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ABSTRACT. In this thesis, we construct a half-integral weight multiplier system
on the group SU(2,1). In order to do so, we first find a formula for a 2-cocycle
representing the double cover of SU(2,1)(k), where k is a local field. For
each non-archimedean local field k, we describe how the cocycle splits on a
compact open subgroup. The multiplier system is then expressed in terms of

the product of the local splittings at each prime.
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Introduction

Modular forms of half-integral weight have been known to exist for some time,
and standard examples may be found in the form of theta functions and the
Dedekind eta function. But although modular forms of half-integral weight have
been found on groups such as special linear groups, symplectic groups and orthog-
onal groups, it is not possible to obtain modular forms of half-integral weight on
the group SU(2,1) by restriction, even though they are known to exist.

This thesis is concerned with finding a half-integral weight multiplier system
on SU(2,1). With this half-integral weight multiplier system in place, it would be

possible to write down a modular form of half-integral weight on SU(2,1).

Modular forms on SL,

We first recall the definition of a modular form on the group SLy. The modular

group is defined to be

a b
SLo(Z) = ca,b,e,d € Z,yad —be=1
c d

This group acts on the upper half-plane
H={re€C: Im(r) > 0}
by fractional linear transformations, i.e.

a b (r) ar +b
= T — () = .
" d 7 ct+d

Let k be a positive integer. A modular form of weight k is a holomorphic function

f+ H — C such that for each v € SLy(Z),

FOy(1)) = (er + ) f(7),

7



MODULAR FORMS ON SU(2,1) 8

and such that f is holomorphic at the cusp co.
Now let k/2 be a half-integer and let T' C SLo(Z) be a subgroup of finite index.

By a weight k/2 multiplier system, we shall mean a continuous function
j:I'xH— C,
such that for v, v € I', 7 € H,
J's ) =30 y(1) -5 7),

and

) ) . a b
j,1) = (et +ad)", v=
c d

A modular form of weight k/2 on I is defined to be a function f: H — C such that

for y € I and 7 € H, we have

(7)) =30y, 7)f(7),

and such that f is holomorphic on H and the cusps of I'. An example of a half-

integral weight modular form on SLs is the Dedekind eta function

n(z) = ¢ [ —-q"),

A a
where ¢ = €%, and it can be shown that for v = € SLy(Z),

0(E57) = ctles + a2,

where €(7y) is a 24th root of unity (see Section 1.3 of [3]). When one restricts to

elements 7 in the commutator subgroup I' = [SLy(Z), SLy(Z)] we have e(y) = £1.

Modular forms on SU(2,1)

We can define similar notions for the group SU(2,1). To describe this group,

let 6y = v/—d, where d > 2 is a square-free natural number (fixed once and for all).
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We shall write the non-trivial Galois automorphism of Q(6y) by
a+b00 :abeO.

We define SU(2,1) as an algebraic group over Q as follows: for a commutative

Q-algebra A we let
SU(2,1)(A) = {v € SL3(A®q Q(6p)): v'Jv=J'}.

In this definition, the matrix J’ is given by

00 1
J=10 1 0
1 00

The notation ! denotes the transpose of v, and U denoted the image of v under
conjugation in Q(6y). We shall also on occasion regard SU(2,1) as a group scheme

over Z, defined (for a commutative ring A) by
SU(2,1)(A) = {v € SL3(A ®z Ogg,)): V' J'7 = J'}.

Here Og(g,) denotes the ring of algebraic integers in Q(fp).

Consider the Hermitian form on the vector space V = C? defined by
(u,v) = u'J'D.

The group SU(2,1)(R) acts on V, and hence on X = P?(C) in an obvious way.

Furthermore SU(2,1)(IR) preserves the subsets
X~ = {[v] € P*(C): (v,v) <0},
V™ ={veC?: (v,v) <0},
where [v] denotes the image in projective space of a vector v. Hence V'~ is the
preimage of X~ in V\0.

Let k be a positive integer. We define a weight £ modular form on an arithmetic

subgroup I' € SU(2,1)(Q) as follows. Let F': V— — C be a holomorphic function
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such that

F(yv) = F(v), forallyeTl,

F(\w) =A"FF(v), forall \eC.

It turns out that no growth conditions at the cusps are required.
We shall now explain how this definition is related to the definition for SLy(Z).
1
Any point of X~ has a unique representative in V'~ of the form | 7, |, where
1
N (72) 4+ Tr(71) < 0. Here we are using the notation N (z) = 2% and Tr (z) =2+ T
. T
for a complex number z. We let H¢ be the set of all such pairs , SO we have a
T2

bijection X~ = H¢. Given a modular form F' in the sense just described, we define

a function f on Hc by

T1
T1

f =F To
T2

1

The action of SU(2,1)(R) on X~ gives us an action on H¢, which we will now
examine. Let
g1 g1z Gi3
9= g1 g2 ga3 | €SURD(R).

g31 g32 g33

We decompose this matrix into blocks as follows:

A: 7_B: 7CY:

g11 912 913 (
921  g22 923

This implies that

A B
g:
C D

The action of SU(2,1)(R) on Hc is described by

AT+ B T1
= T

90 =G5 .
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Now let f be as above, and suppose that ¢ is in the arithmetic group I". Then we

have:
AT+B
flatr)=F [ | TP
1
AT+ B
= (Ct+ D)*F
Cr+D
T
=(Cr+D)F g
1
-
= (Cr+D)'F
1
= (CT+ D)* (7).

We can thus similarly define a weight k/2 multiplier system on SU(2,1) as a
holomorphic function j: I' x He — C such that for v, v/ € T', 7 € Hc, and 7 defined

in the same way as g above:
i) =30 y(1) -5 7),

and
A B

j(y.m)? = (CT+ D), ~=
C D
We may also define half-integral weight modular forms on SU(2,1) entirely
analogous to the case of SLy. However, no example of a half-integral weight modular
form on SU(2,1) has ever been found. There are no standard examples such as
theta series. The other standard way of writing down a half-integral weight form
would be to write down an Eisenstein series. However, this cannot be done without
knowing the multiplier system in advance, and no example of a half-integral weight
multiplier system has previously been found (although they were known to exist;

see [5]). The aim of this thesis is to give a half-integral weight multiplier system

on SU(2,1).



STRATEGY FOR CONSTRUCTING THE MULTIPLIER SYSTEM 12

Strategy for constructing the multiplier system

Let A denote the adele ring of Q and write s for the group {1,—1}. The group

SU(2,1)(A) has a canonical double cover, called the “metaplectic cover”:

1 — s — SU(2,1)(A) — SU(2,1)(A) — L.
This is a central extension of topological groups. It is a “cover” in the following
sense: there is a neighbourhood U of the identity in SU(2,1)(A), such that the
restriction preimage of U is topologically a product U X us. The word “metaplectic”
means that the extension splits over the rational points SU(2,1)(Q). In fact, every
reductive group over a number field has a canonical mateplectic cover, with kernel
the roots of unity in the field (see [5]).

For a place p of Q we shall write SU(2,1)(Q,) for the pre-image of SU(2,1)(Q,)

—_~—

in SU(2,1)(A). This means that we have local extensions:

Our first aim is to describe a 2-cocycle o, on SU(2,1)(Q,) corresponding to this
extension. In fact, our cocycle will be expressed in terms of Hilbert symbols
(= —)q,,2- This has the consequence (by the quadratic reciprocity law) that for
9,9 € SU(2,1)(Q) we have

[Iowte.9) =1.

This product formula reflects the fact that our extension splits on the rational
points.

One cannot define a cocycle o on SU(2,1)(A) to be simply the product of the
local cocycles, since this product will usually have infinite support. However, we
can do something rather similar. For each finite prime p, there is a compact open
subgroup I', C SU(2,1)(Q,) on which the extension splits, and for almost all p we
may take I, = SU(2,1)(Z,). This means that there is a function kp,: I') — pe,

such that for g,¢" € '), we have

op(9,9") = Orplg,9') = -
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The functions ,: I'), — po are called “local Kubota symbols”. If we extend &, in
some arbitrary way to SU(2,1)(Q,), then we may now form the product

5 (9p: 9p)

!
, g,9 € SU(2,1)(A).
9p(9p, 9p) (2 L&)

oa(9,9") = 0oo(goer 95) ||
p finite

This product does have finite support, and is a 2-cocycle representing the full
metaplectic extension. The second main aim of the thesis is to calculate the local
Kubota symbols.

Now consider the following congruence subgroup:
I = SU(2,1)(Q) N (SU(?, 1)(R) x Hrp).
P
We define a map x: I' — pg (called the “global Kubota symbol”) by
k() = ] #e()-
p<oo
From the formulae above, we immediately have

K()R()

7<) = Z)

Our next step is to examine the cocycle o, more closely. It turns out that

there is another way of constructing the group SU(2,1)(R). Let

—~—

SU2,1)(R) = {(9,¢: Hc — C*) : g € SU(2,1)(R)},

where ¢ is continuous, and for every

A B
9= € SU(2,1)(R)
C D
(as defined earlier), we have ¢(7)? = C'7+ D. Multiplication in this group is defined
by
(9:0)(g",¢") = (99", (60 9")¢).
There is an obvious homomorphism (g, $) — g, which makes this group a double

cover of SU(2,1)(R). We prove in Chapter 10 that this is the unique connected

double cover of SU(2,1)(R) and is isomorphic to the local factor at infinity of the
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metaplectic group. The final aim of the thesis is to describe explicitely a section
g+ (g, ¢g), which corresponds to the 2-cocycle 0. In more elementary terms this
means

$q(9'(7)) ¢y (7)

/
, g,9 € SU(2,1)(R), T € Hc.
Gy (7) 2, e

0sol9,9') =

If we now define for v € T,

](’77 T) = R(’Y)QS“/(T),

then the formulae above show that j(v,7) is a multiplier system of weight 1/2.

In fact we shall work almost entirely in a more general setting than was de-
scribed above. We shall replace the rational numbers by an arbitrary number field
I and Q(Ay) by an arbitrary quadratic extension L/l. In the case that [ is totally
complex, the cocycles o, for complex places p are all trivial, and hence the global
Kubota symbol x is a group homomorphism.

The plan of the thesis is divided into four parts. In order to calculate the local
Kubota symbol, we will first need to find an explicit formula in terms of quadratic
Hilbert symbols for the 2-cocycle representing SI/J‘(\2,/1)(QP), for p finite. Deodhar
worked on the computation of the fundamental group of quasi-split groups in [6].
We will be extending the methods described in this paper to find the explicit formula

of the 2-cocycle that we need. Hence, the first part of the thesis is concerned with

establishing some important facts and results for later use. In the second part, we

will give an explicit formula for the 2-cocycle representing SU(2,1)(Q,). The third
part concerns the calculation of the local Kubota symbol for every finite prime p.
In the fourth part, we will look at some calculations of the global Kubota symbol,
and find the section for SU(2,1)(R). We will then establish what the half-integral

weight multiplier system is.

Summary of the results of the thesis

We shall fix once and for all a number field ! and a quadratic extension L =

1(6y). We define our group over [ by

SU(2,1)(—) = {v € SL3(— @, L): v'J'v = J'}.
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Let k = I, be a local completion of [, either archimedean or non-archimedean and
let K = k®; L. Thus K is either a quadratic extension of k or a sum of two copies
of k. Recall that we have a double cover SU(2,1)(k) of the group SU(2,1)(k). We

begin by specifying a section §’: SU(2,1)(k) — SU(2,1)(k). This section defines a

2-cocycle o corresponding to the cover:
a(g,h) = 8'(9)" ()5 (gh) ™", g.h € SU(2,1)(k).

Our first results are an expression for ¢ in terms of quadratic Hilbert symbols on
k. In the case that K/k is a field extension, our result completely describes o. In
the split case, we obtain expressions which are valid on (a) the maximal torus and

(b) the subgroup SU(2,1)(1). This will be enough for our purposes.

The cocycle on the torus. Let k be a local field and let K = k(6p) be either
a quadratic extension of k or a sum of two copies of k. As before, we write A — \
for the non-trivial Galois automorphism when K is a field. When K = k @ k, this

notation will mean

(a:,y) = (:%x)

We shall also use the following notation in either case:
Tr(A) =X+, N() =\

We shall always assume that Tr (6p) = 0. The symbol (—, —); 2 will be the quadratic
Hilbert symbol on k. When K is a field, we shall write (—, —) k2 for the quadratic
Hilbert symbol on K. In the case that K = k & k, this symbol will be defined as

follows:
((z,y), ($/7yl))K,2 = (x,x')k’Q : (yvy/)k,2 :

Before describing the cocycle ¢ in general, we first study its restriction to the

following maximal torus
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where
A0 0
ha (N =10 X/x 0
0o 0 X'
THEOREM. For A\, € K* we have
0 (ha (A), ha (1))
(Aau)kQ? Zf)\ylfLEkX’
(Tr (Ao) , 1) 2 5 ifAE R e k™
B (Aal‘)Kg'()‘vTr(MeO))k,Qv fAERS p¢ k™
(A i) o - (A — Tr (Mo))y, o 5 fAEER ¢ k™ A€ k™
(N(A) . N (1)) 2 - (Tr (o) N (), Tr (110)) .
“(Tr (Apbo) , — Tr (Mo) N (1) Tr (160)) . 2 » otherwise.

Along the way, we also find the following formula for the commutator of the

cocycle on T'(k):

(W) _ . —
()\)) - ()‘7N’)K,2'

The cocycle on the whole group. Let N be the following unipotent sub-

group of SU(2,1):

N(k) = {xq (r,m) € SU2,1)(k): r,m € K and N (r) + Tr (m) = 0},

where
1 r m
To(r,m):=10 1 —F
0 0 1

—_~—

The section §’: SU(2,1)(k) — SU(2,1)(k) is chosen in such a way that for g €

SU(2,1)(k) and n € N(k) we always have

d'(gn) = 0'(9)d’'(n) and &'(ng) = &'(n)d'(g).
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As a consequence, our cocycle o satisfies the following:
o(g,n)=0(n,g) =1, neN(k), ge SU2,1)Kk).

Combining this property with the Bruhat decomposition, we are able to calculate
o on the bigger group SU(2,1)(k), at least when K is a field. For the moment we
assume that K /k is a field extension rather than a sum of two copies of k. We shall
discuss how the results must be modified in the split case later.

In order to describe the cocycle, we first introduce some notation. For A\, u €

K* we define

(A’iu)k27 if)\,,uEkX;
u (A p) =
(N(A),=N(p))y o, otherwise.

We also define a function do: K™ — kX6 by

= ifA&k™;
S (\) =qAA
0o, if Ae k.

Given an element

we define X (y) € K* by

We prove the following in Chapter 6:

THEOREM. Let v; € SU(2,1)(k), where i =1, 2, 3, with v3 = v172 and

g9 hi Ji
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If X(73) /(X (1) X (72)) € k™, then we have

_ X(v3)
o(mne) = u ( (72)

_ ( X(73) d2 (X (71)) 02 (X(VQ)))
X)X (72)’ b2 (X (73)) o k2

s X (1) X (72

P

If on the other hand X (v3)/(X(71)X (712)) € k*, then we let

hags — h3go

r=r(y,72) = —
9192

And we have

o(v,72) = (_52 (_m> 0"\ N (_m>)k2
: <N (r), 52’05)’“))’%2 ‘u (X(%L X(%)) “u (X(%)?X(VS))

X (72) X (72)
. <62 (X(73)/(X(71)X(72)))
o2 (X (13)/X(2)) 7

_ N (X (73)/(X(71)X(12))) 62 (X(73>/(X(’71)X(72>)))
b2 (X (71)) k,2

.<62(X(72)) N(X(W’z))52(X(72))) .
k,2

62 (X(73))" 62 (X(v3)/X(72))

In fact we obtain a more general theorem describing a cocycle corresponding
to an n-fold cover of SU(2,1)(k), where k contains a primitive n-th root of unity;
however this cocycle is a little more complicated and is not required for our main
aim, which is to produce a half-integral weight multiplier system.

Fortunately, our formula for the local Kubota symbols will be rather simpler
than the formula for o. Nevertheless, we require the formula for ¢ in order to

calculate the Kubota symbol.

The split case. In the case K = k® k the theorem above does not completely
describe the cocycle o. This is because there are numbers in K which are neither
zero nor invertible, and so there are a number of extra cases to consider. One can
see why this happens from a different point of view: the group SU(2,1) has rank
1 over [, and so there are two cells in the Bruhat decomposition of SU(2,1)(l).
However if K is split, then SU(2,1)(k) is isomorphic to SLs(k), which has 6 cells

in its Bruhat decomposition (one for each element of the Weyl group, which in
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this case is S3). There are therefore four Bruhat cells in SU(2,1)(k) which contain
no elements of SU(2,1)(1). In fact only the biggest and the smallest Bruhat cells
of SU(2,1)(k) contain elements of SU(2,1)(I). Our formula for o (y1,72) is valid
whenever 1, 72, 73 = 7172 are in one of these two cells. We may ignore these extra

cells since we are interested in the restriction of o to SU(2,1)(1).

The level of the multiplier system. Let k£ be a non-archimedean local field,
and assume again that K/k is either a quadratic extension of local fields, or that
K is a sum of two copies of k. Before we can calculate the local Kubota symbols
and the multiplier system, we must first determine the compact open subgroups f‘p
on which each local extension splits. These compact open subgroups determine the
arithmetic subgroup on which the multiplier system will be defined. Our result is

the following:

THEOREM. o If K/k is unramified or split and k has odd residue char-
acteristic then the cocycle o splits on SU(2,1)(O).
o Suppose K/k is a ramified field extension and k has odd residue charac-

teristic. Let P be a prime in K. Then the cocycle o splits on the subgroup
SU(2,1)(Ok,B) = {g € SU(2,1)(Ok): g = I3 mod PB}.

o If k has even residue characteristic and K = k @ k then the cocycle splits

on the subgroup
SU(2,1)(Ok,4) = {g € SU(2,1)(Oy): g = I3 mod 4}.

Note that if L/l is a quadratic extension of number fields in which every
even prime splits, then the theorem determines the compact open subgroups fp C

SU(2,1)(l,) at all primes p.

The local Kubota symbol. Let p be the maximal ideal of k. Recall that the

local Kubota symbol &, is a map fp — [, satisfying the following:

- ~ Kp(g) kp (h)
(9,h) = wp (gh)
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This condition does not always determine the local Kubota symbol, since we may
always multiply by a character of fp. We therefore let I', be the intersection of
the kernels of the homomorphisms fp — 2. The restriction of the Kubota symbol
to I'y is unique, and we shall only calculate this restriction. Fortunately we have
not lost much, since for all odd primes we have I'y = fp. Suppose p is even. If we
assume (as is the case for split primes) that the cocycle splits at level 4, then we

will have
I'y =SU(2,1)(O,8) = {g € SU(2,1)(OF): g = Is mod 8}.

We will also assume that when K/k is ramified, 6 is a prime element of K.
Recall that N denotes a unipotent subgroup of SU(2,1) described above. Our

first observation is the following;:

PROPOSITION. For any n € T'y NN (k) we have k, (n) = 1. More generally, for

any g € I'y we have

Kkp (ng) = Ky (gn) = £y (9) -

The relation , (ng) = Ky (g) implies that s, (g) is determined by the bottom
row of the matrix g. The other relation shows that x, (¢) is unchanged by certain

column operations. To describe our next result we need a little more notation. Let

1 r m 1 0 0
To(r,m):=10 1 -7, Z—a(rm):=|r 1 0
00 1 m -7 1

be elements of SU(2,1)(k). This entails r, m € K and Tr(m) = —N (r). For a

number A € K* we shall write

p(\) = (=Tr(A) ’N(/\GO))k,g, if Tr(\) #0;

1, otherwise.

PROPOSITION. Let £_q (s1,n1) € I'y with si, ny € L. Then we have

o (2 (51,71)) = p(s1) - p () .

(If n1 = 0 then sy must also be zero, and ky (x—_q (s1,m1)) =1.)
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We next consider elements of the maximal torus T'(k). Our results for such

elements are as follows:

PROPOSITION. If p is odd and unramified (either inert or split), then for X €

O}, we have

(a,0)p o, A=a+bly,a b#0andb¢ O;;
kp (ha (N)) =

1, otherwise.

If p is even or ramified in K, then for ho (A\) € T(k) NIy we have
o (o (V) = 1.

We next obtain an expression for the Kubota symbol, expressed in terms of the

special cases already described. The following theorem is proven in Section 8.3:

THEOREM. Let

g h j
Then
1)
SOa@™).  iecog
T e ) (e (59))
'O’(ha (3_1),ha (gj%)), ifg#0,9¢ O and j € OF.

Again, note that if p is split, then we have not covered all possibilities since it is
possible for neither g nor j to be a unit in this case (and only in this case). However,

note that if g is not a unit then there is always an element xz, (s1,n1) € NN,

<g h j)-xa(shnl):(g n j’)7

where 7’ is a unit, and we will always have

such that

tip (7) = Kp (7 T (51,71)) -
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We may apply the theorem to calculate sy (v - 4 (51,71)).

The section over the real points, and the half-integral weight mul-
tiplier system. As was described above, we shall choose for each element g €
SU(2,1)(R) a continuous square root ¢4(7) of the function 7 +— C7+ D, satisfying

the condition
d’g(gl(T))@bg/('r) =0 (gygl)d’gg’ (T)

In fact there is only one such choice, since any two choices would differ by a ho-
momorphism SU(2,1)(R) — ps and SU(2,1)(R) is generated by commutators. In

Chapter 10 we determine the signs of these square roots. Our result is:

0 0 4
THEOREM. Let ni, ng € N(R), h =ho(A) € T(R) andletw= [0 1 0
i 0 0
The assignment g — ¢4 defined above is given by:

o dpp, (7)) = X_l/z, where arg (X_l/z) € (—n/2,7/2];

o arg(¢p, (7)) € (—7/2,0);
® Gnywhong (T) = Guw((h - 11) (7)) Phony (T)-

In particular, this means that we always have arg(¢4(7)) € (—7/2,7/2]. As a

consequence, we have the following;:

THEOREM. Suppose Q(6y) is a quadratic extension in which the prime 2 splits.
Define, for v € SU(2,1)(Z,80),
3y, 7) = ¢4(7) H Kp(7)-
p<oo

Then j(v,7) is a multiplier system of weight 1/2.

Verification of the results

The thesis contains rather a lot of calculations, and it would be useful to know
that the results are genuinely correct, rather than perhaps being out by a sign here
and there. To give some evidence of this, we can look at the restriction of the global

Kubota symbol to some subgroups to check that it has the expected properties.
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Restriction to the torus. We examine first the restriction of the Kubota
symbol to ’'NT'(I), where T is the level 80 principal congruence subgroup described
above. This intersection consists of elements h, (A) where X is a unit in Oy, and is
congruent to 1 modulo 86.

Recall that for elements a, b € O; with b coprime to 2a, the quadratic Legendre

symbol is defined by

(%)1 5 H(CL, b)i, 2-

’ plb

Our results imply the following:

PROPOSITION. Let A = a+bb0y be a unit in L congruent to 1 modulo 89y. Then

we have

(b) @b, 2. ifo#o0;
a/i2

ploo

r(ha (A) =
1

, otherwise.

In the case that [ is totally complex, this implies that the map a+bby — (2),,
is a group homomorphism. This is indeed the case, and can be verified directly

using the quadratic reciprocity law in k.
Restriction to SLy. The group SLs embeds into SU(2,1) as follows:
a 0 b90

= 0 1 0
0/90 0 d

We may therefore examine the restriction of the Kubota symbol to SLa(O;, 862).

Our results imply the following:

When [ is totally complex, our results imply that this map is a homomorphism.

Again, this turns out to be true, as was shown by Kubota (see [10]).



Part 1

Preliminaries



CHAPTER 1
The group SU(2,1)

In this chapter, we will outline the definition of the group SU(2, 1) that we will
use along with some of its subgroups, the adéle group, the Bruhat decomposition

of SU(2,1) and the Iwahori factorisation.

1.1. The structure of SU(2,1)

Let k be an arbitrary field of characteristic zero, and K /k is a quadratic exten-
sion where K = k(6y), 0o = v—d, d € k*. Then the Galois group Gal(K/k) has

two elements, and the non-trivial element may be described by
a+ by — a — bby.
To describe SU(2, 1), suppose A is a k-algebra. Then

SU(2,1)(A) = {v € SLy(A @y, K): v'J5 = J},

where
1 0 0
J=(0 1 o0 |,
0 0 -1

and v* denotes the transpose of a matrix v. This is the “usual” definition of SU(2, 1),
but there are other definitions which are isomorphic to the above. In fact, we will

work with another definition, where J is replaced by

00 1
J=10 1 o],
10 0

25
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as it is a more convenient presentation of SU(2,1). (It is possible to show that if

0 -1 1
then J = VtJ'V.)
Let G = SU(2,1). We consider
(1.1) Gk)={veSLs(key K): vV'"Jv=J}.

Let S be a maximal k-split torus of GG, with T' a maximal torus of G containing S.

By Section 2.5 of [6], we may choose these as follows:

t 0 0
S(k) == 01 0 |:tek”
0 0 ¢t

as a maximal k-split torus of G(k), and

A0 0
T(k) := 0 XA 0 [:AeK~
0o 0 X'

as a maximal torus of G(k). As T(k) = K*, we will denote an element in T'(k) by

A0 0
ha (M) =10 XA 0 [,
o o0 A

where A € K*, and « is defined below.
The root system of G with respect to S, ®, consists of 4 roots with one simple

root which we will call a. Thus, ® = {a, 2a, —r, —2a} and « may be described by
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where ¢t € k*. This implies that if we let g be the Lie algebra of GG, and for 3 € @,
let

g ={X €g: (Ads)(X) =0(s)- X Vs € S}

be the corresponding root space, then

a 0 0
do = 0 a—a O ae K,
0 0 —a
0 b O
Ja = 0 0 —b be K 3,
0 0 O
0 0 tby
g20 = 00 O ctek,,
00 O
0 0 O
g—a = b 0 0 be K )
0 —b 0
0 0 O
g—2a = 0 0 0f:tek
thp 0 0

Thus, the root space decomposition of g is
g=00D @ 9s-
Bed

1.2. The Bruhat decomposition of SU(2,1)

Recall that G = SU(2,1). We shall use the following system of positive roots:
& = {a,2a}. Let N, denoted as U™ in [6], be the unipotent algebraic subgroup
of G whose Lie algebra is P4+ 9 (and similarly N, denoted by U~ in [6], is the

unipotent algebraic subgroup of G whose Lie algebra is @ _ Bea+ g3). Hence, since
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G(k) = SU(2,1)(k), N(k) and N (k) may be explicitly described, i.e.

1 r m

N(k) = 01 —7|:(r,m)eKxK, Tr(m)=-N(r),,
0 0 1
1 0 O

N(k) = r 1 0|:(rm)eKxK, Tr(m)=-N(r)p,
m —r 1

where N (s) = s5 and Tr (s) = s+ § are the norm and trace of s € K over k. We

will let
1 r m 1 0 O
Ty (r7 m) = 0 1 -7, T—w (T7 m) = T 1 0 )
0 0 1 m —-r 1

where 7, m € K and Tr (m) = — N ().

By Proposition 2.7 of [6], if we define

(1.2) Wa (rym) = o (rm) - —a (;;) 2 (r- zm) :

then

Thus by the above definitions for z, (r,m) and z_, (r,m),

W, (rym) = 0 —m/m 0
mt 0 0
(This would imply for any m € K such that for r, ' € K, Tr(m) = =N (r) =
=N (1), wg (r,m) = wq (r',m).)
If Ng(S) is the normaliser of S in G, and Zg(S) is the centraliser of S in G,
we define Wy = N¢(S5)/Zc(S) as the Weyl group in G. Thus, we may choose (as

we need this to define the section for the 2-cocycle in Section 2.3)

W = {1,wq (0,60)}
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as a complete set of representatives for the Weyl group in G(k) (this is the same
Weyl group chosen by Deodhar in Section 2.21 in [6]). Thus, by V.21.29 of [2], the

Bruhat decomposition may be described as

G(k) = N(k) - T(k) UN(k) - T(k) - wa (0,00) - N(k).

This implies that a matrix in G(k) is either upper triangular or has a non-zero

(3,1)-entry. It can be easily shown that for a, b, ¢, d, e € K such that

ac+ac=—N(), ec+ec=—-N(d),

the Bruhat decomposition of any matrix of G(k) with a non-zero (3, 1)-entry (i.e.

¢ # 0) may be described as

a * x
b a 1 d e
(1.3) b x x| =4 (_070) 'ha (CHO> * W (0,90) Lo (C’C) .
c d e

Otherwise, an upper triangular matrix (i.e. an element of the Borel subgroup of

G) will have the Bruhat decomposition

f h
wy o fif s | =ha (o (45 =2 (gf’hf)-ham
o o F!

where h, f, g € K with hf +hf = —N(g).

1.3. The Iwahori factorisation

In this section, we shall assume that k is a non-archimedean local field. We

shall write Oy, for the valuation ring in k. We shall use the notation

(1.5) G(Oy) = {v € SL3(0}, ®p, O): v'J'v=J'},
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where J' is as defined in Section 1.1. Let a be an ideal of O, and let

a b c
G(Ok’)O(a): d e f EG(Ok)ZdEgEhEO (a) ,
g h j
a b ¢
b=c=d=f=g=h=0 (a),
GO =1|d ¢ f|ccon:
a=e=j=1 (a)
g h j

We may define

Let us also define

A0 0

T@=<0 x/x 0o [€TOn):A=1 (a);,
0o 0 X'
1 r m

N(a) = 01 —7|eNOg):r=m=0 (a),,
00 1
1 0 0

Na@=<{|r 1 0|eNO:r=m=0 (a)

m -7 1
ProOPOSITION 1.1. We have the Iwahori factorisations

G(Or)o(a) = N(Ox) - T(O%) - N(a),

G(Ok)1(a) = N(a) - T(a) - N(a).

30
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PROOF. Let

a b c
d e f|€G(Oka)
g hj
(resp. G(Ok)1(a)), where g # 0. Consider the Hermitian form (—, —) defined by

o
o
—

(w,oy=u' o 1 0|7,

—
o
)

where u, v € K3. Since

o
o

(-

J

()--+()

Thus, x4 (f/7,¢/7) € N(Og) (resp. N(a)), and hence

.

this implies that

o a b ¢ a+df/j+eg/i b+ef/j+ch/j 0O
x(fj) d e fl=| d-rg/i o
g hj g h j

But
a+df/j+eg/i\ [a+dffji+eg/i
bt+ef/j+ch/i|:|b+ef/j+ch/j >—Q
0 0

which implies that b+ ef/j +¢h/j = 0, i.e.

a b ¢ a+df/j+zcg/i 0 0
$a(f>c> d e f|= d— fg/j e—fh/j 0O
g h J g h J

31
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Since j € O} and hq (j) € T(O%) (resp. T(a)), we have

a b ¢ aj +df +¢g 0 0
- fe _ _ - -
ha (7) - %a (“) e fl=|di/i—Ffg/i ei/i—fr/i O
g h j 9/j h/j 1
But
a C
al o=
g g

i.e. aj +df +¢g = 1. This implies that ej/j — fh/j = 1, so that

B a b oc 1 0 0
ha(j)-xa@;)- d e fl=|difi-fs/i 1 0
g h gli ki1
1 0
< di/i—rfg/il|-| 1 >:0>
9/i h/j

this implies that dj/j — fg/j = —h/j. Thus,

B a b c 1 0 0 B
) (5:3) Wi (-55)
ha J) Ta <"- | d =1 -h/g 1 0| =Z-al|—=,~)-
(4) 33 e f /J 77
g h j g/i h/j 1

Note that z_o (—h/j,9/j) € N(Ok) (resp. N(a)), so we have in the end

g h j
If g = 0, then we have, by (1.4),
——1 -,
i =fli c _
. _ f c =—1
0 j/] f ma( 37] ha(] )7
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where x4 (bj/j,c/j) € N(O) (resp. N(a)) and hq (3_1> € T(Oy) (resp. T(a)).

This completes the proof of the Iwahori factorisation. O

1.4. The adeéle group of SU(2,1)

1.4.1. Some notation for the local field. Using the notation of Section V.1
of [13], we first let v; be the discrete valuation normalised by vy (k*) = Z, for any

local field k. This implies that the valuation ring may be described by
O = {b € k: vg(b) > 0},

with maximal ideal

p=pr=1{b€k:v(d) >0}

By defining ¢ = |Oy/pi|, we have the normalised p-adic absolute value (multiplica-
tive valuation)
|b|P = qiyk(b)a

where b € k. This implies that
Or={bek: b, <1},

and

pr={be€k: b, <1}

We define a prime element of k, m = my, such that vg(m) = 1. This implies that
pr = 0.

We also have the following lemma from Section 11 of [4]:

LEMMA 1.2. Let k be complete with respect to the normalised valuation | - |
and let K be an extension of k of degree [K : k] = N < co. Then the normalised
valuation || - || of K which is equivalent to the unique extension of |- | to K is given
by the formula

16l = [N /x (D),

where b € K and Ny is the norm of an element of K over k.

Lemma 1.2 will be useful as we can work out the normalised valuation of K by

only knowing what the normalised valuation of k is.
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1.4.2. The adéle ring. Now let [ be any global field. Recall (see Section VI.1

of [13]) that an adeéle is a family

a = (ap)a

of elements a, € I, where p runs through all the primes of [, I, is the completion
of [ with respect to p, and a, is integral in [, for almost all p. (Note that p is thus
the maximal ideal of O;,, as defined in the previous subsection.) The adeles form

a ring
/
Al = H Zp,
p

where A, is the restricted product of the I, with respect to the subrings O;, C .
Addition and multiplication are defined componentwise. Let A;, denote the finite

component of A;, i.e. let

Alf = H/ lp7

p finite

and we similarly define the infinite component of A; as

!/
p infinite

As stated in Section 10 of [4], there is a natural mapping

l—>Al

b— (b),

i.e. an injective map of [ into A; since b € O, for almost all p and the map of [
into any I, is an injection. The image of [ under this map is the ring of principal

adeles, and we can identify [ with this ring. Hence [ is a subring of A;.

1.4.3. A description of the adéle group SU(2,1)(A;). Now let L be a

quadratic extension of our global field . We are interested in
G(Al) = {l/ € SLg(Al X L) I/ti]lf = J/}7

where J' is as defined in Section 1.1. We want to calculate the global Kubota

symbol on an arithmetic subgroup of G(A;,). In order to do so, we will need to
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calculate the local Kubota symbol on a compact open subgroup of
G(ly) ={veSLs(l, ® L): V' J'v =J'},
where p is finite. Thus, we want to calculate the Kubota symbol on a subgroup of
G(0y,) = {v € SL3(0;, ®o, OL): vViJv=J}.

We should first describe L, := [, ®; L in order to understand G(I,). Let
0o = vV —d, where d € O; such that —d is not a square in [ and L = [(6y). Then
the theorem in Section 10 of [4] states that there are at most 2 extensions of the

valuation | - |, to L, and if P is a prime above p in L (written as B | p), we have

Ly =1y @ L =P Ly,
Blp

where Ly denotes the completion of L with respect to 9. This implies that for a

finite prime p,

I,(00), if pOr does not split in O;
L, =

lp, ®1,, if pOy splitsin Of.

Thus for every finite prime p, we have to consider if the extension L,/l, is
non-split (hence unramified or ramified) or split. Also, note that the first lemma

in Section 14 of [4] states that
Ar@L=Ap,

in both an algebraic and a topological sense, and | ® L = L C A; ®; L, where

I C Ay, is mapped identically on to L C Ap. This implies that
G(Al) = {V € Sls (AL) VT = J’},
and hence for a finite prime p,

G(Oy,) ={v € SL3(Or,): V' J'v = J'}.
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Note that we will be putting k¥ = [, and K = L, as defined in Section 1.1 in
Part 3, hence we get the same definition for G(l,) and G(O;, ) using (1.1) and (1.5).

We will also assume that when L, /I, is ramified, 6, is a prime element of L.



CHAPTER 2

With reference to Deodhar’s paper

As stated in the Introduction, [6] is heavily relied upon when calculating the
2-cocycle of the universal central extension of G(k). We need to establish a few

more facts from [6] in order to show that our result will be valid.

2.1. Some properties of SU(2,1)(k)

As before, we let k be an arbitrary field of characteristic zero and K = k() a

quadratic extension of k. Proposition 2.11 of [6] states the following:

PROPOSITION 2.1. There exists a well-defined function 6 = (§1,02): K* —

L x Lo, where
L={meK*: Tr(m)=—N(r) for somer € K}

and

Ly={gbp: q€k*} CL
as follows:

(1) If A € k*, then
91 (A) = Mg, 2 (N) = 6.

(ii) If \=a+bby, b # 0, then

1 a 1

o1 (A) = 5 2ugy 62 (A) = " %0,

(Note that L has also been defined as a field, but there should be no overlap in
notation as the definition of L as used in this section will not occur elsewhere.)

As a consequence, A = 61 () /o2 (). Also, for any m € §; (K*) with m ¢ k*
and m' € 0o (K*),
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Proposition 2.1 implies that for A € K*, we have

hcx (A) = Wq (y()‘)a 51 ()‘)) *We (Oa 62 (A))il )
where

0, if A€ k*;
(2.1) y(\) =

1, otherwise.
Thus by (1.2) and the above, all elements of T'(k) are generated by elements of
N(k) and N (k). This in turn implies that by the Bruhat decomposition for G(k)
(see (1.3) and (1.4)), every element of SU(2,1)(k) is generated by N (k) and N (k).

This verifies the theorem obtained from Sections 1.2 and 2.3 of [6]:

THEOREM 2.2. If a group G is quasi-split, then G(k) is generated by the unipo-
tent elements in G(k) which belong to the radical of a parabolic subgroup P defined

over k.
We also have the following definition:

DEFINITION 2.3. A perfect group G is a group which is its own commutator

subgroup, i.e. if we express the commutator of g, h € G as
[9,h]=g-h-g7"-h7Y,
then
G =1[G,G].

Recall that we have set G = SU(2,1). As stated in Section 1.1 of [6], a necessary
and sufficient condition for an abstract group to have a universal central extension
is that the group is perfect. As N(k) and N (k) consist of commutators, and G (k)
is generated by N(k) and N(k), this implies that G(k) is perfect. Thus there is a

universal central extension of G(k), which may be expressed by
1—m — G Gk) — 1,

where 7 denotes the kernel of 7: G — G(k). (Note that m; is also known as the

Schur multiplier or the fundamental group of G(k), and it is central in é)
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By Lemma 1.10 of [6], there is a unique lift of N (k) to G. This implies that we
can write for 4 (r,m) € N(k) the corresponding element in G by Z4 (r,m), and if
we define

N(k) = {Fa (r,m) : 24 (r,m) € N(k)},
then m: N(k) — N(k) is an isomorphism. Similarly 7: ﬁ(k) — N(k) is also an
isomorphism, and we may define the corresponding element of z_,, (r,m) in G as

Z_q (r,m). Thus we may define, similar to (1.2), the element

Tee (7, 1) = T (r,10) - Ferr (7“ m) Fa (er)

m'm
Furthermore, Proposition 2.9 of [6] lists a few relations relevant to our discus-

sion. We list the most important relations for reference here.

PROPOSITION 2.4. Let
(2.2) A={(r,m) € K x K: (r,m) # (0,0),Tr (m) = =N (r)},

and define f, g: A — K x K by

= (L 2). gt = (

i —
m m

)

3=
3|~

The following hold in G, and hence in G(k) too:

(1) @a (r,m) = T (r,) - T (1) G ( m,m) |
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(5) [@a (p1,11) - Wa (P, )] - Wa (rym) - Wa (', m) - [Wa (pr, 1) - Wa (P, 1))

& riily mN(l) o PR mN (L))
N\, N@) “\@ N

Note that we will use the above definition of A when we are finding an equation

for the 2-cocycle of the universal central extension of G(k). We can also define A

(2.3) A={(2,—N(2)/24th) e K x K:t€k,(2,—N(2) /24 t0y) # (0,0)}.

This definition will be useful later in Part 3.

2.2. The universal topological central extension

In this section we assume that k is a non-archimedean local field. We shall
regard G(k) as a locally compact topological group, in which the topology is given
by the norm on k. We shall write H{, for measurable cohomology as defined by
Calvin Moore in [12], and we shall write H® for continuous cohomology.

In Deodhar’s paper, G(k) is first regarded as an abstract group when construct-
ing the universal central extension. It is subsequently regarded as a topological
group, with the topology given by the norm on k. It was shown in that paper that
the universal topological covering group for G(k) exists and that the topological
fundamental group is a quotient of u(k), where u(k) is the group of roots of unity
of k.

We first recall what a topological central extension is. This is a central extension
of topological groups

1—>K—>ét°p—>G—>1,

where G'P is the universal topological covering group of G, and in which K is dis-
crete and there is a neighbourhood U of the identity in G, such that the projection
U—Uis topologically isomorphic to K x U — U.

We now turn to a paper by Prasad and Raghunathan which was published in

two parts, [15] and [16]. In 10.3 of [16], we have the following proposition:

PROPOSITION 2.5. Let G be a locally compact, second countable topological

group. Assume that G = [G,G], and H2(G,R/Z) is a finite group. Then G admits
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a universal topological covering and its topological fundamental group is isomorphic

to the dual of H2,(G,R/Z).

We first note that G(k) is a locally compact second countable group, and we
have already noted that G(k) = [G(k), G(k)]. In order to use the above proposition,
we must show H2, (G(k),R/Z) is a finite group, and that the dual of this group is
equal to the fundamental group 7 = u(k).

Theorem 1 of [19] states the following;:

THEOREM 2.6. Let G be a topological group, and A be a G-module. If G is a

locally compact, o-compact, zero-dimensional, then H! (G, A) = H (G, A).

In other words, the cohomology groups based on continuous cochains and the
cohomology groups based on measurable cochains coincide for our group G(k).
This implies that HZ2 (G(k),R/Z) = H?(G(k),R/Z). In 5.10 and 5.11 of [15], it
was established that if G is an absolutely simple, simply connected group defined
and quasi-split over F' (where F' is a non-archimedean local field) and H is the
F-subgroup of G, F-isomorphic to SLy and determined by a long root, then the

following theorem holds:

THEOREM 2.7. The restriction H*(G(F),R/Z) — H?*(H(F),R/Z) is an iso-
morphism. Hence, H*(G(F),R/Z) is isomorphic to i(F) = Hom(u(F),R/Z), the

Pontrjagin dual.

Theorem 2.7 shows that H?(G(k),R/Z) = j(k), i.e. H*(G(k),R/Z) is finite.
Thus using Theorem 2.6, by Proposition 2.5 H2 (G(k),R/Z) is a finite group and
thus G(k) admits a universal covering and its topological fundamental group is
isomorphic to the dual of H2 (G (k),R/Z) = ju(k), i.e. the topological fundamental
group is isomorphic to u(k).

We should also mention the cases when & = R and k = C. In these cases, G(k)
is a connected Lie group, and its universal cover é, in the topological sense, has
the structure of a Lie group and is the universal topological central extension. If
we denote the topological fundamental group of G(k) as 7r§0p , then when k£ = R we

have 7i°” = Z and when k = C we have mi” = 1.
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2.3. A section for 7: SU(2,1) — SU(2,1)(k)

Again let k£ be a local field and let G be the universal topological central ex-
tension of G(k). We can now define the section 8: G(k) — G as in Section 2.21 of

[6]. This section will give rise to a 2-cocycle o, defined by
au (g,h) = 8(g) - 6(h) - (g - h) ™Y,

where g, h € G(k).

By the Bruhat decomposition (see Section 1.2), any element of G(k) can be
uniquely written in the form whwv, where h € T(k), w € W (recall that W is the
set of representatives of the Weyl group of G(k)) and u, v € N (k). We will choose,
as in [6], wq, (0, 6y) as the representative of the non-trivial element of W. So we may
define 8(wq (0,60)) = Wa (0,6p), and since m: N(k) — N (k) is an isomorphism, we
may choose 6(x, (r,m)) = Zy, (r,m) (see Section 2.1).

As for h € T(k), suppose that h = hy (A). Then we define
(24) 8 (hee () = @a (5(A): 61 (V) - @ (0,62 (X)) ",

where y(\) is defined as in (2.1).

Thus, for uhwv € G(k), we may define é(uhwv) = §(u) - 6(h) - §(w) - §(v), and
hence ¢ is a section for 7.

Our next aim will be to express the 2-cocycle o, in terms of K symbols.
Deodhar performed this calculation on the split torus, but we shall need to extend
his formula to the whole group.

For A, p € K*, let us define

(2.5) ba (A1) = 6 (ha (X)) - 8 (ha (1)) - 8 (ha (M) ™1,
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ie. by (A 1) =0y (ha (A), ha (). Tt is established in Section 2.30 of [6] that

(2.6) bo (8,1) - by, (st,7) = bg (8,t1) - by, (E,7) Vs, t,r € k*;
ba (1,1) = 1;

(2.7) bo (5,t) =ba (t71,s), Vs, t € k*;

(2.8) b (5,t) = by (s, —st), Vs, t € k*;

(2.9) b (5,t) = bo (s, (1 — s)t), Vs, t € kX, s # 1.

Indeed these relations all hold in the universal central extension, and so they are
also true in the universal topological central extension. Note that the section § is
continuous on the split torus S(k), and thus the restriction of b, to k* x k* is
continuous. It is also established that 71 (as opposed to 7r§°p ) is given in terms of

generators and relations as
T = <{ba (s,t):s,t €k} |(2.6) - (2.9)>.

Since by, (A, p) € 7 for any A, u € K* (by the proof of Lemma 2.12 of [6]), this
implies that b, (A, 1) can be written in terms of these b, (s,t)’s.

Thus, we would establish what ¢, is on T'(k). Unfortunately in [6], Deodhar
only proves that the b, (s,t)’s (s, t € k*) satisfy the relations above, and not what
bo (A, 1) is explicitly for all values of A\, p € K*. But we can adapt the methods
used in [6] to achieve this goal, and by using the section §, we will be able to express

what o, is on the whole of G(k) in terms of by, (s,t)’s, where s, t € k*.

2.4. k as a local field
Let k£ be a non-archimedean local field. We first note that by Theorem 3.1 of
[12], that b, (s,t), for s, t € k*, is bilinear, i.e. for s, ¢, r € k*,
(2.10) b (st,7) = bq (8,7) - be (E,7)
b (8,tr) = bq (8,1) - ba (8,7),

since b, (s,t) is continuous (as k is a local field; see previous section). A corollary

of the abovementioned theorem is that the n-th power Hilbert symbol (—,—), ,,
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(where n is the number of roots of unity of k) and its powers are the only functions
which are continuous and satisfy the equations (2.6) — (2.9) (a definition of the

Hilbert symbol may be found in Chapter 3). We have the following proposition:

PROPOSITION 2.8. For any local field k, if n denotes the number of roots of unity
in k and p, denotes the group of n-th roots of unity of k, then wioz’ >~ u(k) = pn,

and the isomorphism may be described by

¢
D Py,

ba (8,1) = (8,8)), s

where s, t € k* and (—, =), s the n-th power Hilbert symbol.

,n

PRrROOF. We have shown that there is an isomorphism of the form b, (s,t) —
(s,t)},,, for some r. However, the result of Prasad and Raghunathan shows that

the order of the topological fundamental group is n. Hence we may take r =1. 0O

Thus from Chapter 4 onwards, when both s, t € k*, we will use the Hilbert
symbol (s,t), ,, instead of by (s,?). This implies that when we apply ® to (2.10)
and (2.7) — (2.9), we get

(211) (Stv r)k,n = (51 T)k;n : (t7r)k7n 5

(85t )k = (80 (857 Vs, t € k™
(2.12) (8:) g = (t_l, S)k,n’ Vs, t € k%
(2.13) (5:8) g = (5, =58)4 5 Vs, t € k%

(2.14) (5 m = (5, (L=8)t)1 05 Vs, t € kX, s # 1.



CHAPTER 3

Some properties of quadratic extensions

In this chapter, we gather some information to be used in later chapters, mostly

to do with quadratic field extensions.

3.1. The Hilbert symbol

We define the n-th power Hilbert symbol, where the group pu, of n-th roots
of unity is contained in a local field k, with n a natural number relatively prime
to the characteristic of k. This definition may be found in Section V.3 of [13].
Letting K =k ( Yk ) be the maximal abelian extension of exponent n, it has been
established that Gal(K/k) = k> /(k*)™ and Hom(Gal(K/k), ) = k> /(k*)™. The

bilinear map

Gal(K/k) x Hom(Gal(K/k), ) — pins (7, %) — x(7)

therefore defines a nondegenerate bilinear pairing

(= ks B/ X RS (R = pan,

)

which we call the n-th power Hilbert symbol. Now using the notation introduced
in Subsection 1.4.1, let p be the characteristic of the residue field O /py, and

q = |Or/pr|. We have the following proposition:

PrOPOSITION 3.1. If n and p are relatively prime and a, b € k*, then

po (@) (¢=1)/n
(a,bn,n:((—D“’ﬁ(“)”k‘b)o ) (bk)-

avk (b)

A proof of the above proposition may be found in V.3.4 of [13]. When n and
p are relatively prime, we call this the case of the tame Hilbert symbol, as defined
above. Note that a consequence of the tame Hilbert symbol is that whenever a,
be OF, (a,b)r, = 1.

45
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We should also note that the Hilbert symbol obeys the product formula, which

is proved in Theorem VI.8.1 of [13]. We state this theorem for later reference.

THEOREM 3.2. Let 1 be a global field, p a prime of I with l, the localisation of

L atp. Also, letl contain the group p, of n-th roots of unity. Then for a, b € [,

H(a, b)lp,n =1,

p

where p runs through all the primes of [.

In our case, we are more interested in quadratic Hilbert symbols (i.e. when
n = 2). It has been established that the quadratic Hilbert symbol has a more

concrete meaning:
(a,b), , =1 < aX?+bY? — Z* =0 has a non-trivial solution (X,Y, Z) in k.

(See Chapter IIT of [17].)
Now using our usual definition of k and K, we list the properties of quadratic
Hilbert symbols here for convenient reference later, a proof of which may be found

in Section V.3 of [13]. For s, t, r € k*, m € Z,

(B1)  (Dpe= (502 =(s71),, = (5071) 5 = (18
(3:2)  (8,t)pn = (5, —5t)y 5 = (=5t 1)) 5
(33) (5,800 = (5, (1= )t)yp = (1= )5, )5, (for s # 1);
(34) (s, = (5,7)pn - (7)1,
(5,47)0 = (5,80 (5,740
(35) (5,05 = (5,"™)gp = (™ )0

(3.6) (Sat)ig = (Sth)m = (SQ’t)k,2 =1

(Note that the above is true for any field.) In addition, for all A € k™, p € K*,

(3.7) (AN (N))k,z = (/\7M>K,2 = (/1‘7>‘)K72 = (N (1), Mg

)
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(A statement and proof of this may be found in Chapter 2, Section 1, Theorem 2.14

on Page 101 of [14]. In fact,

(38) (>‘a N (,u'))k,n = ()‘7 .u)K,n )

(3.9) (N () s Mg = (s N i

by the same statement and proof.)

3.2. Non-split and split quadratic extensions

Recall that in Subsection 1.4.3, we established that we will be calculating the

local Kubota symbol on a compact open subgroup of
G(ly) = {v € SL3(Ly): V' Jv = J'},

where J' is as described in Section 1.1, [ is a global field, p is a finite prime of [, I,
is the completion of [ with respect to p, L = 1(6), 0y = v/—d, d € O, such that —d
is not a square in [, and L, = [, ®; L.

In our calculation of the Kubota symbol, we will often use the properties of
the extension L, /l,. We gather the statements of these properties in the next two

subsections.

3.2.1. The non-split case. Consider any local field k. Let K be a finite
extension of k. Then using the notation of Subsection 1.4.1, there is only one prime
px above py, i.e. px | pr and

0k = %,

where e = e(K/k) € N is called the ramification index of the extension K/k. If we

define the residue class degree of the extension K/k as
f=F(K/k) =[Ok /px : Ok/pr],
then it has been established in Proposition 3 of Section 5 of [7] that

[K : k] =e(K/k)f(K/E).
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An extension of local fields K/k is ramified if e(K/k) > 1 (and unramified or
inert if e(K/k) = 1), and is totally ramified if e(K/k) = [K : k.

From Section 6 of [7], an Eisenstein polynomial in k[X] is defined as a separable
polynomial

EX)=X"4bp 1 X™ 4 4+ 0 X + by,
with

vg(b;) > 1fori=1,...,m—1, and vg(by) = 1.

We have the following theorem (Theorem 1 in Section 6 of [7]):

THEOREM 3.3. (i) An Fisenstein polynomial E(X) is irreducible. IfII is a
root of E(X), then K = k[II] is totally ramified and vk (IT) = 1.
(ii) If K is totally ramified over k and vk (I1) = 1, then the minimal polynomial

of Il over k is Eisenstein and
Ok = Or[ll], K = EK[II].

The above theorem implies that since we have a prime element 7 = 77, € O,

such that vp, (m) = 1, then if L, /I, is totally ramified,

Or, =

P

We can find an analogue for the unramified case of the above theorem. Let
the image of an element a € Oy in the residue class field Oy /py be denoted by
a and similarly let the image of an element f(X) € Og[X] in the polynomial
ring (O /pr)[X] be denoted by f(X). Proposition 1 of Section 7 of [7] states the

following:

PROPOSITION 3.4. (i) Suppose K to be unramified over k. Then there exists
an element ¢ € Ok with Ok [pr = (Or/pr)[E]. If ¢ is such an element and
f(X) is its minimal polynomial over k, then O = Olc], K = k[c] and f(X)
is @rreducible in (O /pi)[X] and separable.

(i) Suppose f(X) is a monic polynomial in Ok[X], such that f(X) is irreducible
in (O /pr)[X] and separable. If c is a root of f(X) then K = k|| is unramified
over k and Ok [px = (Ok/pr)[E].
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We will be using the above to establish whether L, /I, is ramified or unramified
if pOr, is not split. We will also need to use Hensel’s Lemma. Appendix C of [4]

states this lemma, which we will write as a theorem.

THEOREM 3.5 (Hensel’s Lemma). Let k be a field complete with respect to the

non-archimedean valuation | - | and let
f(X) € Oc[X].

Let ag € Oy be such that
|f(ao)| < |f'(a0) [,

where f'(X) is the (formal) derivative of f(X). Then there is a solution of

| f(ao)|

Jla) =0, la= ool = 1pgr

ag is known as the approzimate root of the polynomial f(X). The above lemma
will be useful when we want to apply Hensel’s Lemma with respect to our field Ly,
as we will know the normalised valuation of [, but may not know directly the

normalised valuation on L.

3.2.2. The split case. In the split case, we have 0y € O;, C Iy, and L, =

I, @ 1,. We can think of L, as being isomorphic to I, (6y) by the bijective map

lp(60) = 1y & 1y
(310) a+b90 — (a+b90,a— bao)
for any a, b € l,. Hence, we identify I, with {(a,a) € Ly: a € l,}. Note that where
no confusion can occur, we will denote an element (a,a) € L, as a € [, and an

element (a + b0y, a — bby) € Ly as a+ by € Ly,.

Also, the norm and trace of (a,b) € L, are defined respectively as
N((a,b)) = ab, Tr((a,b)) =a+b.

Thus, for any element a € [,, we can always choose an element in ¢ € L such that

N (c¢) = a. An obvious choice would be ¢ = (a, 1).



Part 2

The 2-cocycle of the universal

central extension of SU(2,1)(k)



CHAPTER 4

The 2-cocycle on T'(k)

Suppose that k is a local field containing an n-th root of unity and let G =
SU(2,1). Recall that we have a homomorphism m (G(k)) — pn given by bu(s,t) —

(s,t)k.n for s,t € k. This map gives rise to a central extension
1=y — G — Gk) — 1.

We have seen that if k£ is non-archimedean and n is the number of roots of unity
in k, then this extension is the universal topological central extension of G(k). We
have described a section §: G(k) — G. This section gives rise to a 2-cocycle o, on
G(k) with values in fi,.

Recall that we are actually interested in the 2-cocycle corresponding to the
double cover of G(k), which represents a cohomology class o € H?(G(k), u2). By
the existence of a universal central extension we have (by Theorem 1.1 of [12]) for

any trivial G(k)-module A,
H?*(G(k),A) = Hom(7y, A) = Hom(py,, A).

This implies that
H?(G(k), p2) = Hom (g, pio) = Z/2.

/2 We will use this fact in Chapter 6 to describe the cocycle o.

Thus, ¢ = oy

We will first calculate the cocycle o, on SU(2,1)(k). This calculation is divided
into 2 chapters. This chapter introduces the notation we will use, cites a few results,
and we will calculate the 2-cocycle on a maximal torus T'(k) of G(k). Recall that

we write (s, t)k’n instead of b, (s,t) when both s, t € k. Also, recall the definitions

of §; and d2 as stated in Proposition 2.1. We will get the following theorem:

51
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THEOREM. For A\, u € K*,

(Aa:u’)k’nv Zf)\7 MEkX;
(ﬂ3752(>‘)/90)kn7 ’L'f)\¢k'><,‘u6k><;
(A w3 (/0 iFAER, ue b

> 5 if)‘:ﬂ¢kxf)‘,u'€k><;
k,n

NG (1) N(A - pdy(p)
( N (V) ) on (q’ @(A))M

Y\ ), otherwise,

where, if A\ = a+ bly, = c+dby, witha, c€ k, b, d € k™,

g=a+ =,
and
N (N (V)64 P |
(TN Gy o oy ), O a0 £ N0
o = (N (\)2b403 N ()) ‘ 3 NN
(A ) ((( s b2§2) “IENG ))>kn, if A ¢ k*0p, ag =N ());
1, if A€ k*0p.

It should be noted that the right-hand side is given in terms of n-th power
Hilbert symbols on k.

The next chapter will use the results of this chapter to prove what the 2-
cocycle is on the whole of G(k). We will then get an expression for the 2-cocycle o

corresponding to the double cover of G(k) using the relation above.

4.1. Initial results

We first note that for all s, ¢ € k™, by (2.11),

(4.1) (s,t)an = (sm,t)k,n = (s,tm)k,n,

for m € Z.
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For s € k*, since (s, —3_1) , =1, by (2.5),

(4.2) 5 (ha ()L = & (ha (-i)) 5 (ha (—1)) 7L

Also, by Proposition 2.4, for s, t € k*,

['L’Da (07 590) : @a (Ov _90)] ' aa (07 teO) ' wa (07 _90) ' [wa (Oa 500) ' wa (07 _90)]71

—03 —63

= ’lZa (07 S2t90) . ’[Ea (O, —8290)

= o (0, s2t0,) [wa (0,00) " - W (o,eo)} o (0,520,) "

= 6 (ha (51)) - 8 (ha () "
Thus by (2.5), (2.12) and (4.1),
(4.3) 6 (ha(s) -0 (ha ()-8 (ha(s) ™" -6 (ha ()" = (t,SQ),;; = (5,8%),,,-
Also, since (s, t)k,n is central in G for all s, t € k>, the above implies that
(44) 8 (ha (5)) -0 (ha (1)) -6 (ha (5) ™" 0 (ha (8)) "

=6 (ha (£) ™" 0 (ha(5)) - 8 (ha () - 8 (ha (s)) "

REMARK 4.1. By (4.1), (-1, SQ)k ,, = 1 for all s € k*. This implies, by (4.3)
and (4.4), that ¢ (hy (—1)) commutes with 0 (h, (s)) for all s € k*.

Hence by the above, we can now work out the “easy” cases, which are sum-

marised in the following proposition based on Lemma 2.23 of [6]:

PROPOSITION 4.2. For q € k*, A ¢ k™,

(i) ba (A ) = (@, ~02 (V) /80),. ...
(i) ba (0. 0) = (2. X5 /00, -
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PROOF. We first prove (i). We have by (2.5) that

ba (A q) = 6 (ha () - 8 (ha (@) - 6 (ha (A@))

and by (2.4),

b (A, @) = o (1,01 (N) - W (0,65 (X)) "+ 6 (et (9)) - B (0,32 (Aq))
T (1,61 (Ag)) ™
= @a (1,61 (A)) - Ta (0,85 (X)) " - 8 (ha (9)) - Wa (0,32 (Aq))
: [wa (0,60) " - @a (0, 90)} : [wa (0, qd5 (Aq)) "
o (0,82 (M) | - @ (1,81 (Ag) ™
= o (1,61 (V) - @a (0,82 (X)) ™"+ 8 (o () - 3 (ha (85 (Ag) /60))
-8 (ha (492 (Ag) /60)) " - @a (0,485 (Aq)) - @a (1,81 (Ag)) ™.

Hence by (2.5) again,

ba (X, @) = (4,62 (Aq) /00y, - Wa (1,81 (V) - @ (0,62 (V)™
W (0,02 (Aq)) - Wa (1,01 (Ag)) "

But since ¢ € k™ and X ¢ k™, we have by Proposition 2.1 that

(4.5) 01 (A\q) =01 (N),
(4.6) b2 (Aq) = (1/q)d2 (A) -
Thus,

ba (A @) = (4,02 () /(a60)) ., - Wa (1,61 (N)) - Wa (0,82 (A)) ™
o (0,8 (N)) - B (1,8, (\) "

= (Q7 _52 ()‘) /eo)k,n

by (2.13). Similarly for (ii), by (2.5),

ba (@A) = 6 (ha (@) - 6 (ha (V) - 8 (ha (Ag)) ™.
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Thus,

ba (@A) = 8 (ha (q)) - Wa (1,61 (N)) - Wa (0,62 ()" - @a (0,82 (Aq))
o (1,601 (A\g)) ™

by (2.4). By Proposition 2.4,
@a (1,81 () - Ba (0,85 () ™" - B (1,81 (\) ™ = @ (0,N (81 (N)) /82 (M) -

With the above and (4.6), the equation becomes

NG (A)) -

be (\0) = 6 (ha (9)) - (o,
o (0,02 (N) /q) - Wa (1,01 (X)) 7
Also by Proposition 2.4,
@ (1,81 (V) * T (0,8 (A) /4) + B (1,61 (X))~ = B (0,N (61 (1) 0/5 (V)
= o (0,N (81 (V) q/62 (V).

This implies by (2.4) that

b (00) = 8 (0 T (0.2 ) (0,0 )q>1

50 ) : [wa (0,00) " - W (0,90)}

since A = §1 (A) /62 (A). Hence,

ba (\q) = (.23 (V/%0),

,n

by (2.5). O

Thus we are left with finding an explicit expression for b, (A, ;1) where A, u ¢
kX, in terms of (s,t), .’s, with s, t € k*. But before proving the main theorem,

we must first establish a few lemmas.
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4.2. Some useful lemmas

Lemma 2.15 of [6] states (with some change in notation) that

LEMMA 4.3. For (r,m), (0,m’) € A (see (2.2)),

(i) Wy (rym) - We (0,m') = Wy (u,v) - Wy, (v, v"), with

rmm/’ mm
U= ——""™"—< = —
m(m +m')’ m+m'’

!

mim T
(i) Wq (0, M)Wy, (r, M) = We, (U, V) - W (U, v"), with u, v the same as in (i) and

T o N (m)
Com+m N

m+m'

Thus, using the above, we will prove the following:

LEMMA 4.4. For a general (s1,n1) € A, t € K*,

() oo li)) o
() )

iftek>;

(_;IO’N (t>)k,n -0 (ha (N (1)),

if ny € kX, t € kX0

Otherwise for ny = a+ by, t =c+dby, a, d€ k™, b, c€k, if

bdo?
G =c+

# 0,
then

R )

N
_ (—Cmq)k (—‘ZN(E’“),N(t))M 8 (ha (N(0)

If ¢ =0, then we let
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so that

T (s1,11) " - T (stl N”(lt)> - [aa (') (st N @)

and calculate Wy (s',n') " - Wq (s't,n/ N (1)) instead, using the above results.

PROOF. Recall from Proposition 2.4 that for any (r,m) € A (where A is as in

(2.2)),
(4.7) W (r,m) ™" = W (—r,m).

If ny € k*0p, then let ny = by, where b € k*. Then s; = 0, and by (4.7),

1

T (51,n1) " - Wa <t7 N(t)) = W (0,b00) " - W, (071\?9((;))

= T (0, —b0p) - Wa (0, —1%) o

Hence by (2.4),
ot (55
= @i (0, ~b00) - [ (0,00) ™" @ (0,00)] - e (07_ 5?9&) )—1
oo )

<o (e (5)) 0 (- (i)

So assume that ny ¢ k*0p, so that s; # 0. Let ¢ € k*. Then we know by (4.7)

and applying Proposition 2.4 twice for v, v’ € k™, that

(48) [@a (07 1)90) . @a (0, Ule())] . QEQ (81, nl) . [ﬁa (O, U@o) . wa (0, ?}/90)]_1

— @ (51(11’00)(1)00)2 n1(—v29(2)))
“\(=v'00)2(—vby)”  —v"262

~ S1V n1v2
=Wy | —— .
v’ ’ V2

By Proposition 2.4, for t' € k*,

(4.9) W, (07 _t’go) - We, (817111) = Wq (817n1) “We (07 Nt/(gol)> :
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This implies that if we let v = 1, v = —t, then (4.8) becomes

B (25, 23) = [ (0,60) - T (0, ~t00)] - B (51,11) - [ 0,60) - T (0, ~t60)] ™

_ /s oni | - . N(ni)\ ~ N(ni)\ ~ ~ _
We (7’7&72) = Wy (81,N1) Wy <O, s > We (0, s Wq (0,t00)-ws (0, —6p) .

(Note that the above also applies to ny € k*0: for if ny = by, b € k*, by using

(2.5) several times,
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Now it is a matter of using (2.11), (2.13) and (4.1) to get

_ 1~ bo
i (0, 000) ™"+ @ (o, tf)

st s (1))

Thus the two abovementioned cases coincide for ny € k*6y, t € k*.)
Let t ¢ k™, i.e. t =c+dby with ¢ € k, d € k™. Also, let ny = a + bfy, with
a€k*, bek.

It is sufficient to find an explicit formula for

w, (5 n 2)_1~{D 1M
e 19,119 «@ taN(t) ’

for some ¢ € k*, since we know from previous calculation that

(4.10)  Wa (s1,m1)"" - Wa (519, 1¢%)

o (22) (- () )

By the proof of Lemma 2.16 of [6], assume that we can choose ¢ € k* such

that

Tr ((qt - 1)N"(;)> = 0.
Then,

(¢t — D)ny = (¢(c+ dby) — 1)(a + bby)
= ((C]C - 1) + qdﬁo)(a + b90>

= ((gc — 1)a + gbdd3) + (gad + (gc — 1)b)o.

Hence, since (gc — 1)a + gbdfZ = 0,

2
o b
a
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Let m = (¢t — 1)y /(N (¢)), 1 = q(gt — 1)ny/t and p; = (gt — 1)s1/t. Then (0, m),

(p1,11) € A, hence w, (p1,11) and W, (0, m) are well-defined. Using Lemma 4.3, we

know that

pm (gt = Dsi/m s

I +m (gt — 1)m t’

N(m)  N(@m)  m  m

h+m (¢¢—1m (¢¢—1) N()’

pily pm I s

= = = -— = — - (qt) = s1q,

lh+m li+m m t (q ) 1

N(ll) N(m) N(ll) ny — 2

— = — . = . t t =n 3

Lam  htm Nm) N @) =ma
o)

~ -1 - S n
We (SIQu n1q2) e (;7 (1t))

- Uja (plall)il : wa (Ovm)il . {Ea (pla ll) : {Eoz (Ovm)

Z

by Lemma 4.3. By Proposition 2.4,

-1

W (p1, 1) "+ Wo (0,m) " - Wy (p1,11) = Wa (0,N (1) /m) ",

thus by (4.7),

~ 2 -1 - ﬂ ny
We (slqanlq ) wOL(t’N(t))

_— (07 N (11)>1 B (0,m)

m

~ - R _ e
= Wq (0,q2(qt - 1)n1) CWe (O, (gt — 1)N ;

= Wq (0, ¢ (qt — 1nq) - we (O, (¢t —1) Nn(lt) ) ) .

Also,

~ 2 71.,\, ﬁ ni1
Wa (31q7n1q ) W ( P ’N(t))

= @ (0,%(qt — 1)ma) - [@a (0,00) " - Wa (0,90)} - We, (0, (gt — 1)Nn(1t)>_l

oo (2 o (552)
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by (2.4). This implies, using (4.10), that

T (51,11) " - Wa <st11\f(1t))
(o ()Y o (o (X)) s (1)
fle (=) (5500

3
(S}

>

for all ¢ € k*, this implies that

ni

o (s1,m) ™"+ W (? N(t>>

()5 ) (- 0)
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Use (2.5) several times to get
~ -1 -~ ni
wotoom) ™ (3577

By using (2.12), (2.13), (4.1) and (2.11) in the above

~ -1 ~ st
wa(51,n1) 'wa(tvl\ut)>

:<_<qt Wi) ;) '(‘(qt}ol)mﬂN(ﬂ)km-5<ha<N<t>>).

Since gt — 1 = n1dfy/(ac + bdb?),

(i )

N ( (7irdfo/ (ac 5003 >>

( (zdfo/ (a +bd0
(4

ac+ bd@g)

k,n

(t)>k 5 (o (N (1))

>k ( cmzmeg’N(t)>k7n‘5(ha(N(t))).

N(n )
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By (2.13), (s72,s), . =1 for all s € k*, hence by also using (2.11),

k,

~ -1 ~ S1 N
wa(slanl) .wO‘(t’l\I(t))

a? ac + bdo3 a
= (- (2 N@
( d?N (ny) 6%’ a )k,n (ac—i—bd@%’ ()>kn

. (_dN(m)

a

’N(”)k 5 (ha (N(1)).

Lastly, by (2.12) and (2.11),

~ —1 ~ S1 n1
We (51,M1) -wa(t,N(t)>

(. a®?N(t)  ac+bdo3 (_dN(n1)
U @N(ny) 6%’ a km a

’N“))k 5 (ha (N(1)).

Thus, the above method applies for t ¢ k*, ny ¢ k*6y such that

bdh?2
q1:=¢cC + —2 7& 07
a
so that
(4.11)
2
~ -1 ~ S1 n1 a N(t) dN(nl)
fWa | T = T IO NT /. N2 . _77N t
wo ™ (H55) = (awgmn),, (CTahN0),
-6 (ha (N(2))) -
If ¢¢ = 0, for the majority of these cases, we can interchange (s1,m1) and

(s1/t,n1/(N(t))) to get the result, i.e. let

and apply the above to
W (s',n) " - g (s't, 0 N (1)) .

The only exception is when ¢ = bdf?/a = 0, i.e. when ¢ =0, b = 0. Hence,
t =dfy and n; € k™, where d € k. Let ' =1+ 0g, and let s, n”” € K* be such

that

sl Ny ~ N
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ie.

5 n nl'N(t).

Since s”/(s1/t), s1/s" ¢ kX, k*0, we will be able to work out @y (s1,n1)" "

1" . ti 1 N (t/)
t

Wo (8", 0") and Wg (8", n") " - Wa (s1/t,n1/(N(t))) using (4.11); then

~ -1 ~ S1 N1
wa(Sl,m) 'wa(tvl\l(t)>

— [ (s1,m0)™" - B (17 - [@a . (

- 1~ .
Let us calculate W, (s1,1n1)" " - Wq (87, 1) first: since

s1 t dby —d62 + dby

— == = , e k™,
st 1+0, N (¢) "

then in this case, using (4.11),

—do3 t0o

T1-602 N@)

q1

and therefore,

We (51, nl)*1 W (8",n")

_ (_ niN(t) /(N () ¢ )kn. (_(d/(N(t’)))n%7 N(t’)>kn'5(ha (N(t)))

(d/(N(t)))2n363 " ny N (t')

- (N(t/)"ﬁf;»)k,n' (-~ §<(;)>>k,n‘5 (e (x7))

Thus,

(4.12) W, (51, nl)*1 W (87,0

= (N(t'),t0o),,, - (—Z;t)a 15((;)))“ 0 (h“ (11\\11((;’))»

by (2.13). As for @a (s”,n") " - @ (s1/t, 11 /(N (1)),

1" Ntl
S =146, n' =" ( >ekx,
Sl/t

N(#)
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which implies that by (4.11), ¢ = 1 so that

= (0

: 2

f)
PN 1) ,<1-77/”2,N(t/)> 5 (ha (N (1)) .

&

)_\

(4.13) @ (s",0") " W <$t1 1\?(175)) = <n1N(tl),N(t’)>k7n~5(hQ (N ().

Therefore, by (4.12) and (4.13),

and by (2.11) and (4.1),
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by (2.11) again. Thus the lemma is proved.

LEMMA 4.5. If (r,m), (r',m) € A, then

,r,/

T

)

SIS

for some (non-unique) t € K*.

Hence, if r'/r £ 1 and m = a + bby, t = ¢+ dby such that a, b, ¢, d € k, then

W, (1, M) - We (17,

( ].7 ) s ’lfCZO
kn
(ac — bd62)” oo .
- &x 92’ @N@ ) if ¢ # 0, ac —bdbg # 0;
<ac+bd92 @ N (1) . ) _
< a?N(t) ' d2N(m)6? , ifc#0, ac—bdfg = 0.

—N(r) = =N ('), it is necessary and sufficient that

“(¢)

Thus, the existence of ¢ is Hilbert’s Theorem 90. A reference for this theorem is

PRrROOF. Since Tr (m) =

I1.1.2 Proposition 1 of [18].

We may assume that r # r’, otherwise there is nothing to prove. So either
r'/r=—=1orr'/r=e+ fby, where e, f € k*, therefore it is possible to choose

0o, if ' /r = —1;
t =

—(14e€)+ fby, otherwise.
Note that these are not the only choices for . The sequel is not dependent on the
choice of ¢, thus we may choose any t which satisfies r'/r = t/t.

Firstly, if 7' /r = —1 (so t € k*6g), then by Lemma 4.4,

We (1,m) - We (1 m)_1

r

)
>> ( ( 8))1'5<ha(1)).
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And since by Remark 4.1, § (hy (—1)) commutes with 6 (hy (5)), s € k™,

oo () ()

We, (1, M) - We (1, m)~

This implies that by (2.5),

N(m)) |
k,n

{Da (Tam) {Da (T/am)il - (17 2
0%
By Lemma 2.12 of [6], for arbitrary (s1,n1), (p1,01) € A, t € K*,

-1 —1
~ ~ ~ P1 ll ~ S1 ni

« ) FWa 7l F Wa ) F Wa ) .
We (81,11) - Wo (p1,11) - W ( " N(t)) w ( " N(t)) €m

By choosing s; =7, ny = m, p1 = rt and l; = mN (¢), by Lemma 2.18 of [6], the

above is equal to Wy (r,m) - Wy (r',m) "

By Proposition 2.4,

T (rym) - T (1, mN (1)) - T (r,m) ™" = T (m’; '(Z)”Qm, nfﬁ%) ,
G (rom) - (rt7m> ' S () = @, (_r(t/t?m{ N (m)

o (Gt Ny g, (L N
o (=)

Thus by (4.7),
rm om \ ! rtm
(4.14) Wy (rym) - Wy (T',m)71 = [{Ea (tm’ N(t)) “We <tm7m>]
To (—r) 0 (7 7
NWe (—r, M) W | — =, =—— || -
t" N(t)
As in Lemma 4.4, there are a few cases to consider. We may assume that

(rym) # (r',m), otherwise there is nothing to prove; therefore m ¢ k*6,. Also,
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t ¢ kX, since r # r’. We have already looked at the case where ¢t € k*6,. Thus,
there is only one last case.

Let m = a + bly and ¢t = ¢+ dby, where a, d € k™, ¢, d € k. We first consider

~ rm om O\ L rtm
Wey T— Y NT 72\ * Wy T " m .
tm’ N (¢) tm
By Lemma 4.4,

(i) o ()

_ (_ (a/(N (£)))*(1/(N (%)) ¢ (=b/N(®)(d/N(#))0 )
(d/(N(£)))*(N (m) /(N (£))? )02’ (t a/N(t) ki

( (N )
,(_(/(N(t)))N(m)/( (t)* )kn ( (1(t)>)

(
a/(N (1)) TN(#)

(Cavma w ).. Cisor5w),, 0 (@)

note that this is only valid if ac — bd63 # 0 (we will deal with the other case later

in the proof). Hence

(4.15) @, (—;’Z 1\177(11?)) " (—7;’;’:,@
- (vt o), (S ww),, o (@)

by (2.13). Similarly, for

Ty (—rm) "L - (-Z%) :

Lemma 4.4 gives

(4.16) @ (—r,m) " - @ (‘Z m))

t
_ <_ d2a;rljn(z§)eg’ 3 ( aN(m) (t))k,n 5 (he (N (1)).
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Using (4.14), (4.15) and (4.16),

We (1,M) + W (7“’,m)71

_ [( a® N (t) ac_bd%>km'<_dhgnw’Ntw>km'5<h“(N&@))]

TN (m)2’ aN(t)
a? - 5 m
_[( NG ( bﬁw0> .<_dNé >,N(w) 6 (ha (N (1))
kn k,n

_dQN(m)Hg’c+ a

We simplify the above using (2.11) and (2.5) to get

G (o) - ()L = [N (ac—bdbg g
a (r,m) - we (r',m) ( dQN(m)Q(Q)’( aN (1) ) N(t))

k.n

(=), o).,

Thus by (2.11) and (2.13),

'[Ea (7", m) : '&704 (rlvm)il

:< 2N (1) (ac—bd93)2> .(_L@C—bd%)?) (LN,
k k.n

d?N(m)02"  a®N(t) a?N (t)
By using (2.11) and the fact that (—1, s%), . = 1forall s € k* by (4.1), we finally

get

i o ( @N@)  (ac—basg)’
Weq (T,m)'wa (7",7’71) - d21\](7fn)9(2)7 G,QN(t) o

If ac — bdf3 = 0, we may instead use the above for

o (r',m) - Wy (r,;m) "
This would imply that since
P7

where t' =t = ¢ — dfy, replacing t by ¢’ would give

SO N 1 a’N (1) (ac — b(—d)h2)?
om0 o)™ = (G ),
(t

< a’N () (ac+bd9§)2)
d?N(m)65"  a>N(t) /.,
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Therefore,

B (rym) - B (7' ym) L = [fﬁa (', m) - e (7, m)*l] o

_( a?N(t)  (ac+bdf2)?\
 \@2N(m)62  a2N(t) )kn

_ ((ac+bdB3)*  a®N (1)
_( a* N (1) ’dzN(m)e[%)k‘n

by (2.12). O

4.3. A slightly more general result

Now that we have established a few lemmas, we can work on b, (A, 1) for the

cases where both A\, u ¢ k*.

LEMMA 4.6. For all X ¢ k*,

bo (MATY) = (=1,N (V)

n"

PROOF. We know by Proposition 2.1 that A = d; (A) /d2 (A). Thus,

This implies that d; (A1) = 51 () and 4, (A™1) = N(X) &2 (A). Hence, by (2.5)
and (2.4),
ba (AAT) =8 (ha (V) -8 (ha (A7)
= @0 (1,61 (N) + @ (0,0, () (1,5 (V)
B (o,N(A)aTA))*l-

By Proposition 2.4,

B (0,8, (\) ™" - g (mli(x)) — @, (1,51 (A)) e, (0, Néi
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which implies that

ba AAT) = @ (1,81 () @a (1L V) - i (o, w>
0 (0N (V) (szi(x))f1
= Wo (1,60 (V) - Wa (—1,60 (A) "
So by Lemma 4.5,
bo (M A7) = (—1, _WL,H'

Also, for s € k%, (—1,32)k , = 1 by (4.1), hence

which implies, using (2.11), that

= (=L,N)g -

LEMMA 4.7. For all A\, u ¢ k*, q1, g2 € k™,

6
ba ()\7M) = boc ()\QLMqQ) . <_M1(‘U)QQa ql) . a’(q17QQa )‘7/’(')5
k,n

2 (A)
where
2 (A .
( (?2(([3)7(11(12) ) Zf )\,LL ¢ k.><;
G(Q1»(I2a)\7ﬂ) = 9 ko
0 .
_, , if Aue k.
( N (1) Q1Q2>k’n f Au

PROOF. We have, by (2.5) and (2.4),

ba (A, 11) = 8 (ha (V) - 0 (ha (1)) - 6 (ha (Ap)) ™
= o (1,80 (X)) - Wa (0,82 () ™"+ @a (1,81 (1)) - Wa (0,82 (1)~
W (0,82 (M) - Wa (y(Ap), 61 (M) ™1,

where the function y is as defined in (2.1). Since by Proposition 2.4,

T (1,81 ()™ T (0,02 () T (1,62 1) = 7 (0. BV,
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< Wg (0,02 (M) - Wa (y(A), 61 () "

omes

4.3. A SLIGHTLY MORE GEN
. -1
* Wa (0,62 (1))

Now, for any q1, g2 € k™, by (2.4),

the equation for b, (A, i) bec

- _
" [ , N
— N —
/N
—~ - 1_. ~
— \Wr/ D ~— 3
— I |~ 7N 3| o 3 -~
. ,\l/ P = —~ < N
o iy - — [~ = o
_ 3 3|~ — 3 /rm\\A — o .
7 N ~ < | > NCO ~< =) ~ | .
—~ ~ ~— —~ ~— D NCMH N 7 N
\uU/: o) a| & m N — — \'/\l/
|~ nU) o - o (=] \U}: o -
— < ~— O? = ~—— ~— ~ |~ =
~ 3 — < o=
S~—"
Z ) s 15 ~— —~ T S &
| I T = = 3T~ |
. = R - = S ~
o [Say N — ~—
~— - = < I — ™ =3 .ha ,ha
C S S 3 = SERCPIGINS
~w 3 m\ N2 7 N M% m\ 3 o e
- s E s
o 1. '3 13 (% S i) . . .
o | . = & ~—— . TN TN /N
Sla —= N | ~ 3 L = TN o/~ 7
~ L [ = < L Sleg 2le
W - o < S} ~—— — ™ s =
- (e} () - = v 3 Se) ()\A
o Nt - =) N— - ~ - —l=<
SN~— 3 =3 = o ~ o S
s '3 . 3 ST < N o
S = 3 S i
. 3 A T Y = s
X iy R — < 3 =
— . T - = 13 . 3 SN—
| — — /N —~| © UPO + — <
)\M)F\II = ey x| \AﬂnVA e ) _ ~— ©
3 — [~ = dis —|=< [N - 4 — i
= 2|2 2L g - =8 I|= F& I
~— S w - Nvo an =< ~<|
o L Z - S 3 = 1S — =
S . m ~ — < = Sl ~|
=) e s 5 5 ~__~ B —|
— — 13 13 < w > Z =)
3 3 ) N— S N N—
R © T S
S . [ I = s
S =] S :
=
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Since by Remark 4.1, 6 (hy (—1)) commutes with § (ke (s)), s € £,

{Ea (07 Néjl(il)l))> : ’[Eoz (07 52 (1“’))71 ' ﬂja (07 62 ()‘:u’))
(M)))l

o (00) i (050) a2

o ) (- i) [ (4
|

and so by (2.5),

e (o, Néfl(i’;”> i (0,82 (1)) - @t (0,82 (M)

. (0’ wu)) &, (07 % (u)) . (0, N (6 <u>>)1

142 02 62 (A)

_ (N(5l () _ b ) _(_Ml (1) 6 (M))
k,n

52 (M) 6o " by (p) 5 (\) 7 6o

(o ()32 (M) q1g2o | @1g2p01 (1) 62 (1) (~1
02N T 0w/, 602(N) " @b |, ’

-1

71)k,n'

73
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Hence it is a matter of simplifying using (2.11), (2.12) and (2.13) to get

{Ea (07 Néjl(iﬁ;))> . ’[Eoz (07 52 (1“’))71 ' ﬂja (07 62 ()‘:u’))

2 (150) i, (0500 s, (5000
:< Mis(u))ql (55 (< >) q)

Therefore,

Replacing the above in (4.17) gives

52 (A)

(399 0 5, (0 83600) 5, (500

. (0,200 )] (9O, 61 ()™

q192

b O ) = i (1,61 (V) - @ (1,61 (1)) - [ (—“51 ‘“”2,q1>
k.n

and since by Proposition 2.4,

o (1,81 (1)) - B (o, W) @, (o, % (A))l B (1,01 (1)),

92 (N) Q1

using this in the equation above gives

ba O 1) = (— “‘?j{;ﬁqiql) . (h o me), w500

B (0, 5261(1>\)> o Wa (1,01 (1)) - Wa (O’ 5261(2#))1

W (0, W) W (y(A), 81 (M)~

41492
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By (4.5) and (4.6),

o _,Ufqu . 52 ()‘p’) .
ba (A, 1) = ( M]l)km ( 85 (1) ,Q1Q2> o a (1,01 (Aqr))

W (0,02 (Aq1)) ! Wa (1,01 (pg2)) - o (0,02 (ng2)) ™"
G, (0 b2 (Aw)

’ q192

) B (YO0, 8 )L

and using (2.4) on the right-hand side gives

(e ((G2(An) _ .
ba (A, 1) = ( 35 (V) ,Q1>kﬂl ( q )kﬂl 6 (ha (Aq1)) - 6 (ha (pg2))

52 (M) » 4192

i (o, W) B (g (), 1 ()

4192

By (4.5), (4.6), Proposition 2.1 and (2.4),

7 (o, ‘W) G (y(), 61 ()

41492
Wa (0,82 Muq1g2)) - Wor (1,81 Apqrge)) ", if A ¢ k%

_ 0 _ _
W, (07 0) - We (0, \p2bo) v if Ap € k>,
q1492

8 (ha Mnq1g2)) ™", if A ¢ k>
) (ha (1)> 8 (ha )Y, i A€ kX,

q1492

Soif A\ ¢ k™,

b O\ 1) = (—“‘;12((‘;))”,(11> (S ) b o ()8 (o)
k,n T

-8 (ha (Augigz)) ™
[ rh (W 85 ()
) ( % () ") (o), oo o)

by (2.5). If A € kX,

b ) = (— Ll q1> n (0 men) 50 (a5 0 ()

(8 (ha (ua102)) ™+ (hee Mia12))] - 8 (h‘* (1»

q192
-0 (ha (AMD_l 5
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and since by Proposition 2.1, d3 (Au) = 9, this shows by using (2.5) that

po1 (11)g2 6o
ba 3 = _77 : 77 : ba b
(A, ) ( 5y Q1>k <§2 (,u) q192 o (A1, png2)

uo1 (12)go to
ba (N p) = | ——+~5—, N “ba (Aq1,
(A 1) ( 5 ) q1>k ( Nt () 0142 . (Aq1, pg2)

by (2.12), (2.13) and (2.11). Therefore we have proven our result. O

PROPOSITION 4.8. For A ¢ k*, q € k™,

b (MAT0) = (LN (V). (— A‘S;OW,q> |
k.n

PROOF. This is easily proved using Lemmas 4.6 and 4.7.
By Lemma 4.6,
ba ()\,)\_1) = (=1L, N(A))pps

and by Lemma 4.7,

15T,
bo (WAL = b (A- 1,27 1g) - </\51(/\)‘171>
k,n

L
o, () )

Hence,

b A7) = LN (5 fya)

By the proof of Lemma 4.6, 82 (A™') = N (X) d2 (A). The right-hand side becomes

—1
boz (A’/\ilq) = (717N()‘))k,n : <1\I(>\)9(;2()\)7Q> 3

and so

bo (M A7) = (=1, N (V) , - <_90’q>
k,n

by (4.1), since A = §;1 (A) /o2 (A). O
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REMARK 4.9. Proposition 4.8 shows that for A, u ¢ k* such that Ay € kX,

bo O\ 1) = (—L,N (V). (—”;fﬁw) .
k,n

s

Therefore we may assume that A, p, Au ¢ k> for the last section.

4.4. The most general case

Before we can calculate b, (A, ) for A, g, Au ¢ k™, we must first calculate the
commutator of the 2-cocycle o, on T'(k).
Let us define what a commutator is. Let o be a 2-cocycle on an abelian group

T with values in p,. Then the commutator of ¢ is defined by

[z,y] = o(z,y)/o(y,z),

where x, y € T. The commutator of o is both bimultiplicative, i.e. for z, z’, v,
y eT,
[z2’,y] = [, y][2", y] and [z, yy'] = [z, y][z, ¢'];
and skew-symmetric, i.e.
[z,2] = 1.
These are the standard properties of the commutator of o. The commutator of o

depends only on the cohomology class of o, and if T is a locally compact topological

group and o is measurable then the commutator of ¢ is continuous.

LEMMA 4.10. Let A, p € K*, and the commutator of the 2-cocycle o,, on T (k)

be

Oy (hoz (/\)ahoc (M)) o . . -1, -1
b, = T ey = 8 e )8 () -8 e (0) ™6 G )™
Then

Mo, = )5 AR -

PRrROOF. We first assume that K = k& k, i.e. K/k is a split extension. In this

case, SU(2,1)(k) = SL3(k). Let A = (A1, A2) and p = (p1, po), where A\, p € K*.
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The isomorphism on T'(k) may be described by

z 0 0
T(k) = 0 y 0| €SLa(k): z,y,z€k™,ayz=1
0 0 =z
A0 0 A 0 0
0 A/ 0 [—=]0 X/X\ O
o 0o ' 0 0 !

It has been established in Section 0.1 of [8] that the commutator of the 2-

cocycle o/ € H?(SL3, (k) on the diagonal elements of SL3(k) may be described

as

hi 0 0 B, 0 0

o' 0 hy O 0 hh 0O
0 0 hs 0 0 " ) , /

= (hlv hl)k,n : (h27 h2)k,n ’ (h3’ h3)k,n :

R, 0 0 hi 0 0

af{lo n, o 0 hy 0
0 0 & 0 0 hg

Since ¢’ differs from o, by at most a 1-coboundary, this implies that we may use

the above equation to calculate [\, u],, in the case where K/k is a split extension.

Thus

N tlo, = Oy ) - OafAspiz/ i)y (A2 ), -

By (2.11) and (4.1),

A o,

Let us define (as in the Introduction)

= )+ |2 i2)i - O i2)n - o i) - i)

: ()\27 /"LQ)k:’n

[()\1,M1)k,n : ()\2”“2)’“”}2 : [Oﬂa/@)k,n : </\2’M1)k,n:|

-1

At g = Ay 1) - (A2s p2)g -
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Since @ = (u2, p1), this implies that

[/\7 :u]cfu = ()‘7 M)i(,n ’ (A’ﬁ);(}”l :

We want to show that the above equation holds for all quadratic extensions
K/k. In order to do so, we first assume that 7 is the prime element of K and
that n is coprime to 7. By the properties of the commutator of the 2-cocycle, the

commutator of the 2-cocycle o, on the torus is a map
2
N\ (EXJ(E)™) = e
When 7 does not divide n, this means that
KX J(K¥)" 2 Zjn & Z/n,

and therefore
2
N (K*/(K*)") = Z/n,
which is generated by the element a A 7, where a is a generator for (O /7)™ /n. In

particular, @ is a unit. Thus, [, —],, is determined by [a, 7], , and we only need

to check first that

2 —\—1
la, 7]q, = (a77r)K,n ’ (avﬂ)K,na

and second that the right hand side of this equation is bimultiplicative and skew-
symmetric. We will demonstrate the bimultiplicativity and skew-symmetry at the
end of this proof.

For A, p € K*, we have by (2.5) that

[Avﬂ]au =9 (ha (/\)) -0 (ha (/1')) -0 (ha ()‘))71 -0 (ha (/1'))71 :
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By Proposition 2.4,

6 (ha (V) -0 (ha (1)) -8 (e (V)"
= [@a )61 () - T (0,32 V)] - @ (1), 81 () - (0,0 ()
[ .5 -3 (0.5 )]

_ o (RN S @NEO) e N G W)
sy T N@G2(V) ’

where y is defined as in (2.1), and hence

PP N ()01 (1)) - T 0N 2 1)
Therefore, if A ¢ kX, u € kX, then y(u) = 0, hence by the above,
0Bl = B (0N (A) B (1)) - T (0N (A) 3 (1)) ™6 (s (1))
By Proposition 2.1, 8, (1) = o and 6 (11) = 6. Hence by (2.4),

N\ tloy = Wa (0,N (N) o) - @a (0,N (X))~ -8 (ha (1)
= @ (0,N(N) o) - |@a (0,60) " - @ (0, 00)} o (0,N () )"
-6 (hoz (/1'))71

=8 (ha (N(A) 1)) - 6 (ha (N(N) ™"+ 6 (ha (1) ™"
This implies by (2.5) that
A o, = (18N (V)i s
hence by (4.1) and (2.12),
Ao, = (N(A), Wy -

In the case where K/k is an unramified extension, we may take m € k. So

assuming that K/k is an unramified extension and that 7 is coprime to n, we have

[CL, W]Uu = (N (a) ) ﬂ-)k,n :
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Hence by the above and (3.9),

2 2 ——1
la,m]q, = (a77r)K,n = (a, ”T)K,n ’ (avﬂ)K,n = (a, 7r)K,n ) (avﬂ)K,na

and hence for all unramified extensions K/k with 7 coprime to n,

N ilo, = )5y AT R -

‘We now use the product formula to show that the above is true for all quadratic
extensions K/k. We will need to use the adele group (see Subsection 1.4.3). We
define some notation. Let L/l D p, be a global quadratic extension. Let p be
a prime of [, [, the localisation of [ at p, and just as in Subsection 1.4.3, let

Ly=1,® L, ie.

I,(00), if pOr, does not split in O;
L, =
l, @1, if pOp splitsin Of.

Now let o, € H?(G(ly), pn) such that o, = o, when k =1, and K = L,,. Then for

almost all primes p of I, we know that for A, € L,

[A,#]UF = (A, ,U)2Lp,n ’ (/\’ﬁ)zsm'

We also know that since [[, oy splits on G(I), if A, p € L, then

I wlo, = 1.

p

In addition, by the product formula (Theorem 3.2), for A, u € L*,
[T (w3, 0wzl =1
p

Now choose a prime p that is not unramified and coprime to n, and also not
split. Let X\, u € Ly, and choose X', p/ € L* close to A and p respectively such

that

Nttloy =N 1oy, NI, - AL = W), N
P P p p
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and such that X, p’ are close to 1 in L4 for all other primes g which are not

unramified and coprime to n and also not split, i.e.
[Alauqaq =1= (Alvu/)%q,n ! (A/aﬁ)gln‘
Then by the product formula,

. . —1
(Alvﬂl)QLp,n : (/\/7MI)Zplm = H (()‘/mu/)%u,n : ()‘/aﬂl)zul,n>
v

STt D)
q
= IV 115}
q
=TI, 15!
v#£p

= [)\/7/1’/]0]3'

The above implies that for all local quadratic extensions K/k, A, up € K>, we

have
Ao, = )%, AT

but as stated earlier, we should show that the map (A, u) — ()\7/1’)3{,77, . ()\,ﬁ);n
is indeed a map /\2 (K*/(K*)™) — . Thus, we need to show that the map is
bimultiplicative and skew-symmetric.

It is trivial to show that the map is bimultiplicative. To show skew-symmetry,

we first note that by (2.13),

A N5 = =Dy

and by (4.1),

=Dy, =\ (=1, =1

s

Now assume that Tr (A) = 0. Then A = — ), and by (2.13),

AN g0 = A=A = 1.

Hence in this case, (), )\)i,n . ()\,X) 1_<1n =1.
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As for the case where Tr () # 0, let A = sX/, where s € k* and Tr (\) =1
Then M =1 — ), and hence by (2.11),

(A’X)K,n = (SA/7 5(1 - A/))K,n = (57 S)K,n : (57 1- )‘/)K,n : (/\/7 S)K,n : (>‘/7 1-— )‘/)K,n .

By (2.12), (2.13) and (2.14),

AN g = =D (8 V) e (A7) o 1

)

and by (2.11),

- Y
()\’ )\) Hin (8’ _)‘/) K,n .

A (3(),

Therefore ()\,)\);n . (A,X);ﬂ = 1 in this case as well, i.e. the map (A pu) —

Hence by (3.8),

(A, p)i( " ()\,ﬁ);n is skew-symmetric and hence the formula for the commutator

on the torus is indeed [\, tt]o, = (A, )%, (A T0) - 0

We are now ready to find the explicit formula for b, (A, p), with A, u, Au & k*.

PROPOSITION 4.11. For A\, u ¢ k* such that A\p ¢ k>,

o N(@1 () NNV () .-
ba(A,u)< N ) a2 )M (q, 52(”)“ (A, ),

where, if A\ =a+ bly, p=c+dby, witha, c€ k, b, d € k™,

q:a+§7
and
B e n (A))2b49§ ) X a .
(wvew @ q>abzeg>4)m> [ 1500, ag £ N ();
Y\ p) = (N (V)?b05 N(\) i X00. ag = .
( lu‘) ((( 7q)a b202) CL2N(5 ( )))kn> f)\¢k 90, q N()\),
17 if)\Ek’XG().
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PROOF. This proof will follow closely the methods used in Section 2.29 of [6].

For some (p;,1;), (ri,m;) € A, t; € K>, i =1, 2, 3, define

92((pis 1), tis (ri, M) = o (Pis 1) - ha (t5) - wa (0,60) - o (15, m4)

and let

ei = g2((pi, i), ti, (ri,my)).

We will consider the case when (r;,m;) # (—pj+1,lj+1), j = 1, 2. For any
@, 1), (r',m') € A, let (p/,I') o (r',m') be defined as the element (s’,n') € A such
that x, (s',n') = 2o (p/, ') 24 (r',m'), ie. (p',1)o(r',m') = (p'+7",I'+m' —p'1’).
(Clearly the operation is associative.)

As a first step, we let

(r1,ma) o (p2,l2) = (s1,m1).

Then,

S(er) - 6(e2) = To (p1,11) - 0 (he (t1)) - Wa (0,00) - Ty (51,11) - 0 (B (t2))
“Wa (0,00) - T (r2,m2) .
By Proposition 2.4,
W, (0,90).§a (31»n1) - We (0790)71 —F_, ( S1 nl) '
This implies that

S ny

5(er) - 3(e2) = Fa (p1,11) - (ha (1)) - e (—007—93) G (0,00)
-0 (ha (t2)) Wa (07 90) ‘To (7"2,7712) .

By Proposition 2.4 again,

~ ( 5109 98) . ( s16o 9(2) ) . ( S1 ’I’Ll) - ( s16o 9(2) )
Wa | —"—r = | = ZTa\"—=Hr—=—= | T-al|\""F5 25 ) Tal\—""7TH—= -
ny ny ny ny 90 90 ny ny
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Hence inserting the above into our equation,

5(er) - (e2) = Fo (p1o11) -6 (e (12)) - T ("‘9) @ ("

ni ny

ni ni

G ("0 —93) 5 (0,600) - 3 (B (£2)) - e (0,60
T (r2,ma2) .

By Proposition 2.4, for arbitrary (r,m), (r',m’), (p',1") € A,

(@, (r,m) - B ()] - 2 (1) - [ By (rym) - e ()]

= [0 (w(12). 61 (1)) - B (0,82 (1)) "] (9_3)
[ 00,80 (02)) T 082 (2]
= [wa (y(t1),01 (t1)) - wa (O,th))} - Tq (81907 _9%>

. [@a (y(t1),01 (t1)) - Wa (O’Wﬂ B
. <s1t%90 N (1) 08) ;

—, —

ity ny

85
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where y is as defined in (2.1). Also by the same method,

8190 9(2)

[ 0.60) - 8 (ks (£2)) - Tr (0, 60)] " - Fu (n n)
[l (0,00) - 8 (h (£2)) - o (0. 00)]

= [@a (0,—60) - 0 (0,0 (t2)) - o (—y(t2). 51 (1)) - @ (0, ~00)]

 Fo (31‘90 —93> : [@a (0, —00) - @a (0,05 (t2)) - Wa (—y(tg),él (tl))

)
n1 nq

g (0, —90)}

st —(0®) g NEw)

- [@0‘ (07 _90) . wa (07 52 (t2))] - ia ny . 61 (tQ) 00 ’ _nil 798
[ (0, —00) - B (0,5 (t2))]”
N2
9 (@) 5000 NGL) 6

T () m NG @)

=7, (81(t2)290 N(t2)9(2)) |

nity n
Using these in the equation for d(eq) - d(ea),

31% 1 2
(4.18)  d(er) - O(es) = 7 <p1,zl)~za( fif _N{ >90> 6 (ha (11))

ity ni

2
G (—5190,—90> T (0,00) -6 (h (£2)) - T (0, 00)
n1 ny

2 2
T (-sl(tQ) 00,—N(t2)90> “Tq (T2,m2) .
nits ny

Also, since the above applies also in the group G(k) with the corresponding

group elements, and

0 62 %
Wy <810,0> *We (0;90) :ha <O) s
ny ny n

this implies that

200 N (t;) 62 t1t20
€1€2 = T (pl,ll)'fl?a (81107 ( 1) O> - he ( 120) *Wq (0,‘90)
nity ny ni

2 (_81(t2)290 _N(t2)93) - Zor (2, m3)

nity ni
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ie.
20y N (t1) 02\ tit26
(4.19) €12 = g2 l(pl,ll) o <8110, (t) O) ) 13 0,
n1t1 ny n
s1(12)2%6 N (t5) 62
(_ 1(t2) o (t2) 0)o(r2,m2)].
n1t2 ny
Let A = a+ b0y, with a € k, b € k™. Define
1 a 1
=0 (AN)=—-=— — "=y (\) = ———.

If X € kX0, then ny € k*. As we will see later, this implies that there are two

cases to consider.

Let t3 = n//6y, t7' =ty = ny /6. Choose (r1,m1), (p2,72) € A such that
(r1,m1) o (p2,l2) = (1,n1),
which is always possible. Also, choose (ra, m2) and (ps,l3) € A such that
(ro,ma) o (p3,l3) = (0,n).

Then by (4.19),

_ % 0 bo (1) __
€162 = g2 ((plall) o (_771%7 n%m 7TL:17 - n% ,M1 ) © (TQ,TTLQ) 3

N _
€2€3 = g2 <(p2512) © <07 (T,Ll)> ) Ev (0,71/) o (7’3,7’)’13)) .
n 90
Let
n7)? n7)? , n7)?
{<(n1%)’nl) o (T23m2):| © (p37l3) = <(nl%) 7”1) © (O,TL ) = ((nl%) ,7’1,”)7
so that
n’ =mn1+n' #0;
and let
(oo |tz o (0. 552 )| = (o (0.554) — 1),
so that
" ny + 5:71) 7£0.
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This implies that by (4.19),

92 o 62 I o
I % bg 0 0 0
9 {(pl’ 1)O< n%’n%m)o(
(n1)*n' N (n')
<_ nin’ 7 n/ o (rg,ma)| ,

— 9 4
e1 - ee3 = go {(phh) ° ( 1% o ) 72

€1€9 - €3 =

Since for all g, ¢’ € G(k),

ou(g,9') =0(g)-6(g") - d(gg") ",

we will work out oy, (e1,e2), o, (e1ea,€e3), oy (e2,e3) and o, (e1, eze3) and use the

2-cocycle condition to get our result.

We first assume that A ¢ k*6g, so that ny ¢ k*. Firstly, by (4.18),

@ (0,60) - 6 (ha (Z;)) T (0,00) - T <— (”1%)24}1)

. ga (Tg,mg) .

Consider (using (4.7))

2\ ! 9
@a (Lnl) : ’&ja <_00; _90> = 1’1.70( (—1,?1)71 . {Da <00 _90> .
niy ny1

nom
By Lemma 4.4,

_ [ 6 62\!

We (1,n1) - We (—0 —0>

niy ni1
. -1 ~ (6 9(2)
:wa(flvnl) Wo | —=) ——
n1 nq

(1/(268))> N (n1) 65" 2b63 —1/2

(R (), o 00 (3))

(i), (), 00 (58):

0%

_ (_ (=1/2°N(n1/t) @ +(a/(2b93))(1/(293))93>
kn
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and hence by (2.13),

N e )]

(Note that the calculation of

2 2\ —1
i (—90,—90) i (1) = (90,—90) e (—1,77)

ny. n

is unsuitable as it gives ¢; = 0 in Lemma 4.4.) Hence,

(4.20) T (—Z‘?—fﬁ) =¥ (ha <—Nég1)>>1 g (1,m1)

and this clearly applies to any n; € §; (K*) with ny ¢ k*. By our previous

calculations in this proof, we have

(4.21)  ou(er,e2) = Ta (p1,h) - Ta (_9(2;’ 23) 0 (ha (00>>

ni ning
— 00 9(2) — ny
KIS SIRIERA )
0 \\ ' - [ 62 0\ .
O ha | = T | ——5, —5— “Zo (p1,1 :
(e () () ot
Applying (4.20) to the above,
92 o} 0
oy (e1,e2) = o (P1,11) - Tar —0,0>~6(ha (0)>
(e1,e2) (p1,01) < el )
N —1
: la (ha (- (Zl)» o (1,n1)] ~a (0,00) - 6 (ha (’“))
63 0o
o \\ " - [ 62 of N\ .
(5 ha f— Ll | T, p— tla 7l ;
(e () # () ot

and since oy, (g,9’) is central in G, the first two terms must cancel the last two

terms, giving
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By (4.7),

ouler,en) =6 (ha (f;i)) ¥ (ha <—Né%”))>_l S (1,m1) - Wa (0, —0p) "

which implies by (2.4) that

= (3 4 () ()
@) E)

We have by (2.5) that

(S R =0 (o (5 0 ( ()5 (e ()

() () () o (3)
Replacing the above in the equation for oy, (e1, e2),
= oo () o (2.8 o ()
o (5)) 1 (2)

Using the notation in Lemma 4.10,

e = (L2 o (n () [R5,
(e (5)) 5 (m ()] 5 ()
- () Rl o)
(- (&)

thus by (2.5),
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By Lemma 4.10,

s3] -8 6]
o], n1’ o Kon ni’ 6 K,n'

Using the properties of Hilbert symbols, by (2.13),

<9M1> (%m nl) .
n1’ o Kon ni’ 6o 6o K,,L,

and by (3.9) and (2.13),
()= (G~ (8 G ),
1 Oy Kn ni o k.n ni k,n
Therefore by (4.1),
Also by (2.13),

Hence, we have

By Proposition 4.2,

. (N(m) 90> _ (N(m) (8 /77)31 %/m))kn
(

02 0o

1\1(”1)71)_1

03

)

Thus,
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Using (4.18) also gives

Oy (61627 63) = [5(6162) . 5(63)] . 5(6162 . 63)71

()

62 o} 62 6}
= To (p1,11) T | -2, 2 T | =, —9
To (p1,l1) - T ( nf nfnT T nln”’N(m)n”

92

() s ()

2,07
nin

-1

c Lo

2 4
_ ( 05 05
and since o, (e1ez, e3) is a central el

(4.22) ou (eren,63) = 0 (ha (

ue

Consider

| [@a

By Lemma 4.5, it is obvious that

b

a (“‘1)290 —%)@a (”160 %

"

/ -9 —
n2n” n' mn’” n

so this implies that

nin” N (ny)

IR

ement of G ,

)

77)20 02\
(71)*6o —n?/>-wa(0,90)

n

2,07
nin

(@) (= ()

— -1
- (n1)290 92 ~ 9() 02
T ) g (L 2o
(0% 7 7 (0% 7 -7
n%n// n/ n'! n'

. __ —1
e () ()]
1 nln// n//

o7
nin n

K

_ -1
~ (n1)290 (92 ~ 90 92
o Sl VR 7 S (VI 1
« TR —_— (o7 7 —_—
n%n” n'! n''" n

~ TL190 98 ~
= |Wa | =T =7 | " Wa
nin n

2

(71190 _Hj

nin n

) s

9393)

n6y _ -
MEES

" n3ny

-1

)

2
0 62\
o
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Hence, by Lemma 4.5,

N —1
— ?7,190 9(2) - 00 0(2)
Wer 70 T | Wa 7R
nin n n n

_ ( (62/(2N (n")))” N (1)
(a/ (2063))2 N (=63 /n") 63’

(63/(2N (n)))*N (77)

b2N (n1) 602 ((a—1)a — b2632)*
a?N(n”) " 4b*N(ny) 60} ko

((03/(2N(n"))) (=1/2) — (—(a —1)/ (2bN (n"))) (a/ (2b67)) 93)2>
k,n

if (a —1)a — b*0% # 0 (we will deal with the case (a — 1)a — b*62 = 0 later). Since
A=mny/n and n' = —1/(2b6,),

_(mi B\ (6 B\ [ N ((a—1)a—b63)
Yo\ " w ) e\ T ) T\ TaeNwry T NV )

This implies that

. 1
~ (n1)290 92 ~ 90 92
& %Y & (b %
[e% 7 T « TR T
nin’ n'’ n'"’

(_ N()  ((a=Da- b293)2)2
102N (n")’ N (\) b262 .

( N ((e=1a- b293)4>

4a2N (n”)" (N (N))2b*03
by (4.1).

If (a — 1)a — b%03 = 0, then by Lemma 4.5,

_ (@l 02\ _ [0y 62\ "
m (22 -2 ) (-2 )
_ <<<ea/<2N (")) (=1/2) + (=(a = 1)/ (2bN (1)) (a/ (2663)) 63)°
(63/(2N (n)))*N (77)
(63/(2N (n")))* N () )
(a/ (2602))>N (=02/n") 63 ) .

(((al)a+b29(2))2 sz(nl)H(%)
4b*N(nq) 05 7~ a®>N(n") J,

)

Since A =ny/n’ and n' = —1/(2b6y),

S (Ml BN o (8 B\ _(_((a=Datp6)> N
N ) P\ W) NG 4a?N@) ),
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thus

_ —1
~ (711)290 63 ~ to 03
w —_9).w 20 _ 20
@ n%n// B @ n’

:<_((a1)a+b2ag)2 N )2
N\ b26Z ' 42N ),

:<((a—1)a+b293)4 N(\) ),m’

(N(\))2b*0F 42N (n”)

by (4.1). Let ¢; denote the function

N(A) ((a — 1)a — b262)* ' - |
<_4a2N(n”>’ (N(A))%wgo )k if (a — La — 665 # 0;
(((a— Da+06%03)"  N())

(N(N)2b%6 7 402N (n”)

c1(A) =

) , if (a—1)a —b%03 = 0.
k.n

By (4.7) and Lemma 4.4,

N (6, e\"
Wo (1,0") - Wa <?/’_?/>

— o (1) (-2, )
- ((EMEENEIE) oo e /ey
AN O 172 .

(), (e ()

(%) )0 ()

if a # 1. (Note that

2 o\ —1
i (2 -2 ) ) = (<2 (L)

n n n n’

gives ¢; = 0 in Lemma 4.4.) This implies that by (2.13),

0 A N (n/ N (n”
ot ()~ (5 ) ()
n'’ " 90 o 90

(4.23) wq (ZO—Z‘%) = (—Négﬂ),—lh’n-a (ha (—Nég”)»_l + e (1,n")
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If a = 1, then n”/ = —1/2. This implies that by (4.7) and Lemma 4.4,

0 02 1 1\t
i (n,,,_0> o (10") ™ = @ (~260,262) - T (L—)

o 2

— @ (200,203) " - @ (—1, —é)

202
= (—(_2&()))90; N (_290)> o Y (ha (N (_200)))
= 6 (ha (N (—26))),

so that

- 0o 08 - 1
We (n//,—n/l :6(ha (—498)) *Weq 1,—2 .
Thus, let ¢o be the function

(S RIE ) s

)

6 (ha (—463)) - Wa <1,1> , if a = 1.

2

This implies that
o ()20 65
N\ n2n” w7

o ((@D)%0, 2\ _ (60 2\ _ /6, @2
[wa <(”12)//°,<3/> - (0 g) ] (00)
nln n n n n n

= Cl()\) . CQ()\).

By the above, there are three cases to consider: (a — 1)a — b%03 # 0, a # 1;
(a—1)a—b%02 =0,a+# 1; and (a — 1)a — b?03 #0, a = 1.
We can consider the first two cases together, as they differ only by ¢;(A) which

is a central element in G. Thus,
0o N (n') N @)\
J) = Z01). - 1 . _
oy (e1e2,e3) = 6 (ha (m)) [Cl(A) ( e o 0| ha 7
o =7 -1
o (1,1) | - B (0,00) - 6 (ha (”)) 5 (ha (”90» .
00 nln//
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Since by (4.7), wq (0,00) = w4 (0, —490)_17 this implies by (2.4) that

et (K2, (9) (- ()

— — -1

o (-5)) 2 (e (5)) 2 (e (50))
By (2.5),
()0 (e () =0 (e () o (e ()

which implies that

oo (N) o (3)) [ ()
(e (@))] 5 0o () 5(n (32)
By Lemma 4.10,

ou (erez,e3) = c1(A) - (Nég”) 7 1) o ba <Ng§”)’ z?'> ) 0 <ha <Zj)>

2
el

N(n”) 00 -1 (90 W
e = (Sg) (S )[R

-1

 (2) (o (22)
n/l nln//

N (n) > ( N (n') 90)1 {90 n]
= N — -1 b | — ,— =, =
Cl ( ) < 08 ’ k7n 9(2) n/, n/, 90 Uu
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By Proposition 4.2 and (4.1),

) 6N\ N B0/ Gofi)
() - (o A
(

02 0,

b<%n)(w®@wm) Cﬂme
: m7 90 90 7 90 k,n 90 , 9(2) k,n '

)

Also, Lemma 4.10 shows that

b @ (B W\ (B T
W,GO O'u_ W790 K,n W’ 90 K,n.

Since n' /6y € k*, by (2.11) and (3.9), we have

b n) (6
n 0], \ N(@) 6 ).,
Therefore by (2.12) and (2.11),
N (n'") 03 n'
= A= -1 1= )
outereney = a0 (-Sgo) 1 (xm),
W N(nl) 1 90
N by =, 22
90 90 k.n A n

1 ! 1
—e. (SO ) (0 N N@DY o (L o)
7 S e \X

As for the last case ((a — 1)a — b%02 # 0, a = 1), recall that in this case

n' = —1/2. This implies that

ou(erez,e3) =6 (ha (00

ni
()00 (52)
Since by (4.7), Wy (0,0) = W (0, —0p) ", this implies by (2.4) that
ou(erea,e3) = c1(A) -6 (ha (Zﬁ)) -6 (ho (—463)) - 6 (ha (220»
(@) s (5)

>) : {Cl(,\) -3 (ha (—463)) - Wa <1;>} ~wa (0, 0o)

-1
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By (2.5),

ba (493, 220) -6 (ha (—200)) = 6 (ha (—463)) - 6 <ha <220>> .

Hence, the equation we have becomes

ou(e1eg,e3) = c1(\) -0 <ha (Zﬁ)) : [ba <493, 2;}) -8 (he (290))]

(D) o ()

Using Lemma 4.10, we get

1 0 n'
Oy (6162,63) = Cl(/\) . ba <49(2), 290> . (5 (ha (n(])-)> . [ |:290, g():|

Thus by (2.5),

1 n’ 0,
Oy (6162,63) = 01()\) . ba <49(2), 290) . |:290, 90:| . 5 (ha (le)>

(o () P ()5 ()]

— -1

By Proposition 4.2,

(4.24) be, <_492 1) _ <_4937 (1/(290))2(1/(290))>
k,n

1
2
- ).,

1
(_493,_49%)k — (—a62,-1),

and by (2.13),

98
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Therefore by our previous calculations,

n’ n'  N(n
Oy (6162,63) = Cl(>\) . (749(2), 71)’6,” . (49(2), 90> . ( — ( 1))
k,n k,n

0 62
1
'ba :7—29 3
(A °>

and by (2.12) and (2.11),

)

n' N(n 1
uerenea) =) (<1631, (5 S0) b (G-
0 k,n

In fact,

n’ N(n 1
01()\) : (_4087 _1)k,n ’ <007 4(031)>k . ba (/\7 _290>

N (n' n’ N N (n” 1
—ay- (“XD ) (L N N@DY o, (L o))
05 kn 0o 05 kn A n”

i.e. we can use the same equation

129 outeme = - (N0 (FROEED)

(L)
)\ n//
Also, by similar methods to the above, we can show that

0 N 7] 03 .
o (e1,e0e3) = & <ha <n?>> W (—n,(:,—n,?,) e (0,6)

o) o (8)

N(nl) a+beo+N(a+b90).< 1 )_1: 1 a(a—l)—b29%.

"o _ _
e EmA ~206, 200, 200,

for all three cases.

We know that

2 200,

There are two cases to consider: a(a — 1) — %63 # 0; and a(a — 1) — b%62 = 0.

When a(a — 1) — %63 # 0, we can use (4.20) to get

2 " -1
e (—90,_90) —6 (ha <—N(Z )>> W (L"),
n'" n'" 90
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thus

oo (e1,e003) = & (ha (Zi)) : [5 <ha (N(H’é)»l R (1,#”)] W (0,6)
()40 (2)
Since by (4.7), Wy (0,00) = Wa (0,—0p) ", by (2.4) the equation becomes
= a(oe(2)) o (25) o ()
n o -1
(@) o ()

Using (2.5),

and hence by (2.5),

o N(n”') 90 - 00 ny 00 s
Uu(617€2€3)—ba<— @ ) e, Uu'ba w0y )
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By Proposition 4.2,

02 0,

b (-0, 00)*( N (") <eo/m~>61(eo/n"/)>1
k,n
(

Also, by Lemma 4.10,

2 —\ —1
{90 nl] (90 Tll) (90 n1>
5 n = = 5 : = . .
n!" 90 o n!" 90 Kon n! 90 Ko

Since n"” = ny + N (ny) /n’ =n1(1 — X) and ny = An/, we have

[90 “1} _ (_90 W)Q (_90 W)
n"’ 0], S\ (1= b Kon An'(1—X)" 6o K’n'
By (2.11),
2
[90 ”1} - (_90 A) .<_90 ”)
n’ b ou Xn’(lf)\)7 Ko Xn’(lf)\)’ 0o Kon
1) () *
An/(1 =)’ Ko An/(1—X) 6o Kon

_ (_%,A)Q | <_907A>1
An/(1 = )) Ko A (1=N)" ) g,

By (2.13),
G om] _ (6 N6\
2 0], AN =XN)"") e, \0(@1=N"") k.
.<1 n)
AX1=X)"00) ..
Using (2.14), we have
foom] _ (0 N (6 5\
w0, AN\ N1 =X

(i),
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By (3.8) and (3.9),

rm
Y=
%‘3
| I
Il
/~
Z
_
|
>
Z
e
>
~——
Il

(N7 )

- N(n’”) N(/\)Ho 90 nq
Uu(elae2e3)—(N(n1)7 o k7n~ba w8 )
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As for the case a(a — 1) — b%03 = 0, we have n’” = —1/2. This implies that

- (ha (—200)) 7"

By (4.7) and Lemma 4.4,

-1
W (2600,263) - W (1, —é) W, (—260,263) " - @a (—1, —2)

gy 290)), 30 (Y280

= (~1,-463), , - 8 (ha (—463))

(4.26) Wa (200,2603) = (=1, —465), . - 0 (ha (—465)) - @a (1, —i) :
Thus,
oo (o1, e263) = 6 <ha (fg)) . {(_17_493),@” 5 (ha (—462)) - T (1_;)}

ni

Wy (0,60) - 6 (ha (90» -8 (ha (—260)) "

Since by (4.7), Wa (0,00) = Wa (0, —0) ", utilising (2.4) makes the above equation

become

evtenenen) = (1), (o (2) ) s )5 (0 (5)

By (2.5),
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We can use Lemma 4.10 to get

rulereaes) = (-1 -8), b (<468, ) -0 (e () ) [ =

) (ha (’;;)) -5 (ha (—290))] -5 (ha (—200))7".
Hence by (2.5) and (4.24),

1 n 0o m1
2 2
au (€1, e2¢3) = (_1’ _490)k,n . <_490’ _49(%)1@@ . |:_2007 to :| o b (711’ 90) -

But since n’’/ = —1/2, we have

ni1 90 ni1
—20, —| =|==,—| .
[ i 90]% [n”” 90Lu

This implies that we can use our previous result for n”’ % —1/2 so that

), = (o ).

In the end,
1 N (n") N ()
Oy (€1,€2€3) = _17_492 ' <_492;_> ' ( )
( 1, €2 3) ( O)k,n 0 40% o N(nl) / fon

n
b (90, nl) ,
nq 90
which simplifies by (2.13) and (2.11) to

N (") N(A)00>k’n.ba(90 n1>.

N(n) o ni’ 0

ou(e1,e2e3) = (

Thus, we may use the above equation for both cases.

Similarly for o, (e2,e3),

= (o () (1-5) 0 5 ()
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By (2.4),

u (€2, €3) = <ha <’;;)> o (offﬁ) : [fﬁa (0,00) " - @a (0,90)]

0
n 0o -1 n'
=0 ho!|— 20| he | —= 20 (ha (1)) -0 hal|—
to n’ 6o
Thus using (4.2),
ni n’ - W ny -1
o= (3)) o (D) 4 () (o 3)
=1
Hence by the 2-cocycle condition, i.e.

ou(e1,e2) - 0y (e1e2,e3) = 0y (1, e2e3) - 0y (€2, €3)

we have

n(5) oo (), ().,

(8] [ 2 a )]

Also, "’ = A/ and A = ny/n’, hence we can rearrange the above as follows:

w(38)= o (), G,

(N ™).

Thus by (4.1) and (2.12),

1 N " N N 17 -
be (9) ()t ( (n >,_1) | (<><>)
)\ ’n,// 90 k,n 90 00 k,n




By (2.11),

(5 -0

4.4. THE MOST GENERAL CASE

=0t (o) (G
(st ),., (st ).,
=a (Mo ), (R
(w7 ).,
By (2.13),
a5, - G a), - (k).

This implies that

e (i ?) =) (NW)

thus by (2.13) and (2.11),

(L) -
)\ n//

er(V)7L (




4.4. THE MOST GENERAL CASE 107

We will now use Lemma 4.7 to get our desired result. Firstly,

n' 1 6o N(n")
bo (A=) =0 (2NN, 2.
( 90> <)\ » n” 03

L B\ (e a6/ N ) 1
(N 5o § o) < " ’N(A))M

.(62()\(71”/90)) T )
d2 (n"/60) "N(X) N(n”) /"

since A(n" /6p) ¢ k*. Simplifying the above using the properties of Hilbert symbols,

n” - 1 90 90 1
n () = (5 ) Crsm).,

we get

Inserting the equation we have for b, (1 /2, 00 /W)7 we have

() e (St ), ().

and by (2.12),

Ju

and using (2.13) again,

ba ()\, Z()) = (V)7L (—EEZS,N(A))IW.

Let ¢ € k* and replace A with \/q. This implies that by (4.5) and (4.6),

() o () (M)

q

Therefore, choose ¢, ¢ € k* such that p = (77 + qn’)/(¢'6p), which is always

possible due to Proposition 2.1. This implies by the same proposition that

61 (p) =m14+qn’, 2 () = q'bo.



4.4. THE MOST GENERAL CASE 108

b (A 61<u>>_ (A) ( N (81 (1)) N<A>)

al ) =al- N7 = :
qa b q N(n) " ¢ Jy,
We know that by Lemma 4.7, since Ay ¢ k™,

A 61 (p) 1)
ba )\7 :ba -4, t
(A1) (q o2

1 1 1
(L) (BT ) (mO0 LY
q n a), \ db "¢ "/,

It can be shown that d2 (Au) = ¢’09/q, thus with what we have so far the equation

Hence,

becomes

b (Ak) = (2)1 (-, Nﬁ))k’n' <—“61an2>k <2Z)k

By (2.11),

Thus by (2.11),

wo-a(3) (LA (BB (D),

By (2.13)7
k.n k.n

hence by also using (2.12), we finally get

ba (A, 1) =1 <2>_1 ' (‘W’ Nq(j))k,n. <q,“5:ﬂ(“)>m,
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ie.

(A (LNG) N (s ()
(427) ba(>\7u)7 1<q> < N((Sl ()\))a q2 )km <q7 62()\)>k7n

So if 4 = ¢+ dfy, where ¢ € k, d € k™, then ¢ = a + (be)/d, and by (4.1),

abo (N())"0 4y if (a — q)a — b262 £ 0;

c ()‘>1: ( 4a? N (61 (p ))7((a—q)a—b26§)4>k7n’ £( q) b0 # 0;
\g (N (V)*b*65 N () o g

((( —q)a+b203)*" 4a2N (5, (M))>M’ f(a—q)a—b5=0.

We are left with the case when A € k*6y. This case is slightly different from
the above because ny = —1/2 € k*, which alters o, (e1,e2) and o, (e1e2,€3).

Firstly, by (4.21), we know that

-8 (ha (—2600)) 7"

By (4.26),
G (€1,62) = 6 (het (~2600) - {(—17—493»,” 0 (o (—465)) - @ (1’_1)}

o (0,00) -6 (ha (5@)) 5 (o (~200))”"

Since by (47), @a (07 90) = @oc (07 _90>71> by (24)7

ou(ere2) = (=1,-465), -0 (ha (=200)) - 0 (ha (=465)) - 0 (ha ( ; >)

200
¥ (ha (—220» -8 (ha (—200)) "
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Hence by (2.5),

lenea) = (1 48) 30 (-200) 5 O (-48) 5 (e (51 ))

Il
I
—_
|
=
Q:.
(=]
SN—
>
3
[«
—
>
)
—~
|
)
S
(=)
N
=
o>
)
/I\
IS
S
N
)
| =
(=)
N———
o>
)
/N
[N
S
o
|
)
| =
[=)
N———

By (4.24),

1 1
ouer,e2) = (=1,463), - (‘493’ ‘493> b (‘2"0’ _290> '
k,n

Thus by (2.13) and (2.11),

1 1
ou(er,e2) = (=1, -463), - (—1,—4%>k by, (_2907_290>

1
= —2 _—
ba ( 90a 200)
90 ny
:ba R E
<n1 90)

which coincides with the case when A ¢ k> 6.

As for o, (e1e2,e3), by (4.22), we know that since ny = 77,

0o _ [0y 02\ n'
O (8162,63) =94 <h()z <n1>> Wy (71”771” Wy (0,00) -0 ha %
— -1
/
-5OM<”%>)
nyin’

Since n” ¢ k*, we can still use (4.23) in the above to obtain

= () [ (247.) (24

—1

o] s (o () (e ()
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and in a similar fashion to what we have done previously in the first case when

A ¢ kX6, we can show that

N (n) > <n’ n%N(n”)) (1 00>
u y =\ - 771 R R Ry ’boc =)= |-
o (6162 63) < ‘98 . 90 93 kim 2 n

If we compare the above with (4.25), we can see that they only differ by a factor

¢1(A\) which only exists if a # 0. Consequently, since it can be checked that both
oy (e1,e2e3) and oy, (e, e3) remain unchanged, by same method we used above for

A & k>0, this shows that for A € k%6,

N (51 (1)) N(A)) ( mﬁ(u))
k,n k

7u(hp) = (N(al ) & Y

where for A = b0y, p = ¢+ dbo, b, ¢, d € k*, g = be/d, i.e. the above only differs
from (4.27) by c¢1(\/q) L. O

Our results from Proposition 4.2, Remark 4.9 and Proposition 4.11 can be

summarised by the following theorem:

THEOREM 4.12. For A\, up € K*,

ou (ha ()‘) v ha (1))

(Aau)k7n7 Zf )‘; 14 S kx;

(/~L7_62 ()‘)/eo)kmv Zf)‘¢k><; /JG]CX,'

(A w1 (w)/00), . iFAER, ue k*;

R ER (— Mgo(”,@ , i R A€ k¥
k,n
<N(51 (1)) NO\)) 4 1101 (1)
NGO @ o TR0 ),
X\ ), otherwise,

where, if A\ =a+ bly, p = c+dby, witha, c€ k, b, d € k™,

—a-l-@
q= d7



and

El(/\’ W) =

<_
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<((

L,

N(A) (N (V)*b*05 )
4a?N (01 ()" ((a — @)a —0205)* ).,

(N NN )
a—q)a+b2023)*" 4a2N (61 (1)) ko ’

112

if X ¢ k*0o, ag # N (X);
if A& k6o, aqg =N (X);

if A € k*0q.



CHAPTER 5

The 2-cocycle on the rest of SU(2,1)(k)

Recall that we have set G = SU(2,1). We have defined a section §: G(k) —
G in Section 2.3. Hence, we can use this section and Theorem 4.12 to find the
universal 2-cocycle on G(k). Note that by (2.5) and Theorem 4.12, we already
know explicitly what by (—, —) is on K* x K* in terms of (s,t), ,’s for s, t € k*;
so from this subsection onwards we will only use (—, —); ,, as a function on k* x k™,

and otherwise use o, as described by (2.5).

5.1. The easy cases

To start with, let (r,m), (r',m’) € A, where A is defined as in (2.2). It is

obvious that for g, ¢’ € G(k),

Ou ({L‘a (Tv m) : gag/ Lo (r’,m/)) = 0Ou (gvgl) ’
Oy (97.'17a (Ta m) 'g/) = Oy (g Lo (Ta m) ag/> ,

ou (9,70 (r,m)) = 0y (o (r,m), g') = 1.

Therefore, since for A € K*,

Also, if u € k%, by (2.4),

8 (he (1)) = Wa (0, uby) - We (0,60) "

113
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Thus by (4.7),

i (0,00) -6 (ha (1)) - o (0,60)
= i (0,60) - | (0, o) - i (0,60) " | - e (0,60)

= [0 (0, ~180) - T (0,60 [0 (0, ~60) - B (0,60) ]

Thus by (2.4) again,

@a (0,00) - 6 (ha (1)) - Wa (0,00) " = 6 (ha ()™ -8 (ha (=1));

and this implies by (4.2) that

(5.1) Wa (0,00) - 6 (ha (1)) - Wa (0,60) " =6 (ha (;)) .

As a result, for A € K,

Oy (ha (A) * Wy (0; 00) ’ ha (/”L) *Wa (0’ 90))
= [0 (ha (A) - Wa (0,60)] - [6 (ha (1)) - Wa (0, 60)]

6 [ha (A) - wa (0,60) - ha (1) - wa (0, 90)]_1

=300 () [5 (o () ) 0 (0.00)] - 00) 3 (o (2))

(Note that for any A\, p € K™, hg (A) - we (0,60p) - ha (1) - wa (0,60) = ho (—A/R).)
By (2.4), we have

o (ha (A) - wa (0,00) , ha (1) - wa (0,60))

=5 (ha(N) -6 (ha (i)) S (ha (=1)""-0 (hu (—D)_l .
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Thus by (2.5),
ou (ha (A) - wa (0,00) , ha (1) - wa (0,60))
o 1 (2) - 2) o 2)]
s (o ()
e () o () )

If u ¢ Kk, by (2.4),

8 (ha (1) " - @a (0,00) - & (ha (1))
= [0 (161 () 0 0,62 ()] B (0,60)
[ (1,01 () - a0 (0,82 () ']

Thus by (4.7),

6 (ha (1)) + e (0,00) - 8 (R (1)) = Wi (0,82 () - W (1,31 () - i (0, 60)

and by using Proposition 2.4 twice,

o . . N (5 ()
(5.2) 6 (ha (1))~ @a (0,60) - 8 (ha (1)) = T (0,02 (1)) - T | 0, —

o (0,82 ()"

Thus for A € K*,

ou (ha (A) - wa (0,00) , ha (1) - wa (0, 60))
= 0 (ha (N)) - Wa (0,00) - & (ha (1)) - wa (0, 60)

“0[ha (A) - wa (0,00) - ha () - wa (0, 90)]_1
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Thus by (2.4),

oy (ha (A) - wa (0,00)  ha (1) - we (0,60))

= 6 (ha (V) 8 (ha (1)) - [8 (ha )™+ 6 (ha Q)] -6 (h (

[ ) o] ()
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Therefore by (2.5),

o (ha (A) - wa (0,00) , ha (12))

Tu (ha(/\),ha (i)>7 if pe k>

1
Ou (ha (N) ,ha (1)) - oy (ha Al b ()) , if g kX
(ha (A) s ha (1)) (Au) N ¢
Also, note that by the definition of our section,
ou (ha (A), ha (1) - wa (0,60)) = oy (ha (A), ha (1)) -

5.2. The difficult case

We are now left with the most difficult case, i.e. the next proposition.

PROPOSITION 5.1. For A\, p € K*, with (r,m) € A, where r = a + bfy,

m=c+dby fora, b, c,d€k,

ou (ha (A) - wa (0,60) , 2o (r,m) - ha (1) - wa (0,60))

= 5urm) o (o O 1o (%)) - (0 (250 ) a0

where

90,—1) , ifm € k*0y;
k,n

N(m) THO Zf_@ c ij .
kn’ m ;

2 _~2N —bh?2
ac+ bl —c m%) .<N<r>, b"O)k b et 100 g g
k.n n

c W N(m)b c m

= (r,—ﬁi) , ifr, mek>;
k,n

92
J— > , otherwise.
k,n
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PRrROOF. Our proof will use similar methods used in Proposition 4.11. By (4.18)

and (4.19),

ou (ha (A) - wa (0,60) , 2o (r,m) - ha (1) - wa (0,60))

-7, (szfo,_N(?n) 93) -8 (ha (\)) - Wa (—Zio—i%) “Wa (0,60)
S8 <ha (A;;;%))_l - <r:\:§0’_N(7/7\39(2)>_1;

hence simplifying the above gives

(53) Oy, (hOé ()‘) * Wo (07 90) » Loy (Tv m) . ha (/.t) * W (07 90))

There are two cases to consider: when r = 0; and when r # 0.

When r = 0, this implies that m € k*6y. Thus, (5.3) becomes

wa (7%70(2)) - wa <0;98> 3
m m m

and by (2.4),

0y (ha (A) - wa (0,00) , 24 (r,m) - ha (1) - wa (0,60))

2

= 5 (ha(\) - @a (0,-?3) : [@a (0,00) " - W (0,90)} ~@a (0, 00)

(2
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therefore the equation becomes

(Note that (s, —1),;2 = (8,—1);, for any s € k* by (4.1).)

Now let 7 # 0. We want to consider

The above implies that (5.3) becomes

= 5 )5/ (r0) (10 70 ) 0 0,000 -3 ()5 (1 (222 )
and since by (4.7), Wa (0,600) = Wa (0, —69) ", by (2.4),

(5.4) 0y (ha (N) - wq (0,00) , 24 (r,m) - he (1) - we (0,00))
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by (4.7). Let

then
Z'(r,m) = ™ n 71-@ o M
’ [ ™ 5 101 o7 mtv N(t) .
By Lemma 4.4, there are four cases to consider: t € k*; ny € k*, t € k*0p;
ni=da +b0y, t =c +dby, d,d € kX, V0, €k, +bd0%/a # 0; and
n=a +V0,t=c+dby,ad,d ek, ek, +bd0%/a =0.

Let t € k™, i.e. —rfy/m € k™. By Lemma 4.4,

Z(rm) =6 (ha (_Né’gl)» 5 <ha <_Nt(9’§1)>>1 -5 (ha (1))
o () S () ()

Using the above in (5.4),

oy (ha (A) - wa (0,00) , wa (r,m) - ha (1) - wa (0, 60))
e [ (5) 4 (8) o (42))]
o)) e o (2

o (ha (A) - wa (0,00) , 2o (r,m) - ha (1) - wa (0,60))
-t o) (B o (2
(o)) a0 o (3)

3
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By (4.1),

Oy (ha (A) - we (0,6p) , 20 (r,m) - by (1) - wq (0,6p))

N (’l”) 90

since t = —rfp/m € k*, t> = — N (r) 62 /(N (m)), hence by (2.5),

Also,

a (T7 m) . ha (,LL) * Wa <07 90))

Oy (ha (A) - wq (0,60) , 2

7 N
7N
(=)
w -
gl !
—
Z
, <
~—— 3|k
5 <
< N———
N——— 3
o <
. N———
N °
N ~
[\ ==} M
oY i ~—
<& =
N, Y
N———
3 VRS
= 7 N
= <IE
N N———
— ]
| <
—~ —
/N w
L= '
—
—~| &
El=
Z |4
, SIS
N——— N——
< <
N——— N——
o o)
Y I A —

T
N
A~
<
SIS
\A
S~
A~ ha
\OI/ ~——
nU:m o
g N . :
g 3 oy N
I/ < 3 \uM
m N—— /M —
ZTTm i = ha
I w -
R A~ /
MuO/m\ S —~ DWMMjm
R e T
_ Z, ntm S
< Z =
~— 7 T —
—~ ~— 3 —~ —— _Ou
= 3 = S 3 ;
— <= —— | <
3 - S Z ~
= A . | )\Ol/
o Fg T /\%W%
s TlE — SIS
W ~— N - —
< Z. = zZ <
A/~ Z nooim I/ Z
g ! Q g ! =<
Qfm ~ 2fm ~— =
&~ 3 ~ 3
| = = | = =
- S~ ~— - ~— —
o o (=] 3
mino o = WTU S S
~ . N~ .

By (2.11),

ou (ha (A) - wa (0,00) , Za (r,m) - ha (1) - wa (0,60))

/
I/~
(=}
S
ElE
z
| —
~—— =
3 3
= =
N TN
[\ [=) (=)
DD D
—|E \Afm
El=
z |~ 3
[ /m\
N~ .
3
< ©
(\I/

S

U (=}

o SE
S N
~=

A/ ha
e 2
T S~—
_ g
= =
nUfm ~—
& 3
| &}
~ .
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By Theorem 4.12, (2.13) and (2.12),

CONANE Tw%g) o (-xt7a))

Also, by (2.13),

by Pm by Pmo( m N\ _ (18 N(m)
m’  m ,m* m’ m rd, . o m’ 02 ,m'
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by (2.12). This implies that

Oy (ha (A) - we (0,6p) 20 (r,m) - by (1) - wq (0,6p))

_ (_Né?)’_%hm o (ha ), ha (i:)) o (ha Oi“) e (u)) :

If instead ny € k%, t € kX0, i.e. —03/m € k*, —rfy/m € k>0, this implies

that both r, m € k*. Also, by Lemma 4.4 and (2.12),

ni

(r,m) = <teo’N(“>m 5 (ha (N ()

Gfm) R\ [, (16
—rfy/m)l,’ m? * m2
(=7o/m) ko

Using the above in (5.4),

Ou (Ro (A) - wq (0,00) , 24 (r,m) - by, (1) - we (0,60))

— §(ha (V) - [(—T;ig,_%n.a <ha <_r;92%>)] g (h <—T§;0)>
(e ()
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and by (2.5),

a(rym) - he (1) - we (0,600))

oy (ha (A) - wa (0,00) ,

By Theorem 4.12 and (2.13), we know that

Hence by (2.11),

« (7"7 m) ha (:“) * We (O, 90))

Oy (ha (>‘) *We (07 90) , L

But by (2.12),
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and by (2.13),

202 202 2

r<6; B rol; o B 05
AR, =\ 2 " =\""73 :

m k,n m k,n m k,n

Thus,

ou (ha (A) - wa (0,60) , 2o (r,m) - ha (1) - wa (0,60))

- <r _:LOQ)M oy (ha (A), ha <i2)> Loy <ha (A:lo) s ha (u)) :

Otherwise, let r = a + by, m = ¢ + dby, where a, b, ¢, d € k, with ¢ # 0 since

m ¢ k*0y. This implies that

b N do3 _ (ad+bc)05  (ac+bdf7)0o
TN T N@m) T N(m) N (m)

Then by Lemma 4.4, the equation
) = (- N PN s
’ (—(ac+bdfg)/ N (m))? N (=05 /m) 0’
- (ad + bc)62 n (d3/ N (m))(—(ac + bdh?)/ N (m))&%)
k,n

N (m) —cf3 /N (m)

—cf3/N (m) m

o)

_ (( AN (r) _lﬁ%)kn.(_(ac—i—bd%)@% N@«)g@)kn

ac+bdf3)?’ ¢ a

’ ¢cN(m) = N(m)
N(r) 63
(0 (-
is valid if we have b # 0. Thus, assume b # 0. By (2.11),
2 2 2
, ¢ bo2 b2
= —_— e . N I
Z(r,m) <(ac +bd02)2" ¢ >kn < (), ¢ i
ac+bd63  N(r)63 92 92
c ON(m) Jyn N(m)" N(m

o), o (39,

| (_(_(ac+bdag)/N(m))N(—93/’”) N (_7"90)>
k,n
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and by (2.12),

, [ (ac + bdb3)? _c 7@
Som = (FE ) (N0 )

(st oty (6
)

By (4.1),

(ac + bdh3)* o [ ac+ bd6 _c 2 ~ [(ac+bdbf 3 _
c? Tobo3 k,n_ c "\ b6 . B c 6205 ),

and by (2.13),

Replacing the above in (5.4),

0w (ho (N) - wq (0,00) , 24 (r,m) - by (1) - we (0,60))

(2% ). (0 222,
(s, (- (X)) o0 (tim)
s (no (220))

= 0 (ha (A)) -




5.2. THE DIFFICULT CASE

By (2.5),

0y (ha (A) - wa (0,60) , 20 (r,m) - ha (1) - wa (0, 600))

N (r)
"N (m) 6

(ac + bd63

S|

D)o

N (r)6

)l

N (m)

N (r) 5

0 (ha (X)) -0 (ha <—

By (5.5),

0y (ha (N) - wa (0,60) , T (r,m) - he (1) - we (0, 600))

But by (2.11),



5.2. THE DIFFICULT CASE 128

and by (2.12),

<_1’ _Ne((g)n))k,n - (Ntr) 7 _Né%n)>k,n

This implies that

Ou (ha (N) - wq (0,00) 24 (r,m) - by (1) - we (0,00))

- (2w, (05 (st )

By (2.11),

7 () 10 (0,60) 20 (r,m) - (1) 04 0.00)
- (=), (0B, (),

(1o (2)) -0 (e (522 o )

thus by (4.1),

O (ho (A) - wq (0,00) , 24 (r,m) - by (1) - we (0,60))

- (U mp)., (F0E), (e ()

(50 () o).

If b= 0, then r € k*. Consequently, d # 0, otherwise m € k>, which is a case

we have already dealt with. Consider
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By (4.7),

and thus by Lemma 4.4,

(L (e N (m) (268
Zrm)™ = ( e/ (2N (m)

( .
| (_(—c/<r93> (i m ) N gg?)k’n.a he (_N“;)))

_127d N(m) N(m) s(h N (m)
- T k,n 7“398 ’ T298 k,n “ 7”29(2) 7

which is valid since d # 0. By using (2.13),




5.2. THE DIFFICULT CASE

and by (2.13),
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CHAPTER 6

The 2-cocycle of the double cover

Recall that at the beginning of Chapter 4, we stated that
o? =g,

where o € H?(G(k), u2) corresponds to the non-trivial double cover and n is the
number of roots of unity of k. Also, by Proposition 2.8, we know that without loss
of generality, we can replace b, (s,t) by (s, t)k,n for all s, t € k*.

We know that

2
(S,t);;/n = (Sat)k,Q’

for all s, t € k* since n is always even for a local field k of characteristic zero.

Hence, by Proposition 2.8, we have a homomorphism
(6.1) U T — Lo
ba (8:1) = (8,t)),5 -
This implies that if we let ¥’ be the map (s, pm > (8,1)), o for all s, ¢ € k™, then
we can state that ¥'(o,) = 0.

Using the above as well as Theorem 4.12 and Chapter 5, we have the following

proposition:
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PROPOSITION 6.1. For A\, u € K*,

7 (ha (A) s ha (1))

(A i) ifA e kX
(1,62 () /00),.2 A ¢ RS, pe kX
_ (), . iFAER, ue b
(—1,N(A)gs - ( )‘620()‘)’)\M> DA, g kX, e kX
k2
(NN ()0 - (‘Za /t;il(()f;)> . otherwise,
k.2

where, if A\ =a+ bby, p=c+dby, witha, ce k, b, d € k™,

erc
=a+ —.
q d

AZSO7 fOT (Ta m); (rl7m/) € A7 9, gl € G7
O'(:Z?a (Tv m) . gag/ ‘Lo (7’, ’ITL)) =0 (gvgl) ;
’ /

0(971'04 (T,m)-g)za(g-ma (Tvm)vg)»

0(973;(1 (r,m)) = U(xa (7", m) 79/) =1

and

(1) o (ha (A) - wa (0,6p) , ha (1) - wa (0,60))

N ()

= 1 )1 () (1 O (75 )
(3) 0 (ha (A), ha (1) - wa (0,00)) = 0 (ha (A) , ha (1)),
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(4) 0 (ha (A) - wa (0,00) o (r;m) - ha (1) - wa (0,00))

=%(r,m) o (ha (A) s ha <i2)) o <ha (iﬁf) s ha (u)) ,

where forr =a' + b0y, m=c +d'0y, a’, V', ', d €k,

S(r,m)
(90,—1> s imekxao,'
m k,2
<_N(gn)7_7%) 9 Zf_@ Ekx;
05 m /o m
— (’I", 03)]@2’ if?",mekx;
1. / /92 N /02
A L Lo B N i) B )
c N (m) 65 k.2 c k2
—T‘eo/m¢ k'X,'
02 > |
r,—— , otherwise.
< N (m) k2

PRrOOF. Note that we will use the properties of the Hilbert symbol (3.1) — (3.7)
as stated in Section 3.1. We first apply ¥’ to Theorem 4.12. The first four cases
cannot be further simplified after applying ¥’; but when we look at the last case,

ie. when A\, pu, Au ¢ k™, we see that by (3.6),
V(SO ) = 1

Also,

By (3.4),

o N (1) NV _ (NG () o ON(6(m) 1Y
Y (( NE () ¢ )) ( N<51<A>>’N“)>k,2 ( N<61<A>>’q2>k,2’

and since N (82 (\)) /N (82 (1)) € (k*)2, by (3.6),

(o N@1(n) N _ (NG ()
v (( NEAE) e >k> (-~6 Gy

Hence by (3.4),

Z
>
S~—

"
>
(V]
7N
Z
—
>,
[\v]
>
S~—

Z
—~
R

~_
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thus using (3.2) and (3.1),

/ N (d1 (n) N(A) _ —
Y <<—N(61 ) ¢ )lm> = (N N = (T Nk

Consequently, for A, u, Ay & k>,

Clearly for g, ¢’ € G(k),

U(xa (Tv m) : gvg/ e (T’, m)) =0 (gvgl)v

/ /

0 (9,70 (r,m)-g')=0(g xa(r,m),g'),

/

a(g,xa (r,m)) :U(xa (r,m),g): L.

At the beginning of Chapter 5, we showed that

Oy (ha (A) *Wa (07 00) s ha (H) *Wa (07 90))

au<mAA%ha(;)>~au(ha<—2>,ha(—n)17ifuekx;
1

- Gu@aﬂ%mxm%aquMMLh N

.UUQM(_i)WHGJQ_i i ¢ k¥

By applying ¥’ to the above, we see that

Q

g (ha (/\) *We (Oa 00) ) ha (‘LL) * We (Oa 00))

(s (2)) e D)) v

={ 0 (ha (), ha () -0 (ha (A) s o ())

.UQM<_2)wup4g_ﬂ it 1%
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But for any s € K*, r € k*,

(s,r)yQ, if s € k*;
o (ha (5) , ha (1)) = B
(7“, —52 (S) /90)k727 if s ¢ k.

Also, as 0 € H%(G(k), pu2), o ~1. Hence by (3.1),
o (ha () =0 )
k 9 if s € kX
—(52 /QO)kZ’ 1f8¢k’><
= h(x s a 1))
Thus, for p € k%,
1
7 (o )10 () ) = (ha )10 ).

Also, using previous results in this proof, for p € k*,

(oeomn () 0w (1) -+

This implies that we can state that for any A, p € K*,

g (ha (/\) * We (Oa 00) ) ha (:u) F We (Oa 90))

=0 (ha (\), ha (1) - 0 (ha (M) b <Néu)>) o <ha (2) B (1)) .

By the same token, it possible to show that for any A\, y € K*,

7 (ha (N) - wa (0,00) (1)) = & (B (\), s (1)) - (ha (V) e ()) ,

and we already know by definition that

V(0w (ha (M) ha (1) - wa (0,600))) = 0 (ha (A) ; ha (1) - wa (0, 60))
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Thus, all we need to do now is to show explicitly what
U (0 (ha (N) - wa (0,60) , Ta (r,m) - ha (1) - wa (0,60)))

is, for (r,m) € A, where we let r = o' + b0y, m = +d'6y, o/, V', ¢, d € k. By
Proposition 5.1, we know that
(0 (ha (N) - wa (0,60) , Ta (r,m) - ha (1) - wa (0,60)))

=0 (ha (A) - wa (0,00) , 70 (r,m) - ho (1) - wa (0,60))

—wsm o (1o 00t (2)) o (10 () 0 ).

where X, (r,m) is as described by the said proposition. We will need to look at
U/(3,(r,m)), specifically in the cases in which the Hilbert symbols can be further
simplified, i.e. when r, m € k*; and when V/, ¢/ # 0, —rby/m ¢ k*.

When r, m € k*,

Using (3.4),

hence,

' (Sy(r,m)) = (r, —03) .

by (3.6). Also, when b, ¢/ #0, —r6y/m ¢ k>,

! ! 102 /2 /02
, _g [ (VA5 PN(r) . b5
Y Eulrm) = << o TeNma),, N ),

a'd +vdo3 2N (r) b'032
- - (N@), - :
< d V2N (m)65 ), r), " ) ko

oN

By (3.4),

V(S0 (r,m)) = (a’c’—!—b’d'@% 3 N(r) ) .(a’c'—kb’d’@g c’2)
d N(m)ﬁ% k.2 k2

c ’b/2
/102
(0.8,
€ Jk2

)

3
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thus
1. b/d/92 N b'92
W rm) = (LT FOY (N, I
c N(m)6s /), o < Jho
by (3.6). Thus our result is proved, letting X (r,m) = ¥/ (X, (r, m)). O

REMARK 6.2. We should note that the formulae for o (hy (), hq (1)) may be

written in terms of norms and traces. This is because for A € K™, A\ ¢ k*,

02 (A) 1 1

b (A-Nb T\

hence by Proposition 6.1, for A, p € K*,

0 (ha (A) ha (1))

A i)z if A, e k>
= (Aale(%)o))kz, if A e kX, pud kX
(—1,N (V) - <_le(%)0),@)&2, i g kX, A e kX
<NumNmm2(ﬁﬁﬁgk_“%%ﬁgw>m,omHMw
By (3.4) and (3.1),
0 (ha (A), ha (1))
A g s if A, p€ k%
(T (M) 1)1 A ¢ B e k¥
- (AN (1), - (A Tr (160)) g o » if A€ kX, ué kX,
) S T ) A i, g hY, A€ B
NN s (- gy 2 T 00
- (Tr (Aubo) , —W) . , otherwise.

When X € k%, ¢ k*, we have by (3.7) that

(AN (ﬂ))k,z = (A, N)K,Q :
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Also, when A, u ¢ k*, A € kX, by (3.7) and (3.2),
(N, *Aﬂ)k,z = (A, *)\M)K,z = (AvH)K,z :

Thus with the above, (3.6) and (3.4),

0 (ha (A), ha (1))

(A t)pas if A\, u €k
(Tr (Mo) , )y, 2 fAE R, ek
_ ] )k (AT (b)), ifA€R™, n¢ k™
(At) g (= Tr(Mo) , Ay o 5 A p g k™, A e k™
(N(A) . N (1)) 2 - (Tr (A0o) N (1), Tr (1460)) .
“(Tr (Aubo) , — Tr (Ao) N (1) Tr (b)), o, otherwise,

which is the formula given in the Introduction.

Proposition 6.1 may seem complicated and unwieldy, but in fact, it can be

further simplified. Let v; € G(k), where i = 1, 2, 3, with 3 = 172 and

x % ok
Yi= | x x %
gi hi Ji
Also, let
(Gibo) ", if gi # 0;
X(vi) = .
Ji if g; =0,
and for A\, p € K*, let
w O ) = (A —H)gas if A pek™;

(N(A), =N (u))g o, otherwise.

Then o can be expressed in terms of Hilbert symbols involving X (y;) and u(A, p)
as shown in the following theorem. It should be noted that X (v;) is analogous to
Kubota’s X (v) (y € SLa(k)) as defined in [9], which was used in the formula for

his 2-cocycle on SLs.
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THEOREM 6.3. If X (v3)/(X(1)X (1)) € k*, then

. X(v3) (92(X(73))  N(X(72)) 2 (X(72))
o (y1,72) = ( X(%)X(VQ)> (2(X(72)), 5 (X)) )H

Then we have

o(v,72) = (_52 (_m> 0"\ N (_m>)k2

(x50, (oo xe) + (e v00)

. <62 (X(73)/(X(71)X(72)))
02 (X(73)/X(72))

_ N (X (73)/(X(71)X(12))) 62 (X(73>/(X(’71)X(72>)))
b2 (X (71)) k,2

.<62(X(72)) N(X(W’z))52(X(72))) .
k,2

62 (X(73))" 62 (X(v3)/X(72))

PRrROOF. We first note that we want to use the matrix entries of 7; in the formula
for our 2-cocycle much in the same way as Kubota did (see [9]) in his theorem for
the 2-cocycle on the group SLo. The matrix entry used depended on the Bruhat
decomposition and which Bruhat cell the matrix belonged to; the choice made was
considered using the bottom row of the matrix only.

In our case, we can do the same thing as there are only two Bruhat cells to
consider (see Section 1.2), just like the SLo case. Looking at (1.3) and (1.4), it is
clear that the Bruhat cell a matrix in SU(2, 1) belongs to depends on whether the

(3, 1)-entry is non-zero, and a choice can be made as follows. With

gi hi Ji
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i=1,2, 3, and v3 = 7172, let

(9ibo) ™", if g; # 0;

5t if g; = 0.

X(vi) =

Note that for any z, (s1,n1) € N(k), v € G(k),
X(za (s1,m) -7) = X(7) = X(v - 2a (s1,11)).

We will have to prove this theorem in a few steps. We first find a simplified
formula for the 2-cocycle on the torus T'(k), written in terms of X (v;)’s. We then
look for similar formulae for each of the cases (1) — (3) of Proposition 6.1. We will
also look at case (4) of Proposition 6.1, finding a simplification of X(r,m). Tt will
then be apparent how the formulae coincide.

We will often use the properties of Hilbert symbols (3.1) — (3.6) to simplify
expressions in terms of Hilbert symbols. We will use these properties mostly without
mention throughout the rest of this proof.

Throughout this proof, let A\, p € K*, X = a + by, 1/ = ¢ + dby, where a, b,

¢, d € k* and Ny ¢ k™. By Proposition 6.1, we have

/ Ny / I :U'/‘Sl(:u/)
0 (ha (X) ha (1) = (N(X) N (1)) 2 - (qa(w)kzv

)

where ¢ = a + bc/d. This implies that

_ Bl
2 (Xﬂl)7
and
0 (ha (X)) ha (1) = (N(X) N (1)), 5 - (6;52(§/;L;/L)’) ’ - (lg;)(iz/)(u’) ) ke

For any A, p € K*, let

Fr(\p) = (N(A),N(u)s- 52 ()’ 52 (N)

)

(52 (1) N(u)ds (u)) .
k,2
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Then we have

Fir(Asp)
(W2 1%) o (L =175 if A, g€ kX
— LN (),,- (5‘22(&‘2) , *N(M)eo& (“))M, i€ k*, g kX
N N (2RI it gk e v
) N (i NI i

Using (4.6) and the properties of Hilbert symbols (3.1) — (3.6), we can simplify
Fi(\, p). Only the case where A\, u ¢ k*, Au € k™ deserves some elaboration.

Noting that

we have

o (s 88)

_((N(W(Au))éa(A) (M)2/N (V) (N )\)/(AM))%()‘)) |

(
0o ’ 8 (V)

Also, note that d; (A\) = —d2(A). The above can then be simplified using the

properties of Hilbert symbols. We will get

F1(>‘7/‘L)
1, if A\, u€k™;
(H7_529()\)) ; if)‘¢k'><,,u€k><;
0 k,2
= (/\,N(u)w) , ifAek*, nek*;
0o k,2
(LN () (Ww) , i, g B € R
k,2

(N(A) N ()2 - <5i2(&12)»N((§2(6;)(“)>k2, if X, g, A ¢ kX
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By comparing Fi (), p) with Proposition 6.1, we find that

(>\7H)k27 lfA,,UEkX,
0 (ha (A) , ha (1)) =
Fi(\ ), otherwise.

In fact, if we let

Ao if A\, pek”;
u1(>‘a ‘LL) = ’
(N(A),N(u))y,, otherwise,
then
o 0 ) = (85, -2 )
Note that

X(ha V) =2, X(ha (1) =1, X(ha (N) - ha (1) = Ap,

so we truly get a formula in terms of X (+;) on the torus. Also, by Proposition 6.1,

0 (ha (A),ha (1) = 0 (ha (A) , ha (1) - we (0,6p)). We note that

X(ha (/J’) *We (Oa 90)) = M, X(ha ()‘) “ha (:u) * W (07 90)) = Au,

ie for vy, € T(k), v2 € T(k)-W,

(02) o nm) = (X)X oa) - (B~ R0

Note that (6.2) can also be applied to any 1, 72 € G(k) such that X(y3) =
X (71)X (7y2). This is due to the Bruhat decomposition and Proposition 6.1.

We now consider case (2) of Proposition 6.1, where

7 0 0 0 (0.80) i (1) = 7 (o ) i ) -7 (o O (575 )
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Using Proposition 6.1 and the properties of Hilbert symbols (3.1) — (3.6), we get

9 (hoé (>‘) * Wy (07 00) ,hoc (lu‘))

(AN g if A, pek”;
(u,—%m) 7 i ¢ kX
fo k,2

peE k™

<A,—62(“)> : if A€ kX,
= N ,u) 00 k,2

T e

(—LNA))go- (520(())\),)\u> , it A, p k™,
k,2
A € k%
N (A) 2 (Aw) ) <52 (1) N(p)d (u)) .

-———F N ~ ,— NS D WTRDVIR- L
< 0o ) ko \02 (Ap) 5o (N) Lo it A, g, A ¢

X(ha (A) - wa (0,60)) = A, X(ha (1)) = p,
X(ha (A) *Wa (07 90) : ha (N)) = )‘/ﬁ

Just like the 2-cocycle on the torus, we will find a formula for o (v1,72), 71 €

T(k) - we (0,6p), v2 € T'(k), in terms of X(v;)’s. By (4.6), we have

which implies that

& (ha (\) - w4 (0,60) , ha ()

C(NOB ) Y (N ) N6 )
NG N Y PO N

The above can be simplified using the properties of Hilbert symbols, so that we get

o (ha ()\l) *We (0’ 90) ?ha (:u’/))

_ (N(X)52 (X) 82 (1) N(u’)) ( 5 (W)  N(u')ds (u’)) .
k2 \92 k.2

53 (N'/17) 00 W) e )
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Let

(NN 2 (N) 02 () 62 (1) N(u)da2(n)
FZ(A””( 35 (A7) 0o ’NW)“'(MA/M)’ 35 (\) >k2'

It is possible to check that when A, u € k*, Fyo(\, u) = 1, and that

A t)pss A € R
g (ha (>\) * Wy (07 90) 7h06 (:U’)) =

Fy(\ ), otherwise.

Thus we can get a similar formula

0 (ha (A) - wa (0,60) , ha (1))

_ 62 (1) N(w)d2(p) 1 03(A) 02 (1)
=) (62 SNy )k (Nw 5 () fo >k

ie. for v € T(k) - wq (0,60), 72 € T(k),

(6.3) 0(71772)2Ul(X(Vl)’X(W))'(52EX(73§)’_ 52 (X (7))
(

< X (v3) 52(Xv1))52(X(72))> '
( k2

X(m)X(r2)" 6 (X

In fact, (6.2) can be subsumed into (6.3), since for v, € T'(k), v2 € T(k)-W, we have
X (v3)/X (71)X (72) = 1; hence using (6.3) to calculate o (y1,v2) will give the same
answer as (6.2). Also, it can be checked that (6.3) can be applied to any ~;, 2 such
that X (v3)/(X(71)X(72)) = 1 or 1/N (X (72)), using the Bruhat decomposition
and Proposition 6.1.

We also have, by Proposition 6.1,

0 (ha (A) - wa (0,00) , ha (1) - wa (0, 60))

= 0 (ha (V) ha () - 0 (ha ) B (1\@)) ‘o <ha (-2) e (—1)) 7
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(D~ e
10 i x
( K 0o )k}gy fAéZx,
ue )
AN ithek
( N(n)" 6o >k,2’ e
B nE k™
(c1,-1),, (_629(()A)’A“)k . iAok
A € kX
(N(A) 02 () 82 (1) )
= N (1)
52()\/ )9 2
< 85 (u)u ON(u)éz(u)j’ ,(1 52(_/\/ﬂ)> if A, g, A ¢ kX
5 (\/m)’ 32 (N) k.2 7 % ke o |

Note that

X(ha (A) - wa (0,60)) = A, X(ha (1) - wa (0,600)) = p,

X (ha (A) - wea (0,00) - ha (1) - wa (0,600)) = —\/T.

By (4.6),

hence we get

0 (ha (') - wa (0,60) , ho (1) - wa (0,60))

= (N(),N (1)) (52 S ()  N()d (,/))
k,2

(/) RO

Let

_(_1 52()\)6M(t)>
N (u) 02 (=A/f)00 )}, 5
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It can be checked that F5(A, u) =1 when A, u € k%, and that

(_Aa_/“[’)kQ’ 1f>\a/l€k’><a
a (ha ()‘) *We (07‘90) ) ha (M) *We (0790)) = ’

Fs3(\ p), otherwise.

In other words, if we let

(=X —1)p9 s if A\, € k%
u2(>‘a ‘LL) =
(N(A),N(u))y,, otherwise,

then

g (ha ()‘) * We (Oa 00) ) h (/1‘) * We (Oa 00))

oy (%) N@We@Y (1 5\
= uz(A, p) <52(—)\/M), 52 (A) )k,Z ( N(M)’52(_)\/M)90>k,2,

i.e. for v1, v2 € T(k) - wq (0,60p),

(6.4) o (y1,72) = u2(X (1), X(y2)) - (g X(72)) N(X(72))062 (X(’Yz)))kz

2 ( )
2 (X (73))’ d2 (X (7))
< X(v3) 2 (X (71)) 02 (X(’Yz))> _

k.2

)
X(m)X(72)’ d2 (X (73)) bo

Again it can be checked that for any v1, v2 € G(k) such that X (y3)/(X (71) X (72)) =
—1/N(X(v2)), (6.4) can be applied.

We now look at case (4) of Proposition 6.1, i.e. where

o (ha ()‘) “wg (0, ‘90) y Lo (7“, m) - ha (U) * Wa (Oa 90))

o (o 00k (2)) o (0 (2 ).

We have

X(ha (N) -wa (0,00)) = A, X(za (r,m) - ha (1) - wa (0,00)) = p,

X (o (A) 0 (0,60) - 7 (r, ) i (1) - (0, 00)) = 222,

In all the previous cases, it is apparent that for any 1, v € T'(k) - W, we have

X(v3)/ X (1) X (7y2) € k*. We want to find out if a simplified formula exists and
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be similar to (6.2), (6.3) and (6.4) if

X(ha (A) - wa (0,00) - 24 (r,m) - he (1) - wa (0,00)) _ @ c kX
X(ha ()‘) *We (07 90))X<xoc (T’ m) : ha (/J’) * Wa (Oa 90)) m .

So assume 0y /m € k*. This implies that » = 0 and m € k*6y. By Proposition 6.1

and after simplifying, we have

0 (ha (A) - wa (0,00) ;24 (0,m) - he (1) - wa (0,60))

</\907—/\u> ) A ek
m k.2
pho SN if A ¢ k"
m 03 k2 |
e k™,
Mo N (1) 62 () if A € k¥
m’ Ao ke |
otk
= N(A) o2 (A)m Aubo
(_1,N(/\));€,2'< 02 T )
(2. 20) A R
m by )y ’ |
DYTRSN TaE
5 (1) N (p) 05 (u))
N(A),N(u))o - m)
(N(A) N (1)) 2 (52 (Aubo /) d2 (M) 2
0o 62(N) 6 (1) ) i
N\ =T N o — ) f)\, v)‘ k.
(m d2 (Aubo/m) 00 / 4, - e

For any A\, p € K*, m € k>0, let

. (90 52@)52(/0)&2.

m’ 65 (Aubo/m) bo

Then we have Fy(\, p,00/m) =1 for A\, p € k*, and

o (ha ()‘) *We (Oa 00) y Loy (07 m) : ha (ﬂ) *Wa (07 00))

(/\60, —)\u) , it A pe k™
_ m k2
Fy (z\,u, frol) , otherwise.
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So if
0 </\90,—/\u> ,  Af A pe ks
us (Avua O> = mn k.2
m
(N(A),N(u)), otherwise,
then

0 (ha (A) - wg (0,00) , 26 (0,m) - hy (1) - we (0,00))
o o) o2 ()  N(u)d2(p)\ (o 02(N) 62 (1)
- (/\7% m) (52 (Aubo/m)’ b2 (A) >k,2 (m’ b2 (Aubo /) 00>k,2 '

In other words, if v1 € T(k) - wq (0,600), ¥2 € T (0,m) - T'(k) - wq (0,6p), m € kX6,

then

(6.5) o (71,72)

X(vs (62(X(12))  N(X(72)) 02 (X(12))
) ).,

“3<X(“)’X(”2)’X<71>X<w> 52 (X(m) 8 (X())

) ( X(73) 92 (X (71)) 02 (X(Vz))>
X(v)X(v2)"  02(X(73)) 0o k2

and we observe that (6.5) may be applied to any two elements 1, v2 € G(k) such
that X (v3)/(X(71)X (72)) = 0o/m € k™. (Note that using the properties of Hilbert
symbols, we can show that if 6g/m = 1 or 1/ N (u), then usz(A, u, 0o /M) = u1 (A, 1),
and if 6g/m = —1/ N (u), then ug(A, u, /M) = ua (A, 1))

As we can see, (6.3), (6.4) and (6.5) each differ from each other by a factor, i.e.

if v1, 72 € G(k) such that X (y3)/X (71)X (72) € k™, then we want a function

u'(X(711), X (72), X (73))

(X(W?,) _
X(72)’

X(vl)X(w))k LX), X(). X €

(N(X(7)),N(X(72)))y,  otherwise,

so that

02 (X(72)) N(X(72))d (X(’Yz))>
b2 (X (73))’ d2 (X (1)) k2
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But we have, using the properties of Hilbert symbols,

X(73) B B
(N (X(72)> ~N(X ()X m)))m = (N(X(1)), N (X (12))g.5

for any X (1), X(72), X(v3) € K* such that X (v3)/(X(71)X(72)) € k™. These
remarks bring us to define for any s, t € K*,

(8, =t)) 5, if s, t € k>
u(s,t) = '

(N(s),—N(t)),o, otherwise,

so that we have

(6.6)

(6.6) obviously is only defined when X (73)/(X (71) X (72)) € k™, which implies that
we need to find a different formula for the case when X (v3)/(X (1) X (712)) ¢ k*.

We still have yet to look at
0 (ha (A) - wa (0,00) , xa (r,m) - ha (1) - wa (0,60)) ,

where r # 0. What we first need to do is to find a formula for X(r,m), where
Y(r,m) is as defined in Proposition 6.1. As X(r,m) depends on whether r, m and
—rfy/m lie in the subfield k, we should find a formula which only involves these
three values.

Recall that for (r/,m’) € A (see (2.2)), r' =a’' + b6y, m' = +d'0y, o', V', ¢,
d ek, b, c #0and —1'6y/m’ ¢k,

1.0 b/d/02 N / b/92
(') = (L, O (v =T
k,2 k,2

C

Since ¢/ = — N (r’) /2, this implies that

Sty (2(a'c1’\1+(rlj’)d’98) ’ NIET TS/";)Q(%)M , <N (). 2062 >k .
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Also, we have

)

5 ('):fL 5 1’ _ N (m/)
2 W T\ W 2a'c’ + b'd'62)0y

Thus,

N N (m’) _ N (r')
= = ( N (1) 6 (—r'60/m7) 6y N<m’>93>k2

( ”N<>95<>>

and simplifying the above, we get

In fact, if we let (s1,n1) € A with s; # 0, and

i = (S (58) (s 882)

then we can check that

3(r,m) = F5(r,m)

for any (r,m) € A, r #0.

So this implies that by Proposition 6.1 and (6.6),

(6.7) o (ha (N) - wa (0,00) 20 (r;m) - ho (1) - wa (0, 60))

=5 (1a e (2)) 0 (10 (22 o 0
- () (v B [ (2)

_ (52 (6o/m) N (0p/m) s (Go/m)>k2] . [u ();io)\;rfo>

52 (Ao /1)’ 5 (V)

)

< 82 (1) _N(N)52(N)>
o (Ao /)" 6o (No/T) /1o |

We want to show, for every v1, v2 € G(k) such that X (v3)/(X (1) X (12)) ¢ k*,
that o (71,72) can be calculated using (6.7). We will also find an expression for

o (1,72) only in terms of the bottom row entries of v1, 72 and 3 = y172.
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Assume that X (73)/(X(7)X(y2)) ¢ k*. It is obvious that X (v;) for each

i =1, 2, 3 is never zero. Let

g9 hi j;

Then by the Bruhat decomposition (1.3),

Vi = Tq (_dl,a’l> 'ha < ) *We (0700)'.’17a <h7’7‘71) !
By Proposition 6.1,
dy 1 hy
o (11,72) = a(xa (_1"“) o () e (0,60 7o <17]1> ’
g N 9190 g1 g1
o 1 hy j
Loy <2aa2> h()/ () * W (0,00)1'0/ (2’]2)>
72 92 9260 92 92
1
=0(ha| — | - wau 079 )
( (9190) (9:6o)
hi j dy 1
To (1, ]1> cTq (_2a a2) “heg () * W (0790)>'
a0 732 92 9260

7 hy 1 dy as o hy  dy J hidy a2
xa(r,m)—za — = ZTa|l—=,— | =2 | —"F—=,—F+ —+ — .
9 g1 g2 92 g1 g2 g1 9192 g2

Then we have

* k *k
V3 = * * * ;
mgig2  —Tr9192/92 + mgiha  g1/92 + rg1h2/g2 + mgijo

1 ;((>1);<(72)90
X = = .
(73) WGO m
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Since X (73)/(X(71)X (v2)) ¢ k*, this implies that 6p/m ¢ k>, i.e. r # 0.

Hence we use (6.7) so that

o (52(rx<73>/9<jc<wl>x<w2>>>,N< m ) .

2)
(05572, (o0 535 -+ (- ¥00)
. (52 (X(73)/(X(’71)X(72)))

02 (X (73)/ X (72))

- N(X(13)/(X ()X (12)) 62 (X(st)/(X(%)X(Vz))))
b2 (X(m)) k.2

.<52(X(’)/2)) N(X(72))52(X(72))) .
k2

)

02(X(1s))" 02 (X(73)/X(12))

We could just let 7 = hi/g; — do/gz, but there is another way to calculate r

from just the bottom rows of the 7;’s. We have

79192
g2

g3 = mgige, hsz= + mg1ha,

and rearranging the above,
- hags — h3go
909

Thus our result is proved. 0

REMARK 6.4. Recall that in Lemma 4.10, we established that the commutator

of the 2-cocycle o, on the torus T'(k) was, for A\, p € K*|

Oy (hoc (A); ha (N)) 2 _\—1
Ao, = = (A, n (A -
Since op/? = o, we can calculate the commutator of the 2-cocycle o on T'(k). Since

(s,t)?{/i = (s,t)K2 for all s, t € K*, we have
n 2 ——\—1
Nt =N ull? = (A i) gen - M)k -
But using (3.1) and (3.6), we get

Ao = (N H) ko -



Part 3

The local Kubota symbol



CHAPTER 7

The compact open subgroup on which the

quadratic 2-cocycle splits

We have a 2-cocycle o on G(k), where k is a local field. In the case that k is

non-archimedean, there is a compact open subgroup f‘p on which o splits, i.e.
0|fp = 85,

where k: fp — o is a 1-cochain. Note that x is not quite unique, since it may be
multiplied by a homomorphism f‘p — uo. The function k is called a local Kubota
symbol. In this chapter we shall determine the compact open subgroup fp on which
o splits.

For the rest of this chapter, let k be a local field, and K = k() be the quadratic
extension of k. Also, we will let p denote the maximal ideal of k. p may be odd
or even, depending on k. When K/k is ramified, we will assume that 6 is a prime
element of K.

In addition to unramified and ramified extensions, we will also need to consider
split extensions, i.e. K = k @ k, when establishing the compact open subgroup on
which o splits for a given extension K/k. This is so that we can consider the adele

group in Chapter 8. We will obtain the following theorem:

THEOREM 7.1. Define a compact open subgroup fp of G(k) as follows:

G(Ox), if p is odd and unramified (either inert or split) in K;

fp =3 G(O,00), ifp is odd and ramified in K;
G(Ok,4), ifp is even and split in K,
where G(Ok, by) is defined as in (7.1) and G(Ok,4) is defined as in (7.2). Then o
splits on f‘p.

155



7.1. THE ODD PRIMES 156

The rest of this chapter is a proof of the above theorem.

7.1. The odd primes

K /k is either unramified, ramified or split. We will look at each type extension

in turn.

7.1.1. The unramified extension. In [5], Deligne constructed for any re-

ductive group G over k a canonical central extension
0 — H*(k,Z/n(2)) — E(cx) — G(k) — 1.

In the above, Z/n(2) = u®~2, and in the case that k contains an n-th root of unity,
H?(k,7Z/n(2)) is canonically isomorphic to i, (see 5.4 of [5]).

Suppose now that G is defined over the valuation ring Oy in k. Deligne shows
that when G is semi-simple and simply connected over Spec(Oy) and n is not
a multiple of p, the functoriality for the map Spec(k) — Spec(Oy) reduces to a

splitting

G(Oy)

A

0 — H?*(k,Z/n(2)) — E(cx) — G(k) — 0.

In the case that K/k is unramified, we shall show that G is semi-simple and
simply connected over Spec(QOy), and that Deligne’s extension is the same as Deod-
har’s when n is the number of roots of unity in k. Hence Deligne’s splitting shows

that we may take I, = G(O}) in Theorem 7.1.
LEMMA 7.2. G is semi-simple and simply connected over Spec(Oy).

PROOF. We recall that this means that G is semi-simple and simply connected
both over k and over the residue field Ok /p. The conditions of being semi-simple and
simply connected over a field are unchanged when one passes to a field extension.
It is therefore sufficient to show that G is semi-simple and simply connected over

the algebraic closures k and Oy /p.
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Over k, we have an isomorphism of algebraic groups:
G = SL3.

The same isomorphism holds over Oy /p. To see this, note that for any (O/p)-

algebra A, we have
G(A) = {v € SL3(A®F, Fp2): V' v = J'},

where J' is defined as in Section 1.1. When A is an algebra over the quadratic
extension Ok /(pOk ), the tensor product A ®p, /p O /(PO ) splits into a sum of
two copies of A, which are swapped by conjugation in K/k. Choosing one of these
copies gives an isomorphism G(A) — SL3(A4).

Now since SLj3 is semi-simple and simply connected, it follows that G is also

semi-simple and simply connected. O

Note that when p is ramified in K, the group G over Oy /p is not reductive,

since the radical is

freGiv=1Iz; (P)} C G/(Ok/p),

where P is the prime ideal of K.

LEMMA 7.3. If n is the number of roots of unity in k, then Deligne’s extension

E(cg) is the universal topological central extension.

PROOF. There is a k-subgroup of G isomorphic to SLy, and so we have a

restriction map in continuous cohomology:
H?(SU(2,1)(k), ) — H?(SLa(k), ptn).

Given a map from Ks(k) to j,, we obtain elements of H?(SU(2,1)(k), 1) and
H?(SLa(k), pt,) constructed by Deodhar and Kubota (as well as Matsumoto, see
[11]) respectively. It is clear by inspection that the restriction of Deodhar’s element
to SLa(k) is Kubota’s element. In particular, this restriction map is injective.

We also have elements of H?(SU(2,1)(k), it,,) and H?(SLg(k), 1) constructed
by Deligne. Deligne shows in the commutative diagram 3.9.2 of [5] that the restric-

tion of his element of H%(SU(2,1)(k), i) is the other element. Deligne also proves
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in Proposition 3.7 of the same paper that for a semi-simple, simply connected split
group (such as SLj), his element is the same as Matsumoto’s. This implies that
Deligne’s element of H?(SU(2,1)(k), it,) is the same as Deodhar’s. It follows that

E(c) in the above diagram is a universal central extension. O

7.1.2. The ramified extensions. Let p be an odd ramified prime, and hence
p | 63. This implies that there exists a maximal ideal f C Ok such that pOx = P2
In fact, since K = k(6p), we have B = (0p) by Theorem 3.3 as f is a prime element
of K. We shall write F for the field O /p, which is the same as O /.

By Theorem 3.3, we have O = Ok[6p]. This implies that we can take {1,6y}
as an integral basis.

So we have pOg = PB2. For m € N, let
(7.1) G(OLT™ = (v eGO): v=T (F™).

We know that our 2-cocycle o splits on G(O, YY) for sufficiently large N, and

we will show that we may take N = 1. We have
G(Or) D G(Ok,B) D G(Ok, B2) D ...,
and the quotients are:
G(Ok)/G(Ok, B) = G(Ok /B) = G(F),
G (O, B™) /G (O, ™) = g(F),

for m > 1 and where g is the Lie algebra of G (see Section 1.1). This implies that
|G (O, B™) /G (O, B™ )| is odd since g(F) is a vector space over F.

Proposition 9 of Chapter I of [18] states the following:

PROPOSITION 7.4. Let G be a profinite group and H be a closed subgroup of G,

with A an abelian group on which G acts continuously. Then if (G : H) = n, the
kernel of Res: H1(G, A) — HY(H, A) is killed by n.
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If we put G = G (O, B™), H = G(Ok,‘ﬁm“) and A = ps in the above

proposition, then let o1 be in the kernel of the restriction homomorphism
Res: H*(G (O, B™) , p2) — H*(G (Op, ") , p2).
Writing the group operations in H2(G (O, B™) , u2) additively, we have
|G (O, F™) /G (O, F™H)| - 01 = 0.

But since 2 - 07 = 0, and ’G(Ok,‘Bm)/G (Ok,fpm“)\ is odd, this implies that
o1 = 0. But if our 2-cocycle o splits on G(Oy, BV*1) for some N > 1, our result

shows that it must split on G(Og,BY), hence our 2-cocycle o splits on G(O,B).

7.1.3. The split extensions. In the split case, we have K = k @ k. This
implies that G(k) = SL3(k). The n-fold cover of SL, (k) was studied by Kazhdan
and Patterson (see [8]). They proved (Proposition 0.1.2) that if n is not a multiple
of p then the extension splits on the compact open subgroup SL3(Oj). Since in
our case n = 2, this holds for all odd split primes. Alternatively, one could get the

same result from Deligne’s paper as above.

7.2. The even split primes

Now assume that p divides 2 and assume that p splits in K. As in the other
split cases we have G(k) = SL3(k), and we may use results of other authors on
SLs. For this purpose, choose another number field I/, which is totally complex,
and which has a local completion isomorphic to k. The Kubota symbol on SL3(Oy)
has been studied in [1] in connection with the congruence subgroup problem. The
level at which the Kubota symbol is defined tells us the compact open subgroup on
which the cocycle splits. This level is established in Theorem 4.1 of [1], which may

be paraphrased as follows:

PROPOSITION 7.5. Let m be the number of roots of unity in Op and let u, be
a subgroup of pm,. Then the Kubota symbol k : SL3(Oy,q) — u, is defined at level
q as long as for each prime p dividing r we have

ord,(r) < min
pla

{Zijzggi p i 1] '
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In particular, in the case r = 2 we may take q = 4. This shows that our cocycle

splits at level 4, i.e. our cocycle splits on
(7.2) GOk, 4)={reGO):v=1I5 4)}.

If we have a Kubota symbol k: G(O,4) — 2, then o|go, 1) = Ok. But we
should note that this Kubota symbol is not unique on G(O,4); it is only unique
on

G(Ok,4p) = {V € G(Ok) v=1I3 (4]3)}
This is because G(Oy,4)/G(Ok, 4p) = g(Ok/p), and
Hom(G(Ok,4)/G(Ok, 4p), u2) # 0,
hence
Hom(G(Oka 4)’ NQ) 7£ 07

and any x € Hom(G(Og,4), u2) would make kx another choice for the Kubota
symbol on G(Oy,4). We will only calculate our local Kubota symbol on G(Oy, 4p)

in the non-split case.



CHAPTER 8

Calculation of the Kubota symbol

We will outline the method of calculating this local Kubota symbol in this
chapter. Let L/l be a global quadratic extension. For consistency of notation, we
will be using the same notation as in Part 2, i.e. we have k a local field with K a
quadratic extension of k. Then k = [, and K = L, (with notation as in Section 1.4).
Also, note that in the split case we will use (3.10) to identify an element of ,(6y)
with an element of Ly.

We have p = pj, as the maximal ideal of Q. Let the local Kubota symbol be
denoted by &, and using the notation from the previous chapter, let the subgroup
of G(Oy) on which the quadratic 2-cocycle splits be called fp. This implies that
Kp is a map

fip: Tp — pio,
where s = {1,—1}, and for any g, h € fp,

_ ko (9) Ky (h)

J(gvh) Ky (gh)

This implies that
(8.1) tip (gh) = kp (9) kp (h) o (g, h) .

Thus, for any g € f‘p, since Ky (9)* = 1, we have

(8.2) kp (9°) =0 (9,9).

As noted in Theorem 7.1, fp depends on K/k. Also, in the case where k
is of even residue characteristic, we will assume that the 2-cocycle o splits on
the compact open subgroup fp = G(Ok,4) for every extension K/k. We have
already noted that in Section 7.2 that the Kubota symbol on fp = G(Oy,4) is

not unique, but it is unique on G(Op,8). What we do observe later is that the
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unipotent elements of G(O, 8) are squares of unipotent elements of G(Oy,4), and
it will be shown that the elements of T'(k) N G(Oy,8) are squares of elements of
T (k) NG(Ok,4). This implies that we should use (8.2) on the elements of G(Oy,4)
in order to find the unique Kubota symbol on G(Oy, 8).

In addition, we have already stated in the Introduction that in the case where
K = k @ k, Theorem 6.3 does not completely describe o. Even so, since we are
only interested in elements of G(I) contained in the group G(k), our formula for o
is sufficient to calculate the local Kubota symbol in the split case.

Hence, let us define I, to be the subgroup of G(Oy) which we will be choosing

to calculate the unique Kubota symbol on, i.e.

G(Oy), if p is odd and unramified in K;
G (O, bp), if p is odd and ramified in K;
Ly =4 GO)NG(), ifpisodd and split in K;

G(Og,8), if p is even and not split in K;

G(O,8)NG(), if piseven and split in K.
8.1. The unipotent matrices of the compact open subgroup

We now calculate the Kubota symbol on the elements of N (k) NT, and N (k)N

T,.

PROPOSITION 8.1. Let x4 (s1,n1) € I'y. Then
Kp (o (51,m1)) = 1.
More generally, for any g € I'y we have
Kp (To (51,11) - 9) = Kp (9 Ta (51,11)) = Kp (9) -
PROOF. Since (s1,n1) € A (see (2.3)) where

A={(z,—N(2)/24+th) e Kx K:t€k,(2,—N(z) /2 +tby) # (0,0)},
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for ease of use, let s; = z and ny = — N (z) /2 4 tfy. We first note that

o (z,—N(z) +t00) — 24 (Z NG, w0>2,

2 2’ 8 2

where 2, (2/2, — N (2) /8 +t00/2) € Ty, i.e. kp (2 (2/2,— N (2) /8 + 1y /2)) exists.
By (8.2),

o (o (2 -2 )
—o (o (3-N2 ) (-2 ).

But by Theorem 6.3, we have

o (oo (=X ) 1

Now let g € T'y. By (8.1),

Kp (T (51,11) - ) = Ky (Ta (51,71)) - Ky (9) - 0 (20 (51,11) ,9) -

Hence using the above and Theorem 6.3, we have

Kp (o (51,m1) - g) = Kp (9)-

We can similarly get sy, (g - 2o (51,71)) = Kp (9). O

PROPOSITION 8.2. Let x_q (s1,n1) € I'y. Then

iy (2o (51,m2)) = p (1) - p (—) |

where

(=Tr(s1),N(s160))g o, if Tr(s1) #0;
p(s1) =
1, otherwise.

PROOF. Again, since (s1,n1) € A (see (2.3)), for ease of use, let s; = z and

ny = — N (z) /2 + tbp. We have

N (z) B 2 N(z2)  th\>
T« (Z7 - 2 +t90> =T—q (27 - ] + 7 )
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where z_, (2/2, = N (2) /8 4+ t00/2) € Ty, ie. kp (T (2/2, — N (2) /8 + 100/2)) ex-
ists.
We have three cases to consider: z =0,t#0; 2 # 0, t =0; and z, t # 0.

We first note that z € Og and t € O. If z =0 and ¢ # 0, then by (8.2), we

e 0.0 = (20 (0.5 s (0,2)).

By Theorem 6.3, since

1 tbo 2
X(z_ —— X(eaf0,22)) ==
(m o <07 teo)) te(g) ) (:E « (Oa 2 )) to(g) )

X(z_o(0,t60)) t03
X(1—0(0,100/2)2 4

have

€ k™,

we have

st (R (. ()
_ (1 - <_2>2> .
2’ 032 v ’
and using the properties of Hilbert symbols (Section 3.1), by (3.4) and (3.6),

-3, (), -6,

Hence by (3.3),
(8.3) f%<x_a<mtaﬁ>(1f§:”,1)k2L

If z %0, t = 0, then by (8.2),
(e (1) - 62)

Thus by Theorem 6.3, we have
= NENWY_ 8
“\2" 8  N(2)6’

N (2 2
(o (20) = ~om * (-
X(@-a(z-N(2)/2)) _1
X(z_0(2/2,—N(2)/8)) 4
X(r_o(2,—N(2)/2))  N(2)6

X(7_a(2/2,—-N(2)/8))2 32 ¢k
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(e (G5 - )

8
D28, Cxows) Gvos)
N )

( ‘

'(52(— (2)60/32) N (=N (2)00/32) 62 (—N(z)00/32))
2 (1/4) ’ 2 (—=8/(N (z) b)) k

( (—=8/(N(2) o) _N(8/(N(z)90))62(8/(N(z)00)))
2/(N (2) fo) d2 (1/4) k

)
) :
L ((BEWD _NER)Y (6 neay (s 1
N ’ 16 k2 N (Z) ’ 0o k.2 N (2)2 08 T 16
1 4 16 1 1 4
. <167N(z)29§>k’2. (N(Z)eg’4>k,2' <4’N<Z)9%>k,2.

By the properties of Hilbert symbols, we have by (3.4),

(oo (+-537))
_ <52 (200/4)
0o k,2

L

| <N<z>’ : (98/)) | (64’ 6(98/)) (‘01 ‘1>k,2
.(42,_1> _<_642’1> _<1,_42>
N (z ko N (z)“ 63 16 ko 16~ N (z2)” 62 ko
(

)
16 1 14
N6 4),, \4& N2,

)k,2

, , 5 (20
,—N<z>eo) -(—1,—N<z>9o>k,z'<— (900/4)’116)“
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By (3.6),
o (-0 (-52)) = (20 e 0(%)&2 (L-N)B),,
(o), e,
and by (3.1),

k,2

(a7xe), Cra)l,

This implies that by (3.4),

kp 20 | 2, _NG&)
p <<52 (Z<90/4) 2N?z)) 92>
a ) ’ ’ k,2

_ (52 (59900/4),_1\1 () 93>k72 . <_ %2 (;)/Z),N(Z)LQ.

If a, b, c € k*, d € K*, we have by (3.4), (3.6) and (4.6) that

<b52 (d/c?) ) <652 (d/c?) ) (b,a)y 5, if d € k%
77a p— 77a —
fo k.2 c290 ) (b(52 (d),a> ’ ifdgf X
fo k,2

But since 05 (d) = 0y when d € k*, the above implies that

boy (d/c?) (65 (d)
(84) <00aa> oo - <907a> k727

for any a, b, ¢ € k* and d € K*. We should also note that if instead we have
a =N (e) for some ¢ € K*, and ¢ = ff for some f € k*, with b, d remaining the

same, we have by (8.4) and (4.6),

( 00 aa>k,2 = ( 90 ’N( )>k’2

(b:N(e))y.a> ifd e k%

(b62 (d) B0, N (€))y o, ifd¢ k™.



8.1. THE UNIPOTENT MATRICES OF THE COMPACT OPEN SUBGROUP 167

But since by (3.7) and (3.6),

(652N (e))k,2 = (190—2,6)&2 =1,
this implies, for d ¢ k>, that by (3.4),

(8 )80, (€)= (0 () 00.N () (52N (), , = (“2 N G))

Thus we have

bz (d/(f00)?) . (b2 (d) .
(35) (eo ’N()>m< ! ’N”)m

for any d, e € K*, b, f € k*.

Using (8.4) in our equation for k, (x_q (2, — N (2) /2)), we have

(8.6)

o (e ()

(B vem) | (Fa7 ),

(‘52 (ZOHO),N (290)>k72 : ( % (;O/Z)N (Z)>k,2 :

We now consider the case z, t # 0. Since

T q <zN§Z) +t00> =Z_q <Z,N;Z)> x_ (0,t00),

and z_q (2,—N(2) /2), -4 (0,t6y) € T'y, we have, by (8.1),

e (o2 )
= Ky (x_a (Z —Ngz)» Fip (T (0,100))-0 (x_a (Z —Néz)> T (o,teo)) .

Consider o (x_q (2, —N(2) /2) ,2_, (0,t6y)). By Theorem 6.3,

X (xa (z,—N;Z))> = —N(j) 5o X (e (0,100)) = —wl%?
)

X(z_o(z,—N(2) /2 +tby)) _ N (2)t63 ¢ 1"
X(z_o(2,—N(2)/2)) - X(x_q (0,t0)) N (z) + 2tby '
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This implies that we have

N (2) L0 (=N(2) /24 t0y) — (—7) -0y 2
<”” ( 2 )’x“"(o’“’“) CNG DB &

so that

o <x_a <z Néz)> T (o,t90)>
- (- (-F (-Forvmm) o (- (Rorvem))..
( () Q/z)kz' ( Né)eo’N(;tiOzeo)

2t0y 2
”(N( )+200" (N(z >+2t90>90)
_ <52 (=N (2) t62/(N (2) + 2t6p))

s ( ’

2t90/(N (Z) + 2t90))

N (=N (2) 103/ (N (2) + 2t00)) 3 (— N (2) 103/ (N (=) + 2160))
b2 (=2/(N(2) b)) Lo

. 52 (~1/(163)) N (~1/(t63)) 52 (~1/(t63))
(—2/(( )

N (2) +2t00)00))" 82 (2t0o/(N (2) + 2tf))
_( 2zt03 1, 4N(2)t*6} - 4 65(2/2)
a < ” (N (2) —|—02t00> % N(N(z) + 2;)90)>k,2 (N (2)7 o )k-,2

4 44262
N (2)? 62" N (N (2) + 2tty) o

(revietsy o) ()
N (N (z) + 2t0y) " N (N (z) + 2tb,) 63 k.2 02’ 2

. ( N(2) 4N (2) )
N (N (Z) + 2t90) "N (N (Z) + 2t90) t@% k.2

—N(z)/2)), we can simplify the above

Similar to the calculation of k, (z_q (2,

using the properties of Hilbert symbols. After simplifying, we get

; (xa (Z _N§Z>) o (o,teo))

B <_62 (N(j)zj-eg?t@o) ;70’ N(N g)(i) 2t90)>k,2 . <_52(;0/Z)’N(Z)>k72.
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Inserting this result into our equation for k, (z_q (2, — N (2) /2 4+ t6y)) along with

(8.3) and (8.6), we have

o (oma (- )
- (R em), (G ), |

(o (55) & vt ), (2020),,

)

Thus simplifying the above using (3.6), we have

(8.7) Ky <x_(, (z —Né’z) +t90)>
- (g (29°)>k,2 (5o fzw) TN 2wo>>k,z |

Recall that we had put s; = 2z, ny = —N(2)/2+tby. If t # 0, ie. ny #

—N(s1) /2, by (8.7) we have

o tonm) = (2@ NEw) (-0 () k)

)

But by (8.5) and the properties of Hilbert symbols, the above becomes

Let (s',n’) € A (see (2.3)) such that s’ # 0. Also, let ¢’ € k* and

(= () ivi),,

52 (760)

F(s',n',t) = <00,N (8’90)>

k,2

This implies that

(oo (X )} = 2 (2 )

and in fact, it can also be checked that

Ko (a:_a (z,—Néz)» —F <z,—Néz),1) .
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We will now look at the function F' more closely. Let (s1,n1) € A, where

51 # 0, and ©_q (s1,n1) € T'y. We have

85 (5760) 1, if 576y € k*;

0
0 (—s100 — 5700) /00, if 5100 ¢ k>

1, if Tr (s1) = 0;

—[Tr(s1)62] ", if Tr(s1) #0.

By using (3.1) and (3.7), this implies that

(52 (5160) 1, if Tr (s1) = 0;

% ,N(5190)> =

k.2 (—TT(Sl),N(Sleo))k’z, lf’I‘I‘(Sl) 7& 0.

Let t € k. Then

5 < 51t> t —1, if s1t/m1 € kB
—02 | —— | 77— = __,1-1
n 90 Slt Slt t e x
{ - + n] B’ if syt/my ¢ k
—t, if Tr (—s160/n1) = 0;
- —516, -t
- {Tr (n“’ﬂ . if Tr (—s100/n1) # 0.
1

This implies that
(= () & ~om)
_52 p— o
n1 90 N(nl) k2
s\ 2
(—t, (1) > , if Tr (—s16p/n1) = 0;
ni
k.2
S 90 -1 S1
- [Tr (—1)] ,N () , it Tr(—s160/n1) # 0.
ni1 nq
k,2
Thus by (3.4), (3.1) and (3.6), we have
(= () ax)
_62 p— 7
ny 00 N(nl) k2
1 if Tr (—Sleo/nl) = 0;

— 2
< Tr (3190) N (3190)) . iE T (—s160/m1) % 0.
ni ni k,2

)
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Hence, we have

F(s1,n1,t) =p(s1)-p (—8190) ;

ni
where

(= Tr (81),N(3190)),€727 if Tr (s1) # 05
p(s1) =
1, otherwise.

Note that p and hence F is independent of ¢; therefore, since

o (o (2 X)) o (s 200),
o (oo (22 ) = (552 )

for z # 0, t € k*, we may combine the above result so that for s; # 0,

5160

o ma sr0m) = p(s0) (22,

n

We also note that when s; = 0, the above formula for s; # 0 is still applicable.

Thus our result is proved. O

REMARK 8.3. Note that we also have

o (25 ) e 0t (- 52),

since x_,, (0,tfp) is a central element of N(k). We can use Theorem 6.3 and the

properties of Hilbert symbols to show that

o(x_a(2,—N(2)/2),2_4(0,t0))
0 (20 (0,t0) ,2_o (2,— N (2) /2))

=1

This implies that we will ultimately get the same result if we had chosen to calculate

Kp (T—a (2, =N (2) /2 + t0y)) by using (8.1), so that

(e (58 )
= kip (7o (0, 100)) K (x_a (z Néz))>'o <x_a (0,100) , 7—a <z N;”)) .
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8.2. The elements of the torus

In this section, we want to find the local Kubota symbol on the elements of
T'(k) NT, which we will denote by T.

We have two cases to consider, depending on whether there are matrices in I'y
whose (3, 1)-entry is a unit.

We know that when p is odd and ramified in K, or if p is even in K, then the
(3,1)-entry is never a unit in Og. This implies that the Bruhat decomposition (see
Section 1.2) of an element of I'y, when the (3, 1)-entry is non-zero in these cases will
be a product of elements which are not in I', (see (1.3)).

When p is odd and either unramified or split in K, this does not pose a problem,
and we can use the Bruhat decomposition in these cases. We also note that in G(k),

we have from Section 2.1 that for any A € K*|
(8.8) ha (V) = wa (y(X), 61 (A) - wa (0,82 (V) ™,

where

0, if Aek™;
y(A) =
1, otherwise.

As p is odd and either unramified or split in K, this implies that 2, 8y € O, hence
there exists A € K* such that h, (\) € T where d (\) € O, since 5 (\) € k> .
Therefore wq (y(A), 61 (A)) and wq (0,92 (A)) € Ty.

PROPOSITION 8.4. Ifp is odd and either unramified or split in K, then we have
wq (0,b00) € Ty, where b € O, with
Kp (wa (0,b6p)) = 1.
Also, if a € Oy such that —1/2 + aby € Oy, then w, (1,—1/2 + aby) € Ty, and
Kp (o (1,—-1/2 4 aby)) = 1.

PRrOOF. For any (r,m) € A, we have, by (1.2) that

oo (o

3=
313

b

3|

).

Wy (1, m) = Ty (r,m) - T_g (
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This implies that if z, (r,m), _o (7/m,1/m) and z, (rm/m,m) € T'y, then we

have wq (r,m) € I', and by Proposition 8.1,

o 1) = (-0 (£ 2) )

Since x4 (0,b0p), x_qo (0,—1/bby) € T, for b € O}, by Proposition 8.2,

e o 00) =y (e (0,2 )) 1.

Also, for a € Oy, with —1/2+ afy € Oj, we have the elements z, (1, —1/2 + ab)) ,

T_a (—2/(1 +2aby),—2/(1 + 2aby)), zo ((1 +2aby)/(1 — 2aby), —1/2 4+ aby) € T,

1L han)) = 2z 2
Fp(Wa Ty Ta0 ) )= \ T \ "1 900, 1+ 2a0, ) )

So by Proposition 8.2, we have

1 2 2 20,
all—=+at)) = (- (- - N0 1
e (w ( 2+a°>> ( ( 1 + 2af, 1—2a90) ( 1+2a90)),€,2

B 4 ag
o N(1+2a90)’ N(1+2a90) k,2.

hence

By (3.4), (3.7) and (3.6),

Ky | w 171+a9 = 1 — 1
PO 2 7)) T AN (1 +2a60)” N(1+2a60) /.,

and thus by (3.2),
1
Kp (wa (1, —3 + a90>) =1. O

PROPOSITION 8.5. If p is odd and either unramified or split in K, then for

A € OF such that he (\) € T, we have

(a,b)kﬂ, ifA=a+0bby, a,b#0 and b ¢ O);
kp (ha (X)) =

1, otherwise.

PROOF. We first assume that for A € O, hy (\) € T, we have 65 (\) € O%.
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If X € OF, then this implies that d; (A\) = 6y € Oy, hence we have, by (8.8)

and (8.1), that
Ao (ha (V) = Ry (1w (0,760)) - 5y (1 (0,60) ™) -7 (wa (0,70) e (0,60) ")
By Theorem 6.3, we have
7 (wa (0.300) ,wa (0.60)") = (Al A(l)) = (M Vg
hence by (3.2), we have
o (wa (0, Mo) , wa (0,90)*1) -1

Thus, by the above and Proposition 8.4, we have

Ky (ha (X)) = 1.

If A € O 0y, then 05 (X)) = —1/(2)\) € Of. By (8.8) and (8.1),

i ) = sy (10 (1,-3) ) (w (0—;)>

1 1 !
ol wel1, ,We | 0, 5\ .
By Theorem 6.3, we have

oo (g5 )
oo 18) (o)
(i (o) (2

_ ( d2 (A) _ N (1/(2X8o)) 62 (1/(2)\90)))
k.2

b2 (1/(2X60))’ 62 (—1/(260))
_ ( A 2 (—1/(26p)) 02 (1/(2)\90)))
(—1/(260))(1/(2\0))’ d2 (A) bo k2

1 1 1)’
AN\ —— — B
( (Ao, 16N()\)9§>k’2 ( 20, (meo) )H

- (—4N203, —2)0p), -
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Simplifying the above using the properties of Hilbert symbols (3.4), (3.2) and (3.6),

(o))

Thus by the above and Proposition 8.4,

we get

iy (ho (V) = L.

If X\ =a+bby € O such that a, b € £ and hy () € T, then &, (\) € O

when b € O;°. So assume that b € O;. By (8.8) and (8.1),

1 a 1 \!
b 0= 0 (o (15 = 55)) o (e (03
1 a 1 \7!
-0 (wa (1,—2 - 2boo> s, Wey (07_2beo> ) .
Then by Theorem 6.3,
Ll a o 1\
T\ T2 T 2, )\ T 20
A 1
o (o (o5 e (05
. A A 1
1/(260%)" \ 2602 ) \ 20032

. 52 (\) N (1/(2663)) 62 (1/(2063))
da (1/(2663))’ da (—A/(2063)) -

' A 82 (—/(2002)) 62 (1/(2663))
(—A/(20605))(1/(2b63)) d2 (A) o o

N ()\) 1 1
AN (N V260F, ———L B (R (. (—4b%6%, —2002), ..
( () 5%, 16b49§>k,2 ( 2b05” (2b93>>k,2 ( v O)k’2

Simplifying the above using the properties of Hilbert symbols (3.6) and (3.4), we

Ll e R T T
TN\ 79 7 apg, )\ T 20, -

Hence, by the above and Proposition 8.4,

get

fp (ha (A)) = 1.
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If b ¢ O}, then a € O] since A € OF. But we already know that
Kp (ha (b+a/bp)) = 1.

Since

ha (N) = ho (b+a/bp) - ha (60),

by (8.1),

By Theorem 6.3,

82 (60)’ d2 (A/6o)

o (ha(b+a/by), ha(00)) =0 (ha (
< ,A) . (52 (A) N ()02 (90))“

By the properties of Hilbert symbols (3.1) and (3.2), we have

0 (ha (b+a/bo) , ha (0)) = (a,b)y 5 - (=05, =N (X)), , -

)

But the characteristic of the residue field O /py is not 2. Thus we may use Propo-

sition 3.1, as —63, N (X) € O, so that we have

(=05, - N(V),, =1

)

Applying the above to our equation, we get

Kp (ha (A)) = (a, b)k,g .
This completes our proof. ]

REMARK 8.6. We should note that if p is odd and either unramified or split in

K, then from Propositions 8.4 and 8.5, we have that T is generated by elements of
N(k)NG(k) and N(k) N G(k).

We now look at the cases where either p is odd and ramified in K, or p is even

in K.
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PROPOSITION 8.7. If p is odd and ramified in K, or p is even in K, then if

ha () € T, there exists ho, (n) € T(k) NTy such that ha (\) = ha (1), and
o (ha (V) = 1.

PROOF. We first consider the case where p is odd and ramified in K. In this

case, Ty = T’y = G(O, p). Thus elements of 7' may be described by

1+ N6 0 0
ha (]. + )\/00) = 0 (1 — YQO)/(l + /\/00) 0 ’
0 0 (1—N6)™*

where X € O. We want to show that for every M € O, h, (14 N6)) is a square

of an element in 7. We will use Hensel’s Lemma, (Theorem 3.5). We have
F(X) = X? = (14 XNb) € Og[X],
and hence the formal derivative f'(X) is
f(X)=2X.
Let the prime above p in K be denoted by 3. Then by Lemma 1.2,
FWlp = [-N(M)63], <1,
F W)y =22], = 1.

This implies by Hensel’s Lemma that since |f(1)|p < [f'(1)[3, there exists a solu-

tion for f(X), i.e. there exists a € Ok such that

|f ()]
L/ (V)]s

fla)=0, Ja—1llp<
We have by the binomial theorem that for any A\’ € O,

(1+N6p)/2 =1+ /\/290 + (1/2)(;{2 —1. (XN6o)* + - -

and
N,
2

|f(1)]qp
s POl

1—-(1+ A’Go)l/Q‘ — ’
P




8.2. THE ELEMENTS OF THE TORUS 178

thus by Hensel’s Lemma, this expansion converges. Hence, there is a canonical
choice for 1+ p/'0y, y/ € Ok for every 1 + N6y, N € Ok such that 1+ N6y =
(14 1/6p)?, and hence

o (14 N0o) = ha (1+ 1'60)°

where hq (14 p/00) € T
As for the case where p is even, I'y = G(Oy, 8), f‘p = G(Of,4) and the elements

of T’ are of the form

148X\ 0 0
ho (1+8X") = 0 (1+8N7) /(1+8)\") 0 ;
0 0 (14837) "

where N’ € Ok. Similar to the case where p is odd and ramified in K, we will
use Hensel’s Lemma to show that every element in T is a square of an element in
T(k)NT,. We have

Fi(X) = X% = (1+8)X7),
with formal derivative

f(X) = 2X,

Let B be a prime ideal in K such that P | p. By Lemma 1.2,

D]y =[N Q)] =[2°N )],

Al =2,

thus we have |fi(1)[p < [fi(1)[5. (Note that for the split case we will use the
isomorphism (3.10).) This implies by Hensel’s Lemma that there exists a solution

for f1(X), i.e. there exists b € Ok such that

LB =0, p—1lp< AWlw

[F1(D)lsp

By the binomial theorem, for any X\’ € O,

(1 —|—8)\H)1/2 =144\ + (1/2)(12{2* 1) (8)\//)2 NI
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and

1)|gp
1—(1+8) /20— 4\ < |f1( 7
8Ty = W = T

so by Hensel’s Lemma, the expansion converges. So there is a canonical choice for

1+4u", u" € O, for every 14+8)\", X' € Ok, such that 1+ 8\ = (1 +4u")? and
o (14 8N') = hg (1+4p")? .

So this verifies that h, (14 4u”) € T(k) N Ty

Now that we have established that every element of Tis a square of an element
in T(k) N f‘p, let us now calculate the local Kubota symbol. Whether p is odd
and ramified in K, or even, let hy (\) € T and h, (1) € T(k) N T, such that
ha (A) = hg (1)°. Then by (8.2),

fp (ha (A) = 0 (ha (1), ha (1)) -

There are only two cases for p to consider: either p € k*, or p = c¢+dby, ¢, d € k.

In the first case, we have

by Theorem 6.3. Simplifying the above using the Hilbert symbol property (3.2),

Kp (ha (A)) = (1, _1>k,2 :

This implies, in the case where p is odd and ramified in K, that u = 1 + b2,
where b € Ok. By Hensel’s Lemma, X2 — (1+b632) has a solution with approximate
root 1. Thus 1+ b2 is a square in k>, hence by the property of Hilbert symbols
(3.6),

Ky (ha (N)) = 1.

In the case where p is even, if u € k™, then u = 1+ 4a’ for @’ € O. Thus we

have

wp (ha (N) = (1 +4ad’, —1), 5.
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If 1 +4a” € 1+ 80, then 1+ 4a’ is a square in k* (we showed this is true by

Hensel’s Lemma earlier in the proof ) and hence by (3.6),
(I+4d', 1), =1.

If 1 4+ 4a’ ¢ 14 80, we can show that (1 + 4a’, —l)k’2 =1 as well. In Section 3.1,

we established that
(a,b),, =1 <= aX?+bY? — Z° = 0 has a non-trivial solution (X,Y, Z) in k.
By (3.3),

(1+4d',~1), 5 = (1 +4d’,—(1 = (1 +4a"))); 5 = (1 +4d,4d"), , .

Since we have a solution (1,1,\/1 +8a’) for (1 +4a’,4a’)k’2, this implies that
(1+4d’,-1),, = 1 for all ' € Oy. Therefore for all elements of the form

ho (1+4d'), a’ € O, p even,
o (ha (V) = 1.

If u ¢ k™, then u = ¢+ dfy with ¢, d € k* and by Theorem 6.3,

; 02 (1*) N ()2 (n)
fip (ha (V) = u ( 2=, 2 ( - )
F <M ) v

da (p) da (1)

= (N (u)rN(u)z)k)2 : (2107—N(u)>

Simplifying the above using the properties of Hilbert symbols (3.1) — (3.4),

k,2

Kp (ha () = (N (), _Qc)k,Q (e, _1)k,2 .

When p is odd and ramified in K, p = 1+ (a+b6p)by, for a, b € Oy, with a # 0.
Thus ¢ = 1+ b3 € O;°. By Proposition 3.1, since N (1), —1, 2, ¢ € O}, we have
(N (u), —2¢)y, 95 (2¢, —1);, 5 = 1. Therefore we have £y (ha (V) = 1.

When p is even, we first consider the case where O = O[fp]. Then p =

1+ 4(a' +V'6p), for a’, ' € O with b’ # 0. This implies that ¢ = 1+ 4a’ € OF.

We have already shown that (1 +4a’, —1), , =1 in the case where p € k. As for
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(N (1), —2¢)y, 5, we see that N (u) € 1+ 80y, i.e. N(u) is a square in k. Hence
by (3.6), (N (1), —2c),, 5, = 1. Therefore 5, (ha (A)) = 1.

If instead O = Ok[(1+6)/2] when p is even (i.e. p is unramified in K'), then
we have

1+6
,u:1—|—4(a'+b’ {J;OD =1+ 4a’ + 20 + 2V'0,,

where a’, V' € O with b’ # 0, with ¢ = 1+4a’ 42V, and d = 2b’. This implies that
when b/ ¢ O, i.e. 2|V, we are in the same case as when Ox = O[], since ¢ = 1
(4), which implies that (¢, —1), , = 1 by our previous result, and N (u) € 1+ 80y,
so (N(u),—2¢c), o = 1. Hence when 2 [ V', kp (ha (X)) = 1.

We can use the properties of Hilbert symbols (3.3) and (3.4) to show that

Kp (ha (A)) = (N (), _1)k,2 (2¢,—N (N))k,z :

The above formulation makes it easier to calculate the Kubota symbol in the case
where 0" € O;. We have N () =1 (4), hence (N (1), —1), , = 1. Also, N (u) =5
(8) and c = —1 (4). Solet N () =5+8e and c = —1+44f, where e, f € O. Then
by (3.3),
(2¢, =N (1)) ,2 = (2¢, =(1 = 2¢) N () 5 -

But

—(1=20)N(p) =-(3-8f)(5+8c) =1 (8),
ie. —=(1—2¢) N () is a square in k™, and hence by (3.6), (2¢, =N (u)); , = 1. Thus
we have shown that

kp (ha (V) =1

in all cases. O

8.3. Other elements of the compact open subgroup

We are now ready to show how to find the local Kubota symbol on any element
of I'y.

By (1.3), it is clear that the Bruhat decomposition of a matrix of G with a
non-zero (3, 1)-entry depends only on the first column and last row of the matrix.
The following proposition establishes an important property of this type of matrix

when p is odd and unramified in K:
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PROPOSITION 8.8. Let p is odd and unramified (but not split) in K. Also, let

a, b, c,d, e e Ok, such that

ac+ac=—N(b), ec+ec=—-N(d),

and
ad b bd ¢ be d ae bd 1
T S
¢ ¢ ¢ ¢ ¢ ¢ ¢ N
Then
a ad/c+b/c ae/c—bd/(N(c))+c !
B=1b bd/c—¢/c be/c+d/c €Ty,
c d e

and either ¢ or e € OF, or possibly both.

PrOOF. The first part is easily established by (1.3). As for the second part,

consider the Hermitian form (—, —) defined by

00 1
(wvy=u'fo 1 0]w,
10 0

where u, v € K3. This implies that for all v € SU(2,1)(k),

<'7ua ’7v> = <u7 V).

If
Ul U1
U= luy |, V= |vy]>
us V3
then

(u,v) = uz?1 + u2Vz + U3,

Since
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if p| ¢, then p | b. Similarly, since
ae/c—bd/(N(c)) +c 1 ae/c—bd/(N(c)) +e !

be/c+d/c ) be/c+d/ec > =0,

(& e

if p|e, then p| (be/c+d/c), ie. p|d.
For any A € O%, pt A\, As

a ae/c—bd/(N(c)) +c* 1 0
< bl be/c+d/c >—<5 0l.6810 >
c e 0 1

1 0
()

0 1
=1

if p|candp]|e, then p |1, which is a contradiction. Hence either ¢ or e is a unit

in Ok, or possibly both. O

In the split case, i.e. when p is split in K, we have to consider the fact that
sometimes, none of the entries in the bottom row of an element in I'y is a unit.
This does not occur in the other cases. The proposition below shows the existence
of a transformation to a matrix of this form so that the resulting matrix has a unit

in the (3, 3)-entry.

PROPOSITION 8.9. Let p be a split prime in K. If

a b ¢
d e f| €Ty,
g h J

with neither g nor j a unit in Ok, then there is always an element x, (s1,n1) €

(9 h j)'wa(shnl):(g n j’)

N(k)NT, such that
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with j' € Of.

PROOF. Let pOg = p1p2, where p1, po C Og. We first note that g, h and j
are coprime to each other, by the same principle as in the proof of Proposition 8.8.
If p | g, then without loss of generality, we may assume that py | h, which in turn

implies that p; 1 j. Using the Hermitian form from the proof of Proposition 8.8,

since
g g
< hil:|h >=gj+N(h)+gj=07
J J

and p | N (h), we have that po 1 j, i.e. j € Ok.

Now let g, j ¢ O, with py | g, p2 f g. Assume that p; | k. Then p; { j, and
this implies that po { j. But p | N (h), hence p | Tr (g5), i.e. p2 | Tr (¢7). Therefore,
since ps 1 gj, we have po { gj, and hence po { j (since ps | g). But this means that
J € O since j is a unit mod p; and mod po, which contradicts our assumption
that j is not a unit in Og. Hence if p; | g and ps 1 g, then p; 1 h.

Since g is a unit mod ps and h is a unit mod p;, we can always choose a 2’ € K

(o0 ) ()= e )

with A’ = gz’ + h a unit mod po, i.e. B’ € O. So now we have p { N (h’), hence

such that

ptTr(gji). Sopit(gji+gj1),ie. pitgji. This implies that py {ji, ie. ji is a

unit mod p;. So we can choose t' € O, such that

(g W jl)'ma(oat'90)2<g h' j/)>

with j/ = (#'6p)g + j1 a unit mod pa, i.e. j' € OF.

Therefore we can always choose some z, (2',—N(2') /2+1t'6y) € N(k)NT,

o)) o v ),

with j/ € OF%. O

and

With the above two propositions, we can now show how to obtain the local

Kubota symbol on any element of I'y.
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THEOREM &8.10. Let

Then

(7). d9=0
). 9 €O

kp (7) = i (ha (7)) - 1o <x—a (Zl j))

.g(ha (j_1>,ha <g‘790>) ifg#0,9¢ Ok.

If p is split, then when both g and j are not units in O, we can always choose

some T4 (s1,m1) € N(k) NIy such that
(g h j) Ty (51,m1) = (g ' j’) ;

kp (V) = Kp (7 2o (51,11)),

with j' € Og. Then
and we may apply the above to Ky (- T (s1,11)) to calculate our result.

PrROOF. Consider the case where g = 0. By (1.4),

v=ld e f|=ha(i") 2 (i),
g hj

hence by Proposition 8.1,

o= 1 (7))

As noted at the start of Section 8.2, we will only have g € O} when p is odd
and either unramified or split in K. In this case, zo (—d/7,a/g), ha ((g00)7"),
zo (h/g,j/g) € Typ. Therefore, since by (1.3),

7= (<52 ) o (@00 0.60) - (2.2,

gy 9’y
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by Proposition 8.1,
kp (7) = £y (ha ((900) ") - wa (0,60)) -
Hence by (8.1),
kip (1) = #p (ha ((§00) 7)) - Kp (wa (0,600)) - o (ha ((§00) ") s wa (0,60)) -
So by Proposition 8.4 and Theorem 6.3,
kp (7) = #p (ha ((900)71)) -

If g#0, g ¢ O, then j € O in most cases by Proposition 8.8 (we deal with
the case g, j ¢ O later in the proof). Also, using the Hermitian form established

in the proof of Proposition 8.8, we have that

< hl|h > =gj+N(h) +3j =0.
J J
We now have a few cases to consider. We will use the notation in Section 1.3. If p

is odd and unramified in K, then since p | g, this implies that p | d and p | h. Thus,

we have a = p and

v € G(Ok)o(p) = N(Ok) - T(Oy) - N(p).
If p is odd and ramified in K, we already have that a = (6y) in Proposition 1.1, and

Ly = G(Ok)1((60)),

which implies that there exists an Iwahori factorisation of I'y, with

Ly = N((6o)) - T((60)) 'N((Qo))~
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If instead p is even, we have a = (8) in Proposition 1.1 and
Ty = G(OR)1((8)) = N((8)) - T((8)) - N((8))-

So we have an Iwahori factorisation for all elements of I', with g # 0, g ¢ OF.

Hence, we have

with zo (—f/7,¢/4), ha (3_1), 2_o (=h/j,g/j) € Tp. This implies that by Propo-

sition 8.1,
——1 h g
Rp\Y) =K ha J T (_‘7->)7
b0 = (1o (77) ¥

and by (8.1) and Proposition 6.1,

= o) o (52)) 60 3):

We have one last case to consider. We have already noted that there will
be elements in the split case where all the bottom row entries are non-units. By
Proposition 8.9, we can apply a transformation by multiplying the matrix on the

right by a unipotent upper triangular matrix z, (s1,n1) € Iy, so that
(g h j> “Za (s1,m1) = (g % j’)
with j' € O). But by Proposition 8.1,

Kp (7 Za (51,11)) = Ky (7) -

Hence we can use the calculation on ky, (7 - Zq (s1,11)) to get Ky (7).

This concludes our proof. O



Part 4

The half-integral weight multiplier

system



CHAPTER 9

The global Kubota symbol

As previously stated in the Introduction, in order to construct the half-integral
weight multiplier system, we need to calculate the global Kubota symbol k. In
Section 3 of [10], the global Kubota symbol on a chosen arithmetic subgroup of
GLy(F) for some field F' was given in terms of quadratic Legendre symbols. We
want to write down a similar formula in terms of quadratic Legendre symbols for
our arithmetic subgroup.

Let [ be an arbitrary number field, and let p run through all the primes of [.
Let L be a quadratic extension of [, so that the matrix entries of an element in G(I)
lie in L. On the arithmetic subgroup I' = [[, I'; N G(I), we have

(9-1) r(v) = 11 # (),

p<oo
for v € I'. Unfortunately, with our formulae for the local Kubota symbol x, (see
Theorem 8.10), it is difficult to find a “nice” formula for the global Kubota symbol
for all elements of I'. What we can do is find a formula on the Borel subgroup of I"
(i.e. the group of upper triangular matrices of I'). Recall that for elements a,b € O;

with b coprime to 2a, the quadratic Legendre symbol is defined by

(%)l y H(CL, b)i, 2

’ plb

We have the following proposition:

PROPOSITION 9.1. Let

I g h
0 f/f —g/f|er
o o F!

189
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Then
b .
[y h ((I)m Mpjoo(@by20 if f = a+ 0y,
k{10 f/f —g/f = el b o,
Y 7_1 L otherwise.

ProoF. Using (9.1), we have by Theorem 8.10 that

f g h
sl o Fir —g/f| | = 11 s (ha (1))
o o F e

But by Propositions 8.5 and 8.7, if f € [, then &y (ho (f)) = 1 for all p. In this

case, we have

f g h
k1o f/f —g/fr||=1
o o TF!

In the other case, f ¢ k>, i.e. f =a+ bly, where a, b €l and b # 0. Then if p

is odd, and either unramified or split, Proposition 8.5 states that if b ¢ (’)lx‘07

kp (ha (f)) = (a, b)lp,2~

Otherwise, ky (hq (f)) = 1 by Propositions 8.5 and 8.7. Hence by (9.1), we have

g h
sl {o Frr —a/r || = 11 # (ha () = TT(a: b, 2,
0 0 771 p<oo plb

where the product is over all p which are unramified or split. Hence by the product

formula (Theorem 3.2) and (3.1), we get

f g h
sl o F/r —g/r || =110 =T1@b), 2
0 0 ?—1 pfd ptb

There are now a few cases to consider for each p 1 b:
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e If piseven, since a = 1 (8), this implies that a is a square in I, by Hensel’s
Lemma (Theorem 3.5), hence (a, b);, o is trivial by (3.6).

e Suppose p is finite and odd. Then the Hilbert symbol is the tame symbol
(Proposition 3.1). In this case if p { a, then we also have (a,b);, 2 = 1.

Thus we are left with the finite primes p which divide a and the infinite primes.

Our equation becomes

I g h
sl o Frr g/ | | = 1@b2- T](ab), 2
0 0 ?—1 pla ploo

We can now use the quadratic Legendre symbol formula on the above, hence

g h ,
w0 7 s || = (2) @b,
0 0 f—l % ploo

Thus our result is proved. O



CHAPTER 10

A section for the 2-cocycle on SU(2,1)(R)

Let k =R, 6y = v/—d for some positive real number d. Thus, K = k(6) = C.
We shall determine a section for the 2-cocycle on SU(2,1)(R) = G(R) as described

in the Introduction. Recall that we have a Hermitian form (—, —) on C3 defined by
0 01
(wvy=u"l0 1 0|7,
100
and we let

X~ ={[] €P*(C): (v,v) <0}

T1

| €P?(C): N(72) + Tr(m) <0

1

Here [v] means the image of a vector v € C? in projective space. We want our

modular form to be defined on

He = €C?: N(r)+Tr(r) <0
T2
71
We will use the abbreviation 7 = for an element of H¢. Let
T2

g11 G912 913
9= (9ij)1<ij<3 = | ga1 go2 g0z | € GR),

g31 G932 gs3
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and let

This implies that

A B
(10.1) g=
Note that
-
g e X

1

Hence, we have
. AT+B| &t5
1 Cr+D 1

and in particular CT 4+ D # 0. So we can define an action of G(R) on H¢ by

B AT+ B

9(r) = Cr+D’

(Note that C't + D is a scalar.)

We will write G(R) for the connected double cover of G(R). Note that the
fundamental group 71 (G(R)) is isomorphic to Z, so there is a unique connected
n-fold cover for any n.

One way of constructing the group G(R) is as follows: the elements of G(R)
are pairs

(9, 9(7))

where g € G(R) and ¢ denotes a continuous function on H¢ satisfying
¢(r)?>=Cr+D.
For two elements (g1, ¢1(7)), (g2, p2(7)) € G(R), we define their product by

(91, 81(7)) - (92, 92(7)) = (9192, $1(92(7)) P2(T)) -
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(Later, we will show that G(R) truly is the unique connected double cover of G(R).)
Recall that we also have another group which we have been referring to as G (R),
and which is defined by the 2-cocycle 0. We will now relate these two constructions
of G(R).

Suppose for each g € G(R) we have chosen a function ¢, with ¢4(7)? = CT+D

(where C, D are as in the notation above). Then the map

g—g=1(9,¢4(7))

defines a section of G(R) to G(R). Corresponding to this section, we have a 2-

cocycle on G(R) written as

S (g1, 92) = (91, 091 (7)) - (92, g (1)) - (9192, Bgrgs (1))

for g1, g2 € G(R), i.e.
_ (¢gl o 92) ¢gz

2(91792) -
¢glg2
Let
¥ (91, 92)
S 91,92) = —F >
( ! 2) O-(glng)

where we assume that the 2-cocycle o has the same formula as that in Theorem 6.3
with &k = R. Since ¥, 0 € Z2(G(R), u2) and they both represent the unique non-
trivial double cover, this implies that S is a 2-coboundary. Our choice of ¢, will be

made carefully so that S =1, i.e. 0 =X.

REMARK 10.1. There is only one choice of section with this property: any two
would differ by a continuous homomorphism from G(R) — pug; however G(R) is

connected.

We will first determine ¢, for g € T(R). For any A € C*, we have

A0 0
ha (M) =10 X/A 0
0o 0 X

Choose
——1/2

¢ha A) (T) = )
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where arg <X71/2> € (=m/2,7/2]. (Note that ¢ () is a constant function.) We

may check for any A\, yp € C* that
S (ha (A)  ha (p) =1

using Theorem 6.3. Since T'(R) is connected, this is the correct choice of ¢, on

T(R).

CLaM 10.2. G(R) is the unique connected double cover of G(R).

PROOF. Suppose that G(R) is the trivial double cover. Then we have
Y =0v

for some 1-cochain v € C* (G(R), p2). By our choice for ¢p,_(_1), we have

Also,
by (ha (_1) vha (_1)) =

This implies that v (I3) = —1. On the other hand,
Y (ha (=1),13) =1

and

5 (ha (-1) 1) = AUy (),

which implies that v (I3) = 1. This is a contradiction, thus é(R) is the unique

connected double cover of G(R). O

Without loss in generality, let W = {1, w, (0,4)}, be the set of Weyl group

representatives of G(R). For ease of notation, let

0 0 =2
w:wa(ovi): 01 0
i 0 0
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Every element in W-T(R) can be chosen to have the form hy or w-hy for hy € T(R).
Let m(R) be the restriction of G(R) to elements of the form (w’ - hy, ¢ur.n,)
where w’ € W, h; € T(R). Note that there are two sections W - T(R) — ﬁ(R)

whose 2-cocycle is . This is because there is a non-trivial homomorphism
W -TR) = Z/2 — ps.

For the element w, we have C1 + D = 47, and Tr (7)) < 0. This implies that
C7+ D is in the lower half-plane. We choose ¢,, such that arg (¢, (7)) € (=7/2,0).
We will later show that our choice for ¢,, is correct.

For h; € T(R), ¢u.r, can be determined from ¢,, as follows. We have

(w1, Goy (7)) = X (w, ha) - (W, uy (7)) - (hy G (7))-

Since we want o = X, and o (w, hy) = 1 for any hy € T(R) by Theorem 6.3, we find

that

(w1, oy (7)) = (w, (7)) - (hy o1 (7)) = (W - has Gy (R (7)) Py (7))

(It may also be checked that S (hy,w) =1.)

Now recall the Bruhat decomposition (see Section 1.2)
GR)=T[R)-NR)UNR) -w-T(R) - NR).
Since o is trivial on N(R) and N(R) is connected,
Pny (1) =1

for any n1 € N(R) (i.e. ¢y, is a constant function). Similarly, since o (n1,g) =1

for any g € G(R), and we have

(1 - 95 fnyg(7)) = X (01, 9) - (1, b, (7)) - (9, D4(7)),

with o (n1,9) = ¥ (n1,g), this implies that

¢n1~g(7') = ¢g(7')~
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Also, we have
(911, g, (1)) = L (g,n1) - (9, @9 (7)) - (01, &0, (7)),
and since o (g,n1) = 1 and o (g,n1) = (g, n1),
Gg-ni (T) = dg(n1(7)).

Hence, once we establish the choice for ¢,,, we can determine (g, ¢,) for any g €

G(R).

CramM 10.3. Our choice for ¢y, is the correct choice.

PROOF. Let

1 0 0 00 i
g=2_00,9)=10 1 0], g¢=|0 1 o0
i 0 1 i 0 —1

So we have g1 - w = go. By (1.3) (using 0y = i),
g1 =a (0,—1) - w- x4 (0,—0), g2 =w-24(0,7).
We want to show that with our choice for ¢,,,
(92, 095 (7)) = (91 - W, by, (7)) = 0 (91, W) - (91, Pg, (7)) - (W, P (7))
Since by Theorem 6.3, o (g1, w) = 1, the above equation can be simplified to
Pu(@a (0,7) (1)) = dw((2a (0, =) - w)(7)) - Pu (7).

Hence, if our choice for ¢,, is wrong, this would imply that the left-hand side would

not equal the right-hand side.

We evaluate both sides at the point

-1
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For the left-hand side, we have

Dulra 0,0 () =60 | [ ] | = e

with our choice for ¢,,. As for the right-hand side,

: ’ / 1= —im /4
Pw((za (0, =0) - w)(7')) - P (T) = Pu e
0
_ e—i7r/8 X e—iﬂ'/4
— 3in/8
Since both sides concur, our choice for ¢,, is correct. O

We have thus proved the following, as first mentioned in the Introduction:

THEOREM 10.4. Let 7 € Hc. For each g € G(R) as defined in (10.1), choose
a function ¢y such that ¢4(1)?> = C1+ D as follows:

o Onn (1) =X 77, where arg (X 7%) € (<m/2.7/2];
o arg(¢w(7)) € (=7/2,0);
® Onzwhny (1) = Qo (- 11)(7)) Py (7);
where ny, nz € N(R), w = we (0,6) and h = ho (A) € T(R). Then we have a

half-integral weight multiplier system

(7, T) = K(7) D4 (7),

where vy € I, the congruence subgroup on which the global Kubota symbol k is defined

on.
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