
,

N (λ)
q2

)
k,n

)
= (N (µ) ,N (λ))k,2 = (N (λ) ,N (µ))k,2 .

Consequently, for λ, µ, λµ /∈ k×,

Ψ′ (σu (hα (λ) , hα (µ)))

= σ (hα (λ) , hα (µ))

= Ψ′
((
−N (δ1 (µ))

N (δ1 (λ))
,

N (λ)
q2

)
k,n

)
·Ψ′

(q, µδ1 (µ)
δ2 (λ)

)
k,n

 ·Ψ′(Σ′(λ, µ))

= (N (λ) ,N (µ))k,2 ·

(
q,
µδ1 (µ)
δ2 (λ)

)
k,2

.

Clearly for g, g′ ∈ G(k),

σ (xα (r,m) · g, g′ · xα (r,m)) = σ (g, g′) ,

σ (g, xα (r,m) · g′) = σ (g · xα (r,m) , g′) ,

σ (g, xα (r,m)) = σ (xα (r,m) , g′) = 1.

At the beginning of Chapter 5, we showed that

σu (hα (λ) · wα (0, θ0) , hα (µ) · wα (0, θ0))

=



σu

(
hα (λ) , hα

(
1
µ

))
· σu

(
hα

(
−λ
µ

)
, hα (−1)

)−1

, if µ ∈ k×;

σu (hα (λ) , hα (µ)) · σu
(
hα (λµ) , hα

(
1

N (µ)

))
· σu

(
hα

(
−λ
µ

)
, hα (−1)

)−1

, if µ /∈ k×.

By applying Ψ′ to the above, we see that

σ (hα (λ) · wα (0, θ0) , hα (µ) · wα (0, θ0))

=



σ

(
hα (λ) , hα

(
1
µ

))
· σ
(
hα

(
−λ
µ

)
, hα (−1)

)−1

, if µ ∈ k×;

σ (hα (λ) , hα (µ)) · σ
(
hα (λµ) , hα

(
1

N (µ)

))
· σ
(
hα

(
−λ
µ

)
, hα (−1)

)−1

, if µ /∈ k×.
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But for any s ∈ K×, r ∈ k×,

σ (hα (s) , hα (r)) =


(s, r)k,2 , if s ∈ k×;

(r,−δ2 (s) /θ0)k,2 , if s /∈ k×.

Also, as σ ∈ H2(G(k), µ2), σ = σ−1. Hence by (3.1),

σ (hα (s) , hα (r)) = σ (hα (s) , hα (r))−1

=


(
s, r−1

)
k,2
, if s ∈ k×;(

r−1,−δ2 (s) /θ0

)
k,2
, if s /∈ k×

= σ
(
hα (s) , hα

(
r−1
))
.

Thus, for µ ∈ k×,

σ

(
hα (λ) , hα

(
1
µ

))
= σ (hα (λ) , hα (µ)) .

Also, using previous results in this proof, for µ ∈ k×,

σ

(
hα (λµ) , hα

(
1

N (µ)

))
= σ

(
hα (λµ) , hα

(
1
µ2

))
= 1.

This implies that we can state that for any λ, µ ∈ K×,

σ (hα (λ) · wα (0, θ0) , hα (µ) · wα (0, θ0))

= σ (hα (λ) , hα (µ)) · σ
(
hα (λµ) , hα

(
1

N (µ)

))
· σ
(
hα

(
−λ
µ

)
, hα (−1)

)
.

By the same token, it possible to show that for any λ, µ ∈ K×,

σ (hα (λ) · wα (0, θ0) , hα (µ)) = σ (hα (λ) , hα (µ)) · σ
(
hα (λµ) , hα

(
1

N (µ)

))
,

and we already know by definition that

Ψ′(σu (hα (λ) , hα (µ) · wα (0, θ0))) = σ (hα (λ) , hα (µ) · wα (0, θ0))

= Ψ′(σu (hα (λ) , hα (µ)))

= σ (hα (λ) , hα (µ)) .
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Thus, all we need to do now is to show explicitly what

Ψ′(σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0)))

is, for (r,m) ∈ A, where we let r = a′ + b′θ0, m = c′ + d′θ0, a′, b′, c′, d′ ∈ k. By

Proposition 5.1, we know that

Ψ′(σu (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0)))

= σ (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

= Ψ′(Σu(r,m)) · σ
(
hα (λ) , hα

(
θ0

m

))
· σ
(
hα

(
λθ0

m

)
, hα (µ)

)
,

where Σu(r,m) is as described by the said proposition. We will need to look at

Ψ′(Σu(r,m)), specifically in the cases in which the Hilbert symbols can be further

simplified, i.e. when r, m ∈ k×; and when b′, c′ 6= 0, −rθ0/m /∈ k×.

When r, m ∈ k×,

Ψ′(Σu(r,m)) = Ψ′
((

r,− θ2
0

m2

)
k,n

)
=
(
r,− θ2

0

m2

)
k,2

.

Using (3.4),

Ψ′(Σu(r,m)) =
(
r,−θ2

0

)
k,2
·
(
r,

1
m2

)
k,2

;

hence,

Ψ′(Σu(r,m)) =
(
r,−θ2

0

)
k,2

by (3.6). Also, when b′, c′ 6= 0, −rθ0/m /∈ k×,

Ψ′(Σu(r,m)) = Ψ′
((

a′c′ + b′d′θ2
0

c′
,− c′2 N (r)

b′2 N (m) θ2
0

)
k,n

·
(

N (r) ,−b
′θ2

0

c′

)
k,n

)

=
(
a′c′ + b′d′θ2

0

c′
,− c′2 N (r)

b′2 N (m) θ2
0

)
k,2

·
(

N (r) ,−b
′θ2

0

c′

)
k,2

.

By (3.4),

Ψ′(Σu(r,m)) =
(
a′c′ + b′d′θ2

0

c′
,− N (r)

N (m) θ2
0

)
k,2

·
(
a′c′ + b′d′θ2

0

c′
,
c′2

b′2

)
k,2

·
(

N (r) ,−b
′θ2

0

c′

)
k,2

;
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thus

Ψ′(Σu(r,m)) =
(
a′c′ + b′d′θ2

0

c′
,− N (r)

N (m) θ2
0

)
k,2

·
(

N (r) ,−b
′θ2

0

c′

)
k,2

by (3.6). Thus our result is proved, letting Σ(r,m) = Ψ′(Σu(r,m)). �

Remark 6.2. We should note that the formulae for σ (hα (λ) , hα (µ)) may be

written in terms of norms and traces. This is because for λ ∈ K×, λ /∈ k×,

δ2 (λ)
θ0

=
1(

λ− λ
)
θ0

= − 1
Tr (λθ0)

;

hence by Proposition 6.1, for λ, µ ∈ K×,

σ (hα (λ) , hα (µ))

=



(λ, µ)k,2 , if λ, µ ∈ k×;(
µ,

1
Tr (λθ0)

)
k,2

, if λ /∈ k×, µ ∈ k×;(
λ,

N (µ)
Tr (µθ0)

)
k,2

, if λ ∈ k×, µ /∈ k×;

(−1,N (λ))k,2 ·
(
− N (λ)

Tr (λθ0)
, λµ

)
k,2

, if λ, µ /∈ k×, λµ ∈ k×;

(N (λ) ,N (µ))k,2 ·
(

Tr (λµθ0)
Tr (µθ0)

,−Tr (λθ0) N (µ)
Tr (µθ0)

)
k,2

, otherwise.

By (3.4) and (3.1),

σ (hα (λ) , hα (µ))

=



(λ, µ)k,2 , if λ, µ ∈ k×;

(Tr (λθ0) , µ)k,2 , if λ /∈ k×, µ ∈ k×;

(λ,N (µ))k,2 · (λ,Tr (µθ0))k,2 , if λ ∈ k×, µ /∈ k×;

(N (λ) ,−λµ)k,2 · (−Tr (λθ0) , λµ)k,2 , if λ, µ /∈ k×, λµ ∈ k×;

(N (λ) ,N (µ))k,2 ·
(
−Tr (λθ0) N (µ)

Tr (µθ0)
,Tr (µθ0)

)
k,2

·
(

Tr (λµθ0) ,−Tr (λθ0) N (µ)
Tr (µθ0)

)
k,2

, otherwise.

When λ ∈ k×, µ /∈ k×, we have by (3.7) that

(λ,N (µ))k,2 = (λ, µ)K,2 .
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Also, when λ, µ /∈ k×, λµ ∈ k×, by (3.7) and (3.2),

(N (λ) ,−λµ)k,2 = (λ,−λµ)K,2 = (λ, µ)K,2 .

Thus with the above, (3.6) and (3.4),

σ (hα (λ) , hα (µ))

=



(λ, µ)k,2 , if λ, µ ∈ k×;

(Tr (λθ0) , µ)k,2 , if λ /∈ k×, µ ∈ k×;

(λ, µ)K,2 · (λ,Tr (µθ0))k,2 , if λ ∈ k×, µ /∈ k×;

(λ, µ)K,2 · (−Tr (λθ0) , λµ)k,2 , if λ, µ /∈ k×, λµ ∈ k×;

(N (λ) ,N (µ))k,2 · (Tr (λθ0) N (µ) ,Tr (µθ0))k,2

· (Tr (λµθ0) ,−Tr (λθ0) N (µ) Tr (µθ0))k,2 , otherwise,

which is the formula given in the Introduction.

Proposition 6.1 may seem complicated and unwieldy, but in fact, it can be

further simplified. Let γi ∈ G(k), where i = 1, 2, 3, with γ3 = γ1γ2 and

γi =


∗ ∗ ∗

∗ ∗ ∗

gi hi ji

 .

Also, let

X(γi) =


(giθ0)−1, if gi 6= 0;

ji
−1
, if gi = 0,

and for λ, µ ∈ K×, let

u (λ, µ) =


(λ,−µ)k,2 , if λ, µ ∈ k×;

(N (λ) ,−N (µ))k,2 , otherwise.

Then σ can be expressed in terms of Hilbert symbols involving X(γi) and u(λ, µ)

as shown in the following theorem. It should be noted that X(γi) is analogous to

Kubota’s X(γ) (γ ∈ SL2(k)) as defined in [9], which was used in the formula for

his 2-cocycle on SL2.



6. THE 2-COCYCLE OF THE DOUBLE COVER 140

Theorem 6.3. If X(γ3)/(X(γ1)X(γ2)) ∈ k×, then

σ (γ1, γ2) = u

(
X(γ3)
X(γ2)

, X(γ1)X(γ2)
)
·
(
δ2 (X(γ3))
δ2 (X(γ2))

,−N (X(γ2)) δ2 (X(γ2))
δ2 (X(γ1))

)
k,2

·
(

X(γ3)
X(γ1)X(γ2)

,
δ2 (X(γ1)) δ2 (X(γ2))

δ2 (X(γ3)) θ0

)
k,2

.

If X(γ3)/(X(γ1)X(γ2)) /∈ k×, let

r = r(γ1, γ2) =
h2g3 − h3g2

g1g2
.

Then we have

σ (γ1, γ2) =
(
−δ2

(
− rX(γ3)
X(γ1)X(γ2)

)
θ−1

0 ,N
(
− rX(γ3)
X(γ1)X(γ2)

))
k,2

·
(

N (r) ,
δ2 (r)
θ0

)
k,2

· u
(
X(γ1),

X(γ3)
X(γ2)

)
· u
(
X(γ3)
X(γ2)

, X(γ3)
)

·
(
δ2 (X(γ3)/(X(γ1)X(γ2)))

δ2 (X(γ3)/X(γ2))
,

− N (X(γ3)/(X(γ1)X(γ2))) δ2 (X(γ3)/(X(γ1)X(γ2)))
δ2 (X(γ1))

)
k,2

·
(
δ2 (X(γ2))
δ2 (X(γ3))

,−N (X(γ2)) δ2 (X(γ2))
δ2 (X(γ3)/X(γ2))

)
k,2

.

Proof. We first note that we want to use the matrix entries of γi in the formula

for our 2-cocycle much in the same way as Kubota did (see [9]) in his theorem for

the 2-cocycle on the group SL2. The matrix entry used depended on the Bruhat

decomposition and which Bruhat cell the matrix belonged to; the choice made was

considered using the bottom row of the matrix only.

In our case, we can do the same thing as there are only two Bruhat cells to

consider (see Section 1.2), just like the SL2 case. Looking at (1.3) and (1.4), it is

clear that the Bruhat cell a matrix in SU(2, 1) belongs to depends on whether the

(3, 1)-entry is non-zero, and a choice can be made as follows. With

γi =


∗ ∗ ∗

∗ ∗ ∗

gi hi ji

 ∈ G(k),
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i = 1, 2, 3, and γ3 = γ1γ2, let

X(γi) =


(giθ0)−1, if gi 6= 0;

ji
−1

if gi = 0.

Note that for any xα (s1, n1) ∈ N(k), γ ∈ G(k),

X(xα (s1, n1) · γ) = X(γ) = X(γ · xα (s1, n1)).

We will have to prove this theorem in a few steps. We first find a simplified

formula for the 2-cocycle on the torus T (k), written in terms of X(γi)’s. We then

look for similar formulae for each of the cases (1) – (3) of Proposition 6.1. We will

also look at case (4) of Proposition 6.1, finding a simplification of Σ(r,m). It will

then be apparent how the formulae coincide.

We will often use the properties of Hilbert symbols (3.1) – (3.6) to simplify

expressions in terms of Hilbert symbols. We will use these properties mostly without

mention throughout the rest of this proof.

Throughout this proof, let λ, µ ∈ K×, λ′ = a + bθ0, µ′ = c + dθ0, where a, b,

c, d ∈ k× and λ′µ′ /∈ k×. By Proposition 6.1, we have

σ (hα (λ′) , hα (µ′)) = (N (λ′) ,N (µ′))k,2 ·

(
q,
µ′δ1 (µ′)
δ2 (λ′)

)
k,2

,

where q = a+ bc/d. This implies that

q =
δ2 (µ′)
δ2 (λ′µ′)

,

and

σ (hα (λ′) , hα (µ′)) = (N (λ′) ,N (µ′))k,2 ·
(
δ2 (µ′)
δ2 (λ′µ′)

,−N (µ′) δ2 (µ′)
δ2 (λ′)

)
k,2

.

For any λ, µ ∈ K×, let

F1(λ, µ) = (N (λ) ,N (µ))k,2 ·
(
δ2 (µ)
δ2 (λµ)

,−N (µ) δ2 (µ)
δ2 (λ)

)
k,2

.
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Then we have

F1(λ, µ)

=



(
λ2, µ2

)
k,2
·
(
1,−µ2

)
k,2
, if λ, µ ∈ k×;(

N (λ) , µ2
)
k,2
·
(

θ0

δ2 (λµ)
,− µ2θ0

δ2 (λ)

)
k,2

, if λ /∈ k×, µ ∈ k×;

(
λ2,N (µ)

)
k,2
·
(
δ2 (µ)
δ2 (λµ)

,−N (µ) δ2 (µ)
θ0

)
k,2

, if λ ∈ k×, µ /∈ k×;

(N (λ) ,N (µ))k,2 ·
(
δ2 (µ)
θ0

,−N (µ) δ2 (µ)
δ2 (λ)

)
k,2

, if λ, µ /∈ k×, λµ ∈ k×;

(N (λ) ,N (µ))k,2 ·
(
δ2 (µ)
δ2 (λµ)

,−N (µ) δ2 (µ)
δ2 (λ)

)
k,2

, if λ, µ, λµ /∈ k×.

Using (4.6) and the properties of Hilbert symbols (3.1) – (3.6), we can simplify

F1(λ, µ). Only the case where λ, µ /∈ k×, λµ ∈ k× deserves some elaboration.

Noting that

µ =
λµ

λ
=

λµ

N (λ)
· λ,

we have

F1(λ, µ) =
(

N (λ) ,
(λµ)2

N (λ)

)
k,2

·

(
(N (λ) /(λµ))δ2

(
λ
)

θ0
,−
(
(λµ)2/N (λ)

)
(N (λ) /(λµ))δ2

(
λ
)

δ2 (λ)

)
k,2

.

Also, note that δ2
(
λ
)

= −δ2 (λ). The above can then be simplified using the

properties of Hilbert symbols. We will get

F1(λ, µ)

=



1, if λ, µ ∈ k×;(
µ,−δ2 (λ)

θ0

)
k,2

, if λ /∈ k×, µ ∈ k×;(
λ,−N (µ) δ2 (µ)

θ0

)
k,2

, if λ ∈ k×, µ /∈ k×;

(−1,N (λ))k,2 ·
(
−N (λ) δ2 (λ)

θ0
, λµ

)
k,2

, if λ, µ /∈ k×, λµ ∈ k×;

(N (λ) ,N (µ))k,2 ·
(
δ2 (µ)
δ2 (λµ)

,−N (µ) δ2 (µ)
δ2 (λ)

)
k,2

, if λ, µ, λµ /∈ k×.
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By comparing F1(λ, µ) with Proposition 6.1, we find that

σ (hα (λ) , hα (µ)) =


(λ, µ)k,2 , if λ, µ ∈ k×;

F1(λ, µ), otherwise.

In fact, if we let

u1(λ, µ) =


(λ, µ)k,2 , if λ, µ ∈ k×;

(N (λ) ,N (µ))k,2 , otherwise,

then

σ (hα (λ) , hα (µ)) = u1(λ, µ) ·
(
δ2 (µ)
δ2 (λµ)

,−N (µ) δ2 (µ)
δ2 (λ)

)
k,2

.

Note that

X(hα (λ)) = λ, X(hα (µ)) = µ, X(hα (λ) · hα (µ)) = λµ,

so we truly get a formula in terms of X(γi) on the torus. Also, by Proposition 6.1,

σ (hα (λ) , hα (µ)) = σ (hα (λ) , hα (µ) · wα (0, θ0)). We note that

X(hα (µ) · wα (0, θ0)) = µ, X(hα (λ) · hα (µ) · wα (0, θ0)) = λµ,

i.e. for γ1 ∈ T (k), γ2 ∈ T (k) ·W ,

(6.2) σ (γ1, γ2) = u1(X(γ1), X(γ2)) ·
(
δ2 (X(γ2))
δ2 (X(γ3))

,−N (X(γ2)) δ2 (X(γ2))
δ2 (X(γ1))

)
k,2

.

Note that (6.2) can also be applied to any γ1, γ2 ∈ G(k) such that X(γ3) =

X(γ1)X(γ2). This is due to the Bruhat decomposition and Proposition 6.1.

We now consider case (2) of Proposition 6.1, where

σ (hα (λ) · wα (0, θ0) , hα (µ)) = σ (hα (λ) , hα (µ)) · σ
(
hα (λµ) , hα

(
1

N (µ)

))
.
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Using Proposition 6.1 and the properties of Hilbert symbols (3.1) – (3.6), we get

σ (hα (λ) · wα (0, θ0) , hα (µ))

=



(λ, µ)k,2 , if λ, µ ∈ k×;(
µ,−δ2 (λ)

θ0

)
k,2

, if λ /∈ k×,

µ ∈ k×;(
λ

N (µ)
,−δ2 (µ)

θ0

)
k,2

, if λ ∈ k×,

µ /∈ k×;

(−1,N (λ))k,2 ·
(
δ2 (λ)
θ0

, λµ

)
k,2

, if λ, µ /∈ k×,

λµ ∈ k×;(
−N (λ) δ2 (λµ)

θ0
,N (µ)

)
k,2

·
(
δ2 (µ)
δ2 (λµ)

,−N (µ) δ2 (µ)
δ2 (λ)

)
k,2

, if λ, µ, λµ /∈ k×.

We have

X(hα (λ) · wα (0, θ0)) = λ, X(hα (µ)) = µ,

X(hα (λ) · wα (0, θ0) · hα (µ)) = λ/µ.

Just like the 2-cocycle on the torus, we will find a formula for σ (γ1, γ2), γ1 ∈

T (k) · wα (0, θ0), γ2 ∈ T (k), in terms of X(γi)’s. By (4.6), we have

δ2 (λ′µ′) = δ2

(
λ′

µ′
·N (µ′)

)
=
δ2
(
λ′/µ′

)
N (µ′)

,

which implies that

σ (hα (λ′) · wα (0, θ0) , hα (µ′))

=

(
−

N (λ′) δ2
(
λ′/µ′

)
N (µ′) θ0

,N (µ′)

)
k,2

·

(
N (µ′) δ2 (µ′)
δ2
(
λ′/µ′

) ,−N (µ′) δ2 (µ′)
δ2 (λ′)

)
k,2

.

The above can be simplified using the properties of Hilbert symbols, so that we get

σ (hα (λ′) · wα (0, θ0) , hα (µ′))

=

(
N (λ′) δ2 (λ′) δ2 (µ′)

δ2
(
λ′/µ′

)
θ0

,N (µ′)

)
k,2

·

(
δ2 (µ′)

δ2
(
λ′/µ′

) ,−N (µ′) δ2 (µ′)
δ2 (λ′)

)
k,2

.
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Let

F2(λ, µ) =
(

N (λ) δ2 (λ) δ2 (µ)
δ2 (λ/µ) θ0

,N (µ)
)
k,2

·
(

δ2 (µ)
δ2 (λ/µ)

,−N (µ) δ2 (µ)
δ2 (λ)

)
k,2

.

It is possible to check that when λ, µ ∈ k×, F2(λ, µ) = 1, and that

σ (hα (λ) · wα (0, θ0) , hα (µ)) =


(λ, µ)k,2 , if λ, µ ∈ k×;

F2(λ, µ), otherwise.

Thus we can get a similar formula

σ (hα (λ) · wα (0, θ0) , hα (µ))

= u1(λ, µ) ·
(

δ2 (µ)
δ2 (λ/µ)

,−N (µ) δ2 (µ)
δ2 (λ)

)
k,2

·
(

1
N (µ)

,
δ2 (λ) δ2 (µ)
δ2 (λ/µ) θ0

)
k,2

,

i.e. for γ1 ∈ T (k) · wα (0, θ0), γ2 ∈ T (k),

(6.3) σ (γ1, γ2) = u1(X(γ1), X(γ2)) ·
(
δ2 (X(γ2))
δ2 (X(γ3))

,−N (X(γ2)) δ2 (X(γ2))
δ2 (X(γ1))

)
k,2

·
(

X(γ3)
X(γ1)X(γ2)

,
δ2 (X(γ1)) δ2 (X(γ2))

δ2 (X(γ3)) θ0

)
k,2

.

In fact, (6.2) can be subsumed into (6.3), since for γ1 ∈ T (k), γ2 ∈ T (k)·W , we have

X(γ3)/X(γ1)X(γ2) = 1; hence using (6.3) to calculate σ (γ1, γ2) will give the same

answer as (6.2). Also, it can be checked that (6.3) can be applied to any γ1, γ2 such

that X(γ3)/(X(γ1)X(γ2)) = 1 or 1/N (X(γ2)), using the Bruhat decomposition

and Proposition 6.1.

We also have, by Proposition 6.1,

σ (hα (λ) · wα (0, θ0) , hα (µ) · wα (0, θ0))

= σ (hα (λ) , hα (µ)) · σ
(
hα (λµ) , hα

(
1

N (µ)

))
· σ
(
hα

(
−λ
µ

)
, hα (−1)

)
,
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i.e.

σ (hα (λ) · wα (0, θ0) , hα (µ) · wα (0, θ0))

=



(−λ,−µ)k,2 , if λ, µ ∈ k×;(
−µ, δ2 (λ)

θ0

)
k,2

, if λ /∈ k×,

µ ∈ k×;(
− λ

N (µ)
,
δ2 (µ)
θ0

)
k,2

, if λ ∈ k×,

µ /∈ k×;

(−1,−1)k,2 ·
(
−δ2 (λ)

θ0
, λµ

)
k,2

, if λ, µ /∈ k×,

λµ ∈ k×;(
N (λ) δ2 (λ) δ2 (µ)

δ2 (λ/µ) θ0
,N (µ)

)
k,2

·
(

δ2 (µ)
δ2 (λ/µ)

,−N (µ) δ2 (µ)
δ2 (λ)

)
k,2

·
(
−1,−δ2 (−λ/µ)

θ0

)
k,2

, if λ, µ, λµ /∈ k×.

Note that

X(hα (λ) · wα (0, θ0)) = λ, X(hα (µ) · wα (0, θ0)) = µ,

X(hα (λ) · wα (0, θ0) · hα (µ) · wα (0, θ0)) = −λ/µ.

By (4.6),

δ2

(
λ′

µ′

)
= −δ2

(
−λ
′

µ′

)
,

hence we get

σ (hα (λ′) · wα (0, θ0) , hα (µ′) · wα (0, θ0))

= (N (λ′) ,N (µ′))k,2 ·

(
δ2 (µ′)

δ2
(
−λ′/µ′

) ,−N (µ′) δ2 (µ′)
δ2 (λ′)

)
k,2

·

(
− 1

N (µ′)
,
δ2 (λ′) δ2 (µ′)
δ2
(
−λ′/µ′

)
θ0

)
k,2

.

Let

F3(λ, µ) = (N (λ) ,N (µ))k,2 ·
(

δ2 (µ)
δ2 (−λ/µ)

,−N (µ) δ2 (µ)
δ2 (λ)

)
k,2

·
(
− 1

N (µ)
,
δ2 (λ) δµ (t)
δ2 (−λ/µ) θ0

)
k,2

.
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It can be checked that F3(λ, µ) = 1 when λ, µ ∈ k×, and that

σ (hα (λ) · wα (0, θ0) , hα (µ) · wα (0, θ0)) =


(−λ,−µ)k,2 , if λ, µ ∈ k×;

F3(λ, µ), otherwise.

In other words, if we let

u2(λ, µ) =


(−λ,−µ)k,2 , if λ, µ ∈ k×;

(N (λ) ,N (µ))k,2 , otherwise,

then

σ (hα (λ) · wα (0, θ0) , hα (µ) · wα (0, θ0))

= u2(λ, µ) ·
(

δ2 (µ)
δ2 (−λ/µ)

,−N (µ) δ2 (µ)
δ2 (λ)

)
k,2

·
(
− 1

N (µ)
,
δ2 (λ) δ2 (µ)
δ2 (−λ/µ) θ0

)
k,2

,

i.e. for γ1, γ2 ∈ T (k) · wα (0, θ0),

(6.4) σ (γ1, γ2) = u2(X(γ1), X(γ2)) ·
(
δ2 (X(γ2))
δ2 (X(γ3))

,−N (X(γ2)) δ2 (X(γ2))
δ2 (X(γ1))

)
k,2

·
(

X(γ3)
X(γ1)X(γ2)

,
δ2 (X(γ1)) δ2 (X(γ2))

δ2 (X(γ3)) θ0

)
k,2

.

Again it can be checked that for any γ1, γ2 ∈ G(k) such thatX(γ3)/(X(γ1)X(γ2)) =

−1/N (X(γ2)), (6.4) can be applied.

We now look at case (4) of Proposition 6.1, i.e. where

σ (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))

= Σ(r,m) · σ
(
hα (λ) , hα

(
θ0

m

))
· σ
(
hα

(
λθ0

m

)
, hα (µ)

)
.

We have

X(hα (λ) · wα (0, θ0)) = λ, X(xα (r,m) · hα (µ) · wα (0, θ0)) = µ,

X(hα (λ) · wα (0, θ0) · xα (r,m) · hα (µ) · wα (0, θ0)) =
λµθ0

m
.

In all the previous cases, it is apparent that for any γ1, γ2 ∈ T (k) ·W , we have

X(γ3)/X(γ1)X(γ2) ∈ k×. We want to find out if a simplified formula exists and
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be similar to (6.2), (6.3) and (6.4) if

X(hα (λ) · wα (0, θ0) · xα (r,m) · hα (µ) · wα (0, θ0))
X(hα (λ) · wα (0, θ0))X(xα (r,m) · hα (µ) · wα (0, θ0))

=
θ0

m
∈ k×.

So assume θ0/m ∈ k×. This implies that r = 0 and m ∈ k×θ0. By Proposition 6.1

and after simplifying, we have

σ (hα (λ) · wα (0, θ0) , xα (0,m) · hα (µ) · wα (0, θ0))

=



(
λθ0

m
,−λµ

)
k,2

, if λ, µ ∈ k×;(
µθ0

m
,−δ2 (λ)m

θ2
0

)
k,2

, if λ /∈ k×,

µ ∈ k×;(
λθ0

m
,

N (µ) δ2 (µ)
λθ0

)
k,2

, if λ ∈ k×,

µ /∈ k×;

(−1,N (λ))k,2 ·
(

N (λ) δ2 (λ)m
θ2

0

,
λµθ0

m

)
k,2

·
(
θ0

m
,
δ2 (λ)
θ0

)
k,2

, if λ, µ /∈ k×,

λµ ∈ k×;

(N (λ) ,N (µ))k,2 ·
(

δ2 (µ)
δ2 (λµθ0/m)

,−N (µ) δ2 (µ)
δ2 (λ)

)
k,2

·
(
θ0

m
,
δ2 (λ) δ2 (µ)

δ2 (λµθ0/m) θ0

)
k,2

, if λ, µ, λµ /∈ k×.

For any λ, µ ∈ K×, m ∈ k×θ0, let

F4

(
λ, µ,

θ0

m

)
= (N (λ) ,N (µ))k,2 ·

(
δ2 (µ)

δ2 (λµθ0/m)
,−N (µ) δ2 (µ)

δ2 (λ)

)
k,2

·
(
θ0

m
,
δ2 (λ) δ2 (µ)

δ2 (λµθ0/m) θ0

)
k,2

.

Then we have F4(λ, µ, θ0/m) = 1 for λ, µ ∈ k×, and

σ (hα (λ) · wα (0, θ0) , xα (0,m) · hα (µ) · wα (0, θ0))

=


(
λθ0

m
,−λµ

)
k,2

, if λ, µ ∈ k×;

F4

(
λ, µ,

θ0

m

)
, otherwise.
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So if

u3

(
λ, µ,

θ0

m

)
=


(
λθ0

m
,−λµ

)
k,2

, if λ, µ ∈ k×;

(N (λ) ,N (µ))k,2 , otherwise,

then

σ (hα (λ) · wα (0, θ0) , xα (0,m) · hα (µ) · wα (0, θ0))

= u3

(
λ, µ,

θ0

m

)
·
(

δ2 (µ)
δ2 (λµθ0/m)

,−N (µ) δ2 (µ)
δ2 (λ)

)
k,2

·
(
θ0

m
,
δ2 (λ) δ2 (µ)

δ2 (λµθ0/m) θ0

)
k,2

.

In other words, if γ1 ∈ T (k) ·wα (0, θ0), γ2 ∈ xα (0,m) ·T (k) ·wα (0, θ0), m ∈ k×θ0,

then

(6.5) σ (γ1, γ2)

= u3

(
X(γ1), X(γ2),

X(γ3)
X(γ1)X(γ2)

)
·
(
δ2 (X(γ2))
δ2 (X(γ3))

,−N (X(γ2)) δ2 (X(γ2))
δ2 (X(γ1))

)
k,2

·
(

X(γ3)
X(γ1)X(γ2)

,
δ2 (X(γ1)) δ2 (X(γ2))

δ2 (X(γ3)) θ0

)
k,2

,

and we observe that (6.5) may be applied to any two elements γ1, γ2 ∈ G(k) such

that X(γ3)/(X(γ1)X(γ2)) = θ0/m ∈ k×. (Note that using the properties of Hilbert

symbols, we can show that if θ0/m = 1 or 1/N (µ), then u3(λ, µ, θ0/m) = u1(λ, µ),

and if θ0/m = −1/N (µ), then u3(λ, µ, θ0/m) = u2(λ, µ).)

As we can see, (6.3), (6.4) and (6.5) each differ from each other by a factor, i.e.

if γ1, γ2 ∈ G(k) such that X(γ3)/X(γ1)X(γ2) ∈ k×, then we want a function

u′(X(γ1), X(γ2), X(γ3))

=


(
X(γ3)
X(γ2)

,−X(γ1)X(γ2)
)
k,2

, if X(γ1), X(γ2), X(γ3) ∈ k×;

(N (X(γ1)) ,N (X(γ2)))k,2 , otherwise,

so that

σ (γ1, γ2) = u′(X(γ1), X(γ2), X(γ3)) ·
(
δ2 (X(γ2))
δ2 (X(γ3))

,−N (X(γ2)) δ2 (X(γ2))
δ2 (X(γ1))

)
k,2

·
(

X(γ3)
X(γ1)X(γ2)

,
δ2 (X(γ1)) δ2 (X(γ2))

δ2 (X(γ3)) θ0

)
k,2

.
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But we have, using the properties of Hilbert symbols,(
N
(
X(γ3)
X(γ2)

)
,−N (X(γ1)X(γ2))

)
k,2

= (N (X(γ1)) ,N (X(γ2)))k,2

for any X(γ1), X(γ2), X(γ3) ∈ K× such that X(γ3)/(X(γ1)X(γ2)) ∈ k×. These

remarks bring us to define for any s, t ∈ K×,

u (s, t) =


(s,−t)k,2 , if s, t ∈ k×;

(N (s) ,−N (t))k,2 , otherwise,

so that we have

(6.6)

σ (γ1, γ2) = u

(
X(γ3)
X(γ2)

, X(γ1)X(γ2)
)
·
(
δ2 (X(γ2))
δ2 (X(γ3))

,−N (X(γ2)) δ2 (X(γ2))
δ2 (X(γ1))

)
k,2

·
(

X(γ3)
X(γ1)X(γ2)

,
δ2 (X(γ1)) δ2 (X(γ2))

δ2 (X(γ3)) θ0

)
k,2

.

(6.6) obviously is only defined when X(γ3)/(X(γ1)X(γ2)) ∈ k×, which implies that

we need to find a different formula for the case when X(γ3)/(X(γ1)X(γ2)) /∈ k×.

We still have yet to look at

σ (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0)) ,

where r 6= 0. What we first need to do is to find a formula for Σ(r,m), where

Σ(r,m) is as defined in Proposition 6.1. As Σ(r,m) depends on whether r, m and

−rθ0/m lie in the subfield k, we should find a formula which only involves these

three values.

Recall that for (r′,m′) ∈ A (see (2.2)), r′ = a′ + b′θ0, m′ = c′ + d′θ0, a′, b′, c′,

d′ ∈ k, b′, c′ 6= 0 and −r′θ0/m′ /∈ k×,

Σ(r′,m′) =
(
a′c′ + b′d′θ2

0

c′
,− N (r′)

N (m′) θ2
0

)
k,2

·
(

N (r′) ,−b
′θ2

0

c′

)
k,2

.

Since c′ = −N (r′) /2, this implies that

Σ(r′,m′) =
(
−2(a′c′ + b′d′θ2

0)
N (r′)

,− N (r′)
N (m′) θ2

0

)
k,2

·
(

N (r′) ,
2b′θ2

0

N (r′)

)
k,2

.
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Also, we have

δ2 (r′) = − 1
2b′θ0

, δ2

(
−r
′θ0

m′

)
=

N (m′)
2(a′c′ + b′d′θ2

0)θ0
.

Thus,

Σ(r′,m′) =

(
− N (m′)

N (r′) δ2
(
−r′θ0/m′

)
θ0

,− N (r′)
N (m′) θ2

0

)
k,2

·
(

N (r′) ,− θ0

N (r′) δ2 (r′)

)
k,2

,

and simplifying the above, we get

Σ(r′,m′) =

(
−
δ2
(
−r′θ0/m′

)
θ0

,N
(
−r
′θ0

m′

))
k,2

·
(

N (r′) ,
δ2 (r′)
θ0

)
k,2

.

In fact, if we let (s1, n1) ∈ A with s1 6= 0, and

F5(s1, n1) =
(
−δ2 (−s1θ0/n1)

θ0
,N
(
−s1θ0

n1

))
k,2

·
(

N (s1) ,
δ2 (s1)
θ0

)
k,2

,

then we can check that

Σ(r,m) = F5(r,m)

for any (r,m) ∈ A, r 6= 0.

So this implies that by Proposition 6.1 and (6.6),

σ (hα (λ) · wα (0, θ0) , xα (r,m) · hα (µ) · wα (0, θ0))(6.7)

= Σ(r,m) · σ
(
hα (λ) , hα

(
θ0

m

))
· σ
(
hα

(
λθ0

m

)
, hα (µ)

)

=
(
−δ2 (−rθ0/m)

θ0
,N
(
−rθ0

m

))
k,2

·
(

N (r) ,
δ2 (r)
θ0

)
k,2

·

[
u

(
λ,
λθ0

m

)

·
(
δ2 (θ0/m)
δ2 (λθ0/m)

,−N (θ0/m) δ2 (θ0/m)
δ2 (λ)

)
k,2

]
·

[
u

(
λθ0

m
,
λµθ0

m

)

·
(

δ2 (µ)
δ2 (λµθ0/m)

,−N (µ) δ2 (µ)
δ2 (λθ0/m)

)
k,2

]
.

We want to show, for every γ1, γ2 ∈ G(k) such that X(γ3)/(X(γ1)X(γ2)) /∈ k×,

that σ (γ1, γ2) can be calculated using (6.7). We will also find an expression for

σ (γ1, γ2) only in terms of the bottom row entries of γ1, γ2 and γ3 = γ1γ2.
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Assume that X(γ3)/(X(γ1)X(γ2)) /∈ k×. It is obvious that X(γi) for each

i = 1, 2, 3 is never zero. Let

γi =


ai ∗ ∗

di ∗ ∗

gi hi ji

 .

Then by the Bruhat decomposition (1.3),

γi = xα

(
−di
gi
,
ai
gi

)
· hα

(
1
giθ0

)
· wα (0, θ0) · xα

(
hi
gi
,
ji
gi

)
.

By Proposition 6.1,

σ (γ1, γ2) = σ

(
xα

(
−d1

g1
,
a1

g1

)
· hα

(
1

g1θ0

)
· wα (0, θ0) · xα

(
h1

g1
,
j1
g1

)
,

xα

(
−d2

g2
,
a2

g2

)
· hα

(
1

g2θ0

)
· wα (0, θ0) · xα

(
h2

g2
,
j2
g2

))
= σ

(
hα

(
1

g1θ0

)
· wα (0, θ0) ,

xα

(
h1

g1
,
j1
g1

)
· xα

(
−d2

g2
,
a2

g2

)
· hα

(
1

g2θ0

)
· wα (0, θ0)

)
.

Let

xα (r,m) = xα

(
h1

g1
,
j1
g1

)
· xα

(
−d2

g2
,
a2

g2

)
= xα

(
h1

g1
− d2

g2
,
j1
g1

+
h1d2

g1g2
+
a2

g2

)
.

Then we have

γ3 =


∗ ∗ ∗

∗ ∗ ∗

mg1g2 −rg1g2/g2 +mg1h2 g1/g2 + rg1h2/g2 +mg1j2

 ,

X(γ3) =
1

mg1g2θ0
=
X(γ1)X(γ2)θ0

m
.
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Since X(γ3)/(X(γ1)X(γ2)) /∈ k×, this implies that θ0/m /∈ k×, i.e. r 6= 0.

Hence we use (6.7) so that

σ (γ1, γ2) =
(
−δ2 (−rX(γ3)/(X(γ1)X(γ2)))

θ0
,N
(
− rX(γ3)
X(γ1)X(γ2)

))
k,2

·
(

N (r) ,
δ2 (r)
θ0

)
k,2

· u
(
X(γ1),

X(γ3)
X(γ2)

)
· u
(
X(γ3)
X(γ2)

, X(γ3)
)

·
(
δ2 (X(γ3)/(X(γ1)X(γ2)))

δ2 (X(γ3)/X(γ2))
,

− N (X(γ3)/(X(γ1)X(γ2))) δ2 (X(γ3)/(X(γ1)X(γ2)))
δ2 (X(γ1))

)
k,2

·
(
δ2 (X(γ2))
δ2 (X(γ3))

,−N (X(γ2)) δ2 (X(γ2))
δ2 (X(γ3)/X(γ2))

)
k,2

.

We could just let r = h1/g1 − d2/g2, but there is another way to calculate r

from just the bottom rows of the γi’s. We have

g3 = mg1g2, h3 = −rg1g2

g2
+mg1h2,

and rearranging the above,

r =
h2g3 − h3g2

g1g2
.

Thus our result is proved. �

Remark 6.4. Recall that in Lemma 4.10, we established that the commutator

of the 2-cocycle σu on the torus T (k) was, for λ, µ ∈ K×,

[λ, µ]σu =
σu (hα (λ) , hα (µ))
σu (hα (µ) , hα (λ))

= (λ, µ)2
K,n · (λ, µ)−1

K,n .

Since σn/2u = σ, we can calculate the commutator of the 2-cocycle σ on T (k). Since

(s, t)n/2K,n = (s, t)K,2 for all s, t ∈ K×, we have

[λ, µ]σ = [λ, µ]n/2σu = (λ, µ)2
K,2 · (λ, µ)−1

K,2 .

But using (3.1) and (3.6), we get

[λ, µ]σ = (λ, µ)K,2 .



Part 3

The local Kubota symbol



CHAPTER 7

The compact open subgroup on which the

quadratic 2-cocycle splits

We have a 2-cocycle σ on G(k), where k is a local field. In the case that k is

non-archimedean, there is a compact open subgroup Γ̂p on which σ splits, i.e.

σ|Γ̂p
= ∂κ,

where κ : Γ̂p → µ2 is a 1-cochain. Note that κ is not quite unique, since it may be

multiplied by a homomorphism Γ̂p → µ2. The function κ is called a local Kubota

symbol. In this chapter we shall determine the compact open subgroup Γ̂p on which

σ splits.

For the rest of this chapter, let k be a local field, and K = k(θ0) be the quadratic

extension of k. Also, we will let p denote the maximal ideal of k. p may be odd

or even, depending on k. When K/k is ramified, we will assume that θ0 is a prime

element of K.

In addition to unramified and ramified extensions, we will also need to consider

split extensions, i.e. K ∼= k ⊕ k, when establishing the compact open subgroup on

which σ splits for a given extension K/k. This is so that we can consider the adèle

group in Chapter 8. We will obtain the following theorem:

Theorem 7.1. Define a compact open subgroup Γ̂p of G(k) as follows:

Γ̂p =


G(Ok), if p is odd and unramified (either inert or split) in K;

G(Ok, θ0), if p is odd and ramified in K;

G(Ok, 4), if p is even and split in K,

where G(Ok, θ0) is defined as in (7.1) and G(Ok, 4) is defined as in (7.2). Then σ

splits on Γ̂p.

155
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The rest of this chapter is a proof of the above theorem.

7.1. The odd primes

K/k is either unramified, ramified or split. We will look at each type extension

in turn.

7.1.1. The unramified extension. In [5], Deligne constructed for any re-

ductive group G over k a canonical central extension

0 −→ H2(k,Z/n(2)) −→ E(ck) −→ G(k) −→ 1.

In the above, Z/n(2) = µ⊗−2
n , and in the case that k contains an n-th root of unity,

H2(k,Z/n(2)) is canonically isomorphic to µn (see 5.4 of [5]).

Suppose now that G is defined over the valuation ring Ok in k. Deligne shows

that when G is semi-simple and simply connected over Spec(Ok) and n is not

a multiple of p, the functoriality for the map Spec(k) → Spec(Ok) reduces to a

splitting

G(Ok)

{{vvv
vv

vv
vv

� _

��
0 // H2(k,Z/n(2)) // E(ck) // G(k) // 0.

In the case that K/k is unramified, we shall show that G is semi-simple and

simply connected over Spec(Ok), and that Deligne’s extension is the same as Deod-

har’s when n is the number of roots of unity in k. Hence Deligne’s splitting shows

that we may take Γ̂p = G(Ok) in Theorem 7.1.

Lemma 7.2. G is semi-simple and simply connected over Spec(Ok).

Proof. We recall that this means that G is semi-simple and simply connected

both over k and over the residue fieldOk/p. The conditions of being semi-simple and

simply connected over a field are unchanged when one passes to a field extension.

It is therefore sufficient to show that G is semi-simple and simply connected over

the algebraic closures k and Ok/p.
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Over k, we have an isomorphism of algebraic groups:

G ∼=k SL3 .

The same isomorphism holds over Ok/p. To see this, note that for any (Ok/p)-

algebra A, we have

G(A) = {ν ∈ SL3(A⊗Fp Fp2) : νtJ ′ν = J ′},

where J ′ is defined as in Section 1.1. When A is an algebra over the quadratic

extension OK/(pOK), the tensor product A⊗Ok/p OK/(pOK) splits into a sum of

two copies of A, which are swapped by conjugation in K/k. Choosing one of these

copies gives an isomorphism G(A)→ SL3(A).

Now since SL3 is semi-simple and simply connected, it follows that G is also

semi-simple and simply connected. �

Note that when p is ramified in K, the group G over Ok/p is not reductive,

since the radical is

{ν ∈ G : ν ≡ I3 (P)} ⊂ G/(Ok/p),

where P is the prime ideal of K.

Lemma 7.3. If n is the number of roots of unity in k, then Deligne’s extension

E(ck) is the universal topological central extension.

Proof. There is a k-subgroup of G isomorphic to SL2, and so we have a

restriction map in continuous cohomology:

H2(SU(2, 1)(k), µn)→ H2(SL2(k), µn).

Given a map from K2(k) to µn, we obtain elements of H2(SU(2, 1)(k), µn) and

H2(SL2(k), µn) constructed by Deodhar and Kubota (as well as Matsumoto, see

[11]) respectively. It is clear by inspection that the restriction of Deodhar’s element

to SL2(k) is Kubota’s element. In particular, this restriction map is injective.

We also have elements of H2(SU(2, 1)(k), µn) and H2(SL2(k), µn) constructed

by Deligne. Deligne shows in the commutative diagram 3.9.2 of [5] that the restric-

tion of his element of H2(SU(2, 1)(k), µn) is the other element. Deligne also proves
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in Proposition 3.7 of the same paper that for a semi-simple, simply connected split

group (such as SL2), his element is the same as Matsumoto’s. This implies that

Deligne’s element of H2(SU(2, 1)(k), µn) is the same as Deodhar’s. It follows that

E(ck) in the above diagram is a universal central extension. �

7.1.2. The ramified extensions. Let p be an odd ramified prime, and hence

p | θ2
0. This implies that there exists a maximal ideal P ⊂ OK such that pOK = P2.

In fact, since K = k(θ0), we have P = (θ0) by Theorem 3.3 as θ0 is a prime element

of K. We shall write F for the field Ok/p, which is the same as OK/P.

By Theorem 3.3, we have OK = Ok[θ0]. This implies that we can take {1, θ0}

as an integral basis.

So we have pOK = P2. For m ∈ N, let

(7.1) G (Ok,Pm) = {ν ∈ G(Ok) : ν ≡ I3 (Pm)}.

We know that our 2-cocycle σ splits on G(Ok, θN0 ) for sufficiently large N , and

we will show that we may take N = 1. We have

G(Ok) ⊃ G(Ok,P) ⊃ G(Ok,P2) ⊃ . . . ,

and the quotients are:

G(Ok)/G(Ok,P) ∼= G(OK/P) = G(F),

G (Ok,Pm) /G
(
Ok,Pm+1

) ∼= g(F),

for m ≥ 1 and where g is the Lie algebra of G (see Section 1.1). This implies that∣∣G (Ok,Pm) /G
(
Ok,Pm+1

)∣∣ is odd since g(F) is a vector space over F.

Proposition 9 of Chapter I of [18] states the following:

Proposition 7.4. Let G be a profinite group and H be a closed subgroup of G,

with A an abelian group on which G acts continuously. Then if (G : H) = n, the

kernel of Res: Hq(G,A)→ Hq(H,A) is killed by n.
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If we put G = G (Ok,Pm), H = G
(
Ok,Pm+1

)
and A = µ2 in the above

proposition, then let σ1 be in the kernel of the restriction homomorphism

Res: H2(G (Ok,Pm) , µ2)→ H2(G
(
Ok,Pm+1

)
, µ2).

Writing the group operations in H2(G (Ok,Pm) , µ2) additively, we have

∣∣G (Ok,Pm) /G
(
Ok,Pm+1

)∣∣ · σ1 = 0.

But since 2 · σ1 = 0, and
∣∣G (Ok,Pm) /G

(
Ok,Pm+1

)∣∣ is odd, this implies that

σ1 = 0. But if our 2-cocycle σ splits on G(Ok,PN+1) for some N ≥ 1, our result

shows that it must split on G(Ok,PN ), hence our 2-cocycle σ splits on G(Ok,P).

7.1.3. The split extensions. In the split case, we have K ∼= k ⊕ k. This

implies that G(k) ∼= SL3(k). The n-fold cover of SLr(k) was studied by Kazhdan

and Patterson (see [8]). They proved (Proposition 0.1.2) that if n is not a multiple

of p then the extension splits on the compact open subgroup SL3(Ok). Since in

our case n = 2, this holds for all odd split primes. Alternatively, one could get the

same result from Deligne’s paper as above.

7.2. The even split primes

Now assume that p divides 2 and assume that p splits in K. As in the other

split cases we have G(k) ∼= SL3(k), and we may use results of other authors on

SL3. For this purpose, choose another number field l′, which is totally complex,

and which has a local completion isomorphic to k. The Kubota symbol on SL3(Ol′)

has been studied in [1] in connection with the congruence subgroup problem. The

level at which the Kubota symbol is defined tells us the compact open subgroup on

which the cocycle splits. This level is established in Theorem 4.1 of [1], which may

be paraphrased as follows:

Proposition 7.5. Let m be the number of roots of unity in Ol′ and let µr be

a subgroup of µm. Then the Kubota symbol κ : SL3(Ol′ , q)→ µr is defined at level

q as long as for each prime p dividing r we have

ordp(r) ≤ min
p|q

[
ordp(q)
ordp(p)

− 1
p− 1

]
.
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In particular, in the case r = 2 we may take q = 4. This shows that our cocycle

splits at level 4, i.e. our cocycle splits on

(7.2) G(Ok, 4) = {ν ∈ G(Ok) : ν ≡ I3 (4)}.

If we have a Kubota symbol κ : G(Ok, 4) → µ2, then σ|G(Ok,4) = ∂κ. But we

should note that this Kubota symbol is not unique on G(Ok, 4); it is only unique

on

G(Ok, 4p) = {ν ∈ G(Ok) : ν ≡ I3 (4p)}.

This is because G(Ok, 4)/G(Ok, 4p) ∼= g(Ok/p), and

Hom(G(Ok, 4)/G(Ok, 4p), µ2) 6= 0,

hence

Hom(G(Ok, 4), µ2) 6= 0,

and any χ ∈ Hom(G(Ok, 4), µ2) would make κχ another choice for the Kubota

symbol on G(Ok, 4). We will only calculate our local Kubota symbol on G(Ok, 4p)

in the non-split case.



CHAPTER 8

Calculation of the Kubota symbol

We will outline the method of calculating this local Kubota symbol in this

chapter. Let L/l be a global quadratic extension. For consistency of notation, we

will be using the same notation as in Part 2, i.e. we have k a local field with K a

quadratic extension of k. Then k = lp and K = Lp (with notation as in Section 1.4).

Also, note that in the split case we will use (3.10) to identify an element of lp(θ0)

with an element of Lp.

We have p = pk as the maximal ideal of Ok. Let the local Kubota symbol be

denoted by κp and using the notation from the previous chapter, let the subgroup

of G(Ok) on which the quadratic 2-cocycle splits be called Γ̂p. This implies that

κp is a map

κp : Γ̂p → µ2,

where µ2 = {1,−1}, and for any g, h ∈ Γ̂p,

σ (g, h) =
κp (g)κp (h)
κp (gh)

.

This implies that

(8.1) κp (gh) = κp (g)κp (h)σ (g, h) .

Thus, for any g ∈ Γ̂p, since κp (g)2 = 1, we have

(8.2) κp

(
g2
)

= σ (g, g) .

As noted in Theorem 7.1, Γ̂p depends on K/k. Also, in the case where k

is of even residue characteristic, we will assume that the 2-cocycle σ splits on

the compact open subgroup Γ̂p = G(Ok, 4) for every extension K/k. We have

already noted that in Section 7.2 that the Kubota symbol on Γ̂p = G(Ok, 4) is

not unique, but it is unique on G(Ok, 8). What we do observe later is that the
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unipotent elements of G(Ok, 8) are squares of unipotent elements of G(Ok, 4), and

it will be shown that the elements of T (k) ∩ G(Ok, 8) are squares of elements of

T (k)∩G(Ok, 4). This implies that we should use (8.2) on the elements of G(Ok, 4)

in order to find the unique Kubota symbol on G(Ok, 8).

In addition, we have already stated in the Introduction that in the case where

K = k ⊕ k, Theorem 6.3 does not completely describe σ. Even so, since we are

only interested in elements of G(l) contained in the group G(k), our formula for σ

is sufficient to calculate the local Kubota symbol in the split case.

Hence, let us define Γp to be the subgroup of G(Ok) which we will be choosing

to calculate the unique Kubota symbol on, i.e.

Γp =



G(Ok), if p is odd and unramified in K;

G(Ok, θ0), if p is odd and ramified in K;

G(Ok) ∩G(l), if p is odd and split in K;

G(Ok, 8), if p is even and not split in K;

G(Ok, 8) ∩G(l), if p is even and split in K.

8.1. The unipotent matrices of the compact open subgroup

We now calculate the Kubota symbol on the elements of N(k)∩Γp and N(k)∩

Γp.

Proposition 8.1. Let xα (s1, n1) ∈ Γp. Then

κp (xα (s1, n1)) = 1.

More generally, for any g ∈ Γp we have

κp (xα (s1, n1) · g) = κp (g · xα (s1, n1)) = κp (g) .

Proof. Since (s1, n1) ∈ A (see (2.3)) where

A = {(z,−N (z) /2 + tθ0) ∈ K ×K : t ∈ k, (z,−N (z) /2 + tθ0) 6= (0, 0)},
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for ease of use, let s1 = z and n1 = −N (z) /2 + tθ0. We first note that

xα

(
z,−N (z)

2
+ tθ0

)
= xα

(
z

2
,−N (z)

8
+
tθ0

2

)2

,

where xα (z/2,−N (z) /8 + tθ0/2) ∈ Γ̂p, i.e. κp (xα (z/2,−N (z) /8 + tθ0/2)) exists.

By (8.2),

κp

(
xα

(
z,−N (z)

2
+ tθ0

))
= σ

(
xα

(
z

2
,−N (z)

8
+
tθ0

2

)
, xα

(
z

2
,−N (z)

8
+
tθ0

2

))
.

But by Theorem 6.3, we have

κp

(
xα

(
z,−N (z)

2
+ tθ0

))
= 1.

Now let g ∈ Γp. By (8.1),

κp (xα (s1, n1) · g) = κp (xα (s1, n1)) · κp (g) · σ (xα (s1, n1) , g) .

Hence using the above and Theorem 6.3, we have

κp (xα (s1, n1) · g) = κp (g) .

We can similarly get κp (g · xα (s1, n1)) = κp (g). �

Proposition 8.2. Let x−α (s1, n1) ∈ Γp. Then

κp (x−α (s1, n1)) = ρ (s1) · ρ
(
−s1θ0

n1

)
,

where

ρ (s1) =


(−Tr (s1) ,N (s1θ0))k,2 , if Tr (s1) 6= 0;

1, otherwise.

Proof. Again, since (s1, n1) ∈ A (see (2.3)), for ease of use, let s1 = z and

n1 = −N (z) /2 + tθ0. We have

x−α

(
z,−N (z)

2
+ tθ0

)
= x−α

(
z

2
,−N (z)

8
+
tθ0

2

)2

,
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where x−α (z/2,−N (z) /8 + tθ0/2) ∈ Γ̂p, i.e. κp (x−α (z/2,−N (z) /8 + tθ0/2)) ex-

ists.

We have three cases to consider: z = 0, t 6= 0; z 6= 0, t = 0; and z, t 6= 0.

We first note that z ∈ OK and t ∈ Ok. If z = 0 and t 6= 0, then by (8.2), we

have

κp (x−α (0, tθ0)) = σ

(
x−α

(
0,
tθ0

2

)
, x−α

(
0,
tθ0

2

))
.

By Theorem 6.3, since

X(x−α (0, tθ0)) = − 1
tθ2

0

, X

(
x−α

(
0,
tθ0

2

))
= − 2

tθ2
0

,

X(x−α (0, tθ0))
X(x−α (0, tθ0/2))2

= − tθ
2
0

4
∈ k×,

we have

κp (x−α (0, tθ0)) = u

(
X(x−α (0, tθ0))
X(x−α (0, tθ0/2))

, X

(
x−α

(
0,
tθ0

2

))2
)

=

(
1
2
,−
(
− 2
tθ2

0

)2
)
k,2

;

and using the properties of Hilbert symbols (Section 3.1), by (3.4) and (3.6),

κp (x−α (0, tθ0)) =
(

1
2
,−1

)
k,2

·

(
1
2
,

(
− 2
tθ2

0

)2
)
k,2

=
(

1
2
,−1

)
k,2

.

Hence by (3.3),

(8.3) κp (x−α (0, tθ0)) =
(

1− (−1)
2

,−1
)
k,2

= 1.

If z 6= 0, t = 0, then by (8.2),

κp

(
x−α

(
z,−N (z)

2

))
= σ

(
x−α

(
z

2
,−N (z)

8

)
, x−α

(
z

2
,−N (z)

8

))
.

Thus by Theorem 6.3, we have

X

(
x−α

(
z,−N (z)

2

))
= − 2

N (z) θ0
, X

(
x−α

(
z

2
,−N (z)

8

))
= − 8

N (z) θ0
,

X(x−α (z,−N (z) /2))
X(x−α (z/2,−N (z) /8))

=
1
4
,

X(x−α (z,−N (z) /2))
X(x−α (z/2,−N (z) /8))2

= −N (z) θ0

32
/∈ k×.
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Hence,

r

(
x−α

(
z

2
,−N (z)

8

)
, x−α

(
z

2
,−N (z)

8

))
=

(−z/2)(−N (z) /2)− (−z)(−N (z) /8)
(−N (z) /8)2

=
8
z
,

and therefore

κp

(
x−α

(
z,−N (z)

2

))
= σ

(
x−α

(
z

2
,−N (z)

8

)
, x−α

(
z

2
,−N (z)

8

))
=
(
−δ2

(
−8
z

(
−N (z) θ0

32

))
θ−1

0 ,N
(
−8
z

(
−N (z) θ0

32

)))
k,2

·
(

N
(

8
z

)
,
δ2 (8/z)
θ0

)
k,2

· u
(
− 8

N (z) θ0
,

1
4

)
· u
(

1
4
,− 2

N (z) θ0

)
·
(
δ2 (−N (z) θ0/32)

δ2 (1/4)
,−N (−N (z) θ0/32) δ2 (−N (z) θ0/32)

δ2 (−8/(N (z) θ0))

)
k,2

·
(
δ2 (−8/(N (z) θ0))
δ2 (−2/(N (z) θ0))

,−N (−8/(N (z) θ0)) δ2 (−8/(N (z) θ0))
δ2 (1/4)

)
k,2

=
(
−δ2 (zθ0/4)

θ0
,−N (z) θ2

0

16

)
k,2

·
(

64
N (z)

,
δ2 (8/z)
θ0

)
k,2

·

(
− 64

N (z)2
θ2

0

,− 1
16

)
k,2

·

(
1
16
,− 4

N (z)2
θ2

0

)
k,2

·
(

16
N (z) θ2

0

,
1
4

)
k,2

·
(

1
4
,− 4

N (z) θ2
0

)
k,2

.

By the properties of Hilbert symbols, we have by (3.4),

κp

(
x−α

(
z,−N (z)

2

))
=
(
δ2 (zθ0/4)

θ0
,−N (z) θ2

0

)
k,2

·
(
−1,−N (z) θ2

0

)
k,2
·
(
−δ2 (zθ0/4)

θ0
,

1
16

)
k,2

·
(

1
N (z)

,
δ2 (8/z)
θ0

)
k,2

·
(

64,
δ2 (8/z)
θ0

)
k,2

·
(
− 1
θ2

0

,−1
)
k,2

·

(
64

N (z)2 ,−1

)
k,2

·

(
− 64

N (z)2
θ2

0

,
1
16

)
k,2

·

(
1
16
,− 4

N (z)2
θ2

0

)
k,2

·
(

16
N (z) θ2

0

,
1
4

)
k,2

·
(

1
4
,− 4

N (z) θ2
0

)
k,2

.
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By (3.6),

κp

(
x−α

(
z,−N (z)

2

))
=
(
δ2 (zθ0/4)

θ0
,−N (z) θ2

0

)
k,2

·
(
−1,−N (z) θ2

0

)
k,2

·
(

1
N (z)

,
δ2 (8/z)
θ0

)
k,2

·
(
− 1
θ2

0

,−1
)
k,2

,

and by (3.1),

κp

(
x−α

(
z,−N (z)

2

))
=
(
δ2 (zθ0/4)

θ0
,−N (z) θ2

0

)
k,2

·
(
−1,−N (z) θ2

0

)
k,2

·
(
δ2 (8/z)
θ0

,N (z)
)
k,2

·
(
−1,− 1

θ2
0

)
k,2

.

This implies that by (3.4),

κp

(
x−α

(
z,−N (z)

2

))
=
(
δ2 (zθ0/4)

θ0
,−N (z) θ2

0

)
k,2

· (−1,N (z))k,2 ·
(
δ2 (8/z)
θ0

,N (z)
)
k,2

=
(
δ2 (zθ0/4)

θ0
,−N (z) θ2

0

)
k,2

·
(
−δ2 (8/z)

θ0
,N (z)

)
k,2

.

If a, b, c ∈ k×, d ∈ K×, we have by (3.4), (3.6) and (4.6) that

(
bδ2
(
d/c2

)
θ0

, a

)
k,2

=

(
bδ2
(
d/c2

)
c2θ0

, a

)
k,2

=


(b, a)k,2 , if d ∈ k×;(
bδ2 (d)
θ0

, a

)
k,2

, if d /∈ k×.

But since δ2 (d) = θ0 when d ∈ k×, the above implies that

(8.4)

(
bδ2
(
d/c2

)
θ0

, a

)
k,2

=
(
bδ2 (d)
θ0

, a

)
k,2

,

for any a, b, c ∈ k× and d ∈ K×. We should also note that if instead we have

a = N (e) for some e ∈ K×, and c = fθ0 for some f ∈ k×, with b, d remaining the

same, we have by (8.4) and (4.6),(
bδ2
(
d/c2

)
θ0

, a

)
k,2

=

(
bδ2
(
d/(fθ0)2

)
θ0

,N (e)

)
k,2

=


(b,N (e))k,2 , if d ∈ k×;

(bδ2 (d) θ0,N (e))k,2 , if d /∈ k×.
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But since by (3.7) and (3.6),

(
θ−2

0 ,N (e)
)
k,2

=
(
θ−2

0 , e
)
K,2

= 1,

this implies, for d /∈ k×, that by (3.4),

(bδ2 (d) θ0,N (e))k,2 = (bδ2 (d) θ0,N (e))k,2 ·
(
θ−2

0 ,N (e)
)
k,2

=
(
bδ2 (d)
θ0

,N (e)
)
k,2

.

Thus we have

(8.5)

(
bδ2
(
d/(fθ0)2

)
θ0

,N (e)

)
k,2

=
(
bδ2 (d)
θ0

,N (e)
)
k,2

for any d, e ∈ K×, b, f ∈ k×.

Using (8.4) in our equation for κp (x−α (z,−N (z) /2)), we have

κp

(
x−α

(
z,−N (z)

2

))
=
(
δ2 (zθ0/4)

θ0
,−N (z) θ2

0

)
k,2

·
(
−δ2 (8/z)

θ0
,N (z)

)
k,2

(8.6)

=
(
δ2 (zθ0)
θ0

,N (zθ0)
)
k,2

·
(
−δ2 (2/z)

θ0
,N (z)

)
k,2

.

We now consider the case z, t 6= 0. Since

x−α

(
z,−N (z)

2
+ tθ0

)
= x−α

(
z,−N (z)

2

)
· x−α (0, tθ0) ,

and x−α (z,−N (z) /2), x−α (0, tθ0) ∈ Γp, we have, by (8.1),

κp

(
x−α

(
z,−N (z)

2
+ tθ0

))
= κp

(
x−α

(
z,−N (z)

2

))
·κp (x−α (0, tθ0))·σ

(
x−α

(
z,−N (z)

2

)
, x−α (0, tθ0)

)
.

Consider σ (x−α (z,−N (z) /2) , x−α (0, tθ0)). By Theorem 6.3,

X

(
x−α

(
z,−N (z)

2
+ tθ0

))
= − 2

(N (z) + 2tθ0)θ0
,

X

(
x−α

(
z,−N (z)

2

))
= − 2

N (z) θ0
, X (x−α (0, tθ0)) = − 1

tθ2
0

,

X(x−α (z,−N (z) /2 + tθ0))
X(x−α (z,−N (z) /2)) ·X(x−α (0, tθ0))

= − N (z) tθ2
0

N (z) + 2tθ0
/∈ k×.
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This implies that we have

r

(
x−α

(
z,−N (z)

2

)
, x−α (0, tθ0)

)
=

0 · (−N (z) /2 + tθ0)− (−z) · tθ0

(−N (z) /2)(−tθ0)
=

2
z
,

so that

σ

(
x−α

(
z,−N (z)

2

)
, x−α (0, tθ0)

)
=
(
−δ2

(
−2
z
·
(
− N (z) tθ2

0

N (z) + 2tθ0

))
θ−1

0 ,N
(
−2
z
·
(
− N (z) tθ2

0

N (z) + 2tθ0

)))
k,2

·
(

N
(

2
z

)
,
δ2 (2/z)
θ0

)
k,2

· u
(
− 2

N (z) θ0
,

2tθ0

N (z) + 2θ0

)
· u
(

2tθ0

N (z) + 2θ0
,− 2

(N (z) + 2tθ0)θ0

)

·

(
δ2
(
−N (z) tθ2

0/(N (z) + 2tθ0)
)

δ2 (2tθ0/(N (z) + 2tθ0))
,

−
N
(
−N (z) tθ2

0/(N (z) + 2tθ0)
)
δ2
(
−N (z) tθ2

0/(N (z) + 2tθ0)
)

δ2 (−2/(N (z) θ0))

)
k,2

·

(
δ2
(
−1/(tθ2

0)
)

δ2 (−2/((N (z) + 2tθ0)θ0))
,−

N
(
−1/(tθ2

0)
)
δ2
(
−1/(tθ2

0)
)

δ2 (2tθ0/(N (z) + 2tθ0))

)
k,2

=
(
−δ2

(
2ztθ2

0

N (z) + 2tθ0

)
θ−1

0 ,
4 N (z) t2θ4

0

N (N (z) + 2tθ0)

)
k,2

·
(

4
N (z)

,
δ2 (2/z)
θ0

)
k,2

·

(
− 4

N (z)2
θ2

0

,
4t2θ2

0

N (N (z) + 2tθ0)

)
k,2

·
(
− 4t2θ2

0

N (N (z) + 2tθ0)
,

4
N (N (z) + 2tθ0) θ2

0

)
k,2

·
(

1
tθ2

0

, 1
)
k,2

·
(

N (z)
N (N (z) + 2tθ0)

,
4 N (z)

N (N (z) + 2tθ0) tθ2
0

)
k,2

.

Similar to the calculation of κp (x−α (z,−N (z) /2)), we can simplify the above

using the properties of Hilbert symbols. After simplifying, we get

σ

(
x−α

(
z,−N (z)

2

)
, x−α (0, tθ0)

)
=
(
−δ2

(
2ztθ2

0

N (z) + 2tθ0

)
t

θ0
,

N (z)
N (N (z) + 2tθ0)

)
k,2

·
(
−δ2 (2/z)

θ0
,N (z)

)
k,2

.
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Inserting this result into our equation for κp (x−α (z,−N (z) /2 + tθ0)) along with

(8.3) and (8.6), we have

κp

(
x−α

(
z,−N (z)

2
+ tθ0

))

=

[(
δ2 (zθ0)
θ0

,N (zθ0)
)
k,2

·
(
−δ2 (2/z)

θ0
,N (z)

)
k,2

]
· 1

·

[(
−δ2

(
2ztθ2

0

N (z) + 2tθ0

)
t

θ0
,

N (z)
N (N (z) + 2tθ0)

)
k,2

·
(
−δ2 (2/z)

θ0
,N (z)

)
k,2

]
.

Thus simplifying the above using (3.6), we have

(8.7) κp

(
x−α

(
z,−N (z)

2
+ tθ0

))
=
(
δ2 (zθ0)
θ0

,N (zθ0)
)
k,2

·
(
−δ2

(
2ztθ2

0

N (z) + 2tθ0

)
t

θ0
,

N (z)
N (N (z) + 2tθ0)

)
k,2

.

Recall that we had put s1 = z, n1 = −N (z) /2 + tθ0. If t 6= 0, i.e. n1 6=

−N (s1) /2, by (8.7) we have

κp (x−α (s1, n1)) =
(
δ2 (s1θ0)

θ0
,N (s1θ0)

)
k,2

·
(
−δ2

(
−s1tθ

2
0

n1

)
t

θ0
,

N (s1)
4 N (n1)

)
k,2

.

But by (8.5) and the properties of Hilbert symbols, the above becomes

κp (x−α (s1, n1)) =
(
δ2 (s1θ0)

θ0
,N (s1θ0)

)
k,2

·
(
−δ2

(
−s1t

n1

)
t

θ0
,

N (s1)
N (n1)

)
k,2

.

Let (s′, n′) ∈ A (see (2.3)) such that s′ 6= 0. Also, let t′ ∈ k× and

F (s′, n′, t′) =

(
δ2
(
s′θ0

)
θ0

,N
(
s′θ0

))
k,2

·
(
−δ2

(
−s′t′

n′

)
t′

θ0
,

N (s′)
N (n′)

)
k,2

.

This implies that

κp

(
x−α

(
z,−N (z)

2
+ tθ0

))
= F

(
z,−N (z)

2
+ tθ0, t

)
,

and in fact, it can also be checked that

κp

(
x−α

(
z,−N (z)

2

))
= F

(
z,−N (z)

2
, 1
)
.
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We will now look at the function F more closely. Let (s1, n1) ∈ A, where

s1 6= 0, and x−α (s1, n1) ∈ Γp. We have

δ2 (s1θ0)
θ0

=


1, if s1θ0 ∈ k×;

(−s1θ0 − s1θ0)−1/θ0, if s1θ0 /∈ k×

=


1, if Tr (s1) = 0;

−
[
Tr (s1) θ2

0

]−1
, if Tr (s1) 6= 0.

By using (3.1) and (3.7), this implies that

(
δ2 (s1θ0)

θ0
,N (s1θ0)

)
k,2

=


1, if Tr (s1) = 0;

(−Tr (s1) ,N (s1θ0))k,2 , if Tr (s1) 6= 0.

Let t ∈ k×. Then

−δ2
(
−s1t

n

)
t

θ0
=


−t, if s1t/n1 ∈ k×;

−
[
−s1t

n1
+
s1t

n

]−1
t

θ0
, if s1t/n1 /∈ k×

=


−t, if Tr (−s1θ0/n1) = 0;

−
[
Tr
(
−s1θ0

n1

)]−1

, if Tr (−s1θ0/n1) 6= 0.

This implies that(
−δ2

(
−s1t

n1

)
t

θ0
,

N (s1)
N (n1)

)
k,2

=



(
−t,
(
s1

n1

)2
)
k,2

, if Tr (−s1θ0/n1) = 0;(
−
[
Tr
(
−s1θ0

n1

)]−1

,N
(
s1

n1

))
k,2

, if Tr (−s1θ0/n1) 6= 0.

Thus by (3.4), (3.1) and (3.6), we have(
−δ2

(
−s1t

n1

)
t

θ0
,

N (s1)
N (n1)

)
k,2

=


1, if Tr (−s1θ0/n1) = 0;(
−Tr

(
−s1θ0

n1

)
,N
(
−s1θ

2
0

n1

))
k,2

, if Tr (−s1θ0/n1) 6= 0.
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Hence, we have

F (s1, n1, t) = ρ (s1) · ρ
(
−s1θ0

n1

)
,

where

ρ (s1) =


(−Tr (s1) ,N (s1θ0))k,2 , if Tr (s1) 6= 0;

1, otherwise.

Note that ρ and hence F is independent of t; therefore, since

κp

(
x−α

(
z,−N (z)

2

))
= F

(
z,−N (z)

2
, 1
)
,

κp

(
x−α

(
z,−N (z)

2
+ tθ0

))
= F

(
z,−N (z)

2
+ tθ0, t

)
for z 6= 0, t ∈ k×, we may combine the above result so that for s1 6= 0,

κp (x−α (s1, n1)) = ρ (s1) · ρ
(
−s1θ0

n

)
.

We also note that when s1 = 0, the above formula for s1 6= 0 is still applicable.

Thus our result is proved. �

Remark 8.3. Note that we also have

x−α

(
z,−N (z)

2
+ tθ0

)
= x−α (0, tθ0) · x−α

(
z,−N (z)

2

)
,

since x−α (0, tθ0) is a central element of N(k). We can use Theorem 6.3 and the

properties of Hilbert symbols to show that

σ (x−α (z,−N (z) /2) , x−α (0, tθ0))
σ (x−α (0, tθ0) , x−α (z,−N (z) /2))

= 1.

This implies that we will ultimately get the same result if we had chosen to calculate

κp (x−α (z,−N (z) /2 + tθ0)) by using (8.1), so that

κp

(
x−α

(
z,−N (z)

2
+ tθ0

))
= κp (x−α (0, tθ0))·κp

(
x−α

(
z,−N (z)

2

))
·σ
(
x−α (0, tθ0) , x−α

(
z,−N (z)

2

))
.
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8.2. The elements of the torus

In this section, we want to find the local Kubota symbol on the elements of

T (k) ∩ Γp, which we will denote by T̂ .

We have two cases to consider, depending on whether there are matrices in Γp

whose (3, 1)-entry is a unit.

We know that when p is odd and ramified in K, or if p is even in K, then the

(3, 1)-entry is never a unit in OK . This implies that the Bruhat decomposition (see

Section 1.2) of an element of Γp when the (3, 1)-entry is non-zero in these cases will

be a product of elements which are not in Γp (see (1.3)).

When p is odd and either unramified or split in K, this does not pose a problem,

and we can use the Bruhat decomposition in these cases. We also note that in G(k),

we have from Section 2.1 that for any λ ∈ K×,

(8.8) hα (λ) = wα (y(λ), δ1 (λ)) · wα (0, δ2 (λ))−1
,

where

y(λ) =


0, if λ ∈ k×;

1, otherwise.

As p is odd and either unramified or split in K, this implies that 2, θ0 ∈ O×K , hence

there exists λ ∈ K× such that hα (λ) ∈ T̂ where δ2 (λ) ∈ O×K , since δ2 (λ) ∈ k×θ0.

Therefore wα (y(λ), δ1 (λ)) and wα (0, δ2 (λ)) ∈ Γp.

Proposition 8.4. If p is odd and either unramified or split in K, then we have

wα (0, bθ0) ∈ Γp, where b ∈ O×k , with

κp (wα (0, bθ0)) = 1.

Also, if a ∈ Ok such that −1/2 + aθ0 ∈ O×K , then wα (1,−1/2 + aθ0) ∈ Γp and

κp (wα (1,−1/2 + aθ0)) = 1.

Proof. For any (r,m) ∈ A, we have, by (1.2) that

wα (r,m) = xα (r,m) · x−α
(
r

m
,

1
m

)
· xα

(
r · m

m
,m

)
.



8.2. THE ELEMENTS OF THE TORUS 173

This implies that if xα (r,m), x−α (r/m, 1/m) and xα (rm/m,m) ∈ Γp, then we

have wα (r,m) ∈ Γp and by Proposition 8.1,

κp (wα (r,m)) = κp

(
x−α

(
r

m
,

1
m

))
.

Since xα (0, bθ0), x−α (0,−1/bθ0) ∈ Γp for b ∈ O×k , by Proposition 8.2,

κp (wα (0, bθ0)) = κp

(
x−α

(
0,− 1

bθ0

))
= 1.

Also, for a ∈ Ok with −1/2 + aθ0 ∈ O×K , we have the elements xα (1,−1/2 + aθ0) ,

x−α (−2/(1 + 2aθ0),−2/(1 + 2aθ0)), xα ((1 + 2aθ0)/(1− 2aθ0),−1/2 + aθ0) ∈ Γp,

hence

κp

(
wα

(
1,−1

2
+ aθ0

))
= κp

(
x−α

(
− 2

1 + 2aθ0
,− 2

1 + 2aθ0

))
.

So by Proposition 8.2, we have

κp

(
wα

(
1,−1

2
+ aθ0

))
=
(
−
(
− 2

1 + 2aθ0
− 2

1− 2aθ0

)
,N
(
− 2θ0

1 + 2aθ0

))
k,2

· 1

=
(

4
N (1 + 2aθ0)

,− 4θ2
0

N (1 + 2aθ0)

)
k,2

.

By (3.4), (3.7) and (3.6),

κp

(
wα

(
1,−1

2
+ aθ0

))
=
(

4
N (1 + 2aθ0)

,− 4
N (1 + 2aθ0)

)
k,2

,

and thus by (3.2),

κp

(
wα

(
1,−1

2
+ aθ0

))
= 1. �

Proposition 8.5. If p is odd and either unramified or split in K, then for

λ ∈ O×K such that hα (λ) ∈ T̂ , we have

κp (hα (λ)) =


(a, b)k,2 , if λ = a+ bθ0, a, b 6= 0 and b /∈ O×k ;

1, otherwise.

Proof. We first assume that for λ ∈ O×K , hα (λ) ∈ T̂ , we have δ2 (λ) ∈ O×K .
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If λ ∈ O×k , then this implies that δ2 (λ) = θ0 ∈ O×K , hence we have, by (8.8)

and (8.1), that

κp (hα (λ)) = κp (wα (0, λθ0)) · κp

(
wα (0, θ0)−1

)
· σ
(
wα (0, λθ0) , wα (0, θ0)−1

)
.

By Theorem 6.3, we have

σ
(
wα (0, λθ0) , wα (0, θ0)−1

)
= u

(
λ

−1
, λ(−1)

)
= (−λ, λ)k,2 ;

hence by (3.2), we have

σ
(
wα (0, λθ0) , wα (0, θ0)−1

)
= 1.

Thus, by the above and Proposition 8.4, we have

κp (hα (λ)) = 1.

If λ ∈ O×k θ0, then δ2 (λ) = −1/(2λ) ∈ O×K . By (8.8) and (8.1),

κp (hα (λ)) = κp

(
wα

(
1,−1

2

))
· κp

(
wα

(
0,− 1

2λ

)−1
)

· σ

(
wα

(
1,−1

2

)
, wα

(
0,− 1

2λ

)−1
)
.

By Theorem 6.3, we have

σ

(
wα

(
1,−1

2

)
, wα

(
0,− 1

2λ

)−1
)

= σ

(
wα

(
1,−1

2

)
, wα

(
0,

1
2λ

))
= u

(
λ

1/(2λθ0)
,

(
− 1

2θ0

)(
1

2λθ0

))
·
(

δ2 (λ)
δ2 (1/(2λθ0))

,−N (1/(2λθ0)) δ2 (1/(2λθ0))
δ2 (−1/(2θ0))

)
k,2

·
(

λ

(−1/(2θ0))(1/(2λθ0))
,
δ2 (−1/(2θ0)) δ2 (1/(2λθ0))

δ2 (λ) θ0

)
k,2

=
(
−4 N (λ)2

θ2
0,−

1
16 N (λ) θ4

0

)
k,2

·

(
− 1

2λθ0
,−
(

1
2λθ0

)2
)
k,2

·
(
−4λ2θ2

0,−2λθ0

)
k,2
.
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Simplifying the above using the properties of Hilbert symbols (3.4), (3.2) and (3.6),

we get

σ

(
wα

(
1,−1

2

)
, wα

(
0,− 1

2λ

)−1
)

= 1.

Thus by the above and Proposition 8.4,

κp (hα (λ)) = 1.

If λ = a + bθ0 ∈ O×K such that a, b ∈ k× and hα (λ) ∈ T̂ , then δ2 (λ) ∈ O×K
when b ∈ O×k . So assume that b ∈ O×k . By (8.8) and (8.1),

κp (hα (λ)) = κp

(
wα

(
1,−1

2
− a

2bθ0

))
· κp

(
wα

(
0,− 1

2bθ0

)−1
)

· σ

(
wα

(
1,−1

2
− a

2bθ0

)
, wα

(
0,− 1

2bθ0

)−1
)
.

Then by Theorem 6.3,

σ

(
wα

(
1,−1

2
− a

2bθ0

)
, wα

(
0,− 1

2bθ0

)−1
)

= σ

(
wα

(
1,− λ

2bθ0

)
, wα

(
0,

1
2bθ0

))
= u

(
λ

1/(2bθ2
0)
,

(
− λ

2bθ2
0

)(
1

2bθ2
0

))

·

(
δ2 (λ)

δ2 (1/(2bθ2
0))

,−
N
(
1/(2bθ2

0)
)
δ2
(
1/(2bθ2

0)
)

δ2 (−λ/(2bθ2
0))

)
k,2

·

(
λ

(−λ/(2bθ2
0))(1/(2bθ2

0))
,
δ2
(
−λ/(2bθ2

0)
)
δ2
(
1/(2bθ2

0)
)

δ2 (λ) θ0

)
k,2

=
(

4 N (λ) b2θ4
0,−

N (λ)
16b4θ8

0

)
k,2

·
(
− 1

2bθ2
0

,−
(

1
2bθ2

0

))
k,2

·
(
−4b2θ4

0,−2bθ2
0

)
k,2
.

Simplifying the above using the properties of Hilbert symbols (3.6) and (3.4), we

get

σ

(
wα

(
1,−1

2
− a

2bθ0

)
, wα

(
0,− 1

2bθ0

)−1
)

= 1.

Hence, by the above and Proposition 8.4,

κp (hα (λ)) = 1.
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If b /∈ O×k , then a ∈ O×k since λ ∈ O×K . But we already know that

κp (hα (b+ a/θ0)) = 1.

Since

hα (λ) = hα (b+ a/θ0) · hα (θ0) ,

by (8.1),

κp (hα (λ)) = κp (hα (b+ a/θ0)) · κp (hα (θ0)) · σ (hα (b+ a/θ0) , hα (θ0)) .

By Theorem 6.3,

σ (hα (b+ a/θ0) , hα (θ0)) = σ

(
hα

(
λ

θ0

)
, hα (θ0)

)
= u

(
λ

θ0
, λ

)
·
(
δ2 (λ)
δ2 (θ0)

,−N (θ0) δ2 (θ0)
δ2 (λ/θ0)

)
k,2

=
(
−N (λ)

θ2
0

,−N (λ)
)
k,2

·
(

1
b
, a

)
k,2

.

By the properties of Hilbert symbols (3.1) and (3.2), we have

σ (hα (b+ a/θ0) , hα (θ0)) = (a, b)k,2 ·
(
−θ2

0,−N (λ)
)
k,2
.

But the characteristic of the residue field Ok/pk is not 2. Thus we may use Propo-

sition 3.1, as −θ2
0, N (λ) ∈ O×k , so that we have

(
−θ2

0,−N (λ)
)
k,2

= 1.

Applying the above to our equation, we get

κp (hα (λ)) = (a, b)k,2 .

This completes our proof. �

Remark 8.6. We should note that if p is odd and either unramified or split in

K, then from Propositions 8.4 and 8.5, we have that T̂ is generated by elements of

N(k) ∩G(k) and N(k) ∩G(k).

We now look at the cases where either p is odd and ramified in K, or p is even

in K.
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Proposition 8.7. If p is odd and ramified in K, or p is even in K, then if

hα (λ) ∈ T̂ , there exists hα (µ) ∈ T (k) ∩ Γ̂p such that hα (λ) = hα (µ)2, and

κp (hα (λ)) = 1.

Proof. We first consider the case where p is odd and ramified in K. In this

case, Γp = Γ̂p = G(Ok, θ0). Thus elements of T̂ may be described by

hα (1 + λ′θ0) =


1 + λ′θ0 0 0

0 (1− λ′θ0)/(1 + λ′θ0) 0

0 0 (1− λ′θ0)−1

 ,

where λ′ ∈ OK . We want to show that for every λ′ ∈ OK , hα (1 + λ′θ0) is a square

of an element in T̂ . We will use Hensel’s Lemma (Theorem 3.5). We have

f(X) = X2 − (1 + λ′θ0) ∈ OK [X],

and hence the formal derivative f ′(X) is

f ′(X) = 2X.

Let the prime above p in K be denoted by P. Then by Lemma 1.2,

|f(1)|P =
∣∣−N (λ′) θ2

0

∣∣
p
< 1,

|f ′(1)|P =
∣∣22
∣∣
p

= 1.

This implies by Hensel’s Lemma that since |f(1)|P < |f ′(1)|2P, there exists a solu-

tion for f(X), i.e. there exists a ∈ OK such that

f(a) = 0, |a− 1|P ≤
|f(1)|P
|f ′(1)|P

.

We have by the binomial theorem that for any λ′ ∈ OK ,

(1 + λ′θ0)1/2 = 1 +
λ′θ0

2
+

(1/2)(1/2− 1)
2!

· (λ′θ0)2 + · · ·

and ∣∣∣1− (1 + λ′θ0)1/2
∣∣∣
P

=
∣∣∣∣λ′θ0

2

∣∣∣∣
P

≤ |f(1)|P
|f ′(1)|P

,



8.2. THE ELEMENTS OF THE TORUS 178

thus by Hensel’s Lemma, this expansion converges. Hence, there is a canonical

choice for 1 + µ′θ0, µ′ ∈ OK for every 1 + λ′θ0, λ′ ∈ OK such that 1 + λ′θ0 =

(1 + µ′θ0)2, and hence

hα (1 + λ′θ0) = hα (1 + µ′θ0)2
,

where hα (1 + µ′θ0) ∈ T̂ .

As for the case where p is even, Γp = G(Ok, 8), Γ̂p = G(Ok, 4) and the elements

of T̂ are of the form

hα (1 + 8λ′′) =


1 + 8λ′′ 0 0

0
(
1 + 8λ′′

)
/(1 + 8λ′′) 0

0 0
(
1 + 8λ′′

)−1

 ,

where λ′′ ∈ OK . Similar to the case where p is odd and ramified in K, we will

use Hensel’s Lemma to show that every element in T̂ is a square of an element in

T (k) ∩ Γ̂p. We have

f1(X) = X2 − (1 + 8λ′′),

with formal derivative

f ′1(X) = 2X.

Let P be a prime ideal in K such that P | p. By Lemma 1.2,

|f1(1)|P =
∣∣82 N (λ′′)

∣∣
p

=
∣∣26 N (λ′′)

∣∣
p
,

|f ′1(1)|P =
∣∣22
∣∣
p
,

thus we have |f1(1)|P < |f ′1(1)|2P. (Note that for the split case we will use the

isomorphism (3.10).) This implies by Hensel’s Lemma that there exists a solution

for f1(X), i.e. there exists b ∈ OK such that

f1(b) = 0, |b− 1|P ≤
|f1(1)|P
|f ′1(1)|P

.

By the binomial theorem, for any λ′′ ∈ OK ,

(1 + 8λ′′)1/2 = 1 + 4λ′′ +
(1/2)(1/2− 1)

2!
(8λ′′)2 + · · ·
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and ∣∣∣1− (1 + 8λ′′)1/2
∣∣∣
P

= |4λ′′|P ≤
|f1(1)|P
|f ′1(1)|P

,

so by Hensel’s Lemma, the expansion converges. So there is a canonical choice for

1 + 4µ′′, µ′′ ∈ OK , for every 1 + 8λ′′, λ′′ ∈ OK , such that 1 + 8λ′′ = (1 + 4µ′′)2 and

hα (1 + 8λ′′) = hα (1 + 4µ′′)2
.

So this verifies that hα (1 + 4µ′′) ∈ T (k) ∩ Γ̂p.

Now that we have established that every element of T̂ is a square of an element

in T (k) ∩ Γ̂p, let us now calculate the local Kubota symbol. Whether p is odd

and ramified in K, or even, let hα (λ) ∈ T̂ and hα (µ) ∈ T (k) ∩ Γ̂p such that

hα (λ) = hα (µ)2. Then by (8.2),

κp (hα (λ)) = σ (hα (µ) , hα (µ)) .

There are only two cases for µ to consider: either µ ∈ k×, or µ = c+dθ0, c, d ∈ k×.

In the first case, we have

κp (hα (λ)) = u

(
µ2

µ
, µ2

)
=
(
µ,−µ2

)
k,2

by Theorem 6.3. Simplifying the above using the Hilbert symbol property (3.2),

κp (hα (λ)) = (µ,−1)k,2 .

This implies, in the case where p is odd and ramified in K, that µ = 1 + bθ2
0,

where b ∈ Ok. By Hensel’s Lemma, X2− (1+ bθ2
0) has a solution with approximate

root 1. Thus 1 + bθ2
0 is a square in k×, hence by the property of Hilbert symbols

(3.6),

κp (hα (λ)) = 1.

In the case where p is even, if µ ∈ k×, then µ = 1 + 4a′ for a′ ∈ Ok. Thus we

have

κp (hα (λ)) = (1 + 4a′,−1)k,2 .
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If 1 + 4a′ ∈ 1 + 8Ok, then 1 + 4a′ is a square in k× (we showed this is true by

Hensel’s Lemma earlier in the proof ) and hence by (3.6),

(1 + 4a′,−1)k,2 = 1.

If 1 + 4a′ /∈ 1 + 8Ok, we can show that (1 + 4a′,−1)k,2 = 1 as well. In Section 3.1,

we established that

(a, b)k,2 = 1 ⇐⇒ aX2 + bY 2 − Z2 = 0 has a non-trivial solution (X,Y, Z) in k3.

By (3.3),

(1 + 4a′,−1)k,2 = (1 + 4a′,−(1− (1 + 4a′)))k,2 = (1 + 4a′, 4a′)k,2 .

Since we have a solution
(
1, 1,
√

1 + 8a′
)

for (1 + 4a′, 4a′)k,2, this implies that

(1 + 4a′,−1)k,2 = 1 for all a′ ∈ Ok. Therefore for all elements of the form

hα (1 + 4a′), a′ ∈ Ok, p even,

κp (hα (λ)) = 1.

If µ /∈ k×, then µ = c+ dθ0 with c, d ∈ k× and by Theorem 6.3,

κp (hα (λ)) = u

(
µ2

µ
, µ2

)
·

(
δ2
(
µ2
)

δ2 (µ)
,−N (µ) δ2 (µ)

δ2 (µ)

)
k,2

=
(

N (µ) ,−N (µ)2
)
k,2
·
(

1
2c
,−N (µ)

)
k,2

.

Simplifying the above using the properties of Hilbert symbols (3.1) – (3.4),

κp (hα (λ)) = (N (µ) ,−2c)k,2 · (c,−1)k,2 .

When p is odd and ramified in K, µ = 1+(a+bθ0)θ0, for a, b ∈ Ok with a 6= 0.

Thus c = 1 + bθ2
0 ∈ O×k . By Proposition 3.1, since N (µ), −1, 2, c ∈ O×k , we have

(N (µ) ,−2c)k,2, (2c,−1)k,2 = 1. Therefore we have κp (hα (λ)) = 1.

When p is even, we first consider the case where OK = Ok[θ0]. Then µ =

1 + 4(a′ + b′θ0), for a′, b′ ∈ Ok with b′ 6= 0. This implies that c = 1 + 4a′ ∈ O×K .

We have already shown that (1 + 4a′,−1)k,2 = 1 in the case where µ ∈ k×. As for
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(N (µ) ,−2c)k,2, we see that N (µ) ∈ 1 + 8Ok, i.e. N (µ) is a square in k×. Hence

by (3.6), (N (µ) ,−2c)k,2 = 1. Therefore κp (hα (λ)) = 1.

If instead OK = Ok[(1 + θ0)/2] when p is even (i.e. p is unramified in K), then

we have

µ = 1 + 4
(
a′ + b′

[
1 + θ0

2

])
= 1 + 4a′ + 2b′ + 2b′θ0,

where a′, b′ ∈ Ok with b′ 6= 0, with c = 1 + 4a′+ 2b′, and d = 2b′. This implies that

when b′ /∈ O×k , i.e. 2 | b′, we are in the same case as when OK = Ok[θ0], since c ≡ 1

(4), which implies that (c,−1)k,2 = 1 by our previous result, and N (µ) ∈ 1 + 8Ok,

so (N (µ) ,−2c)k,2 = 1. Hence when 2 | b′, κp (hα (λ)) = 1.

We can use the properties of Hilbert symbols (3.3) and (3.4) to show that

κp (hα (λ)) = (N (µ) ,−1)k,2 · (2c,−N (µ))k,2 .

The above formulation makes it easier to calculate the Kubota symbol in the case

where b′ ∈ O×k . We have N (µ) ≡ 1 (4), hence (N (µ) ,−1)k,2 = 1. Also, N (µ) ≡ 5

(8) and c ≡ −1 (4). So let N (µ) = 5 + 8e and c = −1 + 4f , where e, f ∈ Ok. Then

by (3.3),

(2c,−N (µ))k,2 = (2c,−(1− 2c) N (µ))k,2 .

But

−(1− 2c) N (µ) = −(3− 8f)(5 + 8e) ≡ 1 (8),

i.e. −(1−2c) N (µ) is a square in k×, and hence by (3.6), (2c,−N (µ))k,2 = 1. Thus

we have shown that

κp (hα (λ)) = 1

in all cases. �

8.3. Other elements of the compact open subgroup

We are now ready to show how to find the local Kubota symbol on any element

of Γp.

By (1.3), it is clear that the Bruhat decomposition of a matrix of G with a

non-zero (3, 1)-entry depends only on the first column and last row of the matrix.

The following proposition establishes an important property of this type of matrix

when p is odd and unramified in K:
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Proposition 8.8. Let p is odd and unramified (but not split) in K. Also, let

a, b, c, d, e ∈ OK , such that

ac+ ac = −N (b) , ec+ ec = −N (d) ,

and
ad

c
+
b

c
,
bd

c
− c

c
,
be

c
+
d

c
,
ae

c
− bd

N (c)
+

1
c
∈ OK .

Then

β =


a ad/c+ b/c ae/c− bd/(N (c)) + c−1

b bd/c− c/c be/c+ d/c

c d e

 ∈ Γp,

and either c or e ∈ O×K , or possibly both.

Proof. The first part is easily established by (1.3). As for the second part,

consider the Hermitian form 〈−,−〉 defined by

〈u, v〉 = ut


0 0 1

0 1 0

1 0 0

 v,

where u, v ∈ K3. This implies that for all γ ∈ SU(2, 1)(k),

〈γu, γv〉 = 〈u, v〉.

If

u =


u1

u2

u3

 , v =


v1

v2

v3

 ,

then

〈u, v〉 = u3v1 + u2v2 + u1v3.

Since 〈
a

b

c

 ,


a

b

c


〉

= ac+ N (b) + ac = 0,
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if p | c, then p | b. Similarly, since

〈
ae/c− bd/(N (c)) + c−1

be/c+ d/c

e

 ,


ae/c− bd/(N (c)) + c−1

be/c+ d/c

e


〉

= 0,

if p | e, then p | (be/c+ d/c), i.e. p | d.

For any λ ∈ O×K , p - λ. As

〈
a

b

c

 ,


ae/c− bd/(N (c)) + c−1

be/c+ d/c

e


〉

=

〈
β


1

0

0

 , β


0

0

1


〉

=

〈
1

0

0

 ,


0

0

1


〉

= 1,

if p | c and p | e, then p | 1, which is a contradiction. Hence either c or e is a unit

in OK , or possibly both. �

In the split case, i.e. when p is split in K, we have to consider the fact that

sometimes, none of the entries in the bottom row of an element in Γp is a unit.

This does not occur in the other cases. The proposition below shows the existence

of a transformation to a matrix of this form so that the resulting matrix has a unit

in the (3, 3)-entry.

Proposition 8.9. Let p be a split prime in K. If
a b c

d e f

g h j

 ∈ Γp,

with neither g nor j a unit in OK , then there is always an element xα (s1, n1) ∈

N(k) ∩ Γp such that (
g h j

)
· xα (s1, n1) =

(
g h′ j′

)
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with j′ ∈ O×K .

Proof. Let pOK = p1p2, where p1, p2 ⊂ OK . We first note that g, h and j

are coprime to each other, by the same principle as in the proof of Proposition 8.8.

If p | g, then without loss of generality, we may assume that p1 | h, which in turn

implies that p1 - j. Using the Hermitian form from the proof of Proposition 8.8,

since 〈
g

h

j

 ,


g

h

j


〉

= gj + N (h) + gj = 0,

and p | N (h), we have that p2 - j, i.e. j ∈ O×K .

Now let g, j /∈ O×K , with p1 | g, p2 - g. Assume that p1 | h. Then p1 - j, and

this implies that p2 - j. But p | N (h), hence p | Tr
(
gj
)
, i.e. p2 | Tr

(
gj
)
. Therefore,

since p2 - gj, we have p2 - gj, and hence p2 - j (since p2 | g). But this means that

j ∈ O×K since j is a unit mod p1 and mod p2, which contradicts our assumption

that j is not a unit in OK . Hence if p1 | g and p2 - g, then p1 - h.

Since g is a unit mod p2 and h is a unit mod p1, we can always choose a z′ ∈ K

such that (
g h j

)
· xα

(
z′,−N (z′)

2

)
=
(
g h′ j1

)
,

with h′ = gz′ + h a unit mod p2, i.e. h′ ∈ O×K . So now we have p - N (h′), hence

p - Tr
(
gj1
)
. So p1 - (gj1 + gj1), i.e. p1 - gj1. This implies that p1 - j1, i.e. j1 is a

unit mod p1. So we can choose t′ ∈ Ok such that(
g h′ j1

)
· xα (0, t′θ0) =

(
g h′ j′

)
,

with j′ = (t′θ0)g + j1 a unit mod p2, i.e. j′ ∈ O×K .

Therefore we can always choose some xα (z′,−N (z′) /2 + t′θ0) ∈ N(k) ∩ Γp

and (
g h j

)
· xα

(
z′,−N (z)

2
+ t′θ0

)
=
(
g h′ j′

)
,

with j′ ∈ O×K . �

With the above two propositions, we can now show how to obtain the local

Kubota symbol on any element of Γp.



8.3. OTHER ELEMENTS OF THE COMPACT OPEN SUBGROUP 185

Theorem 8.10. Let

γ =


a b c

d e f

g h j

 ∈ Γp.

Then

κp (γ) =



κp

(
hα

(
j
−1
))

, if g = 0;

κp

(
hα
(
(gθ0)−1

))
, if g ∈ O×K ;

κp

(
hα

(
j
−1
))
· κp

(
x−α

(
−h
j
,
g

j

))
· σ
(
hα

(
j
−1
)
, hα

(
j

gθ0

))
, if g 6= 0, g /∈ O×K .

If p is split, then when both g and j are not units in OK , we can always choose

some xα (s1, n1) ∈ N(k) ∩ Γp such that(
g h j

)
· xα (s1, n1) =

(
g h′ j′

)
,

with j′ ∈ OK . Then

κp (γ) = κp (γ · xα (s1, n1)) ,

and we may apply the above to κp (γ · xα (s1, n1)) to calculate our result.

Proof. Consider the case where g = 0. By (1.4),

γ =


a b c

d e f

g h j

 = hα

(
j
−1
)
· xα

(
bj, cj

)
,

hence by Proposition 8.1,

κp (γ) = κp

(
hα

(
j
−1
))

.

As noted at the start of Section 8.2, we will only have g ∈ O×K when p is odd

and either unramified or split in K. In this case, xα
(
−d/g, a/g

)
, hα

(
(gθ0)−1

)
,

xα (h/g, j/g) ∈ Γp. Therefore, since by (1.3),

γ = xα

(
−d
g
,
a

g

)
· hα

(
(gθ0)−1

)
· wα (0, θ0) · xα

(
h

g
,
j

g

)
,
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by Proposition 8.1,

κp (γ) = κp

(
hα
(
(gθ0)−1

)
· wα (0, θ0)

)
.

Hence by (8.1),

κp (γ) = κp

(
hα
(
(gθ0)−1

))
· κp (wα (0, θ0)) · σ

(
hα
(
(gθ0)−1

)
, wα (0, θ0)

)
.

So by Proposition 8.4 and Theorem 6.3,

κp (γ) = κp

(
hα
(
(gθ0)−1

))
.

If g 6= 0, g /∈ O×K , then j ∈ O×K in most cases by Proposition 8.8 (we deal with

the case g, j /∈ O×K later in the proof). Also, using the Hermitian form established

in the proof of Proposition 8.8, we have that

〈
a

d

g

 ,


a

d

g


〉

= ag + N (d) + ag = 0,

〈
g

h

j

 ,


g

h

j


〉

= gj + N (h) + gj = 0.

We now have a few cases to consider. We will use the notation in Section 1.3. If p

is odd and unramified in K, then since p | g, this implies that p | d and p | h. Thus,

we have a = p and

γ ∈ G(Ok)0(p) = N(Ok) · T (Ok) ·N(p).

If p is odd and ramified in K, we already have that a = (θ0) in Proposition 1.1, and

Γp = G(Ok)1((θ0)),

which implies that there exists an Iwahori factorisation of Γp, with

Γp = N((θ0)) · T ((θ0)) ·N((θ0)).
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If instead p is even, we have a = (8) in Proposition 1.1 and

Γp = G(Ok)1((8)) = N((8)) · T ((8)) ·N((8)).

So we have an Iwahori factorisation for all elements of Γp with g 6= 0, g /∈ O×K .

Hence, we have

γ = xα

(
−f
j
,
c

j

)
· hα

(
j
−1
)
· x−α

(
−h
j
,
g

j

)
,

with xα
(
−f/j, c/j

)
, hα

(
j
−1
)

, x−α
(
−h/j, g/j

)
∈ Γp. This implies that by Propo-

sition 8.1,

κp (γ) = κp

(
hα

(
j
−1
)
· x−α

(
−h
j
,
g

j

))
,

and by (8.1) and Proposition 6.1,

κp (γ) = κp

(
hα

(
j
−1
))
· κp

(
x−α

(
−h
j
,
g

j

))
· σ
(
hα

(
j
−1
)
, hα

(
j

gθ0

))
.

We have one last case to consider. We have already noted that there will

be elements in the split case where all the bottom row entries are non-units. By

Proposition 8.9, we can apply a transformation by multiplying the matrix on the

right by a unipotent upper triangular matrix xα (s1, n1) ∈ Γp, so that(
g h j

)
· xα (s1, n1) =

(
g h′ j′

)
with j′ ∈ O×K . But by Proposition 8.1,

κp (γ · xα (s1, n1)) = κp (γ) .

Hence we can use the calculation on κp (γ · xα (s1, n1)) to get κp (γ).

This concludes our proof. �



Part 4

The half-integral weight multiplier

system



CHAPTER 9

The global Kubota symbol

As previously stated in the Introduction, in order to construct the half-integral

weight multiplier system, we need to calculate the global Kubota symbol κ. In

Section 3 of [10], the global Kubota symbol on a chosen arithmetic subgroup of

GL2(F ) for some field F was given in terms of quadratic Legendre symbols. We

want to write down a similar formula in terms of quadratic Legendre symbols for

our arithmetic subgroup.

Let l be an arbitrary number field, and let p run through all the primes of l.

Let L be a quadratic extension of l, so that the matrix entries of an element in G(l)

lie in L. On the arithmetic subgroup Γ =
∏

p Γp ∩G(l), we have

(9.1) κ(γ) =
∏

p<∞
κp (γ) ,

for γ ∈ Γ. Unfortunately, with our formulae for the local Kubota symbol κp (see

Theorem 8.10), it is difficult to find a “nice” formula for the global Kubota symbol

for all elements of Γ. What we can do is find a formula on the Borel subgroup of Γ

(i.e. the group of upper triangular matrices of Γ). Recall that for elements a, b ∈ Ol

with b coprime to 2a, the quadratic Legendre symbol is defined by

(a
b

)
l,2

=
∏
p|b

(a, b)lp,2.

We have the following proposition:

Proposition 9.1. Let 
f g h

0 f/f −g/f

0 0 f
−1

 ∈ Γ.

189
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Then

κ



f g h

0 f/f −g/f

0 0 f
−1


 =



(
b

a

)
l,2

·
∏

p|∞(a, b)lp,2, if f = a+ bθ0,

a, b ∈ l, b 6= 0;

1, otherwise.

Proof. Using (9.1), we have by Theorem 8.10 that

κ



f g h

0 f/f −g/f

0 0 f
−1


 =

∏
p<∞

κp (hα (f)) .

But by Propositions 8.5 and 8.7, if f ∈ l, then κp (hα (f)) = 1 for all p. In this

case, we have

κ



f g h

0 f/f −g/f

0 0 f
−1


 = 1.

In the other case, f /∈ k×, i.e. f = a+ bθ0, where a, b ∈ l and b 6= 0. Then if p

is odd, and either unramified or split, Proposition 8.5 states that if b /∈ O×lp ,

κp (hα (f)) = (a, b)lp,2.

Otherwise, κp (hα (f)) = 1 by Propositions 8.5 and 8.7. Hence by (9.1), we have

κ



f g h

0 f/f −g/f

0 0 f
−1


 =

∏
p<∞

κp (hα (f)) =
∏
p|b

(a, b)lp,2,

where the product is over all p which are unramified or split. Hence by the product

formula (Theorem 3.2) and (3.1), we get

κ



f g h

0 f/f −g/f

0 0 f
−1


 =

∏
p-b

(a, b)−1
lp,2

=
∏
p-b

(a, b)lp,2.

There are now a few cases to consider for each p - b:
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• If p is even, since a ≡ 1 (8), this implies that a is a square in lp by Hensel’s

Lemma (Theorem 3.5), hence (a, b)lp,2 is trivial by (3.6).

• Suppose p is finite and odd. Then the Hilbert symbol is the tame symbol

(Proposition 3.1). In this case if p - a, then we also have (a, b)lp,2 = 1.

Thus we are left with the finite primes p which divide a and the infinite primes.

Our equation becomes

κ



f g h

0 f/f −g/f

0 0 f
−1


 =

∏
p|a

(a, b)lp,2 ·
∏
p|∞

(a, b)lp,2.

We can now use the quadratic Legendre symbol formula on the above, hence

κ



f g h

0 f/f −g/f

0 0 f
−1


 =

(
b

a

)
l,2

·
∏
p|∞

(a, b)lp,2.

Thus our result is proved. �



CHAPTER 10

A section for the 2-cocycle on SU(2, 1)(R)

Let k = R, θ0 =
√
−d for some positive real number d. Thus, K = k(θ0) = C.

We shall determine a section for the 2-cocycle on SU(2, 1)(R) = G(R) as described

in the Introduction. Recall that we have a Hermitian form 〈−,−〉 on C3 defined by

〈u, v〉 = ut


0 0 1

0 1 0

1 0 0

 v,

and we let

X− =
{

[v] ∈ P2(C) : 〈v, v〉 < 0
}

=




τ1

τ2

1

 ∈ P2(C) : N (τ2) + Tr (τ1) < 0

 .

Here [v] means the image of a vector v ∈ C3 in projective space. We want our

modular form to be defined on

HC =


τ1
τ2

 ∈ C2 : N (τ2) + Tr (τ1) < 0

 .

We will use the abbreviation τ =

τ1
τ2

 for an element of HC. Let

g = (gij)1≤i,j≤3 =


g11 g12 g13

g21 g22 g23

g31 g32 g33

 ∈ G(R),

192
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and let

A =

g11 g12

g21 g22

 , B =

g13

g23

 , C =
(
g31 g32

)
, D = g33.

This implies that

(10.1) g =

A B

C D

 .

Note that

g

τ
1

 ∈ X−.
Hence, we have

g

τ
1

 =

Aτ +B

Cτ +D

 =

Aτ+B
Cτ+D

1

 ,
and in particular Cτ +D 6= 0. So we can define an action of G(R) on HC by

g(τ) =
Aτ +B

Cτ +D
.

(Note that Cτ +D is a scalar.)

We will write G̃(R) for the connected double cover of G(R). Note that the

fundamental group π1(G(R)) is isomorphic to Z, so there is a unique connected

n-fold cover for any n.

One way of constructing the group G̃(R) is as follows: the elements of G̃(R)

are pairs

(g, φ(τ)) ,

where g ∈ G(R) and φ denotes a continuous function on HC satisfying

φ(τ)2 = Cτ +D.

For two elements (g1, φ1(τ)), (g2, φ2(τ)) ∈ G̃(R), we define their product by

(g1, φ1(τ)) · (g2, φ2(τ)) = (g1g2, φ1(g2(τ))φ2(τ)) .
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(Later, we will show that G̃(R) truly is the unique connected double cover of G(R).)

Recall that we also have another group which we have been referring to as G̃(R),

and which is defined by the 2-cocycle σ. We will now relate these two constructions

of G̃(R).

Suppose for each g ∈ G(R) we have chosen a function φg with φg(τ)2 = Cτ+D

(where C, D are as in the notation above). Then the map

g 7→ g̃ = (g, φg(τ))

defines a section of G(R) to G̃(R). Corresponding to this section, we have a 2-

cocycle on G(R) written as

Σ (g1, g2) = (g1, φg1(τ)) · (g2, φg2(τ)) · (g1g2, φg1g2(τ))−1

for g1, g2 ∈ G(R), i.e.

Σ (g1, g2) =
(φg1 ◦ g2)φg2

φg1g2
.

Let

S (g1, g2) =
Σ (g1, g2)
σ (g1, g2)

,

where we assume that the 2-cocycle σ has the same formula as that in Theorem 6.3

with k = R. Since Σ, σ ∈ Z2(G(R), µ2) and they both represent the unique non-

trivial double cover, this implies that S is a 2-coboundary. Our choice of φg will be

made carefully so that S = 1, i.e. σ = Σ.

Remark 10.1. There is only one choice of section with this property: any two

would differ by a continuous homomorphism from G(R) → µ2; however G(R) is

connected.

We will first determine φg for g ∈ T (R). For any λ ∈ C×, we have

hα (λ) =


λ 0 0

0 λ/λ 0

0 0 λ
−1

 .

Choose

φhα(λ)(τ) = λ
−1/2

,
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where arg
(
λ
−1/2

)
∈ (−π/2, π/2]. (Note that φhα(λ) is a constant function.) We

may check for any λ, µ ∈ C× that

S (hα (λ) , hα (µ)) = 1

using Theorem 6.3. Since T (R) is connected, this is the correct choice of φg on

T (R).

Claim 10.2. G̃(R) is the unique connected double cover of G(R).

Proof. Suppose that G̃(R) is the trivial double cover. Then we have

Σ = ∂ν

for some 1-cochain ν ∈ C1 (G(R), µ2). By our choice for φhα(−1), we have

Σ (hα (−1) , hα (−1)) = −1.

Also,

Σ (hα (−1) , hα (−1)) =
ν (hα (−1))2

ν
(
hα (−1)2

) = ν (I3)−1
.

This implies that ν (I3) = −1. On the other hand,

Σ (hα (−1) , I3) = 1

and

Σ (hα (−1) , I3) =
ν (hα (−1)) · ν (I3)
ν (hα (−1) · I3)

= ν (I3) ,

which implies that ν (I3) = 1. This is a contradiction, thus G̃(R) is the unique

connected double cover of G(R). �

Without loss in generality, let W = {1, wα (0, i)}, be the set of Weyl group

representatives of G(R). For ease of notation, let

w = wα (0, i) =


0 0 i

0 1 0

i 0 0

 .
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Every element in W ·T (R) can be chosen to have the form h1 or w ·h1 for h1 ∈ T (R).

Let W̃ · T (R) be the restriction of G̃(R) to elements of the form (w′ · h1, φw′·h1)

where w′ ∈W , h1 ∈ T (R). Note that there are two sections W · T (R)→ W̃ · T (R)

whose 2-cocycle is σ. This is because there is a non-trivial homomorphism

W · T (R)→ Z/2→ µ2.

For the element w, we have Cτ + D = iτ1, and Tr (τ1) < 0. This implies that

Cτ +D is in the lower half-plane. We choose φw such that arg (φw(τ)) ∈ (−π/2, 0).

We will later show that our choice for φw is correct.

For h1 ∈ T (R), φw·h1 can be determined from φw as follows. We have

(w · h1, φw·h1(τ)) = Σ (w, h1) · (w, φw(τ)) · (h, φh(τ)).

Since we want σ = Σ, and σ (w, h1) = 1 for any h1 ∈ T (R) by Theorem 6.3, we find

that

(w · h1, φw·h1(τ)) = (w, φw(τ)) · (h, φh(τ)) = (w · h1, φw(h1(τ))φh1(τ)).

(It may also be checked that S (h1, w) = 1.)

Now recall the Bruhat decomposition (see Section 1.2)

G(R) = T (R) ·N(R) tN(R) · w · T (R) ·N(R).

Since σ is trivial on N(R) and N(R) is connected,

φn1(τ) = 1

for any n1 ∈ N(R) (i.e. φn1 is a constant function). Similarly, since σ (n1, g) = 1

for any g ∈ G(R), and we have

(n1 · g, φn1·g(τ)) = Σ (n1, g) · (n1, φn1(τ)) · (g, φg(τ)),

with σ (n1, g) = Σ (n1, g), this implies that

φn1·g(τ) = φg(τ).
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Also, we have

(g · n1, φg·n1(τ)) = Σ (g, n1) · (g, φg(τ)) · (n1, φn1(τ)),

and since σ (g, n1) = 1 and σ (g, n1) = Σ (g, n1),

φg·n1(τ) = φg(n1(τ)).

Hence, once we establish the choice for φw, we can determine (g, φg) for any g ∈

G(R).

Claim 10.3. Our choice for φw is the correct choice.

Proof. Let

g1 = x−α (0, i) =


1 0 0

0 1 0

i 0 1

 , g2 =


0 0 i

0 1 0

i 0 −1

 .

So we have g1 · w = g2. By (1.3) (using θ0 = i),

g1 = xα (0,−i) · w · xα (0,−i) , g2 = w · xα (0, i) .

We want to show that with our choice for φw,

(g2, φg2(τ)) = (g1 · w, φg1·w(τ)) = σ (g1, w) · (g1, φg1(τ)) · (w, φw(τ)).

Since by Theorem 6.3, σ (g1, w) = 1, the above equation can be simplified to

φw(xα (0, i) (τ)) = φw((xα (0,−i) · w)(τ)) · φw(τ).

Hence, if our choice for φw is wrong, this would imply that the left-hand side would

not equal the right-hand side.

We evaluate both sides at the point

τ ′ =

−1

0

 ∈ HC.
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For the left-hand side, we have

φw(xα (0, i) (τ ′)) = φw


−1 + i

0


 = e−3iπ/8

with our choice for φw. As for the right-hand side,

φw((xα (0,−i) · w)(τ ′)) · φw(τ ′) = φw


−1− i

0


 · e−iπ/4

= e−iπ/8 · e−iπ/4

= e−3iπ/8.

Since both sides concur, our choice for φw is correct. �

We have thus proved the following, as first mentioned in the Introduction:

Theorem 10.4. Let τ ∈ HC. For each g ∈ G(R) as defined in (10.1), choose

a function φg such that φg(τ)2 = Cτ +D as follows:

• φh·n1(τ) = λ
−1/2

, where arg
(
λ
−1/2

)
∈ (−π/2, π/2];

• arg(φw(τ)) ∈ (−π/2, 0);

• φn2·w·h·n1(τ) = φw((h · n1)(τ))φh·n1(τ);

where n1, n2 ∈ N(R), w = wα (0, i) and h = hα (λ) ∈ T (R). Then we have a

half-integral weight multiplier system

j(γ, τ) = κ(γ)φγ(τ),

where γ ∈ Γ, the congruence subgroup on which the global Kubota symbol κ is defined

on.
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