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Abstract 

Stem cells are defined by their capacity to differentiate into different phenotypes while maintaining 

their ability to replicate indefinitely.  These characteristics depend on their intrinsic capabilities and 

their interaction with the cellular niche. However, stem cells isolated later in development show a 

restricted differentiation capability limited to the cell lineage specifically present in the tissue of 

origin. 

Using an adult, hippocampal-derived stem cell line (designated the CHIP stem cell line), I started 

looking at their integration once they had been implanted into hippocampal organotypic slices. This 

would have given me an idea of the sequential steps they follow during their integration and how this 

relates to what is known to happen in vivo. Knowing that in the hippocampus, they originate from the 

sub granular zone and develop into granule cells, I carried out an electrophysiological characterization 

of dentate gyrus granule cells both in organotypic and in acute slice. It became clear that the survival 

of stem cells after the implantation was affected by the culture medium used for the organotypic 

slices. Switching to a different culture medium improved the survival of the stem cells but at the same 

time they did not show signs of integration (e.g. dendritic-like protrusions). 

I therefore started looking at stem cell functional differentiation in vitro without the slice. In the CHIP 

stem cell line plus, in addition, in another hippocampal stem cell line (HCN95) I compared the 

response to two differentiation protocols. I employed several standard neuronal markers (including 

NeuN) in order to define their developmental status. Unlike most other studies I also used a marker 

for the alpha subunit of the voltage-activated sodium channel (Nav1.2) which is responsible for the 

generation of action potentials in mature neurons. Checking stem cell ability to fire action potentials 

at various time intervals, in parallel to the expression of neuronal markers, I found that Nav1.2 

expression better correlates with the functional maturation of our neuronal stem cell lines when 

compared to NeuN. Therefore, Nav1.2 expression can be employed as reliable marker of mature 

neuronal phenotype. 
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1 Introduction 

The work I carried out in this thesis is oriented towards developing a better understanding of two 

aspects of adult neural stem cells. The first is the eventual ability of adult hippocampal stem cells to 

integrate once implanted onto hippocampal organotypic slices. The second is the neuronal 

differentiation of two adult hippocampal derived stem cells lines.   

Human multipotent neural stem cells can integrate into the developing brain if injected into the 

ventricles in a xenogenic host brain (Brustle et al., 1998) and we already know that stem cells 

implants done in clinical trial are promising although still far for being a reliable solution (Lindvall 

and Kokaia, 2010). To understand better the factors that influence stem cells integration we chose the 

rat hippocampal organotypic slices as an in vitro platform which allows testing the outcome of stem 

cell implants at different stages. The hippocampus, together with the olfactive bulbs, is one region of 

the brain where neurogenesis occurs even in adulthood and the availability of stem cells lines derived 

from the adult rat hippocampus make it possible to recreate the relatively normal condition for their 

integration. 

So far several stem cell markers have been employed in order to define the state of a stem cell 

population (Kempermann et al., 2004). Different markers define different sequential steps along the 

differentiation process that leading to a mature neuronal phenotype. However, in regards of neural 

stem cells functionality, it is implicit to assume that neural maturation have been reached once cells 

develop the ability to fire action potentials. Therefore, a marker that is structurally essential for this 

function, like the α-subunit of the voltage-activated sodium channel, can be used to identify functional 

and thus mature, neural stem cells.  
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1.1 Stem cell definition 

The definition of Stem cell includes both the ability to replicate while remaining undifferentiated and 

the ability to develop different phenotypes upon differentiation (Morrison et al., 1997; Watt and 

Hogan, 2000). While the first factor is common to all stem cell lines the second varies enormously 

depending on the source from which these cells are derived. Stem cells derived from a blastocyst are 

pluripotent, being able to originate all the cells types present in an adult organism while stem cells 

isolated late during development are multipotent because the number of cells types that can be 

obtained is limited. Ultimately stem cells isolated from adult tissues are called progenitor cells 

because they can only differentiate into lineage-specific phenotypes. 

Stem cells were originally discovered thanks to a series of studies carried out by Till and McCulloch 

in the 1960s. They found that a single population of cells taken from mouse bone marrow is able to 

differentiate along the erythrocytic, granulocytic and megakaryocytic lines and lead to  a  recovery  of 

the hematopoietic system once implanted in heavily irradiated mice  (Till and McCulloch, 1961). That 

discovery led a few years later to human bone marrow transplants (Gatti et al., 1968).  

Meanwhile, several others tissues from which stem cells can be harvested have been found and 

technical improvements opened a new series of possibilities. In 1997 the cloning of the sheep Dolly 

using nuclear transfer technique brought the entire stem cells field to world attention (Wilmut et al., 

1997). In 1998 the creation of a human stem cell line from an early embryo (Thomson et al., 1998) 

contributed to the picture of stem cell therapy as a solution for a vast number of diseases and medical 

conditions through transplant therapy. Very recently a more advanced technique has been developed 

allowing, through injection of defined genes and transcription factors, induction of pluripotency in 

adult cells consequently called induced pluripotency cells or iPS cells (Takahashi and Yamanaka, 2006).  

As we observe from these recent developments in the stem cell field, the initial definitions are not 

absolute and reflect our level of knowledge of cellular commitment to a specific phenotype. In the 

future these definitions are very like to change following new discoveries. 
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1.2 Embryonic Stem cell differentiation 

Embryonic stem cells form a particular group of cells in the mammalian embryo. After egg 

fertilization the zygote starts the cleavage process during which it undergoes several mitotic divisions 

without increasing its dimensions. It then goes through three main step steps: compaction, cavitation 

and the degeneration of the zona pellucida which transform the zygote into a blastocyst. This stage is 

reached after 4 to 6 days in human and lasts until the embryo implants into the uterus.   Stem cells 

isolated from the inner cell mass of the blastocyst (fig.1) can differentiate into all cell types of the 

embryo but they are not able to derive the trophoblast again (Hadjantonakis and Papaioannou, 2001). 

 

 

Fig.1. Illustration of a blastocyst with the real photographic image on the left side and a schematic 

representation on the right side. Red lines indicate the correspondent structures. (Image from Dr. 

Joseph S. Tash, University of Kansas, Medical Center; http://www.kumc.edu/stemcell/images.html) 

 

The commitment of stem cells to differentiate to a specific phenotype could depend on an internal 

program or there could be extracellular signals which direct the stem cells’ differentiation. In vivo, 

with embryonic development, stem cells progressively lose their multipotency up to a point where 

they became lineage-restricted stem cells.  In vitro, where the specific extracellular clues  are missing, 

stem cells behave like lineage restricted cells but some of their characteristics change leading to the 

idea that in optimal conditions they may be able to exhibit extraordinary plasticity (D'Amour and 

Gage, 2002).  
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Another important characteristic is the modality of division.  Stem cells can divide symmetrically 

generating two identical daughter cells or asymmetrically with a daughter cell which retains parent 

cell’ properties and the other daughter cell having different developmental potential. During 

development and more pronounced in the adult, stem cells or progenitor cells undergo an asymmetric 

division resulting respectively in a multipotent stem cell and a cell which is committed to differentiate 

(Mione et al., 1997). 

 

1.3 Neuronal lineage 

The central nervous system (CNS) is primarily composed of neurons and glial cells. The neurons are 

thought to be the main computational units on which rely the functions of transmission, elaboration 

and storage of the information coming from the sensory system. The glial cells are the non-neuronal 

cell which functionally “support” the neurons and that can be divided in two main categories:  

microglia and macroglia.  The microglia form the only immune defence of the brain which is isolated 

from the circulatory system by the blood-brain barrier. The macroglia are mainly astrocytes and 

oligodendrocytes. Oligodendrocytes form the myelin sheaths which surround the axons allowing fast 

and efficient nerve conduction. Astrocytes seem to have more complex functions not only supporting 

(Simard and Nedergaard, 2004) but also modulating synaptic transmission (Ullian et al., 2001).  

 

1.4 Adult Neurogenesis 

The central nervous system was long known for its cellular stability as it was thought that in order to 

maintain its functionality the circuitry should be almost static in time and no new neurons could be 

added (Geuna et al., 2001; Gross, 2000). However, with the introduction of 
3
H-Thymidine to label the 

DNA of mitotic cells during the S-phase, several areas of the brain were found to be mitotically active 

(Altman, 1962)  and within a few decades neurogenesis was demonstrated in canaries (Paton and 

Nottebohm, 1984) and in a variety of mammals (Kuhn et al., 1996).   

The introduction of 5-bromo-2’deoxiuridine (BrdU) gave new emphasis to the neurogenesis field. 

BrdU is a thymidine analogue, incorporated into DNA during replication like 
3
H-Thymidine but it can 

be visualized with immunocytochemistry.  These techniques together make it possible to carry out 
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double labelling in order to investigate the phenotype of the newly formed cells and clearly 

demonstrate the existence of neurogenesis in specific brain areas (Gould et al., 1999). Two areas of 

the brain in which we can find an on-going production and integration of newborn neurons are the 

hippocampus and the olfactory system (van Praag et al., 2002). Although most studies are carried out 

on rodents it has also been demonstrated that there are newly generated neurons in the adult, human 

hippocampus (Eriksson et al., 1998). In the olfactory system newly-generated cells migrate from the 

sub ventricular zone (SVZ) (Chiaramello et al., 2007) along the Rostral Migratory Stream (RMS) to 

the olfactory bulbs where they can develop into granule cells and periglomerular cells (Whitman and 

Greer, 2007). 

 

 

Fig.2. Adult hippocampal stem cells proposed steps of integration. Cells proliferate 

by symmetrical division then once they undergo asymmetrical division they start 

determining their fate, migrate and eventually integrate into the molecular layer of the 

dentate gyrus. (from Lie et al., Annu. Rev. Pharmacol. Toxicol. 2004) 
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In the hippocampus the neural precursor cells arise from the subgranular zone (SGZ) and then migrate 

to the granular cell layer of the dentate gyrus (fig.2). Here they undergo a selection where the vast 

majority are eliminated by apoptosis (Kuhn et al., 2005) and the survivors initiate their maturation 

process. It is thought that these cells do not replace older granule cells but they integrate into the pre-

existing circuitry. This process therefore parallels and counteracts the effect of apoptotic cell death 

that naturally happens in the brain with aging but also  increase the dimension of the dentate gyrus 

formation (Crespo et al., 1986). 

 

1.5 Characterization of granule cells neuronal maturation 

Nestin positive neural precursor cells located in the SGZ have been shown to develop into proper 

granule cells by transfecting them with a retrovirus containing green fluorescent protein (GFP) (Ide et 

al., 2008). Nestin positive new-born neurons in the adult hippocampus initially express glial fibrillary 

acidic protein (GFAP) a well-known astrocytic marker (Seri et al., 2001) but not S100β which is a 

marker for the mature astrocyte. 

 

Fig.3.  The scheme represent the six steps of neuronal differentiation on the basis of morphology, proliferative 

capabilities and the presence of specific markers (Figure from Kempermann et al., 2004). 
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Starting from cells with an immature phenotype expressing GFAP and nestin (fig.3),  Kempermann 

defined six sequential maturation steps during which  adult progenitor cells differentiate into a 

neuronal phenotype (Kempermann et al., 2004). The first step in the neuronal path is the expression of 

Doublecortin (DCX). Progenitor cells that express this marker have entered the neuronal lineage and 

although they can still undergo mitosis they cannot generate glial cells anymore, as no co-labelling 

with GFAP has been found yet. The next step is the expression of NeuN which is associated with the 

so called post-mitotic neuronal state (Mullen et al., 1992). Once cells express NeuN, they do not 

undergo mitosis anymore and start expressing first calretinin (Brandt et al., 2003) and then, after 2-3 

weeks, calbindin. These two markers, both calcium binding proteins, are associated with early and 

mature granule cell phenotype, respectively. 

 

1.6 Voltage-sensitive sodium channels 

Voltage-activated sodium channels are a particular group of integral membrane proteins that open 

upon a change of membrane potential (Vm). They have a role in controlling the voltage gradient and 

are present in cells that require a rapid change in the membrane potential  like muscle, secreting cells   

and particularly  in  neurons, where they make possible the transmission of a wave of depolarization 

along the axon that is called the action potentials (Hodgkin and Huxley, 1952). In an action potential 

(AP) the depolarizing phase is caused by the fast opening of the voltage-activated sodium channels 

which allows Na
+
 ions to flow into the cell. The fast closing and inactivation of the sodium channels 

plus the opening of the voltage-activated K
+
 channels is then responsible for the repolarising phase. 

Sodium channel inactivation persists until the Vm returns close to the cell resting potential. The 

potassium current persists much longer than the sodium current, due to the longer time constant 

related to the opening/closing of the K
+
 channels. Together with the voltage-activated potassium 

channels, specific Ca
2+

-activated potassium channels are responsible for the after hyperpolarization 

that occur during the repolarising phase (Lancaster and Nicoll, 1987; Faber and Sah, 2007).  

The voltage-sensitive Na
+
 channel is a glycoprotein with a transmembrane complex formed by a α-

subunit of 260Kd and smaller β subunits: β1 (36kd), β2 (33kd) and β3 (Catterall, 1984; Morgan, 

2000). While the α-subunit forms the ionic pore of the channel, the β subunits participate in the 

channel’s transport to the cell membrane and in the regulation of its inactivation. Tetrodotoxin (TTX) 

is a neurotoxin, originally extracted from the puffer fish of the family Tetraodontidae, which is 

selective for sodium channels in nerves and muscles. It binds to the extracellular domain of the Nav1.2 
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physically blocking the flow of ions and therefore blocking the propagation of action potential.  The 

EC50 of TTX for the voltage-activated sodium channels varies from 6 to 60nm depending on the 

channel α-subunit isoform and TTX has the important feature of being reversible, as the channel 

regains functionality once it has been washed out from the extracellular solution.  

Nine α-subunits have been characterized so far and four of these isoforms have been found in the 

CNS: Nav1.1, Nav1.2, Nav1.3 and Nav1.6. Of these, Nav1.2 and Nav1.6, are predominately located in 

the axon initial segment while both Nav1.1 and Nav1.3  are located in the node of Ranvier (Yu and 

Catterall, 2003). Recent discoveries have shown that the asymmetric distribution and threshold of 

activation of Nav1.2 and Nav1.6 can explain some of the properties of the axon in relation to the 

generation and transmission of action potentials. The Nav1.2 channels have a high threshold of 

activation and are located preferentially in the first 25µm of the axon initial segment. Nav1.6 in 

comparison has a lower threshold and is found 25-50 µm from the soma down the axon and up the 

dendrites. These characteristics suggest Nav1.6 sets the AP initiation site and Nav1.2 sets a high 

threshold for APs, preventing back propagation to the somatodendritic region of the neuron (Hu et al., 

2009; Dulla and Huguenard, 2009). Moreover, as they confer the ability to initiate and propagate APs, 

Nav1.2 and Nav1.6 can eventually be used as markers of mature neurons. 
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1.7 Hippocampal formation: circuitry and functions 

The hippocampal formation is a neuronal structure of the mammalian brain but it is also present, with 

a simpler structure, in bird and reptile brain (Ulinski, 1990). It has been extensively studied in rodents, 

monkeys and human. The rat is the preferred species for testing hippocampus-related function, 

because of several advantages, like a bigger brain compared to mice and their suitability for 

behavioural tests. The rat hippocampal formation is a banana shaped structure located on the wall of 

the lateral ventricle with a long axis bending along the septal-temporal axis in a C-shaped manner (fig. 

4).  

 

 

Fig.4.  Line drawing of the rat brain showing  the hippocampal structure (Amaral and Witter, 1989).  

 

The hippocampus “proper”  consist of CA3, CA2 and CA1 areas whereas the term “hippocampal 

formation” refer to a large region including  dentate gyrus (DG), subiculum, presubiculum, 

parasubiculum and entorhinal cortex (EC). However, the term hippocampus is often used to indicate 

the whole hippocampal formation, as I do in this manuscript. 
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Fig.5. Schematics of the hippocampal formation. Specific areas are labelled as Dentate Gyrus (DG), Cornu Ammonis area 

3 (CA3) and Cornu Ammonis area 1 (CA1) (Figure adapted from Dr. Alexander Straiker;  

http://www.indiana.edu/~cnnbdlab/Alexhippocampus1.jpg). 

 

The various regions of the hippocampus are connected by mainly unidirectional projections and form 

the so-called trisynaptic circuit shown in fig.5. In this circuit the entorhinal cortex is the main input-

output station of the hippocampus, receiving and sending back information from/to the cortex. EC 

makes synapses with the dentate gyrus and its    projection to the granule cells is called the perforant 

path.  The DG sends its projection through the hilus to the CA3 pyramidal cells by mean of the mossy 

fibers. The output of the CA3 pyramidal neurons, the Schaffer collateral, synapses with CA1 

pyramidal neurons. This is a basic description of the classic trisynaptic circuit. In more detail there are 

other connections which are worth considering.  The CA3 pyramidal neurons receive inputs from the 

same layer II pyramidal neurons of the entorhinal cortex that contact the dentate gyrus. They are 

interconnected receiving recurrent connections from axon collateral of other CA3 cells.  CA3 

pyramidal neurons are also important as their projection through the fornix  establishes commissural 

connection between the two hippocampi (Amaral et al., 1990). CA1 pyramidal neurons receive direct 

connections from layer III entorhinal cortex which are thought to modulate the output back to the EC 

(Steward and Scoville, 1976). 
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1.8 Dentate gyrus structure and functions 

In the dentate gyrus it is possible to distinguish   3 layers.  The layer closest to the external fissures is 

cell free and is called the molecular layer (ML).  The middle layer which contains the granule cell 

bodies is called the granular cell layer (GCL). The cellular region enclosed between the v-shape of the 

GCL is referred to as the polymorphic cell layer. 

Granule cell morphology differs from that of pyramidal neurons of CA3-CA1 areas as all the dendritic 

branches are directed to the ML, conferring the GCs characteristic cone-shaped aspect. Cells in the 

GCL are closely apposed and their number, about 1.2x10
6 

units in rat, does not vary in adulthood 

(Rapp and Gallagher, 1996). Granule cells are the only cells of the dentate gyrus which project to the 

CA3 region.  Mossy fibers terminals are distinctive. They form a large expansion of about 3-5 µm in 

diameter which irregularly interdigitate with the so called thorny excrescences at CA3 proximal 

dendrite and a single termination can have up to 37 synaptic contacts  with a CA3 pyramidal cell 

dendrite (Rollenhagen et al., 2007). 

The others cells in the DG act locally and are therefore called interneurons.  The majority of 

interneurons use γ-aminobutyric acid and are therefore inhibitory  (Ribak et al., 1978). The basket 

cells are the most studied. They derive this name from the peculiar way their axons make synaptic 

contacts, surrounding the GCs bodies in a way which resembles a basket. Other interneurons are less 

studied but their role is indeed important for the functionality of the hippocampus.  An extensive 

description has been written by Freund and Buzsaki (1996).  

The perforant path is the major glutamatergic input to the DG and derives from layer II of the 

entorhinal cortex.  Observed from the septal to the temporal  pole the afferent fibers are not 

homogeneously  distributed with the lateral EC innervating the septal part and the medial EC sending 

its afferents to the temporal pole of the dentate gyrus (Hjorth-Simonsen and Jeune, 1972). The inner 

part of the molecular layer of the DG receives commissural afferents from the other hemisphere as 

well as associational fibers (Deller, 1998).  

A different input to the DG derives from the serotoninergic neurons in the medial-raphe which 

innervate the hippocampus via  the supracallosal pathway through the fimbria-formix and via the 

infracallosal pathway through the cingulate bundle (Azmitia and Segal, 1978).  

One less specific but nevertheless important source of afferents come from the medial septum (MS) 

and is referred as the septohippocampal pathway. It enters the hippocampus through the fimbria-
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formix and reaches several hippocampal layers.  This connection comprises 2 cell types: cholinergic 

and GABAergic neurons. The cholinergic fibers afferents to the DG have been demonstrated by 

electrophysiological studies to excite granule cells (Wheal and Miller, 1980). The GABAergic fibers 

instead control inhibitory interneurons (Freund and Gulyas, 1997). This connection is supposed to 

carry autonomic state, emotional and motivational information about the animal. In comparison, the 

perforant path is thought to carry cortical sensory information relating to the environment (Gulyas et 

al., 1999). 

1.8.1 Synaptic transmission in the hippocampus 

The trisynaptic circuit (i.e. EC>DG>CA3>CA1) is the most studied in the hippocampal formation, 

although the entorhinal cortex is also known to send direct connections to both CA3 and CA1 regions.  

All the synapses in this circuit are glutamatergic. These glutamatergic fibers also form synapses with 

GABAergic interneurons resulting in feed-forward and feed-back inhibition. 

Communications between neurons is facilitated by morphological specializations called synapses. 

These structures comprise pre- and postsynaptic zones specialized for converting   electrical signals 

(e.g. APs) into chemical signals (e.g. release of neurotransmitters) and vice-versa therefore,   allowing 

a fast “point to point” transmission. A slower way of communication that does not require 

symmetrical membrane specialization is the synaptic spillover or extrasynaptic release of 

neurotransmitters (Sem'yanov, 2005) which can also involve glial cells (Overstreet, 2005; Matsui and 

Jahr, 2003). 

In “point to point” synaptic transmission, when an action potential reaches the presynaptic terminal it 

induces the opening of voltage gated calcium channels (VGCCs), located in close proximity to the 

active zone. The local increase in [Ca
2+

] causes the fusion of the synaptic vesicles with the plasma 

membrane and a consequent release of neurotransmitter in the synaptic cleft. The synaptic cleft is a 

thin space of about 20nm which separates the presynaptic terminal from the postsynaptic terminal 

where receptors are densely clustered. 

1.8.2 Glutamatergic transmission  

Glutamate is the main excitatory neurotransmitter in the hippocampus and it relies on ionotrophic and 

metabotrophic glutamatergic receptors (Kew and Kemp, 2005).  
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Ionotrophic receptors, once activated, open a channel in the membrane in the form of a selective 

aqueous pore. Different groups of glutamate ionotrophic receptors show different pharmacokinetics 

and are named after their competitive ligand, respectively N-methyl-D-aspartate (NMDA), α-amino-

3-hydroxy-5-methyl-4-isoazolepropionic acid (AMPA) and 2-carboxy-3-carboxymethyl-4-

isoprsopenylpyrrolidine (kainate).   

AMPA receptors are composed of a combination of 4 subunits (GluR1-4) and are present in almost all 

the excitatory synapses in the hippocampus. The two prominent AMPA receptors tetramers in the 

hippocampus are GluR1-R2 and GluR2-R3 (Wenthold et al., 1996). They are permeable to 

monovalent cations (Na
+
 and K

+
 mostly) but can have a low permeability to Ca

2+
 (Liu and Zukin, 

2007). 

Kainate receptors have common features with AMPA receptors. They are tetrameric and formed by a 

combination of different subunits: GLuR5-7 and KA1-2. They are located mostly in the dentate gyrus 

and CA3 subfields of the hippocampus both pre and post-synaptically (Frerking and Nicoll, 2000).  

NMDA receptors are heteromultimers of NR1 and NR2A-D subunits and show two important 

features. They are highly permeable to Ca
2+

 and are not able to pass current at normal resting 

potential. Whereas AMPA receptors only need glutamate to be able to open the pore, NMDA 

receptors need glycine to be bound to a co-agonist binding site and Mg
2+

 blockade to be removed. 

Glycine is normally bound at its physiological concentration whereas Mg
2+

 needs a depolarization of 

the membrane by up to -50mV in order to be removed (Rebola et al., 2010). This important property 

allows the NMDA receptors to function as coincidence detectors of sustained synaptic activity, 

leading to  changes in the synaptic strength but with low contribution to the baseline synaptic 

transmission (Bliss and Collingridge, 1993).  

Metabotropic receptors act with a different mechanism. Once activated their intracellular domain 

binds G-proteins activating a cascade of second messengers. Metabotropic glutamate receptors are 

divided into group I (mGluR1 and 5), group II (mGluR2 and 3) and group III (mGluR4, 6, 7, 8) 

depending on the second messengers they interact with. The group I mGluRs predominantly couple 

via Gαq/Gα11 to phospholipase C, whereas the group II and III couple to the inhibition of adenylyl-

cyclase activity, via Gαi/Gα0 (Anwyl, 1999). For their slower modus operandi mGluRs receptors are 

thought to modulate synaptic transmission and plasticity. 
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1.8.3 GABAergic transmission 

GABA is the principal inhibitory neurotransmitter in the whole brain. In the hippocampus it is 

released by interneurons although in developing granule cells both markers for glutamatergic and 

GABAergic transmission coexist (Gutierrez, 2005). The synthesis of GABA from glutamate is 

mediated by two different isoforms of glutamic acid decarboxylase, GAD67 uniformly present in the 

cytoplasm and GAD 65 which is found specifically at the presynaptic terminals.  

GABA receptors are divided into ionotrophic (GABAA) and metabotropic (GABAB) types. GABAA 

receptors are permeable to the monovalent anions Cl
-
 and HCO

3-
 and their opening induces inhibitory 

postsynaptic currents (IPSCs) in the adult hippocampus.  

GABAA receptors are heteropentameric and can be composed of several subunits : α1-6, β1-3, γ1-3, δ, Є, 

π, θ but only the α1, α2, α4, β3, γ2 and δ1 subunits are expressed in the dentate gyrus of the hippocampus 

(Sperk et al., 1997). The common composition of hippocampal GABAA receptors is 2α + 2β subunits 

plus one γ or δ subunit (Whiting et al., 1999). 

The different subunit composition of the GABAA receptors is responsible for the different channel 

kinetics and sensitivity to drugs found in different brain areas at sequential developmental stages. In 

particular α1, γ2 and δ1 subunits in the dentate gyrus are going through developmental changes in 

postnatal rats (Killisch et al., 1991; Laurie et al., 1992) and influence characteristics like activation 

and desensitization rates (Gingrich et al., 1995; Angelotti and Macdonald, 1993; Saxena and 

Macdonald, 1994). 

Once GABA has been released in the synaptic cleft, diffusion and high affinity GABA transporters 

(GATs) play an important role in the depletion of the neurotransmitter. So far four different GATs 

have been identified by differential amino acid sequences and interaction with specific drugs. While 

synaptic GATs plays an important role in the definition of magnitude and duration of IPSCs 

(Dingledine and Korn, 1985; Iversen and Kelly, 1975) extra synaptic GATs regulate the diffusion of 

GABA that mediate cross-talk between different synapses (Isaacson et al., 1993). 
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1.9 Dentate Gyrus granule cells in acute hippocampal slice  

The characteristics of dentate gyrus granule cells have been investigated by Edwards et al. (1989, 

1990) in hippocampal acute slices using whole cell patch-clamp technique. Granule cells have a high 

input resistance of about 1GΩ. Spontaneously occurring inhibitory post-synaptic currents (IPSCs) had 

a fast rise time of less than 1ms and a slower decays, respectively < 3ms and > 30ms. The amplitude 

of the currents varied from few pA up to 100 pA at -50mV resting potential. The amplitude of these 

IPSCs was reversing at 0 mV in symmetrical Cl
-
 concentration and was completely blocked by 

application of bicuculline to the bath solution.  The application of GABA also obscured the detection 

of synaptic currents confirming their origin as GABAA mediated Cl
-
 currents. 

After TTX application only currents lower than 40 pA were recorded. TTX is a neurotoxin which 

blocks the activation of the voltage-activated sodium channels, preventing the formation of action 

potentials. Therefore all the postsynaptic current recorded in TTX derive from spontaneous release of 

single vesicles from the presynaptic terminals which are referred as miniature inhibitory postsynaptic 

potentials (mIPSCs). 

 

1.10 Organotypic Hippocampal slices 

The inaccessibility of,  and difficulty in manipulating the central nervous system over a prolonged 

period of time (e.g. several weeks) has led the experimenter to develop in vitro approaches.  

Organotypic cultures are one of the most widely used methodologies for maintaining explants from 

nervous tissue. The roller tube technique was initially introduced by Hogue (1947) and then modified 

through the years until extensively characterized by Gahwiler (1981).  

A different implementation has been developed by Stoppini et al.  (1991) in which hippocampal slices 

are placed onto a porous membrane at the interface between the air (95% O2, 5% CO2) and the culture 

medium. Compared with the roller tube technique this method allows a better preservation of the 

tissue structure. Long term organotypic hippocampal cultures retain a certain level of three-

dimensional structure with a thickness of 5-10 cells bodies and a dense network of cellular processes 

(Buchs et al., 1993).  Also their synapses are very similar to those in acute slices in regard to density 

and maturity, both structural and functional (De Simoni et al., 2003).  Field potentials increase during 

the first 6-12 days in culture then they become stable. Many forms of synaptic plasticity have been 
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demonstrated, including paired-pulse facilitation, post-tetanic potentiation and LTP  (Muller et al., 

1993). Such a system satisfies the needs required to investigate the long-term effects of drugs, trophic 

factors and also different mechanisms of synaptic plasticity. It is well known that new granule cells 

are produced in vivo throughout life in rodent hippocampus (Altman and Das, 1965) but recently even 

organotypic slices has been demonstrated to be able to generate new neurons (Raineteau et al., 2004; 

Raineteau et al., 2006). Therefore this model is well suited to test adult hippocampal stem cell 

integration and differentiation after implantation.  

 

1.11 Hypothesis for adult hippocampal neurogenesis 

The brain retains a high level of plasticity even in adulthood being able to learn and adapt to 

environmental changes that happen in the surrounding environment.  Changes in the morphology, 

connectivity and synaptic strength of single neurons account for this ability.  In the dentate gyrus of 

the hippocampus, new neurons are generated throughout life adding an additional source of plasticity 

(Gould and Gross, 2002). These new neurons become functionally integrated into the existing 

circuitry in a period ranging from 2 to 4 weeks (Jessberger and Kempermann, 2003) and show some 

interesting characteristics which lead to an enhanced cellular plasticity. They have enhanced long-

term potentiation (LTP) due to a low threshold of induction and cannot be inhibited by GABA 

(Snyder et al., 2001). These factors hypothetically allow them to be much more prone to form 

synaptic connections and therefore rapidly integrate into the existing circuitry. Fast integration is a 

prerequisite for their survival and a high level of synaptic stimulation of the dentate gyrus is closely 

related to a high rate of survival of the newborn neurons. While neurogenesis has been associated with 

better performance in spatial discrimination (Clelland et al., 2009), amongst aged rats, the group with 

lower levels of neurogenesis is also the better performer in spatial memory tasks (Bizon et al., 2004; 

Bizon and Gallagher, 2005). This implies that the role of neurogenesis may have different effects on 

different spatial memory tasks or change between adult and old age. 
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2 Materials and Methods 

2.1 Preparation of acute slices 

Acute rat brain slices from male P14 Sprague-Dawley rats were prepared following the protocol from 

Edwards et al., (1989). The   rat head was removed by decapitation, the brain hemisected and quickly 

immersed in ice-cold artificial cerebro-spinal fluid (ACSF) within 60s. A segment was cut away from 

each hemisphere by hand with an angle of approximately 105 degree from the midline surface and 

that surface was used subsequently to stick the hemisection onto a vibrating tissue slicer (Camden 

Instruments, Loughborought, UK). The slices were 350 μm thick and during slicing the well was 

filled with the same ice-cold ACSF. Once removed the slices were transferred into an incubating 

chamber, continuously bubbled with 95% O2 5% CO2, held at 35° C for 30 min, before allow them to 

return to room temperature (25°C). The recording started 30 min after the slice reached room 

temperature and last up to 8 hours. All work was carried out under UK Home Office regulations in 

conformity with national ethics committee guidelines. 

2.2 Preparation of organotypic slices 

We use the method of Stoppini et al. (1991) well-described by De Simoni and Yu (2006). All the 

operations were carried out in sterile conditions under a flow cabinet. Culture inserts were placed into 

a 6 well plate. Each well was filled with 1 ml culture medium and 3 hydrophilic culture membranes 

(Millipore) were placed in each insert. The six well plates were kept in an incubator at 37°C in 95% 

O2 5% CO2 until the slices were ready for plating. The two brain hemisphere from P5 Sprague-

Dawley rat were stuck onto a vibrating manual tissue slicer and immersed in cold (4°C) slicing 

medium. Parasagittal hippocampal slices 300 μm thick were cut and then transferred onto hydrophilic 

culture membrane. Each culture insert holds up to 3 slices. The culture plates were kept in the 

incubator and the culture medium was changed 3 times per week. The enthorinal cortex was not 

removed from the hippocampal slices as it is thought to help to maintain a more physiological 

connectivity, avoiding excessive axonal sprouting by the granule cells (Coltman et al., 1995). Each 

group in vitro is representative of a time interval defined as days in vitro (DIV): DIV 7 (7-8 DIV), 

DIV14 (12-14 DIV), DIV21 (19-21 DIV) and DIV28 (27-29 DIV). 
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Culture medium:  

25% horse serum, 50% minimal essential medium, 23% Earle’s balanced salt solution (all from 

GIBCO BRL), Penicillin (50u.i./ml), Nystatin (12u.i./ml) (from Sigma-Aldrich). 

Slicing medium: 2.978 g. HEPES, 487.5 ml EBSS. (Hepes is first dissolved in a small quantity of 

EBSS and then filtered (0.22 syringe filter) into aliquots. 

 

2.3 Cell culture 

Two adult hippocampal stem cell lines were used in this study. One was provided by  Dr. Victor 

Nurcombe (Chipperfield et al., 2005) and  will be referred to as CHIP; the other one was kindly 

shipped to us by Dr. Michaela Thallmair (Brain Research institute - Zurich), isolated  by Prof. 

F.H.Gage (La Jolla – California) and will be referred to as HCN95. In both cases, the aliquots 

containing the cells were stored in the vapour phase of liquid nitrogen upon arrival. Aliquots were 

then thawed in a 37° C water bath until the ice just start melting and re-suspended in 5 ml of cell 

culture medium. The cells were cultured in a 25 cm
3
 flask or in a 10cm Petri dish and the culture 

medium was changed every 2-3 days. The flasks/dishes were previously coated using 2 ml of 50 

μg/ml poly-D-lysine (30.000-70.000 average molecular weight, Sigma-Aldrich) in H2O for at least 1 

hour and then rinsed twice with PBS and once with culture medium prior to use. The cultures were 

visually checked and the cells split in a new flask before they reached confluence.  CHIP cells were 

not treated with any proteolytic enzymes during the isolation process and in the subsequent phases in 

order to avoid any alteration of their extracellular matrix, using the same protocol as during their 

isolation. HCN95 cells were instead treated with Trypsin or TrypLE™ Select (Invitrogen) in order to 

dissociate them from the culture plate.  

Media compositions were as follows: 

CHIP culture medium:  

Neurobasal-A minus glutamine medium supplemented with:  

B27 (2%), bhFGF2 (20ng/ml), penicillin (100u.i./ml), streptomycin (100µg/ml), glutamine (20mM). 
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HCN95 culture medium:  

DMEM/F12 medium supplemented with: 

N2 (1%), bhFGF2 (20ng/ml), penicillin (100u.i./ml), streptomycin (100µg/ml). 

 

2.3.1 Cell differentiation protocol 

Differentiations media were obtained adding the following components to the previous media: 

Growth-factors media:  BDNF (10 ng/ml), NT-3 (10 ng/ml), NGF(3S) (10 ng/ml), Laminin (10 

µg/ml). 

Serum media:  Horse serum 10% 

Each stem cell line was cultured separately in both differentiation media over a period of 4 weeks and 

immunohistochemistry and electrophysiology experiments were carried out at DIV7, DIV14, DIV21 

and DIV 28. 

2.4 Electrophysiology 

Whole cell patch-clamp recordings were made with an Axopatch1D (Axon Instruments), in artificial 

cerebrospinal fluid (ACSF) at room temperature (24-25 °C), using 4-6 MΩ electrodes pulled from 

borosilicate glass (World Precision Instruments) with a PP-830 microelectrode puller (Narishige, 

Tokyo, Japan). During the recording the preparation was immersed in ACSF solution: (in mM) NaCl 

125, KCl 2.4, NaHCO3 26, NaH2PO4 1.5, glucose 19.4, CaCl2 2, MgCl2 1; and bubbled with 95% O2 / 

5% CO2.  

2.4.1 IPSC recordings 

The internal solution used to clamp the cells’ voltage contained (in mM): CsCl 140, Hepes 5, EGTA 

10, CaCl2 2 and MgATP 2; with pH adjusted to 7.4 with CsOH. The currents measured were very 

small (<1*10-10 pA) therefore the series resistance was not compensated obtaining a minimal baseline 

noise. Moreover, series resistance was monitored at the beginning and at the end of the recording by 

injecting +5 mV pulse. The recordings were rejected if there was more than 20% difference in the 
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series resistance at the beginning and end. TTX 1μM (Tocris Cookson Ltd) was added to the solution 

to block the voltage-gated Na
+
 channels and record miniature synaptic events. SR93351 6μm (Tocris 

Cookson Ltd) was added to the bath to block the GABAergic activity and record the current due to 

glutamatergic receptor activation.  

Part (n= 5) of the electrophysiological data recorded from acute slice at P14 and organotypic slice at 

DIV7 has been collected while supervising and in collaboration with Xiao Wei-Wang (MSc student).  

2.4.2 Action potential recordings 

K-Gluconate intracellular solution used to record action potential contained (in mM): KGluconate130, 

NaCl 10, HEPES 10, EGTA 1, MgATP 2, and MgCl2 1. pH was adjusted to 7.4 with NaOH and 

osmolarity to 298 mOsm with glucose. This solution has about -15 mV junction potential which has 

been compensated before touching the cell. Whole cell configuration was reached in voltage clamp 

configuration and then the amplifier was switched to current clump configuration in order to be able 

to record the voltage changes. 

2.4.3 Signals Recordings & Analysis 

The currents and voltage signals were filtered at 2 KHz (8 Bessel 10dB low-pass filter) and sampled 

at 10 kHz with A-D interface (CED 1401plus). WinEDR and WinWCP signal analysis software 

(kindly supplied by Dr John Dempster) were used to acquire and analyse the data. 

When recording IPSCs, for each cell/condition 320s of data recording were sampled (each including 5 

second of +5mV pulse signals at the beginning and at the end of the recording) using the following 

parameters: threshold spike detection, amplitude -3 pA, time over threshold 5ms, dead time 30ms, 

running mean period 8 ms. Background noise was measured in each recording and all the events 

detected were then inspected by eye in order to avoid event detection errors. We accepted only the 

events in which the rise time was < 3ms and faster than the decay time. (Edwards et al., 1990) 

Once the events were selected the following parameters were measured: amplitude, rise time, decay 

time (t50), frequency. Rise time was measured from 20 to 80% of the maximum amplitude. 

When recording action potentials a series of current steps of increasing amplitude was used to elicit 

the action potentials. Resulting voltage changes were classified as action potential on the basis of 

parameters including onset voltage, maximum depolarization and after hyperpolarization. 
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2.5 Immunohistochemistry 

Stem cells were plated onto 12mm glass coverslips coated with poly-D-lysine   1 to 3 days before 

analysis. The plates were taken from the incubator and the coverslips rinsed and fixed in 

paraformaldyde 4%/glucose 4% solution for 10 minutes.   In order to permeabilize the cell’s 

membrane, coverslips were kept for 5 minutes in 0.5% Triton in PBS. A “blocking” solution 

containing 10% fetal calf serum and 2.5% bovine serum albumin was used to saturate the unspecific 

binding sites for 20minutes.  Primary and secondary antibodies were applied in 10% NGS and 2.5% 

BSA in PBS solution or 10% NGS in PBS solution, respectively.  Coverslips were washed 3 times 

with PBS between each treatment. 

We used antibodies against the following markers to test the phenotype of our cells: 

GFAP:  Glial Fibrillary Acidic Protein is a type III intermediate filament expressed in astrocytes of 

the central nervous system. However, it is not a marker of mature astrocytes, as is β-100.  

Nestin: Nestin is a Type-VI intermediate filament, transiently expressed during cellular division and 

development especially in the subventricular zone of the hippocampus. For these characteristics it is 

used as a marker of neural precursor cells. 

MAP-2: Microtubule Associated Protein 2 is expressed in dendrites where it stabilizes the 

microtubule structure.  

NeuN:  Neural Nuclear antigen is expressed in vertebrate, including human, neurons (Mullen et al., 

1992; Sarnat et al., 1998). 

Calretinin: Calretinin is an intracellular calcium binding protein belonging to the troponin-C 

superfamily. It is expressed in an early post-mitotic stage of neuronal differentiation in hippocampal 

granule cells (Brandt et al., 2003). 

Calbindin-D28k: Calbindin-D is an intracellular calcium binding protein used as dentate gyrus 

granule cell marker although it does not label immature granule cell (Goodman et al., 1993). 

Nav1.2: splice variant 1.2 of the 260kD α-subunit forming the pore of the voltage-activated sodium 

channels (Jarnot and Corbett, 2006)  
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Primary antibodies: 

Millipore 

Rabbit anti-brain type II voltage gated sodium 

channel (Nav1.2) 

Cat:     AB5206 

Dilution factor 1:400 

Sigma-Aldrich 

Mouse Monoclonal anti-MAP2 

Clone:    HM-2 

Cat:        M4403 

Dilution factor 1:500 

Sigma-Aldrich 

Mouse Monoclonal Anti-Glial Fibrillary Acidic 

Protein (GFAP) 

Clone:  G-A-5 

Cat:      G3893 

Dilution factor 1:500 

Swant 

Mouse Monoclonal anti-Calbindin D-28k 

Lot: 07(F) 

Cat: 300 

Dilution factor 1:5000 

Millipore 

Mouse anti-nestin monoclonal  

Clone:  Rat-401 

Cat:      MAB353 

Dilution factor 1:200 

Millipore 

Mouse  Monoclonal anti-Calretinin 

Cat: MAB 1568 

Dilution factor 1:2000 

Millipore 

Mouse anti-neuronal nuclei (NeuN) monoclonal  

Clone:  A60 

Cat:     MAB377 

Dilution factor 1:200 

 

 

Secondary antibodies: 

Cy
 TM

 5 – conjugated AffiniPure Goat Anti 

Rabbit IgG (H+L) 

Jackson Immunoresearch 

Code: 111-175-003 Lot: 85419 

Cy
 TM

 5 – conjugated AffiniPure Goat Anti 

Mouse IgG (H+L) 

Jackson Immunoresearch,  

Code: 115-175-003 Lot:74552 

 

 

Before proceeding we tested antibodies against GFAP, Nestin and NeuN for their efficacy on 

differentiated hippocampal cultures containing both neurons and glial cells. We did not test MAP-2, 



29 

 

 

 

Calretinin and Calbindin as we already knew their optimal concentration. Antibodies against GFAP 

and Nestin showed a good specificity when used in concentration of 1:500 and 1:200 respectively. 

NeuN Antibody optimal concentration was 1:200 (fig. 6). The labelling of the stem cell line was 

carried out strictly following the protocol, using the antibodies at their optimal concentration. 

 

Fig.6. Three different cultures containing differentiated hippocampal cells stained with GFAP (middle), nestin 

(left) and NeuN (right). Each image shows the labelling obtained using those antibodies at their optimal 

concentration. Antibody names and concentrations are shown in each image at the top left corner. 

 

CHIP stem cells (Chipperfield et al., 2002) were able to renew themselves when grown in the 

presence of basic fibroblast growth factor 2 (bFGF2). This stem cell line has been transfected with a 

replication-deficient adenovirus expressing green fluorescent protein (GFP) from which GFP positive 

clones have been manually selected and expanded.  Unexpectedly, I found that in 2 cases over >100 

images, not all the cells were GFP positive (fig.7, white arrow). This lack of expression does not 

introduce any significative problems because of its small number and therefore does not affect the 

validity of the results. 

 

Fig.7. Adult hippocampal progenitor cells stained with antibodies against MAP-2. The white arrow shows 

the position of the non GFP labelled cell. 
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As the cells were GFP positive (exc.488 nm, emiss. 509 nm), the secondary antibodies chosen for the 

detection of the staining were conjugated with CY5 (exc.650nm, em.670nm), in order to avoid bleed 

through caused by cross-excitation of the signals. Once stained the slice were fixed on glass slides. 

The pro-long antifade (Molecular Probes) was used as mounting medium to lower the photo-

bleaching. The fluorescence cells images were taken using a Zeiss LSM-510 Meta confocal 

microscope with Argon-Krypton (488nm), Helium-Neon (633nm) and UV (405nm) lasers to excite 

respectively GFP, Cy5 and DAPI  

 

2.6 Slice imaging 

Alexa dyes which do not induce any electrophysiological change in the cells were alternatively 

included in the intracellular solution at 0.2 mg/ml (all from Molecular Probes Europe BV, Leiden, 

The Netherlands):  

Alexa Fluor 488 product code A10436; absorption 495 nm, emission 519 nm.  

Alexa Fluor 594, product code A10438; absorption 590 nm, emission 617nm. 

The imaging was performed on an Olympus Fluoview confocal microscope (generously supplied by 

Olympus, London, UK) on an upright Olympus BX50WI, using the following Olympus objectives: 

40x water immersion, NA 0.8 or 60x water immersion, NA 0.9. The photomultiplier and gain were set 

in order to have the best resolution without reaching saturation. Imaging was usually performed 

immediately in live tissue continuously perfused with ACSF. 

2.7 Statistical Analysis 

Electrophysiological data were analysed using WinWCP, WinEDR. The statistical analysis was 

carried out using Microsoft Excel, GraphPad Prism 5 and SigmaPlot 11.  All the data groups were 

tested for normality. In some cases it was not possible to test a data group for normality because of the 

small n. Previous studies have however shown that such data are normal distributed. (Note that where 

raw data distributions are skewed the medians are taken from individual cells. As the medians are 

normally distributed between cells the means of the medians are then used for analysis (Edwards et 

al., 1990; Parsley et al., 2007). One-way ANOVA or two-way ANOVA were used to compare the 
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differences between different sets of data. The differences were considered significant at p ≤ 0.05. 

Post-test were applied as appropriate (see results). Data are showed as mean ± SEM if not indicated 

differently. In cases where the raw data were not normally distributed the means refer to the average 

of the medians. The p-value is shown using the symbol “*” to indicate a p-value < 0.05, the symbol 

“**” to indicate a p-value < 0.01 and the symbol “***” to indicate p-value <0.001. 

 

2.8 Limitation of the methods 

2.8.1  Cell culture 

Neuronal cultures provide a valid alternative to in vivo models for studying basic cell properties and 

cell-cell interactions because of their defined conditions and the high number of manipulations they 

allow. Culture media used initially must contain serum to provide factors which are critical for the 

survival of the neurons. Because of the way it is sourced serum composition varies from one lot to 

another affecting the reliability and reproducibility of experiments. N2 supplement (Bottenstein and 

Sato, 1979) and B27 supplement (Brewer et al., 1993) were developed in an attempt to define the 

essential components present in the culture medium and improve the reproducibility of the 

experiments. This approach solves several problems and drastically reduces the variability of the 

neuronal culture.  However, several laboratories still experience differences using commercially 

available supplements (Tsui and Malenka, 2006; Schluter et al., 2006). The reason is that several 

components, like bovine serum albumin and transferrin, are isolated from biological sources and the 

isolation procedures differ from different vendors. Therefore it is critical to use the same supplier for 

each product to obtain reproducible results. 
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3 Results 

3.1  Characterization of IPSCs from granule cells in organotypic slices 

The aim of the study was to implant hippocampal stem cells onto hippocampal organotypic slices in 

order to analyse the process of differentiation and integration into a pre-existing network. I also 

studied the characteristics of the granule cells occurring in situ in such slices. 

Several works demonstrate that soon after birth the functionality of the dentate gyrus in acute slices is 

mainly dominated by GABAergic synaptic transmission (Markwardt et al., 2009). Glutamatergic 

activity increases with postnatal development until it reaches a plateau at the end of the fourth week 

(Liu et al., 2000), when the vast majority of the granule cells have reached maturity. Moreover, it has 

been shown that the majority of synaptic currents were blocked in the presence of bicuculline 

(Edwards et al., 1990) and spontaneous activity was largely GABAergic. I thus studied the 

spontaneous inhibitory synaptic currents (IPSCs) which occurred in granule cells of organotypic 

slices. 
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Fig.8. Frequency of IPSCs plotted against age in culture 

(one-way ANOVA p=0.178, post-tests Bonferroni are not 

significant). 

We know that the general population of granule cells in the dentate gyrus completes its maturation in 

4
th
 – 5

th
 postnatal weeks (Piatti et al., 2006). In my recordings of the activity in the granule cells up to 

3 weeks of age, I found that the frequency of IPSCs did not significantly increase over time (fig. 8). 



33 

 

 

 

 

Frequency

DIV7 DIV7 TTX DIV21 DIV21 TTX

0

1

2

3

4

5

6

n=9

n=5

n=5

n=4

***

Age/Drug

F
re

q
u

e
n

c
y
 (

H
z
)

 

Fig.9. Frequency of IPSCs in granule cells at DIV7 and 

DIV21 recorded without and with TTX. (Two-way 

ANOVA: control vs TTX p=0.0003, Age effect and 

interaction are not significant). 

 

IPSCs frequency comprises both spontaneous and miniature postsynaptic currents (mIPSCs). mIPSCs 

are due to a single vesicle spontaneously released from the presynaptic terminal. Once TTX was 

applied to isolate the mIPSCs, the frequency radically decreases at both ages (fig.9).   
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Peak vs Age

DIV7 DIV14 DIV21
0

10

20

30

40

50

60

70

80

90 n=5

n=5

n=9

A Age

A
m

p
li
tu

d
e
 (

p
A

)

 

Rise Time vs Age
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Fig.10. A: Peak of IPSCs over 3 weeks in culture (One way ANOVA p=0.437, post-tests Bonferroni not significant). B: Rise 

time of IPSCs over 3 weeks in culture (one way ANOVA p=0.552, post-tests Bonferroni not significant). 

 

The peak amplitude of the IPSCs (fig.10A), measured at DIV7, DIV14 and DIV21 show no 

significant differences. The IPSCs rise time (fig. 10B) is fast and stable throughout the 3 weeks. It 

ranges from 1.07±0.17ms at DIV7 to 1.31±0.16ms at DIV14.   
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Decay time vs Age
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Fig.11. Decay time to half amplitude (t50) across 3 weeks in 

culture (One way ANOVA p=0.053, post-test Bonferroni DIV7 vs 

DIV21 p<0.05, others post-tests are not significant). 

 

The decay time (t50) is determined by how long the channels remain open or the mean open-time. The 

decay time constant (t50) showed a clear trend toward decreasing over 2 weeks in culture (fig.11) from 

DIV7 (32.81±4.06ms) to DIV21 (19.98±4.9ms). 
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3.2 Comparison of IPSC activity in DIV7 organotypic and P14 acute slice  

Postsynaptic potentials in CA1 pyramidal neurons have already been analysed both in organotypic 

and acute slices (De Simoni et al., 2003). The same is less true for the granule cells of the dentate 

gyrus. Therefore I did a comparison between DIV7 organotypic slice and P14 acute slice to test 

whether the results were comparable between the two preparations. 
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Fig.12. Comparison of IPSCs frequency of P14 acute slices and 

DIV7 organotypic slices in control condition or TTX (two-way 

ANOVA control vs TTX p<0.001, P14 vs DIV7 p=0.3378, 

interaction p=0.7247). 

 

The frequency of IPSCs of DG granule cells from P14 acute (2.11±0.3 Hz) and DIV7 organotypic 

slices (1.93±0.37 Hz) are similar in control condition (fig. 12). After TTX infusion both slice 

preparations show a marked decrease in the frequency of IPSCs. There is no difference between 

mIPSCs frequency at P14 and DIV7. 
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Fig.13 IPSCs peak amplitude in P14 acute slices and DIV7 

organotypic slices (two-way ANOVA control vs TTX p=0.0005, 

P14 vs DIV7 p=0.8665, interaction p=0.0256; post-tests Bonferroni  

DIV7 vs DIV7 TTX p=0.003, others  post-tests are not significant). 

 

There is a significant difference in the peak amplitude between IPSCs and mIPSCs at DIV7 (fig.13). 

The ratio between the amplitude of mIPSCs and IPSCs, which can be used to estimate the number of 

release sites activated during an action potential, is close to 3 (2.78) in the organotypic slices. 

From the ratio between mIPSCs and IPSCs frequencies (fig.12) it appears that 30% of P14 IPSCs and 

13% of DIV7 IPSCs may be mIPSCs. As mIPSCs have significantly lower amplitude, the mean 

amplitude of AP-mediated events alone at DIV7 will be higher. 
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Fig.14 IPSC rise time in P14 Acute slices and DIV7 organotypic 

slices (Two-way ANOVA control vs TTX p=0.1172, P14 vs DIV7 

p=0.1727, interaction p=0.6741). 

 

IPSC rise time (fig.14) is not significantly different between P14 and DIV7. In TTX condition, the 

rise time detected in DIV7 organotypic slices is not significantly different from in P14 acute slice. 
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Fig.15 IPSC decay time in P14 acute slices and DIV7 organotypic 

slices (two-way ANOVA Control vs TTX p=0.0643, P14 vs DIV7 

p=0.0818, interaction p=0.0548; post-test Bonferroni P14 vs DIV7 

p=0.032, others post-tests are not significant). 

 

Decay time (t50) differs significantly between P14 and DIV7. The effect of TTX does not have a 

statistically significant effect on the decay time in comparison with the control condition in either 

acute or organotypic slices. 
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3.3 Implantation of stem cells into organotypic slices 

Stem cells from the line obtained from Chipperfield and expressing GFP were cultured in Neurobasal 

medium and then implanted into organotypic slices cultured in minimum essential medium 

(MEM/EBSS based medium). In such a preparation, stem cells do not survive more than two weeks. 

To check if the organotypic slice medium alone was able to sustain stem cells, I cultured CHIP stem 

cell in this medium. I found the same results as in the implant, with stem cells that do not survive 

more than 2 weeks in culture showing a decreased density at DIV14 (fig. 16) and no cells remaining 

at DIV21 (data not shown). 

 

Fig.16. CHIP stem cells cultured in organotypic slice medium. Note the lack of arborisations at DIV7 and DIV14. 

 

 

I thus investigated whether organotypic slices would survive in the DMEM/F12 based medium. The 

DMEM/F12 based medium composition does not use horse serum and it includes the F12 nutrient 

mixture which is specifically formulated to better support neuronal cell culture.  

I found that DMEM/F12 based medium is compatible with organotypic slices (fig.17A, B) and stem 

cell survival (fig. 18). Neurons from organotypic slices cultured in this medium remain healthy until 

the 6
th
 week showing a well-developed dendritic tree with a high number of spines (fig.17B).  
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Fig.17. Neuron from 6 weeks hippocampal organotypic slice filled with Alexa Red dye.  A: projection of 48 images 

composing the stack (scale bar 50µm).  B: magnification of a group of dendrites with plenty of spines (scale bar 20µm). 

 

 

Fig.18 Stem cell implanted onto organotypic slices at 2 and 4 weeks in culture.  

The method I used to implant the cells does not allow a precise quantification of the number of cells 

that remain on the slice but in all the cases I found that they tend to aggregate forming groups of cells 

of variable dimensions. The stem cells that were washed away from the slice do not survive and die 

during the first 2 weeks (data not shown). Unfortunately I saw no evidence of glial/neuronal 

differentiation under these conditions. Cells have no protrusions and hence the project changed to 

characterizing the differentiation of 2 different stem cell lines in culture. 
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3.4 Immunohistochemichal characterization of stem cells in culture 

The adult hippocampus stem cell line I used for the implantation experiment was found to be stable in 

culture, maintaining its stem cell features for over 6 months (Chipperfield et al., 2002).  As described 

in the literature (Kempermann et al., 2004) the use of several antibodies is necessary in order to define 

the several markers that are expressed in a sequential timeline during the differentiation process. I 

therefore assessed their phenotype with different antibodies: GFAP, Nestin, MAP2, NeuN, Calretinin 

and Calbindin (fig. 19A-B).  

 

Fig.19A. Immohistochemical characterization of CHIP stem cell line with GFAP and nestin antibodies after 2 

days in culture. In green CHIP stem cell line constitutively expressing green fluorescent protein , in red from 

top to bottom , the control labelling using only the secondary antibody (CY5), the labelling for glial fibrillary 

acid protein (GFAP) and the labelling for nestin protein (Nestin).  
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Fig.19B. Immohistochemical characterization of the CHIP stem cell line with MAP2, NeuN and calretinin 

antibodies after 2 days in culture. In green CHIP stem cells constitutively expressing green fluorescent 

protein, in red from top to bottom, the labelling for microtubule associated protein 2 (MAP2), the labelling 

for neural nuclei protein (NeuN) and the labelling for calretinin protein (Calretinin).  

 

The CHIP stem cell line had a very low expression of GFAP but was positive for Nestin and MAP2. 

They do not express NeuN and Calretinin and/or Calbindin (Calbindin results not shown).  So, in 

agreement with the literature these stem cell lines have a neuronal phenotype as they express MAP2 

(Peng et al., 1986) but they are not yet totally differentiated into mature neurons. 
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3.5 Study of the functional differentiation of two adult hippocampus 

derived stem cell lines. 

In order to correlate the functional differentiation of two stem cell lines, CHIP and HCN95, with the 

presence of the neuronal marker NeuN, I studied both the cells’ abilities to fire action potentials and 

the presence of sodium channels. The shape of the action potentials recorded from both these cells 

line were still immature but they correlate well with the presence of sodium channels and were TTX 

sensitive (fig. 20). 

 

 

Fig.20. Membrane potentials elicited after current steps injection in HCN95 stem cell. On the right the cells perfused with 

10µM TTX Krebs solution to show that the current we were recording was effectively due to voltage gated sodium channel 

opening. 

 

Both CHIP and HCN95 stem cells were induced to differentiate using two different protocols.   In the 

first protocol 10% horse serum was added to the culture media whereas in the second protocol I used 

a defined mix of growth factors (BDNF, NT-3, NGF) + Laminin, in order to induce neuronal 

differentiation.   



45 

 

 

 

Chipperfield Stem cells cultured in horse serum differentiation medium for 4 weeks (fig.21) show no 

markers for sodium channels or NeuN. They also have a low percentage (20%) of neurons able to fire 

action potentials both at DIV7 and DIV28.  

  

 

Fig.21. Chipperfield Stem cells cultured in HS differentiating medium and labelled for Nav 1.2 and NeuN. In blue the 

DAPI staining of the nucleus; in green the GFP for the cell body and in red the staining for Nav1.2 and NeuN which are 

absent both at DIV7 and DIV28. TOP: Stem cells at DIV7. BOTTOM: Stem cells at DIV 28. RIGHT: Graph of the stem 

cells with the % of action potential recorded at each age.  

 

 

. 
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HCN95 stem cells cultured in Horse serum differentiation medium (fig. 22) show no marker for NeuN 

at DIV7 and DIV 28 but were positive for Nav1.2 at DIV 28. Also the totality of the neurons is able to 

fire APs starting from DIV21. 

 

 

Fig.22. HCN95 Stem cells cultured in HS differentiating medium and labelled for Nav1.2 and NeuN. In blue the DAPI 

staining of the nucleus and in red the staining for Nav1.2 or NeuN. TOP: Stem cells at DIV7. BOTTOM: Stem cells at DIV 

28 with magnification of cells expressing Nav 1.2. RIGHT: Graph of the stem cells with the % of action potential recorded at 

each age. 
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CHIP stem cells cultured in growth factor differentiation medium (fig. 23) show no marker for NeuN 

at DIV7 and DIV 28 but are positive for markers for Nav1.2 at DIV 28. Also the totality of the 

neurons is able to fire APs once they reach DIV28.  

 

 

Fig.23. CHIP stem cells cultured in Growth factors differentiating medium and labelled for Nav 1.2 and NeuN. In blue the 

DAPI staining of the nucleus. TOP: Stem cells at DIV7. BOTTOM: Stem cells at DIV 28. RIGHT: Graph of the stem cells 

with the % of action potential recorded at each age.  

 

. 
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HCN95 stem cells cultured in growth factor differentiation medium (fig. 24) show no marker for 

NeuN at DIV7 and DIV 28 but they do show markers for Nav1.2 at DIV 28. Also the totality of the 

neurons is able to fire APs at DIV28 

 

 

Fig.24. HCN95 Stem cells cultured in growth factors differentiating medium and labelled for Nav 1.2 and NeuN. In blue the 

DAPI staining of the nucleus and in red Nan1.2 or NeuN. TOP: Stem cell at DIV7. BOTTOM: Stem cell at DIV 28. RIGHT: 

Graph of stem cell with the % of action potential recorded at each age.  
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4 Discussion 

Using organotypic slices has allowed me to study which elements influence the survival and the 

integration of stem cells once they have been implanted. I was able to characterize postsynaptic 

currents in granule cells over a period of 4 weeks. However, stem cell integration was not achieved 

and I switched my aim to the study of stem cell differentiation in culture, using immunohistochemical 

markers and electrophysiology to assess their properties. 

 

4.1 Changes in dentate gyrus granule cell IPSCs properties 

Knowing the characteristics of granule cell postsynaptic currents in the dentate gyrus of the 

hippocampus is an essential step to picture their behaviour. Therefore I started characterizing granule 

cell postsynaptic currents in organotypic hippocampal slices from 1 to 3 weeks.  

Glutamate and GABA are the principal neurotransmitters in the mammalian brain (Freund and 

Buzsaki, 1996) but the vast majority of postsynaptic currents recorded from granule cells have been 

shown to be GABAergic in acute hippocampal slice (Edwards et al., 1990) as well as in organotypic 

hippocampal slices (unpublished data from X.W. Wang MSc Thesis). Therefore, in my recordings I 

focused on GABAergic IPSCs.  

We observed a significant decrease in the frequency of IPSCs in the presence of TTX confirming that 

a significant proportion of spontaneous events are mediated by action potentials in both preparations. 

After TTX application to block spontaneous action potentials, we observed that mIPSCs frequency 

(fig. 9) does not decrease significantly, between the first and the third week in culture. This is in 

contrast with a previous report where it has been found that mIPSCs frequency increase with age in 

DG granule cells from P0 to P21 acute slices (Hollrigel and Soltesz, 1997). 

When I look at the peak and rise time of the IPSCs there is no significant difference between them at 

different ages. The IPSCs mean median peak amplitude grouping DIV14-21 (62±9.6) is similar to 

IPSCs amplitude recorded in mature granule cells (62±6.7 pA, (Markwardt et al., 2009). Considering 

that dendritic synaptic events are characterized by a slow rise time, most of these events, rising in  

approximately 1 ms  are probably caused by perisomatic synapses (Soltesz et al., 1995) 
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4.2 Different properties of organotypic and acute hippocampal slices. 

The IPSCs recordings of dentate gyrus granule cells from postnatal day 14 (P14) acute slices allow a 

comparison between corresponding ages of acute slices and organotypic slices.  

There was no significant difference in the frequency of spontaneous IPSCs between the two 

preparations both in control condition and with application of TTX. In both preparations the dentate 

gyrus is still undergoing a major development but in the organotypic slices the reduction of the 

number of synapses, induced during the slice preparation by the loss of afferent and efferent 

connections, may have been recovered at DIV7. Moreover, there is no significant difference in 

mIPSCs frequency between DIV7 and DIV21 in organotypic slices (fig.9). Excluding changes in pr, 

these data lead to the conclusion that the number of functional synapses remain similar in both acute 

and organotypic slices.    

The peak IPSC amplitude (fig. 13) is also similar but once I applied TTX, it significantly decreases in 

the organotypic slice preparation, down to 35% of the normal amplitude. IPSCs are generated by 

synchronous release of presynaptic vesicles from one or more release sites present at the activated 

synapse. In contrast, mIPSCs generated after TTX application are due to a single vesicle released 

from one release site. This result suggests that one action potential activates nearly 3 releases sites on 

average in organotypic slices compared with the ratio of approximately 1:1 in acute slices. 

The rise time is not significantly different between the two preparations (fig. 14). This may mean that 

in both preparations the currents derive from synapses which are equally distant from the soma.  

Looking at t50 there is a significant difference between P14 acute slices and DIV7 organotypic slices 

(fig. 15). Among several factors, t50 is determined by channel subunit composition (Garrett et al., 

1990), temperature and membrane potential (Pytel et al., 2006). 

We recorded at room temperature while holding the cells at -70mV therefore a switch in subunit 

composition remains the most feasible explanation. Changes in subunit compositions during 

development have been shown in terms of changes in sensitivity of GABAergic synaptic currents to 

neurosteroids (Cooper et al., 1999) and also zolpidem and zinc (Hollrigel and Soltesz, 1997). The α4, 

β1 subunits which start declining at about day 12 in vivo and δ subunits that instead become detectable 

(Laurie et al., 1992). Considering we are studying preparations in this age range, the differences may 

reflect that development in organotypic slice occurs at a different rate. Withdrawing progesterone 
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from rats in particular, has shown to increase α4 in association with a decrease in decay time (Smith et 

al., 1998).  

Another factor which could possibly contribute to change in t50 is how fast GABA is cleared out of the 

synaptic cleft once it has been released from the presynaptic terminal. The depletion of the GABA 

neurotransmitter from the synaptic cleft relies on diffusion and the GAT-1 transporter.  

The GAT-1 transporter seems to develop together with the GABAergic transmission (Yan et al., 

1997). After applying the GAT-1 GABA transporter blocker NO711, there was a significant 

difference in the decay time of evoked IPSCs but no effect on the decay of spontaneous IPSCs 

recorded from mouse hippocampal slice between P30 and P60 (Wei et al., 2003). Therefore, it 

probably has no influence on shaping the decay time. 

With the maturation of the brain the extracellular volume undergoes a marked reduction between P10 

and P20 in rats (Lehmenkuhler et al., 1993). Artificially reducing the extracellular space in acute slice 

with a hypo-osmotic ACSF solution during the first postnatal week resulted in a prolongation of t50. 

However, at P13-16, t50 results unaffected by the same procedure (Draguhn and Heinemann, 1996).   

It is also possible that the differences in decay time reflect an increased extracellular space in 

organotypic slices. 

 

4.3 Importance of a permissive environment for stem cell integration. 

Several studies in which stem cells have been transplanted into the brain in vivo reveal that they use 

local cues to migrate to specific regions and then differentiate (Renfranz et al., 1991; Fishell, 1995; 

Vicario-Abejon et al., 1995). The initial aim of this project was to understand the process through 

which adult derived hippocampal stem cells differentiate and integrate once implanted into the 

hippocampus and in particular into the dentate gyrus. 

I used hippocampal organotypic slices as a host tissue and implanted stem cells at DIV8. In this first 

attempt, stem cell survival, once they have been implanted onto organotypic slice, was limited to 2 

weeks. In such a preparation not only the brain slices but also the culture medium plays an important 

role in defining the environmental conditions that can allow the stem cells to survive and integrate. 

The presence of serum in the slice culture medium gives the necessary nutrients which allow survival 

of the organotypic slices but apparently does not allow survival of the stem cells. Culturing CHIP 
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stem cell in a medium with such composition has been proven to inhibit their survival (fig.16). This 

result is in line with what was found in other experiments in which neurogenesis was found to be 

inhibited by serum in the culture medium, even in presence of epidermal growth factor (Raineteau et 

al., 2004).  

The difficulties experienced with the survival of stem cells once they were applied onto the 

organotypic slices has led me to use a different medium for culturing organotypic slices. The new 

formulation is based on DMEM-F12 and does not require horse serum. In this condition stem cells 

survive for up to 6 weeks in culture but again, no signs of differentiation like dendrites or axons 

protruding from the cell body were detected. The main difference in the new medium formulation is 

the absence of horse serum and the presence of N2 supplement to sustain cell survival. N2 supplement 

is chemically defined and has been shown to support and be selective for neuronal cells (Bottenstein 

and Sato, 1979). The composition of the serum is unknown and while it certainly contains factors 

which are necessary for the survival of neurons it may also contain factors that are strongly inhibiting 

the survival of cells in a developing state. 

The inhibiting effect of horse serum on stem cell survival is very interesting, we know that in vivo 

stem cell survive and proliferate only in two particular zones, the SVZ and the SGZ, while the other 

zones may be non-permissive. Thus the horse serum medium appears to behave like a non-permissive 

zone. Moreover, it suggests that the characteristics of the cellular niche are a major factor in 

determining the survival of the stem cells. 

We implanted the cells by suspension and subsequent deposition on the whole surface of the slice. 

Once they have been put on the slice, the cells tend to aggregate but no preferential areas on the 

organotypic slices have been detected. In a similar experiment using the J1ES  cell line (Li et al., 

1992) stem cells survive and integrate when they are deposited within the hilus of the Dentate Gyrus 

(Benninger et al., 2003). Therefore another important factor in determining the integration seems to be 

related to the intrinsic characteristic of the stem cell line used for the implantation. A further 

experiment could employ different stem cell lines in order to test the importance of particular 

components of the culture medium in allowing stem cell survival. 
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4.4 Immunohistochemichal characterization of stem cells in culture 

Stem cell development and differentiation have been screened usually by looking at the expression of 

several markers: each one associates with a particular maturation state. An accepted model for 

hippocampal neurogenesis has been proposed by Kempermann (2004) who defined six milestones of 

neuronal differentiation. In this model each stage is associated with the presence or absence of a 

specific marker and the crucial step is the expression of NeuN which marks the acquisition of a 

mature granule cell phenotype.  

In my work I did an immunohistochemical characterization of the CHIP stem cell line which was 

positive for GFAP, Nestin and MAP2. Based on the Kempermann classification, cells which express 

GFAP and Nestin are called “Type-1” cells and are the putative radial-glia stem cells which are found 

in the SGZ of the adult dentate gyrus. MAP2 in contrast is a protein found on the dendritic 

microtubules and supposedly only in mature neuron. This stem cell line has the characteristics of 

“type-1” cells which include the ability to proliferate while the expression of MAP2 collocate this 

cells a step forward in the path of neuronal differentiation although they do not express NeuN, a 

commonly used marker of mature neurons.  

In previous work, stem cells express a voltage-dependent sodium current which is also a neuronal 

marker, while they are not yet expressing NeuN (Fukuda et al., 2003). The presence of a voltage-

activated sodium current can indeed be interpreted as an earlier sign of neuronal differentiation and 

furthermore the ability to fire action potentials. In the next section I will discuss the presence of 

sodium-activated voltage channels, detected using an antibody against Nav1.2, and the presence of 

NeuN, both in correlation with the acquisition of a mature neuronal phenotype. 

 

4.5 Functional neuronal differentiation of two adult hippocampal stem 

cell lines 

Adult hippocampal progenitor stem cells are expected to develop into granule cells or glial cells on 

the basis of their internal program and the stimuli which they receive from the environment. Neuronal 

differentiation is achieved when the cells develop the ability to fire action potentials once they receive 

the proper stimulation.  
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Both CHIP and HCN95 stem cell lines were able to remain undifferentiated even after several months 

in culture. After I introduced the differentiating factors these cells were induced to mature into a 

neural phenotype but with different outcomes, depending on the specific stem cell line and the 

differentiation media which was employed.  

CHIP stem cells cultured in horse serum do not show sodium channels or NeuN for up to 4 weeks in 

culture. This stem cell line also shows a very low percentage of cells able to fire action potentials (fig. 

21). In the same conditions HCN95 stem cells show the presence of sodium channels after 4 weeks. 

They also show a much higher percentage of active cells. NeuN is not expressed in either cell line. 

Excluding a non-efficacy of the antibody against NeuN which has been tested using a neuronal cell 

culture explanted from rat hippocampus (fig.6) the absence of NeuN could be interpreted as an 

indicator of a non-neuronal phenotype. However, the presence of sodium channel Nav1.2 subunits and 

a high percentage of cells able to fire action potentials definitely define these cells as neurons. 

Different stem cell lines have therefore a different internal program which leads them to a different 

development even in the presence of the same differentiating factor (HS). 

Using a mix of growth factors as differentiating agent, yields a high percentage of neuronal 

differentiation in both CHIP and HCN95 stem cell lines. Sodium channels were never detected at 

DIV7 whereas they were present at DIV28 in both stem cell lines. The distribution of the cluster of 

sodium channels suggest  a localization on the plasma membrane but does not rule out  the possibility 

of intracellular labelled Nav1.2 subunits, as found in a similar work (Biella et al., 2007). The channels 

are localised with high density only in one site for each cell, probably the axon initial segment (fig. 23 

and 24) where the higher density of sodium channels is necessary to generate action potential. 

Indicatively, at DIV28 all the CHIP and HCN95 cells recorded are able to fire action potentials.  

NeuN is not expressed in any culture up to 28 days. This led me to think that Nav1.2 is better indicator 

of neuronal phenotype when applied to young neurons. It is difficult to find a single marker that could 

define a cell as a neuron, especially when they are immature. Choosing a marker that strictly 

correlates with a neuronal characteristic, like the ability to fire action potential, has been demonstrated 

in this study to be more reliable.  

Furthermore, as it has been proposed also in other studies (Goffredo et al., 2008), the possibility of 

generating such a high percentage of electrophysiologically mature neurons in vitro will yield a new 

source of neurons not only for transplant purposes but also for pharmacologic studies. 



55 

 

 

 

5 Appendix 

5.1 Western blot - result 
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Fig.25. Western blots of HCN95 and CHIP stem cells cultured in Horse serum differentiating media. A: from 

left to right the column contains: the protein standards, the synaptosome, HCN95 HS and CHIP HS. B: graph 

of the value of the signals as detected by ImageJ analysis software. 

 

CHIP and HCN95 stem cell were cultured in horse serum differentiating medium for 4 weeks. The 

western blot in fig. 25 shows the results obtained after running the different samples.  Each line had 

been loaded with 80µg of protein sample. β-actin staining shows the quantity of proteins loaded in 

each lane. The sodium α-subunit SCN2a is present as a faint signal only in the synaptosome 

preparation and no signal is visually detectable in the HCN95 and CHIP lanes.  

 

5.2 Western Blot - Material and Methods  

The western blot technique allows the detection of specific proteins in tissue extracts or homogenates 

using gel electrophoresis to separate proteins by the length of the polypeptide in the denatured 

condition. Once the proteins are separated they are transferred onto a membrane on which they can be 
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detected using specific antibodies. This technique has been employed to test the increased expression 

of voltage-activated sodium channels by mean of detecting the SCN2a peptide which is the main 

channel subunit. Samples from the different preparations were taken at the appropriate times: DIV0, 

DIV7, DIV14, DIV21 and DIV28 using the following protocol. 

The medium was removed and the culture plates washed once with PBS. Cells were harvested by 

mechanical dislocation   and centrifuged once for 3 min at 1000 rpm. The supranatant was removed 

and the cells were resuspended in 1-1.5 ml PBS into a 1.5 ml vial (Eppendorf). Each vial was 

centrifuged at about 2000 RPM and the pellet was frozen at -80 ° after removing the supranatant. 

The lysis buffer (1x PBS, 1% Nonidet, 0.05% Sodium deoxycholate, 0.1% SDS, Complete Protease 

Inhibitor Cocktail Tablets) is added to the cell sample as soon as possible after removing the sample 

vial from the freezer (-80°C). In some cases medium (~100µl) is left into the vial due to low number 

of cells harvested therefore the buffer composition is adapted in order to maintain the final 

concentration.  

In order to load the same amount of protein in each well it is necessary to measure the protein 

concentration in each sample. To do that, we use Bovine Serum Albumin, of different known 

concentrations, to build the calibration curve of the spectrophotometer and then we measure protein 

concentration in the samples with BCA protein assay kit (Pierce). We quantify the results obtained 

from our sample by comparison with the curve created with BSA. The right amount of protein from 

each sample is then mixed 1:1 to 2x sample buffer (Laemmli buffer, Biorad) and heated at 37°C for 

30 minutes. The samples are loaded into the gel wells as soon as they are removed from the heater. 

The precast gels used are 7.5% Tris-HCL (Ready Gel, Biorad) with 10 wells and 4% stacking gel and 

30 µl capacity per well. The first and the last lane of the gel are loaded with protein standards 

(precision plus protein Standards, Biorad) in order to recognize the molecular weight of the protein of 

interest and to have a visual control during the electrophoresis. 

The gel is immersed into running buffer (25 mM Tris pH 8.3, 192 mM Glycine, 0.1% SDS) and the 

proteins are allowed to migrate for 120 minutes at 80 volts. The proteins are then transferred from the 

gel to the membrane filter (Immuno-Blot PVDF Membrane, Biorad) while submerged into a transfer 

buffer which is the same as the running buffer but with 20% methanol added.  SDS is normally 

withdrawn from the transfer buffer only when the protein of interest is smaller than 80 KD. 

After the transfer process is completed the membrane is washed 2 times in TBST 1x (2.43 g. Trizma 

HCl, 8.0 g. NaCl, pH to 7.6 with pure HCl, 1ml Tween 20, and top up to 1 L dH2O) and then 
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incubated in Red Ponceau solution (Sigma) for 5’ . The Red Ponceau solution binds to the proteins 

making it possible to check the outcome of the transfer by eye. The filter is then washed extensively 

in TBST until the Red Ponceau staining disappears. 

 

5.2.1 Immunostaining for SCN2a 

The filter is then placed in 5% milk blocking solution under constant agitation for 1 hour at 4°C. After 

incubation, the membrane is washed in TBST for 5 seconds. The primary antibody, rabbit anti mouse Nav1.2 

(Millipore) is diluted 1:200 in 1-3% milk TBST solution and incubated overnight at 4 ° C in an agitating 

chamber. Then the membrane is washed several times in TBST to remove the entire residual antibody. To be 

sure that the difference in the staining is not due to different initial loading quantities, the membrane 

filter is double stained  for β-actin using an antibody made in rabbit  (ABCam, Cod. AB8227) with the 

same procedure as that for SCN2a protein but with a dilution factor 1:5000. 

The secondary antibody, goat anti-rabbit CY5 (Jackson Immunoresearch), is diluted 1:800 in blocking 

buffer and left on the filter for 2 hours at RT while agitating. The filter membrane is then washed 

several times to remove the residual secondary antibody. 

The staining had been detected using a laser scanner (Typhoon 9410) with a laser line of 633nm. The 

acquisition parameters were: high sensitivity (8 times image average),   pixel size   100µm, PMT 700. 
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