
Modelling Electronic Service Systems Using
UML

James Skene1, Giacomo Piccinelli1, and Mary Stearns2

1 Dept. of Computer Science, University College London, Gower Street
London WC1E 6BT, UK

{g.piccinelli, j.skene}@cs.ucl.ac.uk
2 2 HP Software & Solutions Operation, Pruneridge Avenue

Cupertino, CA 95014, USA
mary stearns@hp.com

Abstract. This paper presents a profile for modelling systems of elec-
tronic services using UML. Electronic services encapsulate business ser-
vices, an organisational unit focused on delivering benefit to a consumer,
to enhance communication, coordination and information management.
Our profile is based on a formal, workflow-oriented description of elec-
tronic services that is abstracted from particular implementation tech-
nologies. Resulting models provide the basis for a formal analysis to verify
behavioural properties of services. The models can also relate services to
management components, including workflow managers and Electronic
Service Management Systems (ESMSs), a novel concept drawn from ex-
perience of HP Service Composer and DySCo (Dynamic Service Com-
poser), providing the starting point for integration and implementation
tasks. Their UML basis and platform-independent nature is consistent
with a Model-Driven Architecture (MDA) development strategy, appro-
priate to the challenge of developing electronic service systems using
heterogeneous technology, and incorporating legacy systems.

1 Introduction

The contribution of this paper is a UML profile for modelling systems of elec-
tronic services.

UML [16] is an object-oriented modelling language that has found broad
application in analysis and design for software systems. A profile is a package of
syntactic and semantic refinements for the language, which allows it to naturally
model domains of interest.

An electronic service is a set of metadata, communication interfaces, software
and hardware supporting a business service. A business service is a bundle of
coordinated business capabilities (the content of the service) associated with pro-
visioning mechanisms that establish the conditions under which clients, whether
external or internal to the business, can access the capabilities of the service.

Business services encapsulated by electronic services benefit from additional
communication and provisioning channels, but further, they permit the auto-
mated coordination of capabilities, resources and information, both within and



between organisations. This gives rise to Electronic Service Systems (ESSs), in
which the services are integrated using auxiliary components such as workflow
engines for coordination, databases to store knowledge about the state of the en-
terprise, and Electronic Service Management Systems (ESMS),which we charac-
terise in this paper as combining these various capabilities to provide viewpoints
and control of the enterprise to management, citing experience of the HP Service
Composer and the DySCo (Dynamic Service Composer) research prototype.

The challenge on the business side is to adapt business infrastructure and
models to service-oriented principles. The challenge on the technical side is to
provide integration solutions that are accessible, comprehensive and beneficial.
This requires thorough understanding and active management of the relation-
ships between business capabilities and technical infrastructure. Such under-
standing and management can be achieved through modelling. This modelling
serves as a starting point for software implementation, integration and provision-
ing tasks, which must be applicable to electronic services realised using a variety
of technologies. The Model Driven Architecture (MDA) is a software develop-
ment strategy based on UML models that explicitly addresses the challenge of
integration of heterogeneous systems, and we therefore choose UML as a basis
for our modelling, to ensure compatibility with this approach.

Determining strategies for coordinating services can be difficult, due to com-
plex dependencies between services and the large number of possible states for
the enterprise, arising from the parallel evolution of multiple services. We asso-
ciate a formal model of behaviour based on workflows with our models of services,
providing the opportunity for analysis. This model also formalises our notions of
coordinated capabilities forming larger conceptual entities such as services, and
the flows of information resulting from service enactment. Finally, the formal
semantic provides a reference for implementation activities proceeding from our
models, giving developers the opportunity to assert that software components
act as required.

The remainder of this paper is structured as follows: In Section 2 we provide
a background with a discussion of electronic services (Section 2.1), and UML
and the MDA (Section 2.2); in Section 3 we present a meta-model describing
the domain of ESSs; in Section 4 we show the translation of the meta-model
into a UML profile; in Section 5 we discuss related work and then summarise in
Section 6.

2 Background

2.1 Electronic services

The notion of a ‘business service’ enables the management within an enterprise
of ‘capabilities’ to deliver some benefit to a consumer. The term ‘capability’
refers to the coordination of simpler tasks to achieve an end; the concept is used
to raise the level of abstraction when describing the way that a business behaves.
When describing business services, capabilities are divided into those involved

2



in ‘provisioning’ the service, and those providing the ‘content’ of the service.
The content of a service is the set of capabilities that deliver the benefit of the
service to the client. For example, the content of a freight service refers to the
capability of moving goods from one place to the other. Provisioning refers to
the business channel [6] between the provider and the consumer of a service. In
the example, provision covers selection, product offer, pricing, and interaction
processes that the freight company applies to its customers. Content and provi-
sioning are complementary aspects of a service. On the one side, the provisioning
logic depends on the capabilities that the provider can support. On the other
side, the capabilities made available to consumers depend on the provisioning
logic adopted by the provider. In the example, the option of delivery tracking
might be made available only to selected customers. The example is based on
previous research in the freight domain [12], and will be used throughout the
paper.

An electronic service is a business service with communication and coordi-
nation aspects implemented using computer systems [14].

Because business services require communication between the provider and
the consumer it is natural to provide interfaces to business services using commu-
nication technologies such as computer networks, and the software that supports
this such as middleware for distributed systems. Indeed, a service metaphor is
widely used in these technologies. Listeners on network interfaces are often re-
ferred to as services, and web-services communicate using Internet protocols
to provide services of all sorts. Such services are closely analogous to business
services, even to the extent of exhibiting a separation between provisioning ca-
pabilities in the form of meta-data interfaces, reflection and directories, and the
back-end logic implementing the content of the service. Web-services conform
to the model further, by including business terms in meta-data [24], enabling a
market in services.

Despite the similarities, our notion of electronic service should not be con-
fused with middleware services. Services must also be coordinated: Internally,
to marshal the involved capabilities and resources and establish the relationship
between content and provisioning; and externally, to manage the interaction be-
tween the service and its clients and environment. This coordination requires a
view of the behaviour of a service. We therefore introduce an operational seman-
tic for capabilities, presented in Section 3.2. This semantic is broadly compatible
with workflow languages, suggesting that services could be both coordinated and
enacted by workflow engines.

Our semantic also describes abstractly the effect that activities have on the
information in their environment, for example the known locations of vehicles,
or statistics such as the total revenue for a service. Such information can have
a role in coordinating capabilities, and may be maintained and leveraged using
databases or other accounting mechanisms.

There is also a need to manage the resources required by a service, which
may be the role of an Enterprise Resource Planning (ERP) application. Gen-
erally, if electronic services are in place there will be the need and opportunity

3



to integrate them using a technical infrastructure. We introduce the notion of
an Electronic Service Management System (ESMS), informally defined as an
application that includes coordination, information and resource management
capabilities, providing business-oriented viewpoints and control over the services
that it manages.

IT technology trends and the service model for business provide the con-
text for electronic services. An enterprise adopting an electronic service strat-
egy would structure its business as services, provide interfaces to those services
using middleware technologies, coordinate and automate the services from a
workflow-oriented perspective and implement a technological infrastructure to
take advantage of the coordination and communication opportunities that are
the key benefit of the electronic service model.

2.2 UML and the model-driven architecture

Businesses adopting an electronic service strategy will be faced with integration
and implementation challenges. Modelling systems of electronic services is a vital
step towards meeting a number of these. When implementing a new electronic
service, or adapting an existing business service to an electronic service it is nec-
essary to understand the intended environment of the service, and its interaction
with other services and management systems. Similarly, when introducing new
management components, it is necessary to have a clear understanding of the
services with which it will interact.

The Unified Modelling Language (UML) is an object-oriented graphical lan-
guage that has found wide applicability in analysis and design for software en-
gineering. In this paper we provide a profile for UML to allow the modelling of
ESSs. Profiles are an extension mechanisms whereby the innate notations pro-
vided by the UML can be augmented with labels, called ‘stereotypes’, tagged
values and constraints, which provide semantic refinement, annotations and syn-
tactic refinement respectively.

UML is based on a conceptual architecture that is divided into four meta-
modelling layers as shown in Figure 1. The lowest level is the data layer (M0), in
which objects such as data-patterns in computer memory and other real-world
phenomena including people and things are supposed to reside. The elements
in the lowest level are classified by types in the UML models that analysts and
designers produce, which hence reside at the next meta-level (M1). UML model
elements are, in turn, objects of classes in the UML meta-model (M2). Attached
to these meta-classes are semantic descriptions and syntactic constraints that
control the meaning and applicability of the UML. The meta-model at level M2
is self-describing, so can also be regarded as residing in level M3 (and plausibly
all higher levels).

Profiles then, are a means of refining classes, semantics and syntactic con-
straints at the M2 level. Confusingly, profiles exist at the M1 level, so that they
can be denoted using UML and deployed by including them with any UML
model that requires their language extensions. They can therefore be regarded
as injecting ’virtual meta-classes’ into the UML meta-model (M2).

4



<<profile>>
UMLExtension

<<model>>
MyModel

UML meta-model Virtual meta-
classes

UML meta-model

M0: Real world

M1: Models

M2: Meta-models

M3: Meta-meta-model

Fig. 1. Meta-modelling architecture of the UML

Before presenting our profile, we present a meta-model that is similar to the
UML meta-model, and can be considered to reside at level M2 in the conceptual
architecture. This is a common practice when defining profiles [5], as a new
meta-model describes the semantic domain directly, independently of the need
to refine the semantics of the UML meta-model. In section 4 the meta-model is
mapped onto profile elements, and existing elements in the UML meta-model.
Our meta-model therefore serves as both a reference model for our definition of
electronic services and to define the semantics of the profile.

The Model Driven Architecture (MDA) [17] is a modelling approach based
on UML. It recommends that development organisations separate models of their
business logic (Platform Independent Models - PIMs), from technical artifacts,
such as design models (Platform Specific Models - PSMs) and source code. The
benefit is to insulate organisations from the cost of re-deploying software services
as architectural infrastructures change, particularly middleware standards. The
approach also supports the integration of heterogeneous and legacy software, and
for these reasons is extremely well suited to development tasks in an electronic
service environment. In the terminology of the MDA, the models produced using
our profile are Platform Independent Models (PIMs). UML can represent refine-
ment relationships between models, for example between a PIM and a PSM. Our
models can therefore be related to more detailed design models, supporting the
MDA approach when implementing or integrating electronic services.

In supporting an MDA approach our profile is similar and complementary
to other profiles including the standard Enterprise Distributed Object Comput-
ing (EDOC) profile [18], which can be used to represent enterprise computing
systems in a platform-neutral manner.

3 The ESS meta-model

The ESS meta-model is divided into two packages as shown in Figure 2. These
partition the elements pertaining to services from those which represent manage-

5



ment applications. The management component metamodel naturally depends
on concepts from the service metamodel. The following sections present these
metamodels in detail.

Services Management

Fig. 2. Subpackages within the ESS meta-model

3.1 The service meta-model

Figure 3 shows the part of the services meta-model related to the composition
of capabilities into services. The elements shown are now described:

Service An electronic service as described in Section 2.1. Services have any
number of provisioning capabilities, and a single top-level content capability
(the capability to deliver the service). Services can be composed of sub-
services, in which case the content capability coordinates the content of each
sub-service, and each sub-service must have a provisioning capability that
makes a service offer to a role in the coordinating content capability.

Capability A business capability described by a workflow. The behaviour of
capabilities is described formally in Section 3.2. Informally, a number of
roles perform actions and cooperate to complete some task. Capabilities
can be composed in a hierarchy. The workflow of a coordinating capability
constrains the order of tasks in the component capabilities.

CapabilityRole A capability role identifies the behaviour of a worker or re-
source in a coordinated task. Capability roles can be assigned to actual
business entities as discussed below.

InformationItem An identifier for a piece of information about an enterprise
that is relevant to a task. Some workflow actions require information as
a prerequisite and produce or process information as by-product of their
enactment.

Observation Observations give rise to new information from existing informa-
tion. This captures the idea that not all derived information is produced by
a particular action. When the condition of the observation is satisfied then
new information may be introduced by the observation expression.

Constraints defined over the meta-model further reinforce these informal se-
mantics. For example, capabilities may not coordinate themselves. Constraints
are expressed formally using OCL [16]:

6



dependentinput

1..*

output

1..*

0..*
subservice

1 1..*

actor

0..*

0..* output

consumer 0..*

0..*

producer

input

0..*

0..*

coordinator

components
composition

0..*

0..*

provisioned

provisioning

0..*

1

realised

content

InformationItem

+name:String

Service

+name:String
+external:Boolean
+enabled:Boolean

CapabilityRole

+name:String

Observation

+condition:String
+observation:String

Capability

+name:String
+workflow:String

Fig. 3. Capabilities view of the services meta-model

context Capability
def :

let allCoordinators = self.coordinator→union(
self.coordinator→collect(c | c.allCoordinators))

inv:
not self.allCoordinators→exists(c | c = self)

Complementary to the abstract view of services are models of the business
assets in an enterprise, and their assignment to capability roles to realise a
service. Figure 4 shows the meta-model classes supporting such models.

BusinessEntity A business entity is a person, resource or system that can fulfil
one or more roles in a capability.

ServiceOffer A service offer is made to a capability role (typically that of
the ‘customer’). That capability role must be associated with one of the
provisioning mechanisms of the service.

7



0..* provisioned

0..*
0..*1

0..*

0..*

1..*1

enacter

1

1..* actor

0..*

provisioning

0..*

customer

0..*

1

Service

+name:String
+external:Boolean
+enabled:Boolean

ServiceImplementation

ServiceOffer

+name:String
+enabled:Boolean

BusinessEntity

+external:Boolean
+name:String

CapabilityRole

+name:String

Capability

+name:String
+workflow:String

ITSystem

Fig. 4. Implementation view of the services meta-model

ServiceImplementation ServiceImplementation captures the idea that busi-
ness assets can be assigned to capability roles in order to make a service
concrete. There is no explicit notion of service instance. However, if neces-
sary business assets can be grouped to show those relevant to a particular
scenario.

ITSystem An IT system is a computing system that can perform a role in a
capability. Electronic services are intended to provide integration and auto-
mated coordination. This class allows the identification of the components
providing these services, possibly as a prelude to an MDA-style development
activity. Section 3.3 provides refinements of this stereotype to identify likely
management applications.

Additional classes not shown in Figures 3 and 4 are now discussed:

Property and HasProperties Properties capture different types of meta-data
about capabilities. Such meta-information mainly refers to functional and
non-functional requirements for a capability. For example, a property for a
negotiation capability is to be usable only with a certain type of customers.
The following classes inherit from HasProperties to enable the attachment
of properties: BusinessEntity, CapabilityRole, Capability and Service. The
properties mechanism maps onto the tagged-value mechanism in UML in the
profile definition.

Group and Groupable Experience with the HP Service Composer revealed
the benefit of composing capabilities into loosely-grouped higher-level ag-

8



gregates called ‘clusters’, in which capabilities exhibited functional overlaps,
dependencies, mutual ownership or other subjective similarities. There is also
often the need to group services into related offerings or ‘service packs’. Fi-
nally, as stated above, a grouping mechanism addresses the lack of a concept
of service instance by allowing the association of business entities that ac-
tually cooperate (since more than one entity can enact a given service role).
Group and Groupable provide a single mechanism for hierarchical grouping.
The following elements inherit from Groupable, and hence may appear in
a Group: CapabilityRole, Capability, BusinessEntity, InformationItem, Ser-
vice and Group. Grouping is implemented by UML’s package mechanism in
the profile definition.

3.2 Formal semantics for the service meta-model

In this section we formalise notions of information and coordination for capabil-
ities, using the Structured Operational Semantics (SOS) style of [22], in which
inference rules define the structure of a Labelled Transition System (LTS) inten-
tionally. We do this independently of specific workflow languages, by omitting
base cases for our rules. Instead, we assume that the workflow language allows
us to make assertions such as:

〈σ ∪ I, C〉 α:I→O−→ 〈σ ∪O, C ′〉 (1)

Meaning that a specific, isolated capability, C, in a system where the current
information is represented by σ ∪ I, evolves to C ′ by undertaking an action, α,
which effects some change, reflected by the transformation of the information I
to new information O.

Capabilities may evolve independently of each other, when not coordinated:

〈σ, Ci〉
α−→ 〈σ′, C′

i〉
〈σ, {C1 . . . Ci . . . Ck}〉

α−→ 〈σ′, {C1 . . . C′
i . . . Ck}〉

(2)

Even when coordinated, capabilities may perform uncoordinated actions (A(C)
yields the set of actions that a process C can undertake):

〈σ, Ci〉
α−→ 〈σ′, C′

i〉 α /∈ A(Cc)

〈σ, Cc[{C1 . . . Ci . . . Ck}]〉
α−→ 〈σ′, Cc[{C1 . . . C′

i . . . Ck}]〉
(3)

Coordinated actions may occur only when the coordinating process permits,
and when all capabilities that can perform them are ready to do so simultane-
ously:

〈σ, Cc〉
α−→ 〈σ′, C′

c〉 〈σ, C1〉
α−→ 〈σ′, C′

1〉 . . . 〈σ, Ci〉
α−→ 〈σ′, C′

i〉 α /∈
⋃

Cf∈F
A(Cf )

〈σ, Cc[{C1 . . . Ci} ∪ F ]〉 α−→ 〈σ′, C′
c[{C′

1 . . . C′
i} ∪ F ]〉

(4)

9



A capability may have multiple coordinators in the metamodel. The inter-
pretation of this is that the capability is a subcapability of its coordinator. It
is therefore replicated for each coordinator. Shared sub-capabilities are not syn-
chronized.

Note that an action may require certain information to be exist and take a
particular value before the action can be performed. Hence, coordination by
shared memory is also possible for capabilities. Under the electronic service
model, provisioning and content capabilities are not explicitly coordinated, hence
this mechanism links these capabilities for a service. The provisioning capabilities
create conditions under which the content capabilities are enabled.

Information in the system may arise naturally from the occurrence of actions.
However, the progress of the system may depend on broader observations than
those made in the context of a particular action. Hence we enable the modelling
of observations that derive new information from that already present in the
system:

〈σ ∪ I, Γ 〉 ∧ ∃o : I → O ∈ Ω

〈σ ∪ I ∪O, Γ 〉 (5)

We do not prescribe the language used to specify observations. OCL would be
a good candidate. A boolean expression could determine when the observation
applied, and then let-clauses could introduce new information. Note that it
is possible to specify observations that lead to inconsistencies in the system
information. Modellers should try to avoid this. One strategy for dealing with
this is to rule that if multiple values can be derived for an information item then
that information is not known. However, in systems where action is preferable
to inaction, this may not be safe.

For the purposes of assigning work the underlying workflow language must
also associate actions with roles, although this association is not required in this
discussion of coordination, as we assume that coordination is independent of the
entities that implement roles. That is, an entity will eventually be capable of
enacting all actions required of it during the evolution of the system.

The benefit of a formal semantic based on an LTS are in terms of simulation
and analysis. A tool such as LTSA [13] can provide scenario-based validation
of models. This can be used to assert safety conditions, fairness and liveness
conditions, and to ensure the absence of deadlocks (presumably arising from
capabilities failing to establish adequate preconditions for their successors). The
use of information for coordination complicates such models, and can increase
their state-space beyond feasibility. However, reasonable abstractions can usually
be found.

3.3 The management meta-model

The management meta-model shown in Figure 5 allows the identification of
common management components and their relationship to electronic services.
We have not included modelling functional or structural relationships between

10



management components as this is out of scope of our discussion of electronic
services. However, such modelling is necessary and is supported by the full ex-
pressive power of the UML, possibly augmented by other profiles such as the
EDOC profile.

0..* 0..*

stores

0..* 0..*

manager managed

0..*

0..*

actor

0..*

0..*
coordinator

coordinated

0..* 0..*

enacts

resource

0..* 0..*

Database

WfMS

ERPS
ESS.Services.BusinessEntity

+external:Boolean
+name:String

ESS.Services.InformationItem

+name:String

ESS.Services.Service

+name:String
+external:Boolean
+enabled:Boolean

ESS.Services.Capability

+name:String
+workflow:String

ESMS

ESS.Services.ITSystem

Fig. 5. The management meta-model

ESMS An application offering a enterprise-oriented management view of an
electronic service environment. For example, the HP Service Composer [7],
or the DySCo research prototypes [21]. Other candidate technologies might
be an application service offering a middle-tier of business logic, with a web-
server providing the management interfaces.

WfMS A workflow management system, either embodying a capability (enact-
ment) or coordinating a number of subcapabilities. Examples of workflow
applications are IBM’s MQ-Series Workflow [8] and PeopleSoft’s [20] Peo-
pleTools and Integration Broker.

ERPS An Enterprise Resource Planning System, dedicating to coordinating
entities in the system, presumably making them available to fulfil capabil-

11



ity roles. We do not consider resource planning in this paper, although it
interacts at a functional level with coordination based on capabilities, and
future work may provide a combined modelling approach. Examples of ERP
systems are SAP’s mySAP [23] and Baan’s iBaan [1].

Database Most enterprises use databases to store information about the en-
terprise. Establishing a relationship between the (conceptual) information
items and the databases that store them allows a modeller to check whether
the information required by a business entity to fulfil a capability role is
available in its context. Popular databases are Oracle [19] and MySQL [15].

4 The ESS Profile

The following tables relate elements in the meta-model to profile elements and
elements in the UML meta-model.

Meta-model element Stereotype UML base class Parent Tags

Service Service Class – external
enabled

Service.content content AssociationEnd – –

Service.provisioning provisioning AssociationEnd – –

Service.component component AssociationEnd – –

Capability Capability Class –

Capability.input input AssociationEnd – –

Capability.output output AssociationEnd – –

CapabilityRole CapabilityRole Class – –

InformationItem InformationItem Class – –

Observation Observation Class – condition
observation

Observation.input input AssociationEnd – –

Observation.output output AssociationEnd – –

BusinessEntity BusinessEntity Class – –

ServiceOffer ServiceOffer Class – enabled

ServiceImplementation Fulfills Association – service

ITSystem ITSystem Class BusinessEntity –

ESMS ESMS Class ITSystem –

WfMS WfMS Class ITSystem –

WfMS.actor wfactor AssociationEnd – –

WfMS.enacts enacts Class – –

WfMS.coordinated coordinates Class – –

ERPS ERPS Class ITSystem –

Database Database Class ITSystem –

Table 1. Stereotypes in the ESS profile

12



Meta-model element Tag Stereotype Type Multiplicity

Service.external external Service Boolean 0..1

Service.enabled enabled Service Boolean 0..1

Capability.workflow workflow Capability String 0..1

Observation.condition condition Observation String 1

Observation.observation observation Observation String 1

ServiceImplementation.service service Fulfills Class 1

BusinessEntity.external external BusinessEntity Boolean 0..1

ServiceOffer.enabled enabled ServiceOffefr Boolean 0..1

Table 2. Tags in the ESS profile

All name attributes in the meta-models map to the name attribute of the
class element in the UML meta-model. All associations in the meta-model map to
associations in models. Stereotypes on AssociationEnds are used to disambiguate
associations where more than one exists between the same two meta-model ele-
ments. The meta-model constraints also have translations into constraints on the
profile elements, and additional constraints reflect the structure of the original
meta-model. For example, the ‘Fulfills’ stereotype can only be attached to an
association between a CapabilityRole and a BusinessEntity, and its service tag
must always be present:

package Foundation::Core
context Association

inv:
self.stereotype→exists(“Fulfills”) implies

self.connection.participant.stereotype→exists(“CapabilityRole”)
and
self.connection.participant.stereotype→exists(“BusinessEntity”)
and
self.taggedValue.type→exists(name = “service”)

5 Related work

The definition and characteristics of the ESS model derive substantially from the
experience of HP Service Composer. UML notation is used in the HPSC, with
a separation between platform-dependent and platform-independent models of
an electronic service. Workflow notation and technology is used to model and
manage the business logic of a service.

The ESS model is also closely related to the DySCo (Dynamic Service Com-
poser) [21] research prototype. DySCo is the result of a two-year project involv-
ing University College London (UK), the University of St. Petersburg (Russia),
the University of Ferrara (Italy), the University of Hamburg (Germany), and
Hewlett-Packard (UK and USA). The objective of DySCo was the development

13



of a conceptual and technology framework for the dynamic composition of elec-
tronic services. While lacking direct support for UML, DySCo provides modelling
facilities for workflows and a homogeneous execution platform for an ESMS.

An electronic-services model is currently being used in the context of the
EGSO (European Grid for Solar Observations) [2] project. The model-driven
approach to the architecture of the service provision part of the EGSO grid is
expected to address the need to integrate services based on different provision
models and execution platforms. Each service provider in the EGSO grid will be
equipped with an ESMS. In addition, a specific ESMS federates and manages
the service provisioning capabilities of the overall EGSO grid.

The Enterprise Collaboration Architecture (ECA) defined in the OMGs EDOC
specification [18] provides a comprehensive framework for the modelling of en-
terprise systems. The ESS profile introduces enterprise system components that
can be designed based on the ECA, and provides a means to model features pe-
culiar to electronic services that are not explicitly addressed by the ECA. Similar
considerations apply for the Reference Model for Open Distributed Processing
(RM-ODP) [9], which is also closely related with the ECA.

Most technology and conceptual frameworks for electronic services [11] focus
on web-service-based automation of the front-end of individual services. Web
Services [3, 4] constitute the reference model for access to and basic orchestration
of business resources. We envision Web Services playing a fundamental role in the
realisation of electronic services. Still, a more comprehensive approach is needed
for the realisation and operation of business-level services. An example of the
issues involved in the realisation of business-level service is HiServs Business Port
[10]. FRESCO (Foundational Research on Service Composition) [22] provides an
example of second-generation framework for electronic service management. The
focus of FRESCO is on the provision aspects of services.

6 Conclusions

Electronic services provide the conceptual and technology framework for the ag-
gregation and coordination of business resources. The realisation and operation
of a service requires close integration between different systems. A model-driven
approach to development in an electronic-service environment helps tackle the
integration issues arising from heterogeneity and change.

In this paper, we present a means to model ESSs using UML, in a manner
compatible with the MDA approach. We apply concepts derived from the spe-
cific experience of HP Service Composer, but also closely related to concepts in
OMGs EDOC specification and the RM-ODP. The semantics of the models are
described with reference to a meta-model from which a UML profile is defined.
The behaviour of electronic services is described formally using operational se-
mantics, providing an additional benefit of our models as a foundation for formal
analyses.

14



References

1. Baan. iBaan. http://www.baan.com/.
2. R. D. Bentley. EGSO – the european grid of solar observations. In European Solar

Physics Meeting, ESA Publication SP-506, 2002.
3. E. Cerami. Web Services Essentials. ORielly and Associates, 2002.
4. M. Clark et Al. Web Services Business Strategies and Architectures. Expert Press,

2002.
5. D. S. Frankel. Model Driven Architecture: Applying MDA to Enterprise Computing.

John Wiley and Sons, 2003.
6. B. Gibb and S. Damodaran. ebXML: Concepts and Application. John Wiley and

Sons, 2002.
7. Hewlett-Packard Company. HP Service Composer User Guide, 2002.
8. IBM. Websphere MQ Workflow. http://www-3.ibm.com/ software/

integration/ wmqwf/.
9. ISO/IEC, ITU-T. Open Distributed Processing – Reference Model – Part 2: Foun-

dations, ISO/IEC 10746-2, ITU-T Recommendation X.902.
10. R. Klueber and N. Kaltenmorgen. eServices to integrate ebusiness with ERP

systems – the case of HiServs business port. In Workshop on Infrastructures for
Dynamic Business-to-Business Service Outsourcing (CAISE-ISDO), 2000.

11. H. Kuno. Surveying the e-services technical landscape. In Workshop on Advance
Issues of E-Commerce and Web-Based Information Systems (WECWIS). IEEE
Press, 2000.

12. N. Linketscher and M. Child. Trust issues and user reactions to e-services and
e-marketplaces: A customer survey. In DEXA Workshop on e-Negotiation, 2001.

13. J. Magee and J. Kramer. Concurrency: State Models and Java Programs. John
Wiley and Sons, 1999.

14. A. Marton, G. Piccinelli, and C. Turfin. Service provision and composition in
virtual business communities. In IEEE-IRDS Workshop on Electronic Commerce,
Lausanne, Switzerland, 1999.

15. MySQL AB. MySQL Database. http://www.mysql.com/.
16. OMG document formal/2003-03-01. Unified Modelling Language (UML), version

1.5, January 2003.
17. OMG Document ormsc/01-07-01. Model Driven Architecture (MDA), July 2001.
18. OMG, document ptc/02-02-05. UML Profile for Enterprise Distributed Object

Computing Specification, May 2002.
19. Oracle. Oracle database products. http://www.oracle.com.
20. PeopleSoft. PeopleTools and Integration Broker. http://www.peoplesoft.com/.
21. G. Piccinelli and L. Mokrushin. Dynamic e-service composition in DySCo. In

Workshop on Distributed Dynamic Multiservice Architecture, IEEE ICDCS-21,
Phoenix, Arizona, USA, 2001.

22. G. Piccinelli, C. Zirpins, and W. Lamersdorf. The FRESCO framework: An
overview. In Symposium on Applications and the Internet (SAINT), IEEE-IPSJ,
2003.

23. SAP. mySAP. http://www.sap.com/.
24. UDDI.org. UDDI (Universal Description, Descovery and Integration)

Executive White Paper, November 2003. http://www.uddi.org/ pubs/

UDDI Executive White Paper.pdf.

15


