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Abstract. Over recent years, high field MR scanners (3 T and above) have become increasingly widespread due
to potential advantages such as higher signal-to-noise ratio. However, few examples of high resolution images
covering the whole brain in reasonable acquisition times have been published to date and none have used fast
spin echo (FSE), a sequence commonly employed for the acquisition of T2 weighted images at 1.5 T. This is
mostly due to the increased technical challenges associated with uniform signal generation and the increasingly
restrictive constraints of current safety guidelines at high field. We investigated 10 volunteers using an FSE
sequence optimized to the 4.7 T environment. This sequence allows the acquisition of 17- and 34-slice data sets
with an in-plane resolution of approximately 500 mm6500 mm and a slice thickness of 2 mm, in 5 min 40 s and
11 min 20 s, respectively. The images appear T2 weighted, although the contrast is due to the combined effects
of chosen echo time, magnetization transfer, direct radio frequency saturation and diffusion as well as the T1

and T2 relaxation times of the tissue. The result is an excellent detailed visualization of anatomical structures,
demonstrating the great potential of 4.7 T MRI for clinical applications. This paper shows that, with careful
optimization of sequence parameters, FSE imaging can be used at high field to generate images with high spatial
resolution and uniform contrast across the whole brain within the prescribed power deposition limits.

MRI systems utilizing high field magnets (3 T and
above) have been available for a decade [1]. The advan-
tages of higher magnetic field strength include increased
MR signal-to-noise ratio (SNR) and increased sensitivity
to blood oxygenation level dependent (BOLD) contrast,
which is widely used for functional neuroimaging [2–4].
The increased spin-lattice relaxation time for blood makes
the measurement of cerebral blood flow (CBF) by arterial
spin labelling a more sensitive method at higher magnetic
fields [5] and there are also attendant advantages to the
performance of MR spectroscopy. The increased SNR,
which varies approximately linearly with field strength,
can theoretically be used to produce MR images with
higher spatial resolution.

Conventional wisdom has suggested that the production
of high-resolution images of the entire brain with uniform
contrast behaviour may be confounded at high field by
radiofrequency (RF) inhomogeneities. At magnetic field
strengths of 3 T and higher the dielectric resonance effect
and RF penetration issues [6] cause the flip angle to vary
across the field of view (FoV) of the image. This produces
spatial signal intensity variations and non-uniform con-
trast. For many MRI sequences, either the RF flip angle
must be chosen as a compromise taking account of
these variations, or specially shaped RF pulses must be

employed that compensate for excitation pulse inhomo-
geneities [7] or are less sensitive to them (adiabatic pulses).
Fast spin echo (FSE) imaging [8, 9] (also known as

turbo spin echo (TSE) or multishot rapid acquisition with
relaxation enhancement (RARE)) is a method commonly
used for the acquisition of diagnostic MRIs at clinical field
strengths [10]. The FSE approach produces high quality
images with contrast similar to that of conventional spin
echo images and with the benefit of a greatly reduced
acquisition time. Clinical applications of FSE include
T2 relaxometry and assessment of neurological disorders
[11–14]. While the application of FSE imaging at high
field is desirable, concerns exist regarding power deposi-
tion and image uniformity. It is probably for these reasons
that other methods have been more commonly employed
to generate structural brain images at high field strength
[15–17].
The purpose of this paper is to demonstrate that, with

accurate sequence optimization, FSE can be used to
acquire good quality high resolution structural images of
the human brain within practical examination times at
high field strength. FSE images from a 4.7 T scanner are
presented that display excellent contrast, spatial resolution
and SNR.

Methods

Between August and November 2002, 10 healthy
subjects (6 males, 4 females, age range 26–48 years,
median age 30 years) were scanned with FSE after
informed consent and approval from the University
College London Hospital Ethics Committee. All imaging
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was performed using a 4.7 Tesla, 90 cm bore-diameter
magnet (Magnex Scientific Ltd, Oxford, UK) controlled
by a console supplied by Philips Medical Systems
(Eindhoven, The Netherlands) based on a MR5000
design by SMIS Ltd (Guildford, UK). A shielded head
gradient coil was used providing gradient fields of up
to 36 mT m21. Images were acquired using a quadrature
birdcage RF coil with an internal diameter of 28 cm.
The FSE sequence had an echo train length of 8 echoes,
with the first echo at 22 ms and an echo spacing of 22 ms.
Sinc-shaped RF pulses were used for both signal excitation
and refocusing, with relative amplitudes 1:1.8.

The repetition time (TR) was chosen either as 3.5 s
for 17 slices or 7 s for 34 slices. Along the read axis, 512
points were acquired (sampling bandwidth 50 kHz) and
384 phase encoding (pe) steps were performed (with a
factor of two oversampling) resulting in total acquisition
times of 5 min 40 s (17 slices) or 11 min 20 s (34 slices). The
slice thickness was 2 mm and the slice acquisition order was
chosen to be either sequential with 2 mm gaps or inter-
leaved with no gap between slices. In this way slices acquired
consecutively in time were always at least 2 mm apart (to
minimize slice interaction effects). The images presented
here were acquired in axial and coronal orientations. For the
axial images, a FoV of 240 mm6180 mm (read axis6phase
encoding axis) was chosen, resulting in an in-plane
resolution of 469 mm6469 mm. For the coronal images, a
FoV of 200 mm6200 mm was used (in-plane resolution:
391 mm6521 mm). FSE imaging has also been performed
with sagittal and oblique orientations (data not shown).

The specific absorption rate (SAR) for the FSE sequence
with the above parameters was calculated to be below
current safety limits of 4 W kg21 for the head (for short
exposure times [18]).

The nominal echo time (TE) corresponds to the time
of acquisition of the central area of k-space [19] and was
chosen either as 22 ms, 44 ms or 66 ms (corresponding to
the 1st, 2nd or 3rd echo, respectively).

The exact scheme of k-space sampling has been shown
to play a significant role in final image quality [9, 20]. The
k-space coverage strategy in the pe direction was designed
to ensure that when the data was combined prior to
Fourier transformation (FT), signal intensity differences
between echoes produced a relatively smooth amplitude
variation through k-space. Therefore, the corresponding
point spread function [19] did not contain significant
sidebands and good image resolution was preserved. The
5126768 data matrix was zero-filled to 51261024 and
a Hanning filter [21] was applied along both directions
prior to image reconstruction (FT). Due to the 2x over-
sampling in the pe direction, only the central portion of the
image (a 5126512 matrix) was selected and stored. The
final images were then obtained after filtering with
SharpView2 [22], an image enhancement package currently
installed on many clinical scanners.

Results

All 10 volunteers were successfully scanned with FSE.
We illustrate our findings on FSE images from three
subjects. Figure 1 shows four transverse sections from a
34-slice data set obtained on a 29-year-old male healthy
volunteer with TE522 ms. The images appear to be

predominantly T2 weighted with good grey-to-white
matter (GM/WM) contrast. Figure 2 shows the same
images displayed with an inverted grey scale (with Figure
2d showing an expanded region from Figure 1d). In these
images blood vessels appear bright and are more clearly
visible against surrounding dark background. Some details
in the white matter are also more easily visible in these
images including Virchow-Robin spaces (bright in con-
ventional contrast and dark in inverted contrast, for
example see arrows in Figure 2b). In the images of
Figure 1b and 2b it is worth noting the appearance of
the tail of the caudate nucleus (see arrows on Figure 2b).
In Figures 1c and 2c the medullary laminae (arrow on
Figure 2c) separating internal and external segments of
the globus pallidus are also distinguishable. In Figures 1d
and 2d the red nuclei and the substantia nigra appear
hypo/hyperintense due to the effect of iron accumulation
[23–25]. Fornices and mammillo thalamic tracts are also
visible on the same images. Figures 3a and b show coronal
sections from 17-slice data sets on two of the volunteers
(male 30 years, TE566 ms and female 34 years, TE5
44 ms) with inverted grey scale. These images, as well as
displaying excellent overall detail, allow easy discrimina-
tion of blood vessels and Virchow-Robin spaces. Figure 3a
demonstrates good visualization of the internal capsule
while in Figure 3b different layers of the hippocampus can
be identified (alveus, cornu ammonis and gyrus dentatus,
see arrows on Figure 3c). Despite the difference in TE the
images display similar overall contrast. The GM/WM
contrast is good and reasonably homogeneous in all the
images shown.

Discussion

We have shown that with the correct choice of sequence
and optimization of experimental parameters, T2 weighted
imaging can be performed with FSE at 4.7 T and displays
the gain in quality expected from a high field system.
Images with submillimetre in-plane resolution, high SNR
and good structural contrast covering large brain regions
can be produced in clinically acceptable acquisition times.
Here we discuss particular features of our images and how
they arise from the combination of tissue properties and
sequence characteristics.
FSE images have a similar overall appearance to con-

ventional T2 weighted images. Clinically, FSE has replaced
conventional spin echo imaging as the method of choice
for diagnostic T2 weighted imaging and T2 relaxometry
[11, 12]. At high field, T2 values of brain tissue become
shorter and more convergent than at 1.5 Tesla (63¡6 ms
for cortical grey matter and 50¡2 ms for white matter at
4 T [26] vs. 91¡6 ms and 69–76 ms at 1.5 T [27]) and T2

differences do not suffice to explain the contrast between
grey and white matter seen in our images. This contrast
can be explained by several other factors [9] such as the T1

weighting introduced by the presence of stimulated echoes
and the magnetization transfer effects.
In a multiecho spin-echo sequence comprising a train of

refocusing pulses, the signal intensity decreases throughout
the echo train due to T2 relaxation. This signal decrease
also depends strongly on flip-angle and therefore, due
to RF inhomogeneity, will vary spatially resulting in signal
non-uniformity across the image. In FSE, stimulated
echoes compensate for the signal loss of the spin echoes,
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(a) (b)

(c) (d)

Figure 1. Fast spin echo high resolution transverse MRIs of a healthy volunteer (male, 29 years) displayed with conventional grey scale. Slice
thickness 2 mm, in-plane resolution 469 mm6469 mm, number of slices 34, total acquisition time 11 min 20 s. Figures (a) to (d) display four dif-
ferent sections from the top of the brain to the level of the substantia nigra. The white rectangle in Figure 1d indicates the region expanded in
Figure 2d.
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(a) (b)

(c) (d)

Figure 2. Same images as in Figure 1, presented with an inverted grey scale (with Figure 2d showing an expanded region from
Figure 1d). Structures mentioned in the text are highlighted with grey arrows: tails of caudate nuclei and Virchow-Robin (VR)
spaces (b); medullary lamina (c); fornix, mammillary tract, red nucleus and substantia nigra (d).
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giving a degree of robustness to RF inhomogeneity, and
the combined echo amplitude is dependent on T1 as well
as T2 [28, 29]. At 4.7 T, the RF homogeneity within the
brain is expected to be worse than at 1.5 T due to RF
penetration and dielectric resonance effects [6]. However,
the images shown here have relatively uniform signal
intensity and contrast because of the aforementioned
flip-angle insensitivity of FSE [30] in combination with the
RF profile of a conventional birdcage coil.

Magnetization transfer (MT) effects [31], including both
true MT and direct saturation, also contribute to the
contrast in our images [16, 32]. These effects arise in the
multislice FSE sequence because of the repetition of
numerous refocusing pulses applied close to the resonance
frequency of the imaged tissue during the aquisition of
neighbouring planes [33]. Direct saturation affects grey
and white matter by approximately equal amounts due
to their similar T1/T2 ratios (,20 [26]). However MT
increases contrast by preferentially attenuating myelinated
tissue. The combination of T2 weighting and MT may
also account for the similar overall contrast observed for
images acquired at different TE values [33].

Our images at 4.7 T were characterized by high contrast

resolution as well as high spatial resolution resulting in
excellent GM/WM contrast, good visualization of struc-
tures with high iron content and the identification of a high
number of leptomeningeal blood vessels and Virchow-Robin
spaces.
The GM/WM contrast appears to be good across all

the slices. In addition a great deal of detail is visible in
subcortical regions making the identification of anatomical
structures, e.g. internal capsule, caudate nucleus, globus
pallidus, medullary laminae, simpler than on equivalent
images acquired at lower field strengths. Furthermore, it is
interesting to note that the GM/WM contrast is enhanced
when the volume coverage in the FSE sequence is
increased. This is because the number of slices determines
the minimum TR for a given resolution. For example the
coronal 17-slice data sets shown in Figure 3 were acquired
in 5 min 40 s (TR53.5 s), while the axial data (Figures 1
and 2) covered 34 slices in twice the time (TR57 s). The
longer TR in the 34-slice sequence gives more time for
longitudinal relaxation of the MR signal, resulting in a
higher image SNR and better contrast.
Structures with high iron content such as the substantia

nigra and red nuclei are also easily identifiable due to

Figure 3. Fast spin echo high resolution coronal MRIs of (a) male, 30 years and (b) and (c) female, 34 years, displayed with an
inverted grey scale. Slice thickness 2 mm, in-plane resolution 391 mm6521 mm, number of slices 17, total acquisition time 5 min 40 s.
Grey arrows indicate some of the readily visible Virchow-Robin (VR) spaces. The enlarged inset (c) from (b) shows the left hippo-
campus, with grey arrows indicating various internal structures (alveus, cornu ammonis, gyrus dentatus).
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their low signal in the FSE images. The increased iron
concentration causes a reduction in T2 relaxation time and
this effect is enhanced at high magnetic fields [24, 25]. This
iron-mediated contrast mechanism could allow the use of
FSE for the investigation of movement disorders, where it
is known that localized iron accumulation is abnormally
high [34, 35].

Our images also allow easy identification of blood vessels
within the cerebrospinal fluid (CSF) space (leptomeningeal
vessels). This is due to the strong appearance of CSF,
which has a long T2 value, combined with the low signal
intensity of intravascular blood. The scrambling of the
spin phase of the blood due to in-plane flow results in
incomplete rephasing of its signal prior to application of
each refocusing RF pulse. Through-plane flow also causes
blood signal dropout if spins move between slices during
the echo train [36].

In addition, we have already mentioned the great
number of identifiable Virchow-Robin spaces in our
images. This number is remarkable with respect to 1.5 T
observations, especially considering the relatively young
age of the subjects whose images have been presented. One
reason for this is the good contrast between Virchow-
Robin spaces (characterized by high signal due to their
fluid content) and the surrounding white matter (lower
signal). Probably more important, however, is the higher
spatial resolution of our FSE images compared with
conventional images obtained at lower field.

While it is true that the spatial resolution of the images
presented here is better than that of a standard clinical
structural image, e.g. an FSE image obtained at 1.5 T in
comparable time, higher resolution MR images acquired at
3 T and above have been published [17, 37, 38]. However,
these studies have all focused on specific areas of the brain,
mostly using RF receive coils of limited coverage and
alternative methods to FSE. It was one of the aims of
this study to investigate the potential of high resolution FSE
as a method for whole brain imaging at 4.7 T using
a conventional birdcage RF transmit/receive coil. The
greater sensitivity associated with higher field strength
does indeed allow the acquisition of high resolution
images with a good SNR in clinically acceptable scan times.

Conclusions

In summary, we have demonstrated that with appropriate
optimization of sequence parameters, the FSE technique
can be used efficaciously at field strengths higher than 3 T
and can deliver increased spatial resolution with useful
tissue contrast across the whole brain within current safety
limits.
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