
Page 1

Middleware for the management of a large heterogeneous
programmable network: a progress report

Andrew Hughes
Department of Computing Science

University College London
Gower Street, London, WC1E 6BT

a.hughes@cs.ucl.ac.uk

Abstract
The interaction between BTExact Technologies and the
Department of Computing Science at University
College London is becoming increasingly beneficial
for both parties. Over the last academic year, there has
been a good deal of development in the area of
middleware for the management programmable
networks. This paper describes the work that has been
done, and outlines the plans for future research.

1 Executive Summary
The PhD project I have undertaken is being carried out
in conjunction with both University College London
(UCL) [44] and BTExact Technologies [43]. My
research goal is to create a system that enables a
corporate network to reflect characteristics described
by a non-static business model. This will be achieved
using highly customisable routers based on research
done in the Promile [3] project at the department of
computing science at UCL, and by providing a
management middleware infrastructure that controls
the configuration of heterogeneous routers according to
declarative policies.

There are two complementary parts to the Promile
project. The Promile routing engine is a highly
customisable system designed to process IP packets.
Promile modules installed in the router are linked
together to for a module graph which describes the
packet processing procedure. The Promile
configuration system is designed to be used by an
administrator to program the Promile routing engine.
Using the configuration system, router modules can be
installed, removed and modified; also the module
connection can be manipulated to modify the router
engines functionality. The Promile configuration
system allows administrators to submit management
policies either using XML or a custom graphical
language that is translated into XML by the
configuration system.

The remaining eighteen months of this project will be
spent looking into three areas: a declarative policy
language specifications, a policy compiler, and the
integration of the compiler with Promile technology
using a delivery middleware. The declarative language
will be used by an administrator to configure the
programmable network according to a corporation’s
business model; the administrator does not express

desired configurations of individual routers, rather the
behaviour of the network as a whole is described. The
compiler, given a configuration policy defined in the
declarative language, generates platform specific
messages that are used to configure individual
programmable routers. To integrate the programmable
network management middleware with Promile
technology, an existing delivery system will be used –
and possible extended – to enable the compiler to send
platform specific policy messages to individual
programmable routers. It is expected that the majority
of the remaining work in this project will bee in the e
design of the compile r.

The final six months of my work will be used to
document my findings in the form of a thesis. By the
end of my PhD project – in addition a thesis – I intend
to have implemented a demonstratable system that can
be used to show that my hypothesis is correct; i.e. a
system will be implemented that enables a corporate
network to reflect characteristics described by a non-
static business model.

My work will be evaluated by building the proposed
system and deploying it over a testbed. This testbed
will be comprised of a number or nodes running the
management middleware that extends the work done in
the Promile project. Using the management
middleware and traffic generation and monitoring
tools, it will be shown that the network can be
controlled with declarative policies derived by
administrators from business models.

2 Background and motivation
The Internet started out as a research project, funded by
the Defence Advanced Research Projects Agency [1],
called ARPANET [2]. The project was focused on
best-effort routing mechanisms that were designed and
implemented in the hope that it would still be possible
for military computers to communicate in the event
that – due to war – some communication routes
became unavailable. Routers were equipped with
mechanisms to ensure data arrives at the intended
destination via any possible network route, thus
circumventing network problems. The Internet’s use
has since been through a number of evolutionary
cycles; it now supports a multi-billion dollar industry
mainly comprising media delivery and e-commerce
businesses. Although the Internet’s use has drastically
changed since its early days, the fundamental data
routing technology has changed very little. For the vast

Page 2

majority of Internet communications, data is
transmitted in a best-effort manner. Communications
generally have no relationship to business models: data
that generates large revenues does not have a greater
precedence that data that yields little or no revenue. E-
businesses are keen to control data transport in
corporate networks such that they reflects their
business models; clearly they require a technology that
allows them to do so.
The few corporations that control congestion using
router functionality usually make use of Differentiated
Service (Diffserv) [37] or Integrated Service (Intserv)
[38]. In these paradigms, packets are classified into
service levels derived from a business model: gold,
silver and bronze, for example. Intserv traffic
controllers allocate static bandwidth quotas to each
service level. The more advanced Diffserv approach
taken by projects such as TEQUILA [41], do not use
bandwidth quotas per se; rather than making
guarantees about performance, service levels are
guaranteed. Differing levels of performance are
allocated to each service level and the Diffserv
mechanism ensures that each service level performs
better than lower service levels.

There is an increasing demand for routers to perform
highly customized operations defined by its owner, but
commercial off the shelf (COTS) routers are not
extensible enough to satisfy this need. COTS routers
can be configured to control data flow but they can
only use functionality built into router by the vendor.
COTS routers are typically configurable but not
programmable. By using programmable network
routers, the process of routing data can be controlled by
the network owner in a highly flexible and
customisable manner; this allows Internet corporations
to link data transport policies to their business model.
From my research thus far, it has become apparent that
a management middleware is required to allow the
efficient and correct configuration of a programmable
network comprising multiple programmable routers. In
this project a middleware is proposed that abstracts
individual router configuration from the administrator:
the administrator instead controls the system using
network scoped configuration policies and the
middleware takes the responsibility of configuring
individual routers.

Since the middleware can configure multiple nodes
simultaneously, there are two heterogeneity issues. The
first relates to the architectures of the target routers, the
second relates to the target routers’ configuration; these
are respectively termed syntactic and semantic
heterogeneity. To solve these heterogeneity issues, the
system will be designed such that the administrator
need only produce a declarative configuration policy to
describe the desired network behaviour. This policy
does not describe the configuration process, rather the
state of the system after the management operations
have completed. It is the responsibility of the
middleware to translate declarative configuration
policies into platform specific configuration policies

that describe the internal configuration of the
programmable routers. From the administrators
perspective, the use of declarative policies makes the
programmable network heterogeneous in terms of both
policy syntax and semantics.

The above system results in the network behaviour
reflecting a business model as follows. Given a
business model, an administrator creates a network
configuration in the declarative policy language and
submits it to the compiler. Using network profiling
techniques to discover the networks current behaviour,
the compiler generates platform specific configuration
messages for individual routers that require
configuration for the network to reflect the business
model. Using a delivery system based on third party
message oriented middleware, the compiler delivers
the platform specific configuration messages to the
programmable routers. The Promile [3] configuration
system on these programmable routers interprets the
configuration policies and makes the appropriate
changes to the Promile packet routing engine. When all
the programmable routers have been configured, the
network behaviour will reflect the business model. The
diagram below illustrates the management system’s
architecture.

As previously stated, the declarative network
configuration policy is derived from a business mode
by an administrator, however the term ‘business
model’ has thus far not been defined. In the context of
this project, a business model is taken to mean a

Business
Model

Administrator

Compiler Declarative

Policy

Delivery
System

Platform
Specific
Policy

Programmable
Router

Programmable
Router

Programmable
Router

Platform
Specific
Policy

Platform
Specific
Policy

Platform
Specific
Policy

Platform
Specific
Policy

Platform
Specific
Policy

Corporation

Page 3

description of the products and services a company
offers; in addition it may includes the company’s
product pricing structure. For example, a company that
offers online movies may have a business model that
describes a two levels pricing strategy: one dollar for a
low quality video stream and two dollars for a high
quality stream. By using a streaming format such as
Real Media [39] that adjusts the image quality and
frame rate according to available transport speed, the
two levels of service can be achieved simple by
controlling the bandwidth settings on one of the
corporation’s routers. Deriving an declarative network
configuration policy from an informally stated business
model is a difficult task for a computer (and beyond the
scope of this project), but for a human administrator
the translation is likely be fairly trivial. In our example,
an administrator could define four service levels: High
quality stream video is platinum, online payment is
gold, low quality video is silver and all catalogue
browsing (i.e. website access) is bronze. Given these
service levels, the administrator may decide to use
Diffserv to ensure that each traffic has precedence over
less important traffic.

Since the routers in the programmable network are
configured according to existing network behaviour,
the management middleware should include some
reactive management mechanisms . If some routers or
physical links within the programmable network fail, in
order for the network to continue to function with the
desired behaviour (derived from the business model),
the remaining functioning routers will have to be
reconfigured to tolerate the changes in network
structure. In addition, if new routers or physical links
are added to the network, the network must be
reconfigured; for the sake of simplicity it has be
assumed that the management middleware will become
aware of additional hardware through administrator
interaction.

3 Deficiencies in existing work
Modern day network monitoring and management
relies heavily on Simple Network Management
Protocol (SNMP) [40]. This protocol was designed to
allow remote administrators (either human and
computer) to manage heterogeneous network nodes
using a lightweight set of command line instructions.
This protocol has been integrated into many popular
software packages and adopted as the standard remote
management protocol by most COTS router vendors.
Despite the fact that the use of SNMP in the
management of routers has stood the test of time, its
usefulness in the management of programmable
networks is questionable. SNMP is a protocol that
would be extraordinarily difficult to extend to include
transactional functionality, security and module
installation; and due to the extensibility of
programmable network devices, the SNMP low level
configuration language is not suited to the management
of a large complex network.

Although there are a number of projects that use
declarative management mechanisms, to my
knowledge there is no other research in industry or in
academia that is concerned with the management of
heterogeneous programmable networks using
declarative configuration policies. PONDER [42] is a
declarative language which attempt to standardise the
way distributed object enterprise concepts are
specified. It does not address some of the areas needed
to manage programmable networks, so the work is not
suitable to use as the programmable network
management middleware.

Nestor [4] and DEN [5] are concerned with the
configuration of network; only the former is concerned
with programmable networks. Neither of these projects
abstract the network configuration away from the
configuration of individual routers; to my knowledge,
with the exception of my work there is no other project
attempting to do this, especially in the area of
programmable networks.

The area of programmable networks is relatively new,
even so, there are numerous research groups focusing
their attention in the domain. Originally, there were
two distinct approaches to programmable networks:
OpenSig [7] and Active networks [8]. Most of the
original OpenSig projects seemed to be striving
towards creating a standardized interface to router and
switch fabrics; however, industry seems loathed to
adopt open interface standards meaning that much of
the original work in the OpenSig community has been
abandoned. Nowadays, OpenSig projects seems to
mainly focus on the control of telecommunication
devices such as ATM switches but the level of
extensibility (and hence programmability) or OpenSig
fabrics are generally not considered to be particularly
high; this resulted in the emergence of the active
networking approach to programmable networks.
Active network projects are typically focused in the
area of IP data routing; ‘active code’ is executed in
execution environments that control how packets are
processed. Most projects seem take the ‘active packet’
approach in order to achieve programmability. In this
paradigm – in addition to the usual content – data
packets include short programs that control the way in
which active nodes process packets. Active packets
control their own destiny and the active routers merely
follow the instruction embedded in the received active
packets.

It is becoming increasingly difficult to differentiate
between OpenSig and active network projects, this is
because projects seem to ‘mix and match’ traits
common to each domain in order to construct a new
breed of router. Recent trends indicate that there is a
focus shift towards application level programmable
networks. In this paradigm, the programmable routers’
functionality is controlled by highly customised routing
modules (e.g. schedulers, droppers and markers) that
are implemented and installed on the router in
conjunction with other modules within user-space, all

Page 4

of which are connected into a router module graph that
controls the packet processing process.

The work being done in the Promile [3] project falls
into the field of application level programmable
networks. The project is divided into two parts: a
routing engine that processes packets; and a
configuration system (based on Xmile [36]) used to
configure the router. Both Promile components are
have mature designs; test have shown that Promile
implementations are efficient when compared to
existing routing technology. The Promile configuration
system makes changes to the Promile routing engine
according to XML [9] policies supplied by an
administrator. These policies are syntactically
heterogeneous, however they do not abstract router
semantics from the administrator. Configuration
policies are host specific: they comply with a schema
that defines a routers capabilities. The configuration
language is not abstract enough to be used to
configuration a network, a new language is required to
achieve the level of scalability desired for this project.
Click [19] is the project most similar to Promile; the
main difference between them is that Promile is geared
more towards on-the-fly router management. Also in
the area of application level programmable networks
are the Alpine [6] and Android [18] projects; these
projects are closely related but the research seems
focused on router architecture and functionality rather
than in the area of router configuration.

As previously implied, it is my intention to create
management middleware capable of configuring an
entire programmable network given a single
declarative configuration policy. The Promile project
does not take this approach. The XML configuration
policies are host-centric; each message is concerned
only with the configuration of a single host. This is a
major flaw since the ‘best effort’ routing algorithms
built into most routers are likely to interpret some
congestion mechanisms as broken data routes, resulting
in configurations being autonomously circumvented by
other routers. In order for administrators to have
complete control the network, they must not have
control of the internal configurations of individual
programmable routers.

Since it is my intention to create a system to manage an
entire programmable network with a single declarative
configuration policy derived from a business model. It
is sensible to integrate the management middleware
with the Promile architecture using a delivery system
that can send to multiple destinations in a logically
simultaneous manner. Although this could be achieved
using asynchronous object oriented middleware, I have
reservations regarding runtime extensibility – since
both the configuration and the installed software
modules will change at runtime – and have therefore
decided that use message oriented middleware (MOM)
should be used to address the issue. MOM has evolved
from a research area into a multi-million dollar

industry; clearly this technology is mature and thus
suitable for use in this project.

From the discussion so far, it should be clear that one
of the key components of the management middleware
is the compiler that translates a declarative policy into
platform specific configuration policies. In order for
the compiler to build platform specific configurations
from a declarative policy, knowledge of the network
topology and configurations are essential. Since the
compiler’s dependencies are likely to be highly
dynamic, the translation process is likely to be
significantly more complex than that of static
document translators such as XSLT [10], so although
existing document translators may be used to build the
management middleware’s compiler, they will solve
few issues in the compiler problem space.

4 Hypothesis

4.1 Hypothesis statement
I hypothesize that it is possible to program
heterogeneous networks using a declarative language
according to a business model. We take the view that
to achieve the desired level of network extensibility,
programmable routers should be used to control data
transport over the network. I do not think that there is a
need to design and implement a new programmable
network technology, rather, I will reuse work that has
already been done in that domain. The Promile routing
engine will be utilised, in addition the Promile
configuration system. I intend to extend the work done
in the Promile project by combining it with a policy
compiler and a delivery system. The compiler, given a
declarative configuration policy, will determine which
routers are to be configured and generate platform
specific policies to perform the appropriate
management operations on each router (it is worth
noting that there is a fairly high likelihood that the
configuration of each programmable router will be
different). The delivery system will deliver platform
specific message to Promile configuration system
residing on each of the programmable routers needing
altering. This configuration system will then modify
the Promile routing engine as appropriate. Since the
middleware allows the configuration of multiple nodes,
it is likely that management operations will need to be
done with transactional properties; the middleware will
therefore include this functionality.

In order for a programmable network to be managed
using only network scoped declarative configuration
policies, there must be a language that is expressive
enough to reflect most desired network configurations
yet have a level of abstraction such that configuration
messages are semantically heterogeneous with regard
to the configuration of programmable routers; this
language will be defined in this project. The level of
expressiveness must be such that the administrator has
complete control of the network behaviour, allowing
custom router modules to be used to affect the network

Page 5

performance. The level of abstraction should ensure
that the administrator cannot configure individual
routers, therefore avoiding the possibility that some
desired network behavioural rules are not enforced.

The compiler, which generates platform specific
messages from network scoped configuration policies
written in the declarative language defined in this
project, is likely to rely heavily on profiling tools that
discover the existing network behaviour. From this
profile, the compiler calculates the required platform
specific changes outlined in the declarative
configuration policy. The compiler is therefore a very
significant part of the management middleware.

4.2 Hypothesis testing 1

4.2.1 Proposal

A declarative configuration language will be defined
that is sufficiently expressive to allow an administrator
to configure a programmable network yet abstract
enough to allow the middleware to control individual
routers. For the hypothesis to be confirmed as correct.
It must be verified that the declarative language can be
used to configure the network to reflect all reasonable
configurations. The definition of such a declarative
language is especially difficult since – to control the
network traffic – it must be capable of defining the
router modules that are installed in the programmable
routers without describing the configuration of routers.
The language must be appropriate to express network
configurations associated with business models.

4.2.2 Rational

Since it is intended that network administrators need
only use the declarative language defined in this
project configure the network, it is clear that
configuration policies written using the language must
be accurately represent the desires of the administrator.
Furthermore, it must be possible for this language to be
processed by the compiler to generate platform
specific messages that are used to configure individual
programmable routers. The language must therefore
exhibit appropriate levels of abstraction and
expressiveness so as to be used as intended. If the
language is not expressive enough, it will not be
possible for administrators to configure the network
such that it reflects a business model. If the language is
not abstract enough the administrator is likely to
produce network configuration policies that cannot be
enforced by the programmable router.

4.2.3 Assumptions

To verify that the language can be used by an
administrator to configure a programmable network, it
must be shown that programmable networks can be
configured to reflect business models using the
declarative language. To achieve this, a sufficient
number of business models relating to network
configurations must be acquired, it must then be shown
that the language can be used to represent the model. It

is assumed that enough quality network configurations
can be derived from example business models; and that
the business models are representative of real corporate
network requirements. The business models will be
acquired through my interactions with BTExact; the
desired network configurations will be derived from
these business models by myself, my research group
and by BTExact.

4.2.4 Methodology

The language must be analysed to ensure that it can
represent all configuration policies that are realistically
likely to be desired of the network without describing
host specific configuration details. I do not believe that
the correct approach to the analysis uses automated
tools; rather, a scientist can verify the language by
inspection. The language verification process will
require the acquisition of an extensive range of
network configurations that are likely to be requested.
It is my intention to define the language such that all
the example network configurations can be
represented. The testing procedure is not a process
separate work package to the language definition; the
declarative language design will involve the use of
numerous example network configurations.

To show that the language can be used to manage a
live corporate network, the management system –
comprising the declarative configuration language –
will be deployed on an example corporate network that
accurately reflects a live business system. Using traffic
generators and network monitoring tools, it will be
shown that programmable network configurations
expressed in the declarative language can control the
network’s behaviour as expected. By demonstrating the
functionality of the management system in this way, it
can be verified that the language is suitable for the use
in the programmable network management
middleware.

4.2.5 Predictions

Given that the declarative language will be developed
using example business models, I am confident that all
the example network configurations can be represented
using the declarative language defined in this project.
As previously stated, it has been assumed that example
business models can be acquired that are sufficiently
representative of real corporate network configuration
requirements; since it is expected that the language is
suitable for use in all the example scenarios, the
language will be capable of representing most (if not
all) network configurations derived from real business
models. This will mean that the declarative language is
sufficiently expressive, yet adequately abstract, to
configure a programmable network according to a
business model.

Page 6

4.3 Hypothesis testing 2

4.3.1 Proposal

Given a declarative configuration policy derived from
a business model by an administrator, the compiler can
generate configuration messages for each
heterogeneous programmable router, resulting in a
network configuration that reflects a business model.
We must verify that the policies generated by the
compiler to configure a network adequately reflect the
desired network behaviour described by the declarative
configuration policy. The platform specific messages
generated by the policy compiler must then be shown
to be delivered to the appropriate programmable
networks, using the management system’s embedded
delivery system, with sufficient efficiency and with
relevant functional behavioural properties (such as
transactions and security).

4.3.2 Rational

The key goal of this project is to create a system that
can configure a programmable network according to an
declarative policy supplied by an administrator. For the
system to be accepted by industry, this goal must be
met. Clearly, if the configuration of the network does
not reflect the policy given by the administrator, the
compiler is not sufficiently functional to correctly
configure the network, therefore there is little point in
using the management middleware. The platform
specific messages generated by the declarative policy
compiler are used to configure the programmable
network routers; these platform specific policies, taken
together, must therefore represent the requirements
outlined in the declarative policy.

For the platform specific messages to correctly
configure the programmable network, there is a clear
need for the delivery systems to be sufficiently
functional and efficient to be used to configure the
network. The delivery system is the ‘glue’ that enables
the programmable routers to draw on the functionality
provided by the language compiler.

4.3.3 Assumptions

The language compiler will be implemented so that the
functionality can be verified. The compiler relies
heavily on mechanisms that are capable of determining
a network’s behaviour. It is not the intention of this
project to focus heavily in this area, rather, existing
research will be drawn upon and existing tools will be
reused in the programmable network management
system. It is assumed that appropriate research and
tools are in existence and are available for use.

It has previously been emphasised that the a robust
delivery system is needed to deliver platform specific
messages to programmable routers. Research into
delivery middleware mechanisms is beyond the scope
of this project; it is assumed that there exists an
available delivery system that is appropriate for reuse
in the this project.

4.3.4 Methodology

To test if the compiler is correctly deriving a platform
specific configuration messages from a declarative
network policy, a network profile will be built. The
profile will consist of multiple statements – written in
the management middleware’s declarative
configuration language – that describe the network’s
behaviour. If the declarative policy being tested
matches one of the policies in the network profile, then
the configuration generated by the compiler will be
assumed to be correct.

The management middleware – together with the
Promile technology that it extends – will be deployed
over a testbed in order to test that the network is
managed correctly. If the network does not exhibit the
expected behaviour following the configuration
process, the compiler is likely to be flawed.

The testing of the functionality and efficiency of the
delivery middleware will be done during the selection
process of the message oriented middleware that is to
be integrated into the programmable network
management middleware. I believe this the testing need
not comply with a scientific methodology. From
sensibly selecting and experimenting with potential
delivery systems, it will be a fairly trivial task to
determine which to use to integrate the management
middleware with the routing fabric. To prove that the
integration is a success the system should be
demonstrated to work on a live network. In this way,
the system can be shown that the network behaviour
can reflect a business model.

4.3.5 Predictions

I am confident that a compiler can be constructed that
is capable of generating the correct set of platform
specific messages. Given that both the compilation
process and the testing process depend on the same
network profiling mechanisms, for the system to be
correct accurate network profiles must be created. I
expect that, with sufficient research, this can be
achieved.

The programmable network management middleware
is to be integrated with the programmable network
routers using a delivery middleware, I expect that a
delivery system can be found that is suitable for this.
It is my belief that the testing procedures are sufficient
to verify the correctness of both the compiler and the
delivery system.

4.4 Hypothesis testing 3

4.4.1 Proposal

In order for the management middleware to be
classified as a useful system and adopted by industry to
manage a corporate network employing programmable
router technology, the performance of the system must
be shown to be far better than other methods of
programmable network management. Since this is the

Page 7

only project that is concerned with creating a
middleware for the management of a programmable
network using declarative configuration policies
derived from business models, the system can only be
compared with programmable network management
systems that do not use declarative configurations. The
few programmable network projects that are capable of
configuring an entire network comprising
programmable network routers will be analysed and
shown to be less functional than the management
system proposed in this project.

4.4.2 Rational

For a corporate network to benefit form the
extensibility of programmable networking technology,
it must be possible for the routers to be controlled in a
reliable and efficient manner. This project aims to
provide a middleware that allows this. If it can not be
shown that there are significant benefits from using the
management system proposed in this project then it is
unlikely to be deployed on a live corporate network.
This project is funded by both academia and industry,
and therefore needs to incorporate sound scientific
ideas with realistic business opportunities. By
comparing and contrasting the functionality of this
system with similar existing technology, the value of
this work can be demonstrated to be accepted in both
of the domains.

4.4.3 Assumptions

In order to contrast the management middleware
proposed in this project with other programmable
network configuration middleware, numerous example
configuration scenarios must be identified that can be
achieved using all of the management systems. This
project assumes that these example business models
can be acquired through my interactions with the
corporate sponsor. BTExact continues to produce
significant research that is of interest to both industrial
and academic bodies, and it therefore has access to
business models that can be utilised by this project.

4.4.4 Methodology

Before this testing process can be undertaken, a survey
of existing projects must be carried out to identify the
relevant systems that can be compared to the
programmable network management middleware
proposed in this project.

Using both the management middleware proposed in
this project and similar configuration systems, identical
networks will be created using each technology. The
example business models acquired form the industrial
sponsor will be given to a network administrator who
will modify the network accordingly. The
configuration process required using each
configuration system will be identified; the ease of use
and network behaviour correctness of each
configuration system will be contrasted. At present, it
is thought that the most likely systems to be included in
the comparison are Nestor [4] and DEN [5]. It is

believed that these are the closest related projects to
my work.

4.4.5 Predictions

It is expected that, compared to similar projects, the
management middleware proposed in this project will
improve the way in which programmable routers are
managed. The declarative configuration policies
describe the behaviour of the network rather than
individual routers and the compiler determines the
configuration of each router; this means that human
configuration error at the router level is eliminated.
The declarative approach to configuration specification
prevents humans from describing the configuration
process, human error is also eliminated here. The
system proposed in this project includes intelligence
that, until now, has been provided by the network
administrator. To my knowledge this is the only project
that takes this approach to the management of
programmable networks, so is likely to be better suited
to programmable network management than similar
systems.

4.5 Conclusion
The remaining research needed to produce a
programmable network management middleware by
extending work done in the Promile project falls within
three areas:

• The definition of a declarative policy
language

• The design of a policy compiler
• The integration of the programmable network

management middleware with Promile
technology using a delivery middleware

As can be seen from the description of tests that will be
performed to verify my hypothesis, each and every one
of the above areas will be addressed. The declarative
language will be verified; the functionality of the
policy compiler will be show as correct; and the
integration of the management system with the Promile
programmable router technology will be shown to be
of an acceptable standard. In addition to these tests, the
system proposed in this project will be compared to
similar network configuration systems. It will be
shown that the management system can manage a
network to better reflect a business model than the
other systems.

It is my aim to produce a system that can be deployed
by the project’s corporate sponsors onto a live
corporate network. In terms of academic acceptability,
I am confident that the quality of the work and testing
process will add to the scientific communities
knowledge and be sufficient to warrant continuing
research on the project. The tests outlined in the
previous sections seem to be adequately complete and
correct for this to occur.

Page 8

5 Related work
The work being done in the area of programmable
routers is extensive. Although the OpenSig [7]
community no longer seems likely to define a
standardized open interface to routers and switches, the
PIN committee [11] is still in existence and projects
such as X-Bone [12] and Mobiware [13] still generate
interest. In the area of active networking [8], research
in projects such as ANTS [14] and Active Services
[15] are still flourishing. For a survey on OpenSig and
active network projects refer to [16] and [17]; these
papers contain extensive descriptions and similar
works are contrasted. As stated previously, my
research extends work carried out in the domain of
application level programmable networks. The key
projects in this area are Promile [3], Android [18] and
Click [19].
There are few projects that are concerned with the
management of programmable networks: NESTOR [4],
SENCOMM [20], ABLE [21] and ANCORS [22] are
among them. These projects seem to management
systems for programmable routers rather than complete
networks. One of the key components of the
programmable network management middleware is the
compiler that translates a declarative configuration
policy into host specific configuration policies based
on network particulars and existing router
configuration; this is relevant to work being done by
the Distributed Management Task Force [23], more
specifically the Directory Enabled Network (DEN)
initiative [5]. In fact, the Intelliden corporation [24] is
bringing this technology to market place.

The compilation process is partly relevant to the work
being carried out in the Semantic web [25] domain.
Using the Resource Description Framework, the W3C
[26] are working towards creating mechanisms that
allow data to be interpreted to suit individual interests.
With respect to the network monitoring capabilities
required by the compiler, work done on network
performance measurement tools similar to PathChar
[27] and the Network Weather Service [45] in addition
to work completed on router monitoring tools such as
Ganglia [28] and MRTG [29] can be drawn upon.

In terms of delivery middleware, there has been much
work done; in fact, there are numerous technologies
that are commercia lly mature. The main design goal of
the Java Messaging Service [30] (part of the Enterprise
Java [31] specification) seems to be allowing web
applications and enterprise beans to communicate;
however, its use as a general purpose message oriented
middleware is also well known In the financial sector,
Tibco’s Rendezvous [32] seems to be the most popular
message oriented middleware, however there are two
significant competitors, MQSeries [33] and MMQ [34],
made by IBM and Microsoft respectively. All these
systems include transaction and security services.

To my knowledge, this project is unique. There does
not seem to be any other individual or research group
attempting to create a programmable network

management middle using network scoped declarative
configuration policies.

6 Work to date
It is expected that students in the Department of
Computing Science at UCL should spend three years
working towards their PhD, I am confidant that I will
complete my research goals within this time frame. I
am now nearing the end of my first year. The last
twelve months have been used to determine an
interesting problem that is suitable for a PhD thesis and
to read sufficient background material as to justify the
relevance of my work to current research trends.
Hitherto, my reading has mainly been in the following
areas: programmable networking (application level,
OpenSig and Active networking); middleware (mainly
message oriented middleware, but also object oriented
and agent middleware); network protocols (in
particular reliable multicast and application layer peer-
to-peer messaging); application servers (J2EE); and
XML (including XPath, XSLT, Schemas and DTD).
Previously the focus of my work was in the area of
delivery middleware. I wrote and published a paper
[35] describing the ideal requirements for such a
system. More recently my research has moved towards
network management. I feel that I have now done
sufficient research to focus on the definition of the
declarative language and the design of a compiler.

7 Timescales
The next eighteen months will be broken down as
follows. The next three months will be used to define
the declarative language used by administrators to
manage the network. The following six months will be
spent designing the compiler, including the design
network profiling mechanisms. Three months will be
taken to implement the compiler once the design is
complete. I believe that once the compiler has been
implemented, three months will be sufficient to
integrate the management middleware with Promile
technology. The remaining six months of my project
will be used to write the PhD thesis. This time includes
two months for system testing and four months to
concentrate on the documentation of my work.

8 Bibliography
[1] DARPA, http://www.darpa.mil/.
[2] Clark, D. D. “The Design Philosophy of the
DARPA Internet Protocols”, in the proceedings of
ACM SIGCOMM '88, August, 1988.
[3] M. Rio, N. Pezzi, H. De Meer, W. Emmerich, L.
Zanolin, C. Mascolo. “Promile: A Management
Architecture for Programmable Modular Routers”, in
the proceedings of OpenSIG 2001, September 2001.
[4] A. V. Konstantinou, Y. Yemini, and D. Florissi.
“Towards Self-Managing Systems”, in the Proceedings
of DARPA Active Networks Conference and
Exposition (DANCE), May 2002, San Francisco, CA.
[5] Directory Enabled Networks initiative.
http://www.dmtf.org/standards/standard_den.php

Page 9

[6] I. Marshall, J. Cowan, J. Crowcroft, M. Fry, A.
Ghosh, D. Hutchinson, D. Parrish, I. Phillips, M.
Sloman, D. Waddington, "Alpine - Application Level
Programmable Inter-Network Environment", BT
Technology Journal 15(2), April 1997.
[7] OpenSig, http://www.ctr.columbia.edu/opensig/.
[8] DARPA Active Network Program,
http://www.darpa.mil/ito/research/anets/.
[9] XML, http://www.w3.org/XML/.
[10] XSLT, http://www.w3.org/Style/XSL/.
[11] J. Biswas, et al. “The IEEE P1520 Standards
Initiative for Programmable Network Interfaces”, IEEE
Communications Magazine, Special Issue on
Programmable networks, October 1998.
[12] J. Touch, S. Hotz. “The X-Bone”. Third Global
Internet Mini-Conference in conjunction with
Globecom ’98, Australia, November 1998.
[13] O. Angin, A. T. Campbell, M. E. Kounavis, R. R.-
F. Liao, "The Mobiware Toolkit: Programmable
Support for Adaptive Mobile Networking", IEEE
Personal Communications Magazine, August 1998.
[14] D. Wetherall, J. Guttag, and D. Tennenhouse.
“ANTS: A Toolkit for Building and Dynamically
Deploying Network Protocols”. In the Proceedings of
IEEE OPENARCH ‘98, April 1998.
[15] E. Amir, S. McCanne, and R. Katz, "An active
service framework and its application to real-time
multimedia transcoding", in proceedings of ACM
SIGCOMM ‘98, September 1998.
[16] A. T. Campbell et al., "A Survey of Programmable
Networks", in the proceedings of ACM SIGCOMM
Computer Communication Review, April 1999.
[17] I. Marshall, et al., "Application-level
programmable internetwork environment", BT
Technology Journal 17(2), April 1999.
[18] I. Liabotis, O. Prnjat, L. Sacks, "Policy-Based
Resource Management for Application Level Active
Networks", in the proceedings of the 2nd IEEE Latin
American Network Operations and Management
Symposium (LANOMS), Brazil, August 2001.
[19] E. Kohler, R. Morris, B. Chen, J. Jannotti, M.
Kaashoek, "The Click modular router", in the
proceedings of ACM Transactions on Computer
Systems 18(3), August 2000.
[20] A. Jackson, et al., “Active Network Monitoring
and Control: The SENCOMM Architecture and
Implementation”, in the proceedings of DARPA Active
Networks Conference and Exposition (DANCE), USA,
2002.
[21] D. Raz, Y. Shavitt, “An Active network Approach
for Efficient Network Management”, in the
proceedings of IWAN, Germany, 1999.
[22] L. Ricciulli, et al. “An Adaptable Network Control
and Reporting System (ANCORS)”, in the proceedings
of DARPA Active Networks Conference and
Exposition (DANCE), USA, 2002.
[23] DMTF, http://www.dmtf.org/.
[24] Intelliden, http://www.intelliden.com/.
[25] Semantic web, http://www.w3.org/2001/sw/.
[26] World Wide Web Consortium,
http://www.w3.org/.

[27] A. Downey, "Using PathChar to estimate Internet
link characteristics, in the proceedings SIGCOMM
1999, Cambridge, MA, September 1999.
[28] Ganglia, http://ganglia.sourceforge.net/.
[29] Multi Router Traffic Grapher,
http://people.ee.ethz.ch/~oetiker/webtools/mrtg/.
[30] JMS, http://java.sun.com/products/jms/.
[31] J2EE, http://java.sun.com/j2ee/.
[32] Tibco, http://www.tibco.com
[33] MQSeries, http://www-
3.ibm.com/software/ts/mqseries/.
[34] MMQ, http://www.microsoft.com/msmq/.
[35] A. Hughes, “Requirements of a Middleware for
Managing a large heterogeneous programmable
Network”, BT Technology Journal 20(2), April 2002.
[36] C. Mascolo, L. Zanolin, W. Emmerich “XMILE:
an XML based Approach for Incremental Code
Mobility and Update”, Automated Software
Engineering Journal (Special Issue on Mobility).
Kluwer.
[37] S. Blake et al., “An architecture for differentiated
services”, RFC 2475, 1998.
[38] R. Braden, D. Clark, S. Shenker, “Services in the
Internet Architecture: an Overview”, RFC 1633, 1994.
[39] Real Media, http://www.real.com/.
[40] J. Case, M. Fedor, M. Schoffstall, J. Davin, “A
Simple Network Management Protocol (SNMP) “,
RFC 1157, 1990.
[41] P. Trimintzios, et al., “A Management and Control
Architecture for Providing IP Differentiated Services in
MPLS-based Networks”, IEEE Communications
Magazine, 39(5), May 2001.
[42] E. Lupu, M. Sloman, N. Dulay, N. Damianou,
“Ponder: Realising Enterprise Viewpoint Concepts”,
4th International Enterprise Distributed Object
Computing Conference (EDOC2000), Japan,
September 2000.
[43] BTExact Technologies, http://www.btexact.com/ .
[44] University College London,
http://www.ucl.ac.uk/.
[45] R. Wolski, "Dynamically Forecasting Network
Performance Using the Network Weather Service",
Journal of Cluster Computing Volume 1, pp. 119-132,
January, 1998.

Andrew Hughes is currently
perusing a PhD in the
Department of Computing
Science at University College
London, his research is
focused in the area of
programmable networks. He is
one of the first students to be
based at the new UCL campus

at Adastral park which is designed to strengthen the
collaboration between the university and BTExact
Technologies. Andrew graduated from the University
of Newcastle-upon-Tyne in 2001 with an honours
degree in computing science. In 2000, he co-founded a
software development company that works in the area
of virtual networking.

