
Compatibility of XML Language Versions?

Daniel Dui and Wolfgang Emmerich

Department of Computer Science
University College London

Gower Street, London WC1E 6BT, UK
{D.Dui|W.Emmerich}@cs.ucl.ac.uk

Abstract. Individual organisations as well as industry consortia are
currently defining application and domain-specific languages using the
eXtended Markup Language (XML) standard of the World Wide Web
Consortium (W3C). This trend introduces new challenges for version and
configuration management. We show that configuration management for
XML languages is considerably more complicated for an XML Schema
or DTD than it is for traditional software engineering artifacts. In addi-
tion to internal consistency of the language definition, also consistency
between the language and its instance XML documents needs to be pre-
served when evolving the language definition. We propose a definition
for compatibility between versions of XML languages that takes this ad-
ditional need into account. Compatibility between XML languages in
general is undecidable. We argue that the problem can become tractable
using heuristic methods if the two languages are related in a version his-
tory. We propose to evaluate the method by using different versions of
the Financial products Markup Language (FpML) in whose definition
we participate.

1 Introduction

The eXtensible Markup Language (XML) is a meta-language for defining markup
languages. It became a recommendation of the World Wide Web Consortium
(W3C) in February 1998 [5] and since then it has gained enormous popularity.
An XML document is simply a text file containing tags that identify its seman-
tical structure. The XML specification [6] precisely defines the lexical syntax, or
in XML-parlance “well-formedness”, of a document. The well-formedness con-
straints impose what characters are allowed in an document, that for all open
tags there shall be a corresponding closing tag, etc.

Satisfaction of well-formedness constraints alone is sufficient for a document
to be parsed and processed by a variety of libraries and tools, but for most
non-trivial applications the language designer will want to define a grammar for
the language explicitly and precisely. She can define a concrete syntax by means
of a schema language and a context-sensitive syntax by means of a constraint
language.
? This work is partially funded by UBS Warburg.

2 D. Dui and W. Emmerich

The most common schema languages are currently Document Type Defini-
tion (DTD), XML Schema [12], and Relax NG. The DTD language is part of the
XML 1.0 specification, it is simple, but of limited expressiveness. XML Schema
and Relax NG have gained acceptance more recently; they are more expressive
than DTD and support, among other things, data types and inheritance. Unlike
DTD, they are themselves XML-based languages. XML Schema is a W3C rec-
ommendation as of May 2001 and Relax NG is currently an ISO draft standard.

Static semantic constraints can be specified with languages like Schema-
tron [14] or the xlinkit [20] rule language. Schematron is a rule-based validation
language that allows to define assertions on tree-patterns in a document and
it is undergoing ISO standardisation at the time of writing. The xlinkit rule
language is part of xlinkit, a generic technology for managing the consistency
of distributed documents, that was successfully used to specify context-sensitive
constraints for complex financial documents [10]. There is not currently a generic
constraint language endorsed by the W3C.

A large number of organisations are currently using XML to define data for-
mats. The data format can be a simple file format used by one single application
or it could be a complex interchange format standardised by many organisations
that constantly produce, store, and exchange innumerable instance documents.
XML-based languages have been developed to represent chemical structures,
gene sequences, financial products, B2B transactions, and complex software en-
gineering design documents. We consider the definition of an XML-based lan-
guage consisting of a document schema definition, given by means of a schema
language, and of a set of additional constraints, given by means of a constraint
language.

Some of these XML languages tend to evolve over time, for example because
the initial requirements for the language have not been fully understood, or be-
cause change is inherent in the domain. We actively participate in the definition
of the Financial products Markup Language (FpML), a language used to rep-
resent derivative transactions. In this domain, new financial products are being
invented constantly and as a result FpML is in a constant state of flux. These
changes need to be exercised in a controlled way and give raise to the need for
version and configuration management of XML languages.

The main contribution of this paper is the observation that the version and
configuration management needs for XML languages are different and more de-
manding than those of more traditional software engineering artifacts. We define
the notion of compatibility between XML language definitions and show that in
general compatibility is undecidable. We propose a heuristic method that ex-
ploits relationships between different versions of a language definition to decide
version compatibility. We propose to evaluate the method using different versions
of FpML.

The paper is further structured as follows. In Section 2, we give a more
detailed motivation for the problem. Section 3, we define the notion of version
compatibility both for language grammars and for static semantic constraints
and show why compatibility is undecidable in general. In Section 4, we sketch our

Compatibility of XML Language Versions 3

heuristic method to solve compatibility between versions of the same language.
We review related work in Section 5. We discuss further work and conclude the
paper in Section 6.

2 Motivation

Our work on version and configuration management of XML languages is moti-
vated by our participation in the FpML standardisation effort. The FpML lan-
guage is both large and complex because FpML is used to represent derivative
transactions, some of the most complex types of transactions traded in financial
markets.

FpML raises several interesting questions for version and configuration man-
agement because it changes quickly over time for the following reasons: Firstly,
FpML is being developed in a truly distributed manner by a number of differ-
ent working groups that work concurrently on the language and therefore need
to manage different versions appropriately. Secondly, the standard committee is
including in the language support for the various types of financial derivative
products gradually, as the interest for FpML grows, rather than attempting to
include support for all of them at once. Thirdly, financial organisations con-
stantly invent new products that they will want to represent in FpML either by
changing the standard or by adding in-house extensions. Finally, it is inevitable
that, as the language evolves, some of its parts will be redesigned to allow further
developments or to mend previous mistakes.

The designers of FpML, and of many other complex XML languages, may
need to make changes to the language while retaining overall compatibility. In-
tuitively and informally, compatibility demands first changes to the language
to obey the syntactic and static semantic rules of the meta languages (such as
DTDs, Schemas or constraint languages) and second the continued ability to
validate any instance documents against the language. This validation would in-
clude both syntactic validation (against the schema of the language) and static
semantic validation (against the constraint language).

Thus, the notion of compatibility for XML languages is wider than the one
with which software configuration management was traditionally concerned. Un-
like in usual software configuration management where the notion of compati-
bility can be established by examining a well-known and finite set of artifacts
(such as design documents, code, deployment descriptors and test data), test-
ing compatibility between XML languages typically involves an unknown and
potentially infinite set of instances of that language.

It may be impractical to demand compatibility of language changes at all
times. If, however, designers must introduce changes that break language com-
patibility, they will want to do this deliberately rather than accidentally and
they would also need to convert instance documents between versions of the lan-
guage. If also this is not a viable option, they will need to identify exactly what
causes the incompatibility, which instance documents are affected and in what

4 D. Dui and W. Emmerich

way. And they can do this only with the assistance of appropriate methods and
tools, which currently do not exist.

3 Compatibility

The aim of this section is to define more formally the notion of XML language
compatibility that is absent from the existing XML specifications [6, 12, 2, 3].

The language definition is given by a schema that defines the concrete syntax
and a set of consistency rules that define the static semantics for the language.
An instance document is valid against the language definition if it satisfies all
the constraints defined by the language schema and by the consistency rules. We
note that XML schema and existing constraint languages, such as Schematron
or xlinkit are XML languages themselves. Thus any modification to the language
definition first of all has to be valid against the meta-constraints.

We can obtain several definitions of compatibility by reasoning on the rela-
tionship between extents of two languages. We borrow the term extent from the
literature on object oriented databases [1] where it denotes the set of instances
of a class. In the context of XML-based languages we use it to denote the set
of all possible instance documents valid against a language definition. In most
cases that occur in practice, this is an infinite set.

3.1 Syntactic Compatibility

We start with syntactic compatibility that only considers the schema. The sim-
plest case of syntactic compatibility is when, taken two languages, the first is
fully compatible with the second one. This happens when all possible instance
documents of the first language are valid also with respect to the second lan-
guage. In other words the extent of the first language is a subset of the extent
of the second language. Figure 1 shows a Venn diagram where the sets A and B
represent the extent of the two languages respectively. More formally:

Definition 1. Let L(A) be the extent of Schema A and L(B) be the extent of
Schema B. Schema B is syntactically fully compatible with Schema A if and only
if L(A) ⊆ L(B).

BA

Fig. 1. Instance document sets for compatible languages

The compatibility relation is asymmetric: the fact that Schema B is compat-
ible with Schema A does not imply that Schema A is compatible with Schema

Compatibility of XML Language Versions 5

B, which would happen only if L(A) = L(B). We can also say that Schema B is
backward compatible with Schema A when B is a new updated version of A.

1 class
1 teacher
+ student

1 class
? teacher
+ student

Fig. 2. Compatible schemas

Figure 2 gives an example of two Schemas A and B where B is compatible with
A. This and the following examples in this section assume for simplicity that the
schema fully defines the syntax of the language. Schema A defines that instance
documents shall have exactly one element called class and inside that element
there shall be exactly one element called teacher and one or more elements
called student. Schema B is a new version version of Schema A. The only
difference between the two schemas is the cardinality of element teacher, which
in Schema B can appear zero or one time. Clearly all valid instance documents for
Schema A will be valid also against Schema B, therefore Schema B is backward
compatible with Schema A.

On the contrary, two schemas are syntactically incompatible if the subset
relation between extents does not hold as Figure 3 shows. Formally this means:

Definition 2. Schema B is incompatible with Schema A iff ∃b∈L(B)b /∈ L(A).

BA

Fig. 3. Incompatible Languages

1 class
+ student

Schema A Schema B
1 class

1 teacher
+ student

Fig. 4. Incompatible schemas

6 D. Dui and W. Emmerich

Figure 4 shows an example of two incompatible schemas. Schema B, as before,
introduces inside the class element another element called teacher, but this
time the new element must appear exactly once. All instance documents of
Schema A do not have a teacher element, whereas all instance document of
Schema B are required to have one. Schema B is therefore incompatible with
Schema A.

Language incompatibility is usually an inconvenience, but it can be overcome
if the designer can devise a transformation function that converts a instance
documents for schema A to a valid instance document for Schema B.

BA

T(a)

Fig. 5. Instance document transformation

Figure 5 shows how the transformation function T (a) maps an element of
L(A) onto an element of L(B).

Schema A instance document

<class>

<student>Eric Cartman</student>

<student>Kyle Broflovski</student>

<student>Stan Marsh</student>

...

</class>

Schema B instance document

<class>

<teacher>unknown<teacher>

<student>Eric Cartman</student>

<student>Kyle Broflovski</student>

<student>Stan Marsh</student>

...

</class>

Fig. 6. Instance Document Transformation

Figure 6 gives an example of an instance document of Schema A to which a
transformation is applied to convert it to an instance document of Schema B.
The transformation defines to insert an element teacher with value “unknown”
as a child of the element class.

Compatibility of XML Language Versions 7

We note that XML languages are context-free languages. This is because
they require a push-down parser (rather than a finite state machine) to establish
whether or not a document is valid against a schema. Equivalence, containment
and empty intersection of context free languages have shown to be undecidable
problems. For the proof of this undecidability, we refer to [22, 24] and note that
therefore syntactic compatibility or incompatibility of general XML languages
is undecidable.

Nevertheless, the examples in this section show that it can still be solved, at
least in particular circumstances, which we will investigate in Section 4. In our
case the languages in question are closely correlated because one is derived as
a successor version from the other. We believe that this allows to find heuristic
criteria to determine, in most practical scenarios, if two XML-based languages
are compatible.

3.2 Static Semantic Compatibility

The previous subsection has dealt with the language syntax only as it is defined
in the schema, but, in the general case, additional consistency rules are also part
of the language definition. Examples of such constraints for the FpML language
are given in [10]. Nonetheless, Definitions 1 and 2 still hold.

Language A
1 class

1 subject
+ teacher
? teaching_assistant
+ student

Rule A: If the value of element
subject is “English” or “French”, then
element teaching_assistant shall exist.

Language B
1 class

1 subject
+ teacher
? teaching_assistant
+ student

Rule B: If the value of element
subject is “English”, then element
teaching_assistant shall exist.

Fig. 7. Compatibility and consistency rules

Figure 7 shows an example of the evolution of a language definition that
comprises a schema and a consistency rule. Rule B is weaker than Rule A so
Language B is compatible with Language A.

In general, weakening constraints preserves compatibility, whereas strength-
ening constraints leads to incompatibility. The definition of the terms stronger
and weaker in relation to constraints stems directly from logic:

Definition 3. Let c1 and c2 be two constraints, c1 is termed stronger than c2
and c2 weaker than c1 iff c2 ⇒ c1.

8 D. Dui and W. Emmerich

The static semantic constraints of a language are typically defined by a set of
constraints. We can thus extend this definition to constraint sets in the following
way:

Definition 4. Let A be the set of constraints that determine for Language A and
B be the set of constraints for Language B. B is static semantically compatible
with A iff ∀b∈B∃a∈Ab ⇒ a.

Another problem is that consistency rules for a language typically refer to the
schema definition of the language, so there is also the problem of keeping them
consistent with the schema as the schema evolves. For example if in Schema B the
element teaching assistant was renamed assistant, then also all rules that
refer to that element would need to be updated accordingly. More precisely, the
constraints of xlinkit or Schematron use XPath expressions. These expressions
express traversals in the DOM tree, the syntax tree that XML parsers establish.

Definition 5. We say that a static semantic constraint a is well-formed against
a Schema A iff it only uses XPaths that are valid in A. We say that a set of
constraints A is well-formed against a Schema A, iff ∀a∈A a is well-formed
against A.

Schema 1.0

Constraints 1.0

syntactic
compatibility

static semantic
compatibility

well
formedness

well
formedness

Version 1.0

Schema 1.1

Constraints 1.1

Version 1.1

Fig. 8. Language Compatibility

We can now summarise our discussion and reformulate the problem of check-
ing compatibility between language versions more precisely by reviewing Fig-
ure 8. An XML language definition consists of a schema that defines the gram-
mar and a set of constraints that are well-formed against the grammar. In order
for a new version of the language to be compatible to the previous version the
following three conditions must hold:

– The new version of the schema must be syntactically compatible to its pre-
decessor version.

– The new version of the constraint set must be well-formed against the new
version of the schema.

– The new version of the constraint set must be static semantically compatible
to the predecessor version.

Compatibility of XML Language Versions 9

4 Deciding Compatibility between Language Versions

We have already discussed that checking language compatibility is, in the gen-
eral case, an undecidable problem. We note, however, that the definitions of two
versions of the same language are bound to be strongly correlated. Our hypoth-
esis is that it is possible to devise heuristic rules that allow to establish in most
practical cases if one language definition is compatible or nor with another.

Checking well-formedness is not strictly speaking a version management
problem as well-formedness also needs to be decided for single versions of a
language definition. We therefore do not pursue this question further, but note
that a well-formedness check needs to be executed when deciding on version
compatibility of a change to a language.

For the two remaining problems, we propose the following approach. We
establish the differences between both the constraints and the schema. As both
the schema and the constraints are written in XML languages, we note that
specialist algorithms can be used, such as XMLTreeDiff, which is based on a
tree differencing algorithm [15] and delivers more precise results than text-based
differencing. We then analyse the sets of differences.

A difference between versions can either be an addition of an element to a
schema or a set of constraints, a deletion of an element of a schema or a constraint
or a change to a schema element or a constraint. We discuss these separately
now.

4.1 Syntactic Compatibility

We start the discussion of syntactic compatibility by reviewing the effect of
changes that add or delete elements, the more straightforward cases. The addi-
tion of a new element to a schema by itself does not break syntactic compatibility.
It may lead to a violation if another schema element is modified to include the
new element, but then this case is handled by analysing the change to that ele-
ment. If a schema element is deleted, it is clear that syntactic compatibility will
be broken as instances of these types can then no longer occur in documents
that are instances of the new version.

In order to analyse changes to an element of a schema, we can use the fi-
nite set of XML schema constructs to classify the change into those that retain
compatibility and those that break it. Let us use the example in Figure 2 for
illustrative purposes.

Schema A

<xsd:element name="class">

<xsd:complextype>

<xsd:sequence>

<xsd:element name="teacher" type="xsd:string"

minOccurs="1" maxOccurs="1" />

<xsd:element name="student" type="xsd:string"

minOccurs="1" maxOccurs="unbounded" />

10 D. Dui and W. Emmerich

</xsd:sequence>

</xsd:complextype>

</xsd:element>

Schema B

<xsd:element name="class">

<xsd:complextype>

<xsd:sequence>

<xsd:element name="teacher" type="xsd:string"

minOccurs="0" maxOccurs="1" />

<xsd:element name="student" type="xsd:string"/>

minOccurs="1" maxOccurs="unbounded" />

</xsd:sequence>

</xsd:complextype>

</xsd:element>

Schema A defines an element called class that contains two other elements:
teacher and student. Element teacher must occur in instance documents ex-
actly once. Element student must occur at least once and the maximum number
of its occurrences is unbound. Schema B differs from Schema A only because el-
ement teacher has been changed to be optional. This particular type of change
modifies the cardinality in a compatible way as we can argue that the extent of
the language for B includes the extent of A.

In general, we can classify changes into those that retain or violate syntactic
compatibility. Examples of changes that retain compatibility include enabling
fewer minimal set of elements in a sequence, increasing the number of maximal
elements in a sequence, adding non-required attributes to an element, adding,
changing or removing default initialisations, changing the order of elements in
a choice and so on. Examples of changes to an element that do break syntactic
compatibility include addition of a new non-optional sub-element to a sequence,
changing the order of elements in a sequence, changing the type of an element
or attribute, deleting an element from a sequence and so on.

In order to express these changes that do not break compatibility, we can
now formalise these as constraints using the xlinkit constraint language at a
meta level on XML schemas as follows:

<forall var="a" in="/Schema_A//element">

<forall var="b" in="/Schema_B//element">

<implies>

<equals op1="$a/@name" op2="$b/@name" />

<and>

<equals op1="$a/@type" op2="$b/@type" />

<and>

<lessThanOrEq op1="$b/@minOccurs" op2="$a/@minOccurs" />

<greaterThanOrEq op1="$b/@maxOccurs" op2="$a/@maxOccurs" />

</and>

</and>

Compatibility of XML Language Versions 11

</implies>

</forall>

</forall>

This rule imposes that for all elements of Schema A and Schema B that have
the same name, the value of attribute minOccurs in Schema B is less than or
equal to the value of the corresponding attribute minOccurs in Schema A and
that the value of the attribute maxOccurs is greater than or equal to the value
of the corresponding attribute maxOccurs in Schema A.

We can formalise rules for changes that would break syntactic compatibility
in the same way. We can then use the xlinkit rule engine [20] to decide whether
or not a particular version is syntactically compatible to a predecessor version.

4.2 Static Semantic Compatibility

Again we first review addition and deletion of constraints, which are the simple
cases. Unless it is a tautology, the addition of a new constraint breaks static
semantic compatibility because the new set of constraints will be more restrictive
than the ones that were demanded in the predecessor version. The removal of a
constraint will preserve static semantic compatibility as any document that was
valid against a more inclusive set of constraints will continue to be valid against
the smaller set of constraints.

It is possible to change a constraint without changing its meaning at all by
using de Morgan’s laws. By encoding these laws in a term rewriting system, we
can check whether a particular change leads to an equivalent rule. For those
rules where this is not the case, we need to establish whether they are weaker or
stronger.

To analyse the implication of a change in that respect we can again use a
similar approach that uses the constructs of the constraint language to classify
whether or not a change weakens or strengthens a constraint. As an example,
consider the following two xlinkit constraints, which in fact formalise the con-
straints shown in Figure 7.

Rule A

<forall var="a" in="//class">

<implies>

<or>

<equals op1="$a/subject/text()" op2="’English’" />

<equals op1="$a/subject/text()" op2="’French’" />

</or>

<exists var="b" in="$a/teaching_assistant" />

</implies>

</forall>

Rule B

12 D. Dui and W. Emmerich

<forall var="a" in="//class">

<implies>

<equals op1="$a/subject/text()" op2="’English’" />

<exists var="b" in="$a/teaching_assistant" />

</implies>

</forall>

The xlinkit constraint language is a rather simple language, that can express
boolean operators (and, or, implication and not), a few set of operators on DOM
nodes (such as equal), as well as existential and universal quantification over a
set of nodes identified by XPaths. Thus again we can identify for each possible
change to an expression in a constraint whether it strengthens or weakens the
constraint and then decide whether the overall change to the constraint breaks
static semantic compatibility.

In the above example the change has strengthened the pre-condition of the
implication by removing an <or> operand, thus making it less likely for the pre-
condition to be true. Due to the ex falso quod libet rule for implications, this
means that it is more likely for the overall formula to be true, which means
that this change from version A to version B has weakened the constraint and
is therefore statically semantically compatible.

Other examples of weakening a constraint include removing an <and>
operand, adding an <or> operand, changing a universal quantifier into an ex-
istential quantifier, and so on. Examples of strengthening a constraint include
adding an <and> operand, removing an <or> operand changing existential into
universal quantification and so on.

5 Related Work

The problem of versioning and of managing a configuration of modules falls into
the realm of software configuration management (SCM). According to Jacky
Estublier [11], most issues about versioning have already been solved in the
general case and the key problem is to incorporate these solutions into SCM tools.
Reidar Conradi and Bernhard Westfechtel [8] give a comprehensive overview
and classification of versioning paradigms. In their words: “In SCM systems,
versioning of the schema is rarely considered seriously. On the other hand schema
versioning often does not take versioning of instance data into account”. Our
approach intends to address both these concerns.

Most XML technologies take a programmer’s pragmatic viewpoint and in
some respects lack of formal foundation or consistency among them. We have
already mentioned that the concept of schema compatibility is absent.

There is also some important work on formal analysis of XML schema lan-
guages [7, 16, 19, 17] part of which has been incorporated in XML standards such
as Relax NG. However, none of these covers compatibility between language ver-
sions.

XML Schemas bear clear similarities with database schemas and collections
of instance documents can be regarded as a data repository. Understanding of

Compatibility of XML Language Versions 13

database technology should provide insight on how to approach problems in the
XML domain.

The most popular types of database systems are currently relational, object
relational, and to a less extent object-oriented for which both the theory and
the technology are mature and well documented in many books [23, 18, 9]. More
recently, XML databases have appeared, where XML support is build into the
data base management system (DBMS) [4].

We are interested in particular in schema evolution and schema versioning.
Ferrandina et al. [13] have proposed a mechanism for schema evolution based on
transition functions in the context of object-oriented databases. The difference
to our work is that the extent of a class in an object-oriented schema is known –
they can work on a closed world assumption, whereas for an XML language the
extent is generally unknown and unaccessible.

6 Conclusions and Further Work

This paper identifies a novel area of research in software configuration man-
agement that will become increasingly important as the adoption of XML pro-
gresses. We have defined the notion of compatibility between different versions
of an XML language for both the syntactic and the static semantic constraints
of a language. We have observed that the problem of syntactic compatibility is
undecidable in general, but have argued that it can become tractable by taking
information about differences between versions into account.

Our future work will focus on refining and evaluating the approach for check-
ing version compatibility that we were only able to sketch in this paper. We are
in the process of completing the definition of syntactic compatibility rules in the
xlinkit constraint language and can then use the existing xlinkit engine for exer-
cising syntactic version compatibility checks. We will have to implement a term
rewriting system to apply the de Morgan rules to xlinkit to test for equivalence
and implement the strengthening and weakening semantics. To do so, we will
again be able to re-use a large portion of the xlinkit rule engine, which to date
implements two different semantics for the language in order to generate xlinks
and to generate automated repair actions [21].

We have already identified our evaluation case study, which will be to check
different versions of the FpML language for compatibility. The International
Swaps and Derivatives Association (ISDA) has so far defined three major ver-
sions of FpML and for each of these versions a number of minor versions exist
that have been in transitional use prior to adoption of the major version. We
are actively participating in the standardisation of FpML and have participated
in the establishment of a validation working group that will define the static
semantic constraints for FpML. Constraints for version 1.0 have already been
specified using xlinkit [25] and a working group is currently adding constraints
for Versions 2.0 and upward.

14 D. Dui and W. Emmerich

Acknowledgements

We are indebted to Matt Meinel, Bryan Thal, Steven Lord and Tom Carroll of
UBS Warburg and the members of the FpML Architecture Working Group for
drawing our attention to the significant version and configuration managements
challenges of FpML in particular and XML languages in general. We would also
like to thank Anthony Finkelstein and Chris Clack for their helpful comments
on an earlier draft of this paper.

References

1. F. Bancilhon, C. Delobel, and P. Kanellakis. Building an Object-Oriented Database
System: the Story of O2. Morgan Kaufmann, 1992.

2. P. V. Biron and A. Malhotra. XML Schema Part 1: Structures. Recommen-
dation http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/, World Wide
Web Consortium, MAY 2001.

3. P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes. Recommendation
http://www.w3.org/TR/xmlschema-2/REC-xmlschema-2-20010502/, World Wide
Web Consortium, MAY 2001.

4. R. Bourret. Xml and databases. www.rpbourret.com/xml/XMLAndDatabases.htm.
5. T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible Markup Language.

Recommendation http://www.w3.org/TR/1998/REC-xml-19980210, World Wide
Web Consortium, March 1998.

6. T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Exten-
sible Markup Language (XML) 1.0 (Second Edition). Recommendation
http://www.w3.org/TR/2000/REC-xml-20001006, World Wide Web Consortium
(W3C), October 2000.

7. A. Brown, M. Fuchs, J. Robie, and P. Wadler. MSL - a model for W3C XML
schema. In World Wide Web, pages 191–200, 2001.

8. R. Conradi and B. Westfechtel. Version models for software configuration man-
agement. ACM Computing Surveys (CSUR), 30(2):232–282, 1998.

9. C.J. Date and H. Darwen. Foundation for Object/Relational Databases: The Third
Manifesto. Addison-Wesley, 1998.

10. D. Dui, W. Emmerich, C. Nentwich, and B. Thal. Consistency Checking of Finan-
cial Derivatives Transactions. In Objects, Components, Architectures, Services and
Applications for a Networked World, volume 2591 of Lecture Notes in Computer
Science. Springer, 2003. To appear.

11. J. Estublier. Software configuration management: a roadmap. In ICSE - Future of
SE Track, pages 279–289, 2000.

12. D. C. Fallside. XML Schema Part 0: Primer. Recommendation
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/, World Wide Web
Consortium, MAY 2001.

13. F. Ferrandina, T. Meyer, and R. Zicari. Implementing Lazy Database Updates for
an Object Database System. In Proc. of the 20th Int. Conference on Very Large
Databases, Santiago, Chile, pages 261–272, 1994.

14. R. Jelliffe. The Schematron. http://www.ascc.net/xml/resource/schematron,
1998.

15. K.Tai. The Tree-to-Tree Correction Problem. Journal of the ACM, 29(3):422–433,
1979.

Compatibility of XML Language Versions 15

16. D. Lee and W. W. Chu. Comparative analysis of six XML schema languages.
SIGMOD Record (ACM Special Interest Group on Management of Data), 29(3):76–
87, 2000.

17. D. Lee, M. Mani, and M. Murata. “Reasoning about XML Schema Languages using
Formal Language Theory”, 2000.

18. M. Levene and G. Loizou. A Guided Tour of Relational Databases and Beyond.
Springer-Verlag, 1999.

19. M. Murata, D. Lee, and M. Mani. “Taxonomy of XML Schema Languages using
Formal Language Theory”. In Extreme Markup Languages, Montreal, Canada,
2001.

20. C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein. xlinkit: A Consistency
Checking and Smart Link Generation Service. ACM Transactions on Internet
Technology, 2(2):151–185, 2002.

21. C. Nentwich, W. Emmerich, and A. Finkelstein. Consistency Management with
Repair Actions. In Proc. of the 25th Int. Conference on Software Engineering,
Portland, Oregon. ACM Press, 2003. To appear.

22. V.J. Rayward-Smith. A First Course in Computability. Blackwell, 1986.
23. A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System Concepts.

McGraw-Hill, 2001.
24. M. Sipser. Introduction to the Theory of Computation. PWS Publishing, 1997.
25. B. Thal, W. Emmerich, S. Lord, D. Dui, and C. Nentwich. FpML Validation:

Joint proposal from UBS Warburg, University College London, and Systemwire.
http://www.fpml.org, June 25, 2002.

