
Resilient Routing in the Internet

Suksant Sae Lor

A dissertation submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy

of the

University of London.

Department of Electronic & Electrical Engineering

University College London



I, Suksant Sae Lor, confirm that the work presented in this thesis is my own. Where information has been derived

from other sources, I confirm that this has been indicated in the thesis.

c© 2006–2010, Suksant Sae Lor

Department of Electronic & Electrical Engineering

University College London



Abstract

Although it is widely known that the Internet is not prone to random failures, unplanned failures due to

attacks can be very damaging. This prevents many organisations from deploying beneficial operations

through the Internet. In general, the data is delivered from a source to a destination via a series of

routers (i.e routing path). These routers employ routing protocols to compute best paths based on routing

information they possess. However, when a failure occurs, the routers must re-construct their routing

tables, which may take several seconds to complete. Evidently, most losses occur during this period.

IP Fast Re-Route (IPFRR), Multi-Topology (MT) routing, and overlays are examples of solutions

proposed to handle network failures. These techniques alleviate the packet losses to different extents,

yet none have provided optimal solutions. This thesis focuses on identifying the fundamental routing

problem due to convergence process. It describes the mechanisms of each existing technique as well as

its pros and cons. Furthermore, it presents new techniques for fast re-routing as follows.

Enhanced Loop-Free Alternates (E-LFAs) increase the repair coverage of the existing techniques,

Loop-Free Alternates (LFAs). In addition, two techniques namely, Full Fast Failure Recovery (F3R) and

fast re-route using Alternate Next Hop Counters (ANHC), offer full protection against any single link

failures. Nevertheless, the former technique requires significantly higher computational overheads and

incurs longer backup routes. Both techniques are proved to be complete and correct while ANHC neither

requires any major modifications to the traditional routing paradigm nor incurs significant overheads.

Furthermore, in the presence of failures, ANHC does not jeopardise other operable parts of the network.

As emerging applications require higher reliability, multiple failures scenarios cannot be ignored.

Most existing fast re-route techniques are able to handle only single or dual failures cases. This thesis

provides an insight on a novel approach known as Packet Re-cycling (PR), which is capable of handling

any number of failures in an oriented network. That is, packets can be forwarded successfully as long

as a path between a source and a destination is available. Since the Internet-based services and applica-

tions continue to advance, improving the network resilience will be a challenging research topic for the

decades to come.



Acknowledgements

I would like to thank my grateful thanks to my Role Model, Dr Miguel Rio, for his invaluable guidance

and inspiration throughout my studies. My special thanks go to Prof George Pavlou for his consistent

hints and advice. My hearty thanks go to Dr David Griffin and Dr Jason Spencer for the great fun and

experience under the AGAVE project. I owed Dr Richard Clegg immeasurable thanks for always saving

me from the mathematical maze. My joyful thanks go to Dr Eleni Mykoniati for revitalising my soul by

organising the mind-opening events and trips. I hereby, convey my heart-felt thanks to Dr Ning Wang

for kindly providing me useful information and advice. I became brighter through great discussions and

works with Dr Raul Landa and Mr Redouane Ali, you guys, please accept my thanks from the bottom

of my heart. My sincere thanks go to Mr Lawrence Latiff for sparking great fun that tremendously

alleviated tension during the conference trip in Japan.

I simple feel wordless in appreciation of the comfort, care, and sacrifice my family has given me

from scratch to success, you are forever in my heart!

For my other colleagues and friends from NSRL, and those whose names are not mentioned, I thank

you very so much for your kind words, encouragement, assistance, and advice in one way or another.



Contents

Abstract 3

Acknowledgements 4

List of Figures 10

List of Tables 11

1 Introduction 12

1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Motivation and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Resilient Routing 16

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Distance Vector Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 Link-State Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.3 Path Vector Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Traditional Routing Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Intra-Domain Routing Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.2 Inter-Domain Routing Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Resilient Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.1 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3.2 Modifying the Convergence Process . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.3 IP Fast Re-Route . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3.4 Multi-Topology and Multi-Path Routing . . . . . . . . . . . . . . . . . . . . . . 43

2.3.5 Overlay Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.6 MPLS-Based Resilience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3.7 Disjoint Paths and Redundant Trees . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3.8 Protection Cycles and Pre-Configured Cycles . . . . . . . . . . . . . . . . . . . 48



Contents 6

2.3.9 Eliminating the Convergence Process . . . . . . . . . . . . . . . . . . . . . . . 48

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Enhanced Loop-Free Alternates 51

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Computing Enhanced Loop-Free Alternates . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Packet Processing and Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Termination of Using LFAs and E-LFAs . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.6.2 Overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6.3 Repair Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6.4 Stretch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Achieving Full Fast Failure Recovery 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Disjoint Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Computing Red Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Computing Blue Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Packet Processing and Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Suppressing Failure Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.8 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.9 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.9.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.9.2 Overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.9.3 Repair Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.9.4 Stretch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Alternate Next Hop Counting Mechanism 72

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Computing Alternate Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Computing ANHC Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 Computing ANHC Values Using Loop-Free Condition . . . . . . . . . . . . . . . . . . 76

5.5 Packet Processing and Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.6 Suppressing Failure Notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.7 Bounds on Alternate Path Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



Contents 7

5.8 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.9 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.10 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.10.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.10.2 Overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.10.3 Repair Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.10.4 Stretch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.10.5 Maximum Link Utilisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.10.6 Total Network Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Resilient Routing Using Packet Re-Cycling 88

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.2 Cellular Graph Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3 Constructing Routing and Cycle-Following Tables . . . . . . . . . . . . . . . . . . . . . 90

6.4 Cycle-Following Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4.1 Single Failure Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4.2 Multiple Failures Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.5 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.5.1 Cycle-Following Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.5.2 Termination Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.5.3 Forwarding Loop Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.6.1 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.6.2 Overheads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.6.3 Repair Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.6.4 Stretch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7 Conclusion and Future Work 102

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.1.1 Enhanced Loop-Free Alternates . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.1.2 Full Fast Failure Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.1.3 Alternate Next Hop Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.1.4 Packet Re-Cycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2.1 Optimisation of PR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2.2 Analysing the Repair Coverage of Single Bit PR . . . . . . . . . . . . . . . . . 105

7.2.3 NetFPGA Implementation of PR . . . . . . . . . . . . . . . . . . . . . . . . . . 105



Contents 8

Appendices 106

A Packet Re-cycling Proofs 106

A.1 Cycle-Following Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.2 Termination Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A.3 Forwarding Loop Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

B Acronyms and Abbreviations 111

Bibliography 116



List of Figures

2.1 A simple routing example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Routing based on distance vector algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Routing based on Dijkstra’s algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Intra-domain and inter-domain routing. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Path vector routing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Different network policies in path vector routing. . . . . . . . . . . . . . . . . . . . . . 25

2.7 Different types of LFAs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.8 An example of U-turn alternate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.9 Examples of IPFRR using tunnels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.10 Examples of IPFRR using not-via addresses. . . . . . . . . . . . . . . . . . . . . . . . . 42

2.11 Examples of configurations in MRC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.12 An example of path splicing with two slices. . . . . . . . . . . . . . . . . . . . . . . . . 46

2.13 Examples of MPLS-FRR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 A simple network topology illustrating LFA from R3 to R6. . . . . . . . . . . . . . . . . 53

3.2 Stretch comparison between OSPF re-route and E-LFAs. . . . . . . . . . . . . . . . . . 59

3.3 Number of hops of a path before and after failures under OSPF re-route and E-LFAs. . . 60

4.1 A simple network topology used for F3R illustration. . . . . . . . . . . . . . . . . . . . 64

4.2 Computation of red tree rooted at R6. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 Blue tree rooted at R6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 Stretch comparison between OSPF re-route and F3R under normal and failure cases. . . 70

5.1 A simple network topology illustrating shortest paths to R6. . . . . . . . . . . . . . . . 73

5.2 Concept of recursive LFAs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 An unexpected shorter alternate path from R3 to R6. . . . . . . . . . . . . . . . . . . . 80

5.4 Stretch comparison between OSPF re-route and fast re-route using ANHC. . . . . . . . . 85

5.5 Number of hops of a path before and after failures under OSPF re-route and ANHC

re-route. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Maximum link utilisation before and after failures under OSPF re-route and ANHC re-

route. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



List of Figures 10

5.7 Relative increase of the total network overhead after failures under OSPF re-route and

ANHC re-route. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1 A cellular embedding of a simple network topology. . . . . . . . . . . . . . . . . . . . . 91

6.2 Single failure case for illustrating the cycle-following protocol. . . . . . . . . . . . . . . 92

6.3 Multiple failures case for illustrating the cycle-following protocol. . . . . . . . . . . . . 94

6.4 Stretch comparison between OSPF re-route, FCP, and fast re-route using PR. . . . . . . 99

6.5 Stretch based on the number of hops of backup paths under OSPF re-route, FCP, and fast

re-route using PR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A.1 Joins and self-joins of cells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

A.2 Cycle-following protocol termination with self-joins. . . . . . . . . . . . . . . . . . . . 110



List of Tables

2.1 Routing tables constructions based on distance vector algorithm. . . . . . . . . . . . . . 20

2.2 Routing table construction at R1 based on Dijkstra’s algorithm. . . . . . . . . . . . . . . 23

3.1 Properties of topologies used in simulations. . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Repair coverage of different topologies under LFAs and E-LFAs. . . . . . . . . . . . . . 57

5.1 Next hops from each node to R6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2 The ANHC value of each node pair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Computational overhead introduced by fast re-route using ANHC. . . . . . . . . . . . . 83

6.1 Cycle-following table at node R2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



Chapter 1

Introduction

For decades, the Internet has become the largest data communication network connecting personal com-

puters, servers, and many other Internet-enabled devices [20]. Statistically, it has more than 1.96 billion

users as of June, 20101 and continues to grow. Nevertheless, services and applications operating on-

line have different requirements. More precisely, some of them demand a high performance network,

that can accommodate sufficient resources in order to provide certain Quality of Service (QoS). This is

important, in particular for service providers who have signed contracts with customers, indicating that

a certain level of service will be provided in exchange for the money paid. Thus, the demand for cor-

rect and fast data transfer through a high reliable network has been increasing continuously, to support

emerging services that are not fault-tolerant.

This thesis focuses on how to achieve a resilient network using different routing strategies. It

highlights the needs for a resilient network and the shortcomings of existing solutions with an extensive

analysis. In general, routing can be categorised into intra-domain and inter-domain routing. The former

signifies routing within a single logical area called an Autonomous System (AS) while the latter conveys

routing across ASes. To find an optimal solution, the study of this thesis incorporates both aspects.

1.1 Objectives
Network reliability is one of the most important features in the present days. Emerging services involve

a massive data transfer between end points. However, it is likely that traditional infrastructure origi-

nally designed by the ARPANET2 will fail to accommodate these services due to its lack of resilient

mechanisms. The main objectives of this thesis are a) to provide an extensive research on the Internet

routing and its existing resilient mechanisms, and b) to provide alternatives as well as to find optimal so-

lutions, that can elevate the network reliability without any major modifications to the traditional routing

paradigm.

1.2 Motivation and Challenges
At the very beginning of the Internet era, one would not be concerned if packet forwarding is disrupted

for a minute, especially if the connection between end points are oriented. If there is a topological

1http://internetworldstats.com/stats.htm.
2Advanced Research Projects Agency Network was one of the first packet switched networks.

http://internetworldstats.com/stats.htm


1.3. Contributions 13

change, the network will eventually converge and resume normal operations. Undelivered packets will

be re-originated by their source again as no acknowledgements have been received. Classic applications

such as e-mail, file transfer, and web surfing are well accommodated by the original Internet design.

However, as new technologies and applications emerge, the Internet Service Providers (ISPs) and most

Internet users start to doubt if they can always rely on the Internet for data communications. For example,

incomplete (or very slow) data transfer caused by the forwarding discontinuation may concern the users

of sensitive applications (e.g. remote surgery via the Internet).

Consequently, several approaches have been proposed to alleviate the routing disruption problem.

However, as none of the techniques provide optimal solutions, the challenge to find the most suitable

routing strategy still remains. Furthermore, resilient mechanisms must not only eliminate the forwarding

disruption in the presence of failures or other unpredictable changes, but they must be scalable and have

minimal impact on the operable parts of the network.

As the current networks employ a number of technologies under the same infrastructure, it is pre-

ferred that new techniques can be implemented without jeopardising the operability of other network

functions. That is, a challenge to design a technique that requires no major modifications to the existing

networks.

1.3 Contributions
The immediate beneficiaries of this research are the ISPs and the researchers in relevant areas. Extensive

studies on routing and approaches for network resilience provide sufficient knowledge on the state of art

of Internet routing. New techniques are also introduced in this thesis as alternatives for either practical

implementations or experiments. Furthermore, these techniques can be tested in real networks without

requiring any major modifications to the existing infrastructure.

In the long run, if these techniques are implemented, software developers and content providers

will be the second tier beneficiaries. The deployment of resilient mechanisms will permit an additional

range of sophisticated online applications that are not fault-tolerant. In addition, organisations involved

in handling sensitive information such as hospitals and the army will be able to take full advantage of

the network resilience. In the present day, it is difficult for hospitals to perform accurate remote health

monitoring or surgery via the Internet because of unreliable networks. If the Internet transforms into a

highly reliable and stable network, a huge range of sensitive applications will eventually have their place

on the Internet.

1.4 Publications
• S. Sae Lor, R. Landa, and M. Rio. Packet Re-cycling: Eliminating Packet Losses due to Network

Failures. In Proc. ACM Workshop on Hot Topics in Networking (HotNets-IX), Monterey, CA,

Oct 2010.

• S. Sae Lor and M. Rio. Enhancing Repair Coverage of Loop-Free Alternates. In Proc. London

Communications Symposium, London, UK, Aug 2010.



1.5. Thesis Outline 14

• S. Sae Lor. A Novel Mechanism for Resilient Routing. In Proc. Annual Workshop on Multi-

Service Networks, Abingdon, UK, Jul 2010.

• S. Sae Lor, R. Ali, R. Landa, and M. Rio. Recursive Loop-Free Alternates for Full Protection

Against Transient Link Failures. In Proc. IEEE Symposium on Computers and Communications,

Riccione, Italy, Jun 2010.

• S. Sae Lor, R. Landa, R. Ali, and M. Rio. Handling Transient Link Failures Using Alternate Next

Hop Counters. In Proc. IFIP Networking, Chennai, India, May 2010.

• R. Ali, S. Sae Lor, and M. Rio. Two Algorithms for Network Size Estimation for Master/Slave Ad

Hoc Networks. In Proc. IEEE International Conference on Advanced Networks and Telecommu-

nications Systems, New Delhi, India, Dec 2009.

• R. Ali, S. Sae Lor, R. T. Benouer, and M. Rio. Cooperative Leader Election Algorithm for the

Master/Slave Mobile Ad Hoc Network. In Proc. IFIP Wireless Days, Paris, France, Dec 2009.

• S. Sae Lor, R. Landa, and M. Rio. A New Technique for Full Fast Recovery in Hop-by-Hop

Routing. In Proc. London Communications Symposium, London, UK, Aug 2009.

• S. Sae Lor. Achieving Resilient Routing in the Internet. In Proc. Annual Workshop on Multi-

Service Networks, Abingdon, UK, Jul 2009.

1.5 Thesis Outline
The rest of this thesis is organised as follows. Chapter 2 provides an overview of the Internet routing

that includes different algorithms used in existing routing protocols. It describes the routing within a

single AS as well as routing between different ASes. Furthermore, brief details of both intra-domain and

inter-domain routing protocols are also given. These include the Routing Information Protocol (RIP)

[70] and Open Shortest Path First (OSPF) [90]. In addition, the Border Gateway Protocol (BGP) [103]

is given as an example of widely deployed inter-domain routing protocol.

There is an evidence showing that the Internet has a certain level of resilience3. Nevertheless, it

is not sufficient to handle intentional attacks, which can be potential threats in data communications.

Therefore, different resilient approaches such as IP Fast Re-Route [113], Multi-Topology (MT) rout-

ing [63, 21], and overlay networks [4], used to eliminate the routing disruptions of a network are also

presented.

Novel techniques namely, Enhanced Loop-Free Alternates (E-LFAs), Full Fast Failure Recovery

(F3R), and fast re-route using Alternate Next Hop Counters (ANHC), are introduced in Chapter 3–

5. Each technique has different benefits and trade-offs. A self-implemented Java software is used to

simulate each routing technique on selective network topologies including real, inferred, and synthetic

topologies. Furthermore, a number of evaluation metrics such as path characteristics and network load

are used.
3The Internet is resilient to random failures [29, 23].



1.5. Thesis Outline 15

In Chapter 6, a new resilient routing approach using Packet Re-cycling (PR) mechanism is intro-

duced. The technique can be employed in an oriented network and is capable of handling any number of

failures as long as a path between a source and a destination exists. Chapter 7 concludes the thesis and

discuss the future work.



Chapter 2

Resilient Routing

2.1 Introduction
The Internet is a very large packet switched network that has been growing continuously1. It intercon-

nects an enormous number of networks allowing millions of devices to transfer data across the globe.

Access to the Internet is not restricted only to business sectors or any particular industries, but is also

available to residential and other public sectors. This creates a borderless data communications which

is a pre-requisite for providing online services and contents. Nevertheless, as the access becomes more

available, so does the demand for more advanced services and applications. A wide range of emerging

services requires sophisticated platforms to accommodate different tasks and functionalities such as in

e-commerce, e-health and some exhaustive resources consuming applications such as Video on Demand

(VoD) and video conferencing. Although existing infrastructure can support classic services such as

e-mail and basic file transfer very well, it fails to support sensitive applications such as remote surgery

and military controls. Despite the demand’s driver, whether it is the Service Level Agreement (SLA) or

other factors, a proper distributed algorithm that is capable of retaining certain Quality of Service (QoS)2

is required rather than relying on best effort delivery3.

A process used to transfer data between any two points in the network is called routing. It involves

the paths selection process to ensure correct delivery. However, a router may route packets based solely

on the destination address depending on the protocol designs4. These designs specify the method for

routers to utilise the information in the path selection process. Basically, the actual routing is performed

based on routing tables built at routers running a routing protocol. However, the paths formed by these

tables must be consistent throughout the network to guarantee a correct delivery. Each routing table

consists of at least three information fields, which are: the network ID (destination ID), cost (path cost to

the destination), and the next hop address (usually the address of an interface of a router) which indicates

the next router of a path towards the destination. Nevertheless, a routing table may store additional

information depending on the implementation of a routing protocol.

In practice, it means that a routing protocol used to construct routing tables has a great influence

1http://internetworldstats.com/stats.htm
2Ability to provide a certain level of performance to a data flow.
3No guarantee that data is delivered successfully.
4Traditional routing is based on destination address only.

http://internetworldstats.com/stats.htm


2.1. Introduction 17

upon the performance of a network. For example, using routing tables arrangement that allows faster best

match operation will result in a better forwarding performance (i.e. faster delivery). In general, routing

tables can be constructed as a Patricia tree5 [87, 110], which minimises bit comparisons and requires

only a single mask-and-match operation [26]. However, with certain designs, other algorithms such as

balanced binary tree may be used. Furthermore, a hash table can be employed to speed up the routing

table lookup process. Practically, a hash table6 is employed by edge routers as a separate database used

to search for particular destinations [91].

R1

R2 R4

R3 R5

R6

1

1

11

3 3

2

H1

H2

H3

H4

1

Figure 2.1: A simple routing example.

An example of a simple routing process is illustrated in Figure 2.1. Assume that all links connecting

routers have the same characteristics (i.e. equivalent speed and capacity). Let H1 be the source device

sending packets to H4. The host is connected to only one router, R1; hence, it becomes H1’s first

hop router7. The routing process starts when H1 forwards packets to R1. For each arriving packet, R1

determines the destination address stored in the packet header and performs a lookup process. Given that

the routing table is already constructed, R1 forwards the packet to R2. This process iterates along the

path R1→R2→R4→R6. Once the packet arrives at R6, it is forwarded to H4, which is the destination

device.

As described earlier, the construction of routing tables may vary from one routing protocol to the

others. For example, a router that employs a protocol based on the Shortest Path First (SPF) algorithm

will normally construct its routing table that permits shortest paths forwarding for all source-destination

node pairs. However, each routing protocol has different requirements and may be preferred differently

based on network characteristics.

Due to practical concerns, routing protocols need to be designed to accommodate services and

applications under different network environments. Some of which, may introduce more complexity

and requirements. Since the Internet is composed of a large number of networks and the their equip-

ment is manufactured by different vendors, the routing process introduces technical, operational, and

management problems. When the network is operating under normal scenario, it is stable by design.

5A radix tree that contains large ranges of values with few exceptions suitable for IP addresses.
6Performs well only at the edge of the network, but not in the backbone areas due to overflows.
7The first router encountered on the path between the sending host and the destination host.



2.1. Introduction 18

Nevertheless, this is not the case, as changes to the network topology due to failures, suspension, ad-

dition and removal of links or routers occur considerably frequently. These changes incur forwarding

discontinuations and cause the traffic in transit to be dropped or caught in a loop. Thus, a routing protocol

should be equipped with proper recovery mechanisms to return the network into a stable state.

In general, when a failure occurs, the router adjacent to the failure detects it and re-constructs

the routing table. This involves the process of re-calculating the next hop for each prefix8, called the

convergence process. Furthermore, depending on the routing protocol, the failure-detecting router must

notify all or a number of routers of the failure to ensure consistent forwarding paths. The time to complete

the process is regarded as the convergence time.

As the reliability and stability of the network have direct impact on the network performance, fast

convergence time is always preferred to avoid losses due to forwarding discontinuation. In practice,

however, the convergence time may be significantly long for large and complex networks, which results

in the performance being degraded [64].

The design goals of different routing protocols can be different depending on several factors. First,

it has to be decided whether the administration of the protocol should be centralised or distributed.

Although managing the routing information centrally may be more efficient in moderate size networks, it

lacks of scalability. Second, a routing protocol may rely on the destination address only as in traditional

routing paradigm, or employ the source address to enable certain mechanisms. For example, a strict

source routing can be used to specify a path precisely. However, the packet overhead increases directly

proportional to the network diameter. A loose source routing may be used to reduce this overhead as

only a fraction of information on the path is embedded into each packet. Third, a routing protocol may

either reacts to the network traffic deterministically or stochastically. Stochastic routing spreads the

traffic among multiple paths (if applicable) to distribute the load [91].

Described above are fundamental concerns for a protocol design. However, as the demand for

higher network reliability increases, disruption avoidance mechanisms also need to be considered. Sev-

eral approaches have been proposed such as Multi-Topology (MT) routing [63, 21] which maintains

different network topologies to provide different paths during failures. However, the technique requires

larger routing table space and therefore, is not widely deployed in the Internet.

Classification of routing protocols can be divided into: a) static routing protocols and b) dynamic

routing protocols. For a static routing protocol, routing tables need to be configured manually by network

operators. Although it virtually requires no computational power, it becomes too difficult to manage in

large networks. In contrast, dynamic routing is more adaptive to topological changes. For example, when

a link fails, each router re-constructs its routing table automatically based on an updated network map.

Despite this functionality, a skilled network operator is still required to perform proper configurations

on protocol parameters. Evidently, common preferences for a routing protocol design are minimum

overheads (e.g. complexity, memory, and control messages), maximum robustness, reliability, stability,

and optimal paths [59]. Most of the times, it is unavoidable to lose certain features in exchange for some

8An address qualifier used to distinguish routes within an a network.



2.1. Introduction 19

others.

2.1.1 Distance Vector Routing

Distance vector algorithms are asynchronous and distributed algorithms. The algorithms are employed

by routers to compute the best paths to all destination prefixes. In general, these algorithms find the

path that has a minimum cost metric. For example, Routing Information Protocol (RIP) [70] uses the

number of hops as the metric. Thus, the path that has the least number of hops is considered as the best

path. Nevertheless, the metrics employed by other distance vector routing protocols are not limited to

the number of hops. The Interior Gateway Routing Protocol (IGRP)9, for example, supports multiple

metrics including bandwidth, delay, load, Maximum Transmission Unit (MTU) and the reliability of a

path. Under the employment of a distance vector routing protocol, each router distributes its routing

information, normally the current best paths, to its neighbours as well as receives the incoming adver-

tisements. If any updates provide better paths than the local ones, a router updates its routing table and

notifies its neighbours with the same information. This process continues until the network is stabilised

(i.e. no update messages are sent or received). The main key feature of distance vector routing protocols

is its simple implementation. Figure 2.2 illustrates an example of a distance vector routing.

R1

R2

R3

R4

7

3

1

5

(a) Routing from R1 to R4.

R1

R2

R3

R4

7

3

1

5×
(b) Counting to infinity.

Figure 2.2: Routing based on distance vector algorithm.

An assumption that each router sends update messages to its neighbours synchronously is made

for simplicity. Let T be the number of steps representing the process, the path computation based on a

simple distance vector algorithm is described as follows:

• The algorithm initialises at T = 0. Each router creates a distance matrix indicating its immediate

neighbours. As no other information available, the direct links connecting itself to the neighbour

nodes form the best available paths.

• At T = 1, each router advertises its distance vector to all neighbours. Once the node receives the

advertisements, a comparison is made with regard to the local information. If the updates provide

better paths, a router updates its routing table and advertises its new distance vector to immediate

9A Cisco’s proprietary routing protocol.



2.1. Introduction 20

neighbours (except the one it receives the updates from). For example, R1 receives updates from

R2 and R3, which provide better paths compared to the existing ones. Thus, R1 updates its routing

table and advertises this information in the next step.

• The algorithm terminates at T = 2 where no more update messages are generated. Table 2.1

shows the steps of routing table construction at each router.

Table 2.1: Routing tables constructions based on distance vector algorithm.

Source R1 R2

Destination R1 R2 R3 R4 R1 R2 R3 R4

T = 0 0, R1 7, R2 3, R1 ∞ 7, R1 0, R2 1, R2 5, R4

T = 1 0, R1 4, R3 3, R1 12, R2 4, R3 0, R2 1, R2 5, R4

T = 2 0, R1 4, R3 3, R1 9, R3 4, R3 0, R2 1, R2 5, R4

Source R3 R4

Destination R1 R2 R3 R4 R1 R2 R3 R4

T = 0 3, R1 1, R3 0, R3 ∞ ∞ 5, R4 ∞ 0, R4

T = 1 3, R1 1, R3 0, R3 6, R2 12, R2 5, R4 6, R2 0, R4

T = 2 3, R1 1, R3 0, R3 6, R2 9, R3 5, R4 6, R2 0, R4

Count-to-Infinity Problem in Distance Vector Routing Protocols

In general, a distance vector routing protocol employs Bellman-Ford algorithm10 to find the best paths.

Since each router running the algorithm builds its routing table based on the update messages advertised

by other routers, the information may be inaccurate and lead to routing instability. Furthermore, the

typical convergence time of a network employing a distance vector routing protocol is long. This leads

to a large amount of packets being dropped when there is a change in topological information. The main

cause of the problem is known as count-to-infinity problem.

Figure 2.2b illustrates a count-to-infinity problem when link R2—R4 fails. After R2 detects the

failure, it has no further knowledge of where to forward the packets to R4 since link R2—R4 becomes

unavailable. Therefore, R2 employs the distance vector of its neighbour, R3, which indicates that packet

can be forwarded to R4 via itself. Consequently, R2 broadcasts its new distance vector to all of its

neighbours. Once R3 and R1 receives this update, they propagate it to inform the rest of the network that

there is a path to R4 via R3 with a cost of 7 (i.e. the sum of costs from R3 to R4 and R2 to R3). After R3

receives this advertisement, it does not realise that the routing path involves itself; hence, it broadcasts

the new distance vector indicating that it can forward packets to R4 via R2 with a cost of 8. This process

iterates until the routers realise that R4 is no longer reachable. Count-to-infinity problem usually slows

down the convergence process. It also increases the computational and message overheads as well as

consuming the network resources.

10An algorithm derived from [10] and [34], which is described in [11].



2.1. Introduction 21

Solutions to Count-to-Infinity Problem

From the operational point of view, network stability and reliability are important features. They are the

main factors that determine the QoS of a network. Service disruptions due to unstable and unreliable

network may cause the organisations a huge loss in profits. In order to avoid this, the count-to-infinity

problem in distance vector routing protocols must be avoided. The followings describe techniques de-

veloped in different routing protocols [78].

• Hop count limit—is used to indicate the maximum hop count that can be incremented by the

routers along the path between each source-destination node pair before it is considered unreach-

able. For example, the maximum hop count specified in the specification of RIP is 15 [70]. This

allows the protocol to avoid routing loops caused by indefinite forwarding. However, this imposes

a restriction on the network size (i.e. no more than 15 hops away subnetworks are supported).

• Split horizon—prevents routing loops by allowing routers to omit any updates they receive from

the same interface. Consider an example in Figure 2.2, if R1 has the information of the path

R1→R2→R3, it will not propagate the distance vector of R3 to R2. Many distance vector routing

protocols such as RIP, IGRP and Enhanced Interior Gateway Routing Protocol (EIGRP)11 employ

this technique to minimise forwarding loops.

• Poison reverse—is a technique used in conjunction with split horizon. Split horizon cannot elim-

inate all possible forwarding loops. Poison reverse sends the routing information along the path

backwardly. A combination of split horizon and poison reverse is known as infinite split horizon.

The technique is effective in term of preventing routing loops as each router sends updates with

unreachable hop counts back to the sender for every route it receives. Nevertheless, infinite split

horizon requires larger update messages; therefore, it is not commonly implemented in routing

protocols.

• Hold-down timer—sets the period to suppress a router from receiving further updates after it first

receives an information about an unreachable path. If the value of the timer becomes 0, a router

indicates the path as being inoperable. A hold-down timer is implemented in routing protocols

such as IGRP and Distance Vector Multicast Routing Protocol (DVMRP) [101].

• Triggered updates—forces a router to send updates immediately once its routing table changes.

It is often used in conjunction with poison reverse to ensure that all routers in the network are

notified of the failure before their hold-down timer expires.

In addition to these techniques, a routing protocol such as EIGRP solves the routing loops problem

by implementing a strict control over updates between routers [2]. Nevertheless, the implementation of

routing protocol becomes more complicated; hence, it slows down the convergence process. As a result,

distance vector routing protocols are generally appropriate for deployments in small networks due to

their simple implementation and routing policies.
11A Cisco’s proprietary routing protocol based on IGRP with various optimisations regarding stability, processing power, and

bandwidth utilisation.



2.1. Introduction 22

2.1.2 Link-State Routing

For a network that employs a link-state routing protocol, all routers share the same topological infor-

mation. That is, the algorithm employs a replicated distributed database approach. When a network

forms, each router discovers its local routing information, that is, detects its neighbours and the weights

of links used for connections. After that, this information is advertised to the rest of the network in form

of protocol control messages. The process is also known as link-state advertisements. These advertise-

ments form up a link-state database12, which is synchronised among all routers. With this topological

knowledge, a router can individually perform the shortest paths calculation and build a routing table.

Once all routers complete their routing table constructions, the network converges. Examples of shortest

path algorithms are Dijkstra’s algorithm [27] and Bellman-Ford algorithm. The latter can be used to

calculate the shortest paths for network topology that incorporates negative link weights. However, it

takes longer to complete the algorithm. More importantly, the costs of paths between any node pairs can

be determined using different metrics such as delay and physical distance.

The key features of a link-state routing protocol are: a) loop-free path computation and b) shorter

convergence time compared to that of distance vector routing protocols. However, the convergence

time depends heavily on the network size; therefore, it can take longer for a larger network to converge

when there are topological changes (e.g. node and link failures). Another factor that has impacts on the

convergence time is the formation of the topology. An example of a link-state routing based on Dijkstra’s

algorithm is illustrated in Figure 2.3.

R1
(Source)

R2 R4

R3 R5

R6

1

1

1

11

3 3

2

Figure 2.3: Routing based on Dijkstra’s algorithm.

Basically, for a given metric, Dijkstra’s algorithm computes the shortest path tree rooted at the

source node. In Figure 2.3, R1 represents the source node running Dijkstra’s algorithm. The shortest

path tree rooted at R1 can be found by connecting all arrows illustrated in the figure.

Let T be the number of steps representing the process. The shortest paths computation at R1 is

described as follows:

• The algorithm initialises at T = 0, where R1 considers the weights of links connecting itself to

its immediate neighbours. The routing table is updated for the first time. As only R2 and R3 have
12A topological database that stores information on the states of all links in the network



2.1. Introduction 23

direct connections to R1, the costs of paths to all other nodes in the network are equal to infinity.

• At T = 1, R1 chooses the next node to determine based on the current link-state information.

Since R2 is connected to R1 with the least cost, R1 updates the information on costs of links

connecting R2 to its neighbours. The process aims to find out if there are any better paths available

for all destinations. Since R2 has connections with R5 and R6, R1 updates its routing table with

corresponding costs and next hops.

• The process iterates until all nodes are considered and R1 possesses a complete link-state infor-

mation. Table 2.2 shows the steps of routing table construction at R1.

Table 2.2: Routing table construction at R1 based on Dijkstra’s algorithm.

T Determined nodes R1 R2 R3 R4 R5 R6

0 R1 0,R1 1,R1 4, R1 ∞ ∞ ∞

1 R1, R2 0,R1 1, R1 4, R1 2, R2 ∞ ∞

2 R1, R2, R4 0, R1 1, R1 4, R1 2, R2 ∞ 3, R2

3 R1, R2, R4, R6 0, R1 1, R1 4, R1 2, R2 6, R2 3, R2

4 R1, R2, R3, R4, R6 0, R1 1, R1 4, R1 2, R2 5, R3 3, R2

5 R1, R2, R3, R4, R5, R6 0, R1 1, R1 4, R1 2, R2 5, R3 3, R2

Designing a routing protocol based on a link-state algorithm offers several advantages. First, it of-

fers a faster convergence time compared to that of distance vector routing protocols. Second, it guaran-

tees a loop-free environment when there are no topological changes. Even if changes do occur, duration

of the forwarding loops are very short (i.e. transient loops). Third, a synchronised link-state database

provides a global information that allows packets to be forwarded along the shorter paths available.

Moreover, the overheads of link-state routing protocols are typically small. They can perform well under

most routing scenarios and in all practical networks. Nevertheless, they are much more complex than

distance vector routing protocols and required skilled network operators to plan, implement, and config-

ure. Examples of widely deployed routing protocols based on link-state algorithms are Open Shortest

Path First (OSPF) [90] and Intermediate System to Intermediate System (IS-IS) [54].

2.1.3 Path Vector Routing

As described previously, the Internet interconnects a large number of networks. These networks are gen-

erally referred to as Autonomous Systems (ASes). In practice, each AS may consist of a large number

of organisations. Nevertheless, many ASes may also form a single ISP. Furthermore, the administration

of each AS may be different from one to the others, and often driven by security, efficiency, and fiscal

reasons. Consequently, the routing process can be categorised into intra-domain and inter-domain lev-

els. The former category handles the routing within a single domain while the latter deals with routing

operations across ASes.



2.1. Introduction 24

R1 R3

R2

R6 R8

R7

AS2

R4 R5

Inter-domain links
Intra-domain links

AS1 AS3

Figure 2.4: Intra-domain and inter-domain routing.

Evidently, distance vector and link-state routing protocols are not appropriate for communications

across networks as they become intractable. For example, RIP introduces routing instability in larger

networks while OSPF requires a large amount of computational power and memory to store routing

tables. Unlike RIP and OSPF, the Border Gateway Protcol (BGP) [103] is widely used for inter-domain

routing. It is considered as a path vector routing protocol [32].

Path vector routing protocol is often regarded as a class of distance vector routing protocols due

to similarity in broadcasting the local routing information of a router. However, a path vector routing

protocol employs various path properties as its metric. These path attributes and the destination together

define a path vector. A router running a path vector routing protocol prevents the routing loops by

defining a special path attribute that records the sequence of the nodes based on the information on

reachability received from its neighbours.

Figure 2.5 illustrates an example of path advertisements. Let AS4 be the destination, the routing

information towards AS4 is obtained as follows.

• AS4 sends the path advertisement to AS2. Thus, AS2 has knowledge of the path AS2→AS4.

• AS2 propagates the path advertisement it receives from AS4 to AS1 and AS3. Basically, AS2 has

the ultimate decision whether it wants to advertise this path.

• AS1 and AS3 are notified of the path to AS4 via AS2 and both of them propagates the advertise-

ment towards each other.

• The path advertisements from AS1 to AS3 and AS3 to AS1 are ignored.

In practice, if AS2 decides not to advertise the path to AS3, it might receive a path advertisement

from AS3 which incorporates itself. However, since the information of all nodes along the path is

embedded, the advertisement will be discarded.

As path vector routing protocols do not require all nodes to have a homogeneous routing policy,

each AS may employ different policies and path selection process. Figure 2.6 illustrates local policies



2.2. Traditional Routing Protocols 25

AS2

AS1 AS4

AS3

AS4: path(AS1, AS2, AS4)

A
S4

: p
at

h(
A

S2
, A

S4
)

AS4: path(AS2, AS4) AS4: path(AS4)

Figure 2.5: Path vector routing.

applied by different ASes. In Figure 2.6a, the shortest path from AS1 to AS2 is direct, but AS1 prefers to

send packets to AS2 via AS3. There are many potential reasons for AS1 to select a longer path given that

the number of hops is used as a metric in this example. For example, the path via AS3 may consist of

high-speed and/or higher capacity links. Figure 2.6b shows that although AS2 has a path towards AS1,

it does not prefer to advertise this route to AS3.

AS1 AS3

AS2

(a) Path preference.

AS1 AS3

AS2

(b) Hidden path.

Figure 2.6: Different network policies in path vector routing.

Although routing protocols are categorised by their routing algorithms, additional mechanisms may

be employed to provide distinctive features. The following section describes and compare the well-

known intra-domain and inter-domain routing protocols.

2.2 Traditional Routing Protocols

2.2.1 Intra-Domain Routing Protocols

Routing within a single AS requires an intra-domain routing protocol known as Interior Gateway Pro-

tocol (IGP). The protocol defines the means for routing table construction and routing information ex-

change between routers in the same network.



2.2. Traditional Routing Protocols 26

Routing Information Protocol

In the early days of the Internet, communications within a single domain was performed through the use

of RIP. The first version of the protocol was originally defined in RFC 1058 [47] solely for exchanging

routing information between routers. Due to its limitations, the protocol has been extended with various

mechanisms resulting in its second version specified in RFC 2453 [70].

RIP is mostly deployed in moderate size ASes. Due to its simple implementation, it is not supposed

to be used in complex networks. In general, the protocol employs Bellman-Ford algorithm. Practically, a

router employing RIP exchanges routing information with its neighbours. Thus, the packets destined for

routers that are not directly reachable need to be forwarded to one of the router’s immediate neighbours

(i.e. next hop router). The selection process is performed based on the routing information available at a

local router. That is, the neighbour that offers a better path to the destination is selected as the next hop

router. Under RIP, the shortest path determined by its physical distance does not essentially imply the

best path. RIP selects the path that has the least number of hops. It also requires that the network must

be contiguous13 in order to employ the protocol.

Under the first version of RIP, each router initialises the protocol by determining the status of all

of its interfaces (i.e. the connections to its neighbours). After that, it enters a request-full mode by

broadcasting a request message to its neighbours. As the neighbour nodes receive this message, they

respond to the originating router following the split horizon rules and poison reverse technique [47, 70].

A router updates its routing table only if it receives responses from its neighbours successfully [78].

In practice, multiple paths with equal costs may be available for some destinations in the net-

work. The implementation of RIP conforms to the basic specification does not employ any rules about

Equal-Cost Multi-Paths (ECMP)14 for load balancing. For example, if there are four paths to the same

destination with equal costs, only the first one is learned by the router. However, some proprietary

implementations also allow ECMP routing under RIP [123].

In order to ensure accurate routing information, routers running RIP perform updates periodically.

By default, RIP routers send updates to their neighbours every 30 seconds. This interval is set and

triggered by an auto-update timer15 [47]. In addition, the protocol also uses triggered updates to prevent

routing instability [47, 70].

RIP handles changes in topological information resulted from removal or failures of network ele-

ments by setting a time-out for a route towards each existing destination. If a router does not receive any

response from its neighbour after sending a request message for more than 180 seconds, it considers that

the route has expired and starts the route deletion process [78].

Despite the fact that some networks are still employing RIPv1 as their routing protocol, various

problems have been found. From an operational point of view, RIPv1 can perform well in small to

moderate size networks given that the networks are reliable (i.e. routers and links are very reliable).

However, if there are unexpected changes in the topology, it may incur a vast amount of losses [78].

13Networks and routes must have the same class network address.
14A routing scheme that allows packet forwarding towards the same destination over multiple best paths.
15Note that, the timer is not affected by the load in the network.



2.2. Traditional Routing Protocols 27

The second version of RIP was introduced with additional capabilities such as support for authen-

tication and subnet masking. These mechanisms have become available through the modifications of

the format of protocol message. Several unused fields in RIPv1 messages are employed by RIPv2 to

provide additional routing information. As RIPv2 also supports non-broadcasting network, multicasting

the messages is more common than broadcasting them as in RIPv1.

Despite its simple implementation, RIP has some limitations. Although precautions have been

taken in order to solve some obvious routing problems, they do not cover all possible cases as RIP was

originally designed for routing in moderate size networks. The details of these limitations are described

in RFC 2453 [70].

• It cannot be employed in the network with a path longer than 15 hops. RIP metric is restricted to

an integer ranging from 1 to 15 inclusive. This prohibits the protocol from being incrementally

deployed. That is, the protocol cannot be used in large networks.

• In certain failure scenarios, RIP cannot avoid the count-to-infinity problem. This becomes a prac-

tical concern in large networks as the update messages can consume a huge amount of bandwidth.

However, these cases are considered fairly unusual.

• RIP employs a fixed metric, which is the hop count. Thus, it lacks of flexibility when real-time

parameters such as delay and traffic load become important for path selection. According to RFC

2453, some extensions may be implemented to permit the usage of other metrics. However, these

extensions potentially introduce routing instabilities.

These limitations restrict the RIP extensions and RIP-based protocols from further development.

Furthermore, RIP-based protocols cannot violate these constraints due to the need for backward compat-

ibility.

As the Internet evolves, a routing protocol must adapt to new environments. Since the original RIP

does not address any security issues, RIPv2 employs a cryptographic authentication [6] to prevent passive

attacks in the Internet. Despite its slow deployment [44, 28], the emergence of IPv616 demands com-

patibility from existing routing protocols. Thus, RIPng [72] has been proposed to define the minimum

changes to RIPv2 specification for IPv6 compatibility.

Although RIPng is based on RIPv2 and employs similar routing algorithm, which incurs a slow

convergence process, it still has its place for deployment. More precisely, it can be used in small networks

due to its simple implementation and administration. Regardless of its support for IPv6, RIPng inherits

the same limitations from the original RIP.

In addition, it is important to realise that the main problems arising in RIP are routing loops which

often lead to routing instability due to unsynchronised routing information. Consequently, a new routing

protocol based on the original RIP called Routing Information Protocol with Minimal Topology Infor-

mation (RIP-MTI) [118] has been proposed. Under RIP-MTI, routing loops are avoided as the routers

16Next Generation Internet protocol specified in RFC 2460 [25] as a replacement of IPv4 [98] to increase flexibility in allocating

addresses and eliminating the need for Network Address Translation (NAT).



2.2. Traditional Routing Protocols 28

recognise and reject the false updates. In other words, any updates that may lead to a count-to-infinity

problem will not be propagated. The router employing RIP-MTI recognises these falsified routes by

evaluating a simple metric-based equations [108]. Furthermore, there have been several RIP extensions

proposed in order to deploy RIP in new environments. For example, RFC 1724 [71] specifies a Manage-

ment Information Base (MIB)17 to manage RIPv2 devices. Another example is RFC 1582 [83], which

defines extensions to RIP to support demand circuits.

It is greatly believed that RIP-based protocols such as RIPv2 and RIPng will remain for sometime

in the Internet regardless the success of link-state protocols such as OSPF and IS-IS.

Open Shortest Path First

OSPF is an IGP designed specifically for routing in TCP/IP networks18. The most widely deployed

OSPF in current networks is OSPF version 2 (OSPFv2) specified in RFC 2328 [90].

OSPF is perhaps, the most successful dynamic routing protocol deployed in enterprise networks. It

employs a link-state algorithm to construct routing tables. More precisely, it uses Dijkstra’s algorithm to

compute the shortest paths. OSPF requires complete information on the network topology. Unlike RIP,

OSPF supports the use of ECMP through modifications of the original Dijkstra’s algorithm to permit

identification of equal-cost paths. When two paths with equal-cost exist, the next hops of both paths are

stored in the routing table. The router can spread the load among these paths to reduce congestion [78].

Basically, the protocol depends heavily on the Link-State Advertisements (LSAs) originated by

each router in the network. They are generated based on the local routing information of their originating

routers. LSAs are generally flooded using a reliable method [91], which is regarded as an in-network

functionality [50]. The process allows each router to exchange routing information with other routers

by originating, updating, requesting, and acknowledging to LSAs. In other words, an OSPF router

constructs its routing table based on information embedded in the advertised messages it receives. A

collection of LSAs also allows the router to build a link-state database, which is synchronised with all

other routers. This permits a consistent routing information as long as the network is stable (i.e. routing

may be inconsistent during network re-convergence).

It is important to note that, in practice, the network is often subject to changes. For example, a

link or a router may be added or removed. Thus, it becomes vital for a router to discover and maintain

the relationships with its neighbours. In an OSPF network, these processes are performed by the Hello

protocol, which is a part of the protocol suite. Each router simply originates and sends a Hello packet

to all its interfaces (neighbours) periodically to inform of its existence. The process also allows routers

to detect local failures caused by failed links or inoperable neighbouring routers. Nevertheless, it cannot

indicate the root cause of the failure. As a result, the re-calculation of the shortest paths in OSPF always

assumes a link failure. Furthermore, the Hello protocol must be employed consistently throughout the

network to avoid falsified decision on maintaining neighbours.

Basically, OSPF protocol runs directly over the IP network layer. Thus, OSPF packets are always

17A database used to manage devices in communication networks.
18Networks that employ Internet protocol suite.



2.2. Traditional Routing Protocols 29

encapsulated in IP packet headers. It also relies on IP mechanisms to fragment the packets when their

sizes exceed the MTU. However, RFC 2328 suggests that IP fragmentation should be avoided whenever

possible as it may cause the loss of functionality in transferring large packet types. Consequently, large

OSPF packets are often split into several protocol packets.

In general, the networks forming the Internet may have different infrastructure. More precisely, they

employ different data link technologies such as frame relay, token rings, Fibre Distributed Data Interface

(FDDI) rings, and Asynchronous Transfer Mode (ATM). OSPF handles various network types differ-

ently. The protocol can perform subnetwork dependent tasks, which include: a) neighbour discovery

and maintenance; b) database synchronisation; and c) abstraction.

From an operational perspective, routing protocols should support hierarchical routing as it is an

essential technique commonly used in large networks. The notion behind this requirement is mainly due

to the fact that the complexity of administration and control of the network is directly proportional to the

network size. In other words, more resources and functions are required for larger networks [78].

OSPF supports hierarchical routing by dividing a single network into several areas known as OSPF

areas. Basically, these areas are assigned with ID numbers (stored in Area ID field in OSPF packet). The

topological information of the network is not flooded across area; that is, no router-LSAs or network-

LSAs are sent across the area borders. Nevertheless, OSPF allows routers to be attached to two or

more areas known as Area Border Routers (ABRs), to discover external destinations. The information

on addresses available through the ABRs is described in summary-LSAs and generally determined by

internal routers during the path selection process [91]. In addition, OSPF also supports virtual links to

provide logical attachments between OSPF and the backbone areas. Despite this logical information,

virtual links are not incorporated in the shortest paths calculation.

Routing protocols are often demanded for compatibility with the upcoming technologies, or to

provide additional features as requested by network operators due to various reasons. For example, an

ISP may want to provide certain QoS as agreed with its customers. Similar to RIP and other protocols,

OSPF has been developed to support IPv6 (i.e. OSPF version 3 [24]). Due to the modifications in data

format, additional capabilities and extensions to OSPFv3 are possible. Based on RFC 2328 [90], OSPFv2

has already offered two optional capabilities, which are TOS-based routing and support for routing in

stub areas. Nevertheless, the extensions must provide backward compatibility with older versions of the

protocol. Extensions and capabilities added to OSPF include TOS-based routing19, QoS-based routing20,

Stub area, and Not-So-Stubby-Area (NSSA) [92].

Since an AS needs to interact with other ASes, the routing information of an inter-domain routing

protocol must be transmitted across ASes. Basically, this operation is handled by the Internal BGP

(IBGP) [103]. However, OSPF also provides similar mechanisms using the external-attributes-LSA to

import all AS paths into the routing domain [91].

Recently, multicast has become a requirement for several applications including multicast radio21.

19TOS-based routing is dropped in IPv6 [25].
20QoS-based routing is an experimental extension[5].
21BBC provides multicast radio to enhance the audio quality over the Internet (http://www.bbc.co.uk/multicast/).

http://www.bbc.co.uk/multicast/


2.2. Traditional Routing Protocols 30

Multicast extensions to OSPF (MOSPF) [89] has been proposed to support multicast in OSPF networks

by introducing a group-membership-LSAs without altering other packet formats.

As the Internet grows, routing within a network becomes more complex due to unpredictable traf-

fic patterns and unreliable network resources. Traffic Engineering (TE) [58] and Multi-Topology (MT)

[100] extensions have been proposed as solutions to enhance the network performance. In addition, near

optimal traffic engineering solutions for current OSPF networks without requiring any major modifica-

tions to the routing standard have been proposed [116].

Although TOS-based routing is deprecated, MT-OSPF reflects its capabilities in many ways. A

number of routing trees are computed based on different criteria and classes of service. Nevertheless,

MT-OSPF allows individual links or prefixes to be excluded from the topology [100].

Despite the fact that RIP and OSPF are well-known routing protocols employed in numerous ASes,

there have been other intra-domain routing protocols developed such as Cisco’s proprietary routing pro-

tocols [48, 33, 36] and IS-IS22 [54, 19], which is an international standard within the Open Systems

Interconnection (OSI) reference design. As these protocols are based on either distance vector or link-

state algorithms, the detailed descriptions of these protocols are omitted.

2.2.2 Inter-Domain Routing Protocols

In practice, it is not scalable to employ protocols such as OSPF and IS-IS for routing across ASes. As the

Internet continues to grow, it is difficult (if not impossible) for an AS to acquire the global topological

knowledge of all interconnections. Thus, routing packets across ASes requires different routing protocols

known as Exterior Gateway Protocols (EGPs).

Exterior Gateway Protocol

The name EGP is often confused with a generic term used to describe inter-domain routing protocols.

It is an obsolete protocol used in the early Internet for communications between ASes. However, the

impact of this protocol on modern routings still remains, in particular, its concept of dividing the Internet

into different ASes [50].

In general, routing information is stored in routing tables. However, this information does not

propagate outside the network. Instead, it is stored at local routers based on the IGP. Consequently,

internal routers have no knowledge of the external routes. EGP aims to permit routing between ASes

through exchanging information on the external destination prefixes each AS can reach. Basically, the

protocol needs to determine its neighbours, which must be agreed by both ASes. If two ASes become

neighbours, EGP is responsible for monitoring and maintaining the connection. These functions are

similar to IGP’s neighbour discovery and maintenance processes. Nevertheless, EGP is not a link-state

routing protocol; hence, each AS does not have the complete information on the Internet topology. As a

result, it needs to exchange the routing information with its existing neighbours [50].

It is important to note that, routing in the AS level needs to be agreed by both neighbours. That

is, even if there is a physical link connecting two ASes, it might not be employed without neighbour

22Additional capabilities proposed for IS-IS have been continuously developed to support routing in IP networks. These can be

found at: http://www.ietf.org/html.charters/isis-charter.html.

http://www.ietf.org/html.charters/isis-charter.html


2.2. Traditional Routing Protocols 31

acquisition. Furthermore, an AS may not expose some of its routing information to certain neighbours

due to its routing policy. In practice, each AS running EGP advertises its reachability list computed

based on the internal routing tables constructed by IGPs such as OSPF and IS-IS. EGP routers perform

the path computation based on the metric. However, this metric is different from those in IGPs as it

does not signify any consistency. Consequently, it uses 255 to identify unreachable destinations and

lower integers to reflect the path’s preference [105]. EGP provides a simple method for constructing the

routing tables. After an AS agrees to become neighbours with its adjacent ASes, it determines whether

all neighbours have advertised their reachable destinations (lists of reachability). Once the lists are

received, the AS compares and decides the best path for each reachable destination [105, 50].

Since EGP does not provide a complete routing information, messages exchanging between ASes

may result in falsified paths, if at least one or more exterior gateways are wrongly configured [105, 50].

Furthermore, as the protocol was designed to handle a simple tree-like topology, employing EGP in a

more complex network may result in routing loops [109]. As EGP embeds all information on network

reachability in a single IP packet, the size of the message often exceeds the MTU. This leads to packet

fragmentation. However, this problem can be solved by adding certain mechanism for fragmentation23

[50].

Border Gateway Protocol

Recently, the growth of the Internet has been driven by many organisations both in business and academic

sectors. This results in a very complicated global topology. Consequently, communications between

interconnected networks need a better routing protocol (rather than EGP) with enriched features and

appropriate mechanisms to support various operations. At last, BGP was created to replace EGP and has

been widely deployed for decades.

Similar to EGP, BGP is a routing protocol used to exchange the information on the network between

ASes. In general, for two ASes to communicate, they are required to set up a session using Transmission

Control Protocol (TCP) known as TCP session, in order to ensure a reliable delivery [78]. This session

stays connected to maintain the neighbour relationship and update information periodically.

BGP makes use of the Classless Inter-Domain Routing (CIDR) concept. Basically, the network

numbers are divided into 3 classes, A (24 bits addressing), B (16 bits addressing), and C (8 bits address-

ing). However, each Class C address can support only 256 hosts. Most organisations such as universities

and large companies have more than 256 Internet-capable devices; thus, Class C addresses become in-

sufficient. In contrast, a single Class A address can support up to 224 hosts. Nevertheless, the addresses

are very limited and not easily given by the Internet Assigned Numbers Authority (IANA). As a re-

sult, most organisations prefer Class B addresses, which are best options to them. Since the Internet is

growing at a rapid pace, Class B addresses are being depleted [51]. Furthermore, the size of routing ta-

bles grows proportionally to the number of interconnected networks; hence, the growing Internet incurs

larger memory requirement. CIDR solves these problems by allocating subsets of classful addresses (i.e.

Class A, B, and C addresses). Each IP address under CIDR consists of the prefix, which identifies the

23This has not been done due to the emergence of BGP.



2.2. Traditional Routing Protocols 32

network, and the host address of particular network prefix. CIDR is based on Variable-Length Subnet

Masking (VLSM) to increase the flexibility of address allocation [78, 119]. Moreover, CIDR allows

route aggregation24 to ensure that the routing table size is not too large [50].

BGP employs the conceptual model of path vector. The message is generally embedded with in-

formation on every node that forms a path. This prevents BGP from routing loops incurred in distance

vector routing protocols. BGP refers the routing table as the Routing Information Base (RIB) of a local

router. It also specifies the terms, Adj-RIB-In, Adj-RIB-Out, and Loc-RIB to describe RIBs that store

learned prefixes, advertised prefixes, and selected prefixes, respectively [119].

One of the most important features of BGP is the use of path attributes. These attributes are used to

inform ASes of information on the prefixes of a path. The formal specification of BGP can be found in

RFC 4271 [103].

Basically, BGP is divided into Internal BGP (IBGP) and External BGP (EBGP). EBGP is used to

communicate between ASes. However, when an AS learns the prefixes from its neighbours, it needs to

distribute this information within the network. This process is generally performed using IBGP [78].

Similar to other protocols, after each AS learns external prefixes from other ASes, it needs to select a

path for each destination prefix. In general, the path with the highest LOCAL PREF will be used. If there

are more than one routes with the same LOCAL PREF, the shortest AS PATH is selected (i.e. the path

with a minimum number of hops). Nevertheless, if the MULTI EXIT DISC attribute is considered by

the AS, the route with the lowest MULTI EXIT DISC is selected. If there are equal MULTI EXIT DISC

paths, the AS needs to determine the NEXT HOP attribute and selects the route that has a minimum cost.

Nevertheless, if the routes are learned via EBGP/IBGP, the path through EBGP/IBGP with the lowest

identifier is selected instead [119].

In general, customers connect to an ISP via single connections. However, they can practically

subscribe for multi-homed sessions to permit load balancing between two links. One of the main reasons

is to share the load between multi-homing paths, which increases the reliability of the communications.

Fiscal model is an important factor that allows the ISPs to survive in the industry. Routing traffic

consumes bandwidth; therefore, different service providers must be able to employ their own routing

policies. For example, an ISP may be willing to act as a transit network for another ISP due to some

business agreements. However, as a profit driven organisation, it is unlikely for an ISP to provide a transit

without gaining any return. BGP allows ISPs to manage their own routing policies. In practice, however,

ISPs often filter the advertisements of prefixes to prevent themselves from acting as transit networks (i.e.

the destinations of the traffic flows are not in the network). Furthermore, advertising or forwarding the

prefixes to the neighbour ASes needs to be selective to prevent any undesirable results [119].

BGP has several extensions since it was first specified to be in line with the dynamic behaviours of

the internet. These include features such as route flap dampening, management of complex routing poli-

cies, TCP MD5 authentication, support for Virtual Private Networks (VPNs), and support for backward

compatibility [119, 22, 104].

24A group of network numbers is represented by a single routing entry.



2.3. Resilient Routing 33

Although BGP is widely deployed, configuring the routing tables of BGP nodes is difficult and

needs to be performed by a skilled operator. It is greatly believed that, before IPv6 dominates the

Internet, new parameters will be added to BGP to cope with the growth of the interconnections.

2.3 Resilient Routing
Internet routing has created many challenges since the beginning of the era. During the eighties, data

communications via the Internet were not widely deployed. Many researchers believed that the number

of global interconnecting computers would be much less than in the present days. Thus, it is not surpris-

ing that the original design of the Internet, including its legacy infrastructure will fail to accommodate

the upcoming services and applications. Although the state of art in networking hardware offers sig-

nificantly higher performance and reliability than in the past, it does not guarantee a 100% uptime. In

addition, the network reliability cannot be measured alone by the performance of network equipment.

Other factors such as human errors in configuring the network and intentional attacks (e.g. fibre cuts)

must also be considered.

Even though faults caused by human errors and attacks are unavoidable, routing protocols or certain

mechanisms should be employed to guarantee a successful delivery of packets. Otherwise, one would be

anxious to subscribe for Internet-based services that require highly reliable networks.

The rest of this chapter presents the existing approaches proposed for handling unexpected failures.

Although some techniques cannot guarantee a 100% successful delivery due to unrecoverable failures,

they can be used to enhance the performance of a network to some extent. Before exploring any resilient

techniques, it is important to understand the goals of these solutions.

2.3.1 Design Goals

It is practically important to design a protocol or technique that can be deployed in real networks. This

section concisely describes the framework and goals of network reliability solutions. The following

terms are defined to ensure consistent and accurate expositions.

Definition 2.1 (Reliability). Reliability is defined as the ability of a network in handling failures or

systematic attacks without impacting network operations.

Definition 2.2 (Completeness). The solution to the reliability problem is complete if it guarantees a

successful packet delivery in case of network failures. However, the completeness is bounded by the aim

of resilient mechanisms. If, for example, the main objective of a routing strategy is to handle single link

failures, the completeness is achievable when all single link failure cases are taken into account. The

completeness can be measured as a percentage of the repair coverage described later in this section.

Definition 2.3 (Correctness). The solution to the reliability problem is correct if, in the presence of

failures, it can deliver the packet successfully without creating continuous forwarding loops.

If the mean of a solution to the reliability problem is to provide an alternate path for packet delivery,

the terms alternate path, path length stretch, and repair coverage are defined as follows.



2.3. Resilient Routing 34

Definition 2.4 (Normal path). The normal path is defined as the path used in normal operation (i.e. in

the absence of failures). Although it is commonly used, the normal path is not restricted to the shortest

path. Furthermore, the terms “normal” and “primary” are used interchangeably.

Definition 2.5 (Alternate path or backup path). The alternate path also known as the backup path is

defined as the path employed by routers to deliver packets when the optimal shortest path becomes

unavailable due to network failures. Furthermore, the terms “backup”, “alternate”, and “secondary”

are used interchangeably.

Definition 2.6 (Path length stretch). The path length stretch or stretch is defined as the excess latency

or weight or number of hops required for delivery via the alternate path. It is represented as the ratio

of the latency or weight of the alternate path over the optimal shortest path. If two shortest equal-cost

paths exist, the stretch of its alternate is 1.

Definition 2.7 (Repair coverage). The repair coverage is defined as the percentage of network elements

which can be fully protected for all destinations, or the percentage of destinations which can be fully

protected for any network elements, or the percentage of the total potential failure cases which are

protected.

Typically, routing techniques and other resilient mechanisms impose specific requirements. In addi-

tion, certain schemes have impacts on normal operations under failure scenarios. The following metrics

are commonly used in evaluation of resilient strategies.

Definition 2.8 (Overheads). The overheads are defined as the requirements for deploying certain so-

lutions. These include: a) computational overhead (milli-seconds); b) memory overhead (number of

additional routing table entries); c) packet or message overhead (bits or bytes); and d) processing over-

head (milli-seconds).

Definition 2.9 (Link Load). The link load is defined as the amount of traffic passing through a network

link per second (Mbps).

Definition 2.10 (Maximum Link Utilisation). The Maximum Link Utilisation (MLU) is defined as the

maximum ratio of the link load over its capacity. If the link is fully utilised, the link utilisation is 1.

However, if the link is overloaded, its MLU exceeds 1.

Definition 2.11 (Network Overhead). The network overhead is defined as the sum of loads on all links in

the network (Mbps). It is typically increased when a failure occurs and the traffic needs to be delivered

through different paths.

High Reliability

The reliability of a network can be measured using different metrics described previously. In practice,

there are several ways to ensure successful packet delivery. For example, any oriented connection such

as TCP/IP connection guarantees that packets are sent and received correctly, as both end points of the

communications acknowledge each other. That is, when a failure occurs along the path the packets are



2.3. Resilient Routing 35

being sent, the packets do not reach the receiver. Consequently, the sender notices this unsuccessful

delivery as no acknowledgements are received. Therefore, it originates re-sends the packets to the des-

tination. Nevertheless, this mechanism incurs some delays before the packets are actually delivered.

Although TCP yields a reliable communications between two parties, packets are still being dropped in

the presence of failures.

The idea of a highly reliable network is to ensure that packets are delivered successfully with a

minimal delay when there is a network disruption. This can be done by employing routing strategy that

guarantees successful packet delivery even if a failure occurs on the forwarding path.

Minimal Requirements

Although a highly reliable network is required, routing techniques cannot be designed arbitrarily due to

the limitations of legacy protocols and infrastructure. For example, routing in the traditional IP networks

allows routers to perform forwarding based only on the destination IP address. Moreover, not all network

equipments have huge resources (e.g. memory and processors); thus, one of the design goals is to keep

modifications to the existing standards to a minimal.

Minimal Impacts on the Network

The main objective of resilient mechanisms is to enhance the reliability of a network by handling failures

efficiently and as fast as possible. However, it is desirable that it has minimal impacts on the network.

For example, if a different path is employed when a failure is detected, forwarding along that path must

not increase the traffic congestion in other parts of the network significantly (i.e. it must not increase the

MLU or the total network overhead too severely).

2.3.2 Modifying the Convergence Process

The routing process in the Internet is basically performed by routers based on the routing information

exchange. This information is used to construct routing tables, which routers employ to aid packet

forwarding. However, when there is one or more changes in the network topology, routers need to

update their routing information as well as their routing tables. This is known as the convergence process.

Packets destined for affected destinations are dropped during this period.

Evidently, before the network starts to converge, a router needs to detect the failure. The time re-

quired to detect a failure in a single domain running a protocol such as OSPF is directly proportional

to the HelloInterval25 configured by network operators. More precisely, RouterDeadInterval26 specifies

the time interval a neighbour router can be silent until the router considers that it fails. By default, the

HelloInterval and RouterDeadInterval are set to 10 seconds and 40 seconds respectively27. Thus, it is

possible to speed up the failure detecting time by reducing the HelloInterval. Nevertheless, too short

HelloInterval may lead to a falsified information on dead routers or unnecessary convergence process

due to intermittent failures. The latter result often leads to routing instability. Furthermore, short Hel-

loInterval can potentially cause network congestion due to a significant higher amount of Hello packets.

25A time interval used to discover and maintain the neighbour relationship in OSPF and IS-IS networks.
26Usually is set as multiples of HelloInterval.
27These figures may vary depending on different implementations.



2.3. Resilient Routing 36

There is an investigation showing that tweaking the HelloInterval can result in a faster failure detection

in OSPF networks [39]. However, the optimal value of HelloInterval depends on the congestion levels

and the network formation (i.e. the optimal value of HelloInterval heavily depends on the topology).

Moreover, this investigation also recommends that the HelloInterval can be much lower than the default

value, but should not reduce to the milli-seconds range. Thus, network operators must observe the traffic

characteristics and the topological formation in order to find the optimal value of HelloInterval.

In other protocols such as IS-IS, a neighbour router is considered failed when three expected Hello

packets are missing. However, since the specification of IS-IS does not allow HelloInterval less than

the order of seconds [54], the fastest detection time is 3 seconds [1]. An approach for converging an

IS-IS network in order of milli-seconds has been proposed [1]. It recommends the followings for a

milli-seconds convergence:

• Replacing the Dijkstra’s algorithm—to provide a faster Shortest Path First (SPF) calculation.

For example, the dynamic Shortest Path Tree (SPT) algorithm can be up to 10,000 times faster

than the implementation of Dijkstra’s algorithm [1, 128].

• Modifying the granularity of HelloInterval—to permit milli-seconds detection as the current

specification restricts the failure detection to the range of seconds.

• Employing distinctive detection schemes—to differentiate the failure and recovery events.

• Prioritising Link-State Protocol Data Unit (LSP) propagation—to ensure that LSPs are prop-

agated before other operations are performed (i.e. SPF computation).

• Prioritising Hello packets—to allow routers to process Hello packets prior to data packets.

It is important to note that, during the convergence process, not only packets are dropped at the point

of failure, but micro-loops are also created due to routing inconsistencies. Consequently, a framework

for loop-free convergence has been proposed to alleviate this problem [112]. The framework specifies

four strategies to control micro-loops as follows:

• Micro-loop mitigation—can be done through fast convergence. In general, the micro-loop du-

ration is proportional to the convergence time; hence, if a network can achieve faster conver-

gence, the micro-loop lasts shorter. Alternatively, a mechanism called Path Locking with Safe-

Neighbours (PLSN) [134] may be applied.

• Micro-loop prevention—can be done using optional methods: incremental cost advertisement,

near-side tunnelling, far-side tunnelling, distributed tunnels, packet marking, new Multi-Protocol

Label Switching (MPLS) labels, ordered Forwarding Information Base (oFIB) update, and syn-

chronised Forwarding Information Base (FIB) update [112]. More precisely, oFIB is one of the

most common techniques used in a network running link-state routing protocols to prevent tran-

sient loops [35]. The mechanism focuses on computing the rank of FIB updates, and is performed

sequentially to avoid routing inconsistencies between routers.



2.3. Resilient Routing 37

• Micro-loop suppression—can be done if the routers recognise that the packet is caught in a loop.

However, this does not work in an asymmetric network where multiple failures can create cyclic

forwarding loops [112].

• Minimising micro-loops—can be done through network design. That is, an appropriate network

design can reduce the amount of micro-loops due to the topological characteristics.

As described above, tweaking protocol parameters and modifying the traditional convergence pro-

cess can potentially reduce the routing loops and packet loss rates. Nevertheless, these techniques do not

guarantee a successful delivery of the original packets being sent via the failed paths.

2.3.3 IP Fast Re-Route

An analysis in the IP Fast Re-Route (IPFRR) framework [113] shows that, the packet forwarding process

can be disrupted when there is a change in the network, in particular, a failure. When a failure occurs,

the time typically taken before the network can resume its normal operations is described as follows:

• Failure detection time—is the time elapsed from the occurrence of physical failure to the reali-

sation of the failure-adjacent router.

• Failure reaction time—is the time required for the detecting router to react to the failure.

• Message propagation time—is the time required to inform all routers of the failure.

• Paths re-computation time—is the time required to re-compute the new paths.

• Implementation time—is the time required to install new path information into the forwarding

table.

IPFRR specifies two mechanisms to reduce the recovery time, which are: a) mechanisms to reduce

the failure detection time and b) mechanisms to provide repair paths [113].

The failure detection time can be reduced by tweaking protocol parameters as described in Section

2.3.2. This section focuses on different techniques for computing repair paths. Existing fast re-route

strategies are now described.

Loop-Free Alternates

Loop-Free Alternates (LFAs) [8] are the simplest techniques used to provide fast re-route. No significant

modifications are necessary for deployment. Typically, each routing table stores the information about

the next hop for each destination. Evidently, there may exist more than one path between any node pairs.

Nevertheless, it is difficult to employ these paths consistently as they can potentially create forwarding

loops. Thus, only neighbours that do not cause a packet to traverse back to the point of failure can

be used as alternate next hops. In general, LFAs can be categorised based on their ability to serve as

alternate next hops. Some LFAs can protect node failures while the others can protect only link failures.

• Loop-Free Condition—a neighbour node that does not create any forwarding loops can be used

as an LFA. It can be used to re-route packets in the presence of a local link (i.e. the link connecting



2.3. Resilient Routing 38

R1 R3

R2 R4

R5

1

1

3

3

7

3

×

(a) Link protection LFA.

R1 R3

R2 R4

R5

1

1

1

3

1

3

'

(b) Node protection LFA.

R1 R3

R2 R4

R5

2

1

1

3

1

3

×

×
(c) Downstream LFA.

!1 !3

!2 !%

!&

2

1

1

3

1

1

'

(d) Equal-Cost Multi-Paths.

Figure 2.7: Different types of LFAs.

between the detecting node and the normal next hop) failure. Let s be the detecting node, d be the

destination, and np be the normal next hop. The cost of a path between any two nodes, i and j, is

denoted as cost(i, j). A neighbour ni can be used as an LFA to protect link failure if the following

condition is satisfied:

cost(ni, d) < cost(ni, s) + cost(s, d) (2.1)

The above condition is known as Loop-Free Condition (LFC), and the neighbours that satisfy LFC

are the most basic LFAs used for link protection. Figure 2.7a illustrates a link protection LFA from

R1 to R5.

• Node-Protection Condition—in practice, the root cause of failures are not limited to link failures,

but also node failures. Thus, packet delivery via an LFA that satisfies LFC cannot be guaranteed.

Consequently, an LFA must meet the following condition to provide node protection.

cost(ni, d) < cost(ni, np + cost(np, d) (2.2)



2.3. Resilient Routing 39

Figure 2.7b shows an example of node protecting LFA. It is important to note that, all node-

protecting LFAs also protect link failures while link-protecting LFAs do not guarantee recovery in

case of node failures.

• Downstream Condition—link-protecting and node-protecting LFAs can be employed to provide

re-route paths in the presence of single failures. However, certain cases of multiple failures can

create forwarding loops. Consider Figure 2.7b, R2 is an eligible node-protecting LFA for R1 to

R5 and R1 is an eligible node-protecting LFA for R2 to R5. Therefore, when the link R1→R3

fails, R1 re-routes packets via R2. Similarly, if R2→R4 fails, packets are re-routed via R1. If both

scenarios occur at the same time, packets are eventually caught in a loop between R1 and R2. In

order to prevent this problem, the downstream condition must be satisfied.

cost(ni, d) < cost(s, d) (2.3)

An example is illustrated in Figure 2.7c where R2 is used as the downstream LFA for re-routing

packets from R1 to R5.

• Equal-Cost Multi-Paths Condition—trivially, if Equal-Cost Multi-Paths (ECMP) exist, either of

these paths can be employed for normal routing while the other can be used in the presence of

failures without creating routing loops. Let w(i, j) be the weight of link (i, j), the condition for

ECMP is expressed as follows:

w(s, ni) + cost(ni, d) = w(s, np) + cost(np, d) (2.4)

In practice, ECMP is often enabled by network operators to distribute the traffic load over multiple

paths. Furthermore, if more than two equal-cost multi-paths exist, a router may store additional

information on the next hops to allow multiple failures protection.

LFAs are desirable for real implementations for several reasons. First, it is easy to implement as

there is no additional computation required apart from the condition validation. Second, a router

employing LFAs does not require any excessive memory overhead as it only needs to enhance

the existing routing table entry with additional information about the alternate next hops. That

is, no additional routing entry is added. Third, no changes are required in the forwarding plane

and packets can be re-routed immediately without being processed. Furthermore, even if some

conditions may have a wider repair coverage than others, network operators can employ conditions

that suit their purposes.

U-Turn Alternates

It is practically important for a network to elevate its reliability by employing resilient mechanisms to

accommodate sensitive applications. LFAs alleviate packet loss rates by using pre-computed alternate

next hops for fast re-route. Their repair coverage, albeit simple implementations, heavily depends on the

topology. Thus, the reliability problem is not completely solved using LFAs.



2.3. Resilient Routing 40

Due to this problem, U-turn alternates [7] have been proposed to increase the repair coverage of

LFAs, which are often low in practical topologies. Figure 2.8a illustrates an example of a scenario

without an eligible LFA for re-routing packets to the destination. The notion behind U-turn alternates

is that although the neighbour may not be used as an LFA, its adjacent nodes can potentially provide

loop-free paths to the destination.

R1 R3

R2 R4

R5

1

1

3

3

'

1

(

(a) No LFA available.

R1 R3

R4

R5

1

1

3

3

7

1

×

R2

(b) U-turn alternate.

Figure 2.8: An example of U-turn alternate.

Figure 2.8b shows that R1 can re-route packets to R5 via its eligible U-turn alternate, R2. In

traditional routing paradigm, forwarding packets destined for R5 to R2 creates a loop as R2 is R1’s child

in the shortest path tree rooted at R5. However, R2 recognises that the traffic forwarded from R1 is a

U-turn traffic using explicit or implicit packet marking or port detection.

For example, R2 knows that R1 is its normal next hop to R5; hence, when R2 receives packets to R5

from R1, it forwards them to its available LFA, which is R3. In contrast, this local consideration can be

omitted if R1 identifies the re-routed traffic by marking the packets. Additionally, a technique described

in [131] can also be used to identify the U-turn traffic.

Tunnels

As its name implies, tunnels [17] employ the process which requires encapsulation and de-encapsulation.

The failure-detecting node usually encapsulates the packet with a destination where packets are for-

warded along the shortest path to the destination. However, it must ensure that after the packets are

de-encapsulated at end points, they do not traverse back and create a forwarding loop.

In addition, directed forwarding can be used to avoid micro-loops caused by releasing packets at the

point where routing through the shortest path tree involves the failure. Directed forwarding method uses

two sets called F-space and G-space to identify a set of routers that are reachable by the detecting node

without passing through the failure, and a set of routers that can reach the destination without traversing

the failure. If there exists a node pair consists of one node from F-space and another node from G-space

with a direct link, it can be used as tunnel-release end points [17]. Furthermore, it is important to note

that, even if the directed forwarding is employed, some node pairs may not have alternate paths available.

An example of fast re-route using tunnels is shown in Figure 2.9. In Figure 2.9, when R1→R3 fails,



2.3. Resilient Routing 41

R1 R3

R4

R5

1

1

1

1

1

×

R2

(a) Tunnel from R1 to R2, release at R2.

!1 !3

!4

!5

1

1

1

4

1

&

!2

(b) Tunnel from R1 to R2, release at R4.

Figure 2.9: Examples of IPFRR using tunnels.

R1 encapsulates packets with R2’s address28. Once R2 receives the packets, it performs de-encapsulation

and forwards it via the optimal shortest path: R2→R4→R5. However, in Figure 2.9b, the weight of a

link connecting R2 and R4 increases to 4. Therefore, routing traffic via the shortest paths when packets

arrive at R2 can cause a micro-loop between R1 and R2. Under directed forwarding, R2 is specified as

tunnel end point while R4 is its corresponding release end point. This allows packets to be forwarded

along the path: R1→R2→R4→R5 correctly.

Not-Via Addresses

The usage of not-via addresses for fast re-route is defined in [18]. These addresses are typically used

to protect specific interfaces in the presence of failures. Thus, for each interface in the network, two IP

addresses are required (i.e. normal IP address and its corresponding not-via address). In general, not-via

addresses are employed to protect packet losses by deviating the traffic around the failed elements. The

packets encountering a failure must be encapsulated with not-via addresses29. These not-via addresses

specify the failed nodes so that they do not contain in the repair paths.

However, if the failure is caused by the link connecting the detecting node and the destination, the

computation of not-via address is performed by assuming a link failure instead of a node failure. This

method ensures that the delivery is guaranteed for all recoverable failures. The main benefit of fast re-

route using not-via addresses is a 100% repair coverage for any single failures, which can be either link

or node failures. Nevertheless, most repair paths are pre-computed to avoid the node failures; hence,

they are considerably longer than the optimal shortest paths after network re-convergence.

Figure 2.10a illustrates an example of using not-via addresses. When R3 fails, R1 encapsulates

packets with a not-via address to R4 avoiding R3. Once R2 receives encapsulated packets, it selects the

path to R4 that does not involve R3. After packets reach R4, they are de-encapsulated and forwarded to

R3 using the normal shortest path. Alternatively, if the destination is R3 as shown in Figure 2.10b, the

not-via address is computed in order to avoid R1, which allows packets to be re-routed to R3 successfully

28In practice, if the tunnel endpoints are adjacent to the detecting routers, encapsulation is not necessary.
29Note that, not-via addresses require IP-in-IP tunnelling, which may degrade the performance of routers.



2.3. Resilient Routing 42

R1 R3

R2 R4

R5

1

1

3

2

'

3

×

R
4)R
3

R4)R3

(a) Re-route using not-via address from R1 to R5.

!1 !3

!2 !%

!&

1

1

3

2

'

3

(

!
3)!
1

!3
)!1

(b) Re-route using not-via address from R1 to R3.

Figure 2.10: Examples of IPFRR using not-via addresses.

if the root cause of the failure is the link.

Although in practice not-via addresses are complex compared to other IPFRR techniques, they can

be implemented in conjunction with simpler methods such as LFAs to guarantee a full repair coverage

while minimising the tunnelling operations. Recently, an investigation has been made on the combination

of LFAs and not-via addresses [74]. It shows that combining these techniques does not result in any

significant benefits. Thus, it is suggested that either technique is employed homogeneously.

In practice, employing not-via addresses does not only increase the computational and memory

overheads, but also the complexity in the management plane due to re-routed traffic. Thus, a collection

of techniques: not-via aggregation, prioritised not-via computation, and rNot-via have been proposed to

improve the efficiency and manageability of the not-via addresses [66].

The first and second techniques allow the not-via addresses that are similar to their normal forward-

ing addresses to be aggregated; thus, the amount of memory required is reduced and the recovery time

is shorten. It has been observed that the impacts on the network performance grow proportionally to the

network size. That is, large networks benefit more from the not-via aggregation. Furthermore, rNot-via

algorithm allows a router to determine whether it is part of the protection path of provided by not-via

addresses so that the amount of re-route traffic can be estimated [66].

Failure Insensitive Routing

Most IPFRR techniques are based on the traditional routing paradigm where a router forwards packets

according to the IP addresses indicated in the header. Failure Insensitive Routing (FIR) [93], however,

offers a 100% repair coverage for any recoverable single link failures by employing an interface-specific

forwarding table. It suggests that the notifications generally propagated once a failure is detected should

be suppressed for a certain duration to ensure that it is not intermittent. The notion of FIR is most failures

are transient [52, 73] and it is redundant to trigger the convergence process realising that the failure can

be potentially recovered before the process completes.

Under FIR, routing is performed normally in the failure-free case. In the presence of failures,

the detecting router suppresses the failure notification and forwards the packets to affected destinations



2.3. Resilient Routing 43

using the backwarding table. It has been proved that without multiple failures, FIR can re-route packets

successfully without jeopardising other network operations. Furthermore, it has been observed that FIR

reduces the routing instabilities due to intermittent failures and provides higher availability in networks

that employ link-state routing protocols such as OSPF and IS-IS [93].

SafeGuard

In general, fast re-route in IP networks can be achieved through pre-computed backup paths. These

backup paths are typically computed in regard to local failures. However, a routing technique known as

SafeGuard [67] computes the backup path based on a different approach.

Under SafeGuard, packets are forwarded normally under a failure-free case. In the presence of

failures, SafeGuard employs Cost-Carrying Packets (CCP), which contain the information about the

remaining cost of the path towards the destination. Basically, the detecting node embeds the cost of the

backup path into the packet header and forwards it to the alternate next hop. When each intermediate

router receives a CCP, it determines whether the cost is consistent with the local cost to the destination.

If the result is negative, it selects the path that matches with the cost and replaces it with the remaining

cost. Thus, CCP can be re-routed to the destination successfully without traversing through the failed

element.

Although routers employing SafeGuard are subject to an increase in packet processing overhead, it

has been proved to be negligible. Furthermore, when equal-cost paths exist, the computation of backup

paths become more complex as the costs of links must be altered to prevent cost collision [67]. SafeGuard

also requires considerable amount of memory overhead to store all possible costs per destination.

2.3.4 Multi-Topology and Multi-Path Routing

Traditionally, a network needs to re-converge when there is a change in topological information to retain

a consistent routing. That is, all routers share the same network map. Multi-Topology (MT) and multi-

path routing allow packets to be delivered via different network maps/paths and hence, increase the

reliability. The followings present different existing strategies for MT and multi-path routing.

Multiple Routing Configurations

Multiple Routing Configurations (MRC) [63] is based on enhancing the routers with additional informa-

tion based on different configurations. The technique falls into both MT routing and IPFRR as it also

provides fast repair paths. The main advantages of MRC are loop-free environment and a full repair

coverage for any recoverable single failures without knowing their root cause. Furthermore, it can be

implemented without any major modifications to existing standards.

The computations of the MRC are performed in advance to ensure fast recovery. However, these

computations can be done offline using mechanisms proposed for MT routing [100, 99]. MRC calcu-

lations are based on isolating nodes and links from at least one configuration without partitioning the

network to ensure that MRC covers all single failure scenarios. While there is an issue concerning

the scalability of MRC, the typical number of configurations required is 3–4 in average for practical

topologies [63]. Furthermore, MRC offers better load distribution in post-failure scenarios; hence, it is



2.3. Resilient Routing 44

considered to be practical [61].

R1 R3

R2 R4

R5

(a) Isolating R2.

R1 R3

R2 R4

R5

(b) Isolating R2–R3.

Figure 2.11: Examples of configurations in MRC.

Figure 2.11a shows that the node R2 is isolated; thus, all links connecting R2 to other nodes be-

comes restricted. That is, only traffic originated and sent to R2 can employ these links. In contrast,

Figure 2.11b illustrates an isolated link R2–R3. Thus, no traffic including transit traffic can traverse

through R2–R3.

Recently, an IPFRR scheme called relaxed MRC (rMRC) has been proposed to simplify the process

of computing the configurations in conventional MRC [21]. The technique also increases the routing

flexibility. In rMRC, not all links need to be isolated as it employs the adjusted forwarding procedure,

which minimises the number of configurations. The performance of rMRC is better than MRC in every

aspect including overheads (e.g. number of configurations) and impacts on network traffic (e.g. MLU).

Resilient Routing Layers

A technique known as Resilient Routing Layers (RRL) [62, 46] has been proposed to restore the packets

from failures. The strategy used to provide protection against failures is similar to that of MRC. In RRL,

each node has a subgraph of a network topology known as safe layer. This layer is used to handle traffic

in the presence of failures.

In contrast to MRC where backup configurations are created by assigning different link weights to

the elements in the network, RRL completely removes the link from the original topology to create a

backup topology [38]. Similarly, re-routed packets under either MRC or RRL must be marked with the

topology identification to maintain a consistent routing.

Furthermore, the distribution of topology information and forwarding process for both RRL and

MRC are conformed to the mechanisms specified in MT-OSPF for IPv4 [100] and MT-OSPFv3 for IPv6

[84]. In contrast, M-ISIS [99] recommends that the Differentiated Services Code Point (DSCP) field is

used for topology identification.

Beyond MRC and RRL, other works based on MT routing for network resilience have been pro-

posed. For example, it is possible to employ different topologies to deviate the packets from the path that

incorporates the failure [81]. However, the proposal does not specify any new strategy for generating



2.3. Resilient Routing 45

topologies. In addition, an investigation has been made on the optimal number of different topologies

required to provide full protection for any recoverable link failures [107].

Routing Deflections

The approach of routing deflections is very similar to multi-path routing [131]. Intuitively, packets are

deflected from the optimal shortest path when a failure occurs. However, it has to retain the loop-free

property to guarantee successful delivery and avoid unnecessary bandwidth consumption. In order to

employ routing deflections, there must be a set of constraints used as criteria for selecting neighbours

that can be used for packet forwarding. Moreover, there must be an explicit signal to inform routers of

the chosen path for each packet. Deflection rules are defined in [131] as follows:

• One hop down—neighbours that have path costs to the destination less than the path cost from

the deflecting node to the destination can be used as loop-free next hops.

• Two hops down—neighbours that are one hop down (i.e. downhill) or have path costs to the

destination less than the path cost from the previous hop to the destination (i.e. two hops down)

can be used for routing deflections.

• Two hops forward—neighbours that are not previous hops and satisfy either downhill or two hops

down condition can be used for routing deflections.

Furthermore, in order to enable routing deflections, a 6-bit tag information must be stored in the IP

Identifier field. A randomised modulo arithmetic method is used to map these tags to deflections. This

ensures the degree of freedom of the deflections [131]. Since routing deflections provide significant path

diversity for all node pairs, the reliability of the network is increased accordingly.

Multi-Path Inter-Domain Routing

Most routing strategies mentioned previously are used to handle failures in a single domain. In contrast, a

technique called Multi-Path Inter-Domain Routing (MIRO) [129] has been proposed to reduce the losses

in the inter-domain level based on the multi-path approach.

Basically, routing in the inter-domain level relies on the BGP, which restricts the domain from

employing multi-paths for each destination prefix. Under MIRO, routers learn the normal BGP routes.

In addition, it allows ASes to negotiate and employ additional paths to satisfy their requirements such as

reliability and security [129].

Although BGP has extensions to enable multi-path advertisements for the same destination prefix,

the route selection process has not been described in details [127]. Thus, it is possible for MIRO to

employ these extensions for route advertisements.

Path Splicing

Path splicing is a technique used to provide resilient routing in a network through multiple routing

trees known as slices [88]. In path splicing, different alternate paths (i.e. slices) are generated to offer

path diversity. Each packet carries the splicing bit which is used to determine the correct routing tree.

Furthermore, packets can switch from one slice to another at intermediate hops, which can be directly



2.3. Resilient Routing 46

controlled by end systems. Thus, if a failure occurs, the failure-detecting end system can re-route the

traffic via other slices that are still operable.

!1 !3

!2 !4

!&

Figure 2.12: An example of path splicing with two slices.

Figure 2.12 illustrates an example of a network with two slices rooted at R5 (i.e. two routing trees).

In path splicing, it is possible for R1 to forward packets to R5 via R2 and R3 which belong to different

slices. These slices are computed using the degree-based perturbations of link weights. That is, the

weight of each link is modified according to the degrees of nodes at both ends. However, the method for

computing alternate paths are not restricted; thus, other algorithms may be used.

A comparison with routing deflections made in [88] shows that path splicing offers lower stretch

alternate paths. Unlike routing deflections where the number of neighbours can be significantly high,

the memory overhead of path splicing is bounded by the number of slices. In addition, employing path

splicing in practical networks such as Abilene and Sprintlink has minimal impacts on the network traffic.

Although infrequent routing loops are possible under path splicing, persistent loops can be avoided using

network-based recovery [88].

2.3.5 Overlay Networks

A specific type of overlay known as the Resilient Overlay Network (RON) [4] has been developed to

allow applications to detect and recover packets from failures, which disrupt the forwarding continuity.

It enhances the end hosts with an ability to exploit the forwarding paths, which are not available in

traditional routing. RON nodes are required to perform continual probing of alternate paths; hence, they

do not offer a fast recovery as in IPFRR. However, the repair paths provided by RON can significantly

reduce the time to detect and react to inter-domain failures in order of seconds. For example, if a direct

connection between two RON nodes exists, after the probing, RON nodes can send the traffic to each

other directly as an alternate to the normal path. This concept also applies to the failure scenarios where

one or more paths are unavailable.

A case has been made on RON to ensure its practicality [3]. It has been observed that RON can

increase the end-to-end reliability in the Internet through the employment of alternate paths. Although

initially, RON is subject to scalability problem, a technique called Destination-Guided Detouring via

Resilient Overlay Network (DG-RON) [102] can be applied to alleviate the problem by simplifying the



2.3. Resilient Routing 47

path exploration based on detour sets. Thus, the frequency of alternate paths probing under RON can

be significantly reduced without sacrificing the path diversity. However, RON is still subject to different

issues regarding instabilities, expression of routing policies, route selection, and interaction between

RON nodes [3].

2.3.6 MPLS-Based Resilience

In general, MPLS can enhance the reliability of a network by enabling the RSVP Traffic Engineering

(RSVP-TE), which provides MPLS local restoration via MPLS Fast Re-Route (MPLS-FRR) [97]. The

technique is commonly used to recover packets from link or node failures by employing backup paths. It

allows network planners to establish different paths across backbone routers that comply with the routing

policies [82].

Concisely, MPLS-FRR for link protection requires a router to set up the next hop backup tunnel.

The failure-detecting node known as the Point of Local Repair (PLR) is responsible for swapping the

normal label and pushing the backup labels in order to deviate the packets from the failed link. Generally,

the backup path terminates at the Merge Point (MP) where the traffic can be forwarded along the primary

path. For node protecting MPLS-FRR, the next-next hop tunnel is required. At PLR, the next hop label

needs to be swapped while the backup label is pushed into the packet header. Similar to link protection,

the traffic can be forwarded through the primary path once the backup path overlaps the normal path

[97].

R1 R3

R2 R4

R5

12

1010
1(

)
10

(a) Link protection.

R1 R3

R2 R4

R5

12

10

×
12

20
12

(b) Node protection.

Figure 2.13: Examples of MPLS-FRR.

Figure 2.13 illustrates link and node protection examples of MPLS-FRR. Furthermore, MPLS can

be used to enhance the reliability of OSPF networks by employing virtual links through tunnels (i.e.

MPLS paths). These links are treated as physical links and are taken into account when performing

path computation. It is important that tunnels are set up to increase the degree of freedom of ECMP,

which can be used in the presence of failures. The technique is commonly known as Protection using

OSPF-ECMP with MPLS (POEM) [53].



2.3. Resilient Routing 48

2.3.7 Disjoint Paths and Redundant Trees

Employing either link or node disjoint paths can increase the reliability of the network as packets can be

forwarded along different paths that are maximally exclusive (i.e. if one fails, another is still operable).

A large number of algorithms has been proposed to compute disjoint paths [120, 121, 12, 111, 124, 95,

114].

Network failures can be recovered using k-shortest disjoint paths [30]. Even if the computational

overhead of disjoint paths computation can be significant in complex networks, it can be optimised

using the probabilistic methods which enable distributed computation [15]. Furthermore, managing

and optimising the disjoint paths are difficult [45]; thus, it is recommended that a network is divided

into subtopologies to permit structured recovery mechanisms [55, 56]. Regardless of its simplicity,

failure recovery using disjoint paths requires a proper protocol that allows routers to communicate their

employing paths [56].

Most redundant trees are generally, structured recovery schemes of k-disjoint paths. Basically,

these techniques construct different trees to create path redundancy. These trees are commonly disjoint

known as red and blue trees. Many algorithms are used to construct redundant trees in networks that

are specifically strongly connected [77, 76, 130]. In addition, although redundant trees were originally

introduced to increase the reliability in optical networks, it has been investigated that the concept is also

applicable with MPLS networks [9].

2.3.8 Protection Cycles and Pre-Configured Cycles

Protection cycles and pre-configured cycles (p-cycles) have been proposed to elevate the reliability in

ring and mesh-based networks. Protection cycles are capable of restoration of link failures by switching

cycles for traffic forwarding [31]. In addition, an efficient algorithm known as Hamiltonian cycle protec-

tion has been proposed to reduce the complexity of the protection cycles by aggregating all cycles into a

single spanning ring [49].

Under p-cycles, a network is divided into different cycles. For each cycle, a single failure can be

recovered using the direction opposite to the normal path [43]. In certain scenarios, p-cycles can restore

packets from dual link failures [42]. Although p-cycles were originally introduced to provide protection

in optical networks, it can be used to guarantee the bandwidth in MPLS networks [57]. In addition, the

technique can be applied to IP-based networks using virtual circuit techniques to form closed logical

loops known as virtual protection cycles [117]. However, p-cycles restoration paths are very inefficient

due to their significant path length stretch, which is unacceptable in IP networks [62].

2.3.9 Eliminating the Convergence Process

Most approaches focus either on slowing down the convergence process and re-routing the traffic during

transient period or speeding up the convergence process and preventing transient loops to minimise

packet losses. However, another approach has been proposed to completely eliminate the convergence

process by employing Failure-Carrying Packets (FCP) [65].

Under the routing technique employing FCP, packets are forwarded normally in the failure-free

case. When the packet encounters a failure, the router embeds the failure information, typically the link



2.4. Conclusions 49

label, into the packet header. The failure-detecting router is also responsible for calculating the new path

for the FCP. All intermediate nodes of the new path are required to perform similar process to ensure

that packets are forwarded correctly without traversing the known failures. If the FCP encounters another

failure, additional information on the failed link is embedded into the packet header. Although methods

for optimising the packet and computational overheads have been proposed, the space required to permit

labels embedding is still significant. Employing FCP has a huge benefit regarding the reliability of a

network since embedding failure information into the packet header allows routers to deviate packets

from all known failures.

2.4 Conclusions
Routing is one of the most important operations in data communications. The process is used to select

paths for the traffic between any source-destination pairs. In general, when a packet arrives, the router

performs the table lookup to decide its next hop. This routing table can be constructed differently based

on several algorithms such as Dijkstra’s algorithm and Bellman-Ford algorithm.

Basically, the Internet routing is divided into intra-domain and inter-domain levels, as a single

routing protocol cannot accommodate all operations. For example, OSPF and IS-IS are link-state routing

protocols employed to perform routing within a single AS based on the shortest paths. However, as each

router requires the information on the entire network map, the protocols cannot serve as inter-domain

routing protocols due to scalability problem. Thus, routing protocols such as BGP, which is based on

path vector paradigm is used to provide features that satisfy the requirements of ISPs. Under BGP, each

domain can apply different routing policies that are unknown to the others to accommodate several issues

such as business models and security.

As new technologies emerge (e.g. IPv6), routing protocols need to provide compatibility. Several

extensions have been made to existing protocols to minimise the demand for changes in the current

infrastructure. Furthermore, even if some protocols provide better performance and more features, it is

greatly believed that other routing protocols will remain in the Internet for sometime due to their simple

implementations. Ultimately, the decision on protocols selection lies on network operators.

This chapter pointed out that the mechanisms employed in the current networks are not sufficient to

accommodate emerging services, mainly due to the conventional convergence process. Thus, topological

changes such as link or node failures can lead to a vast amount of packet loss. Several approaches have

been proposed to elevate this problem. Tweaking protocol parameters to urge the convergence process

results in a faster failure detection, but it may incur routing instability in case of intermittent failures.

In addition, a loop-free convergence mechanism such as oFIB reduces the number of transient loops

during network re-convergence. However, these techniques do not completely eliminate the packet losses

problem.

IPFRR techniques such as LFAs, U-turn, tunnels, not-via addresses, and FIR employ pre-computed

alternate paths for fast re-route in the presence of single failures. Similarly, MRC and RRL use the

backup topologies for failure recovery. Path splicing is a different resilient approach where a network is

divided into slices where routes can be changed at intermediate nodes. These mechanisms can signifi-



2.4. Conclusions 50

cantly elevate the network reliability.

Furthermore, deflecting routes from the optimal shortest path can increase the path diversity, which

is important for network resilience. Most techniques presented aim to enhance the performance of a

single domain. However, MIRO extends the BGP’s capability to employ multi-path between negotiating

ASes to guarantee a reliable connection between networks.

In practice, not all nodes are connected through ISPs and may have direct connections. Thus, RON

uses probing to detect available paths which are employed as backups when there is a failure. Routing

resilience in MPLS networks can achieve fast re-route feature as in IP networks by enabling its RSVP-TE

feature. Alternatively, developed techniques based on disjoint paths and redundant trees are available for

deployment in MPLS networks. For optical networks, protection cycles and p-cycles are valid resilient

mechanisms but are considered unacceptable in IP networks due to their low efficiency (i.e. very high

stretch alternate paths).

Recently, FCP has been proposed as an alternative approach where packets carry information about

the failures they have encountered. The routers use this information to compute appropriate paths that do

not involve known failures; hence, packets can be delivered successfully even though there are multiple

failures in the network.



Chapter 3

Enhanced Loop-Free Alternates

3.1 Introduction
Throughout this work, it is presented that network reliability problems involve the minimisation of packet

loss in the presence of failures. The emerging services cannot afford to rely on traditional routing

paradigm due to unavoidable damage caused during re-convergence. This increases the demand for

a highly reliable network.

Several approaches such as multi-path and multi-homing routing [88, 129, 131] and overlay net-

works [4] have been proposed to alleviate this problem. In this chapter, the fast re-route and recovery

approach defined in the IP Fast Re-Route (IPFRR) framework [113] is focused. It specifies two main

components for providing a disruption-free forwarding which are fast failure detection and fast re-route

mechanisms. Achieving fast failure detection can be done by tweaking the protocol parameters [39] (i.e.

setting an appropriate value for HelloInterval). Nevertheless, the amount of packets being dropped from

the time an actual failure occurs until it is detected by a router is unavoidable. Thus, it is important to

employ a mechanism that permits a router to re-route the traffic for affected destinations via other paths.

Several analyses [52, 73] show that most failures are transient (i.e. short-lived) and more than 50% last

less than a minute. Consequently, most IPFRR techniques [93, 8, 18] aim to handle transient failures.

Recently, many techniques such as Loop-Free Alternates (LFAs) [8], U-turn [7], tunnel [17], not-via

addresses [18], and Failure Insensitive Routing (FIR) [93] have been introduced. It is greatly believed

that LFAs are the most feasible solutions for resilient routing. Nevertheless, their repair coverage de-

pends heavily on the underlying network, which can be as low as 60–70%.

This chapter presents the Enhanced Loop-Free Alternates (E-LFAs) which are based on the normal

LFAs. The approach employs a simple recursive method on the normal LFAs to enhance their repair

coverage. E-LFAs allow a router to re-route packets through a number of alternate next hops until it can

be forwarded along the shortest path to the destination, given that no immediate LFA is available. The

followings summarise the main features of a routing strategy using E-LFAs:

• It provides a near optimal repair coverage for an arbitrary network.

• It does not incur any either heavy computational or memory overhead.

• It re-routes packets from single failures and preserves the loop-free environment.



3.2. Computing Enhanced Loop-Free Alternates 52

• It does not require any major modifications, which makes it easy to implement.

• It does not jeopardise the performance of a router.

3.2 Computing Enhanced Loop-Free Alternates
E-LFAs employ similar conditions used in LFAs. If an eligible alternate next hop candidate exists for

any node pair, it is used to re-route packets normally according to the basic specification of LFAs [8].

Nevertheless, this is not always the case. For most practical topologies, it is often that none of the neigh-

bours of the failure-detecting node can be used to re-route packets to the destination without creating

a forwarding loop. E-LFAs extend the repair coverage of normal LFAs by using a simple recursive

method.

Algorithm 3.1 Computing E-LFAs using a simple recursive method.

Input: s, d, N , L(d)

Output: E(d)

1: E(d) = null

2: for all ni ∈ N do

3: C = ∅

4: count← 0

5: current node← ni

6: while current node /∈ C do

7: count← count + 1

8: C ← C ∩ current node

9: if LFC(current node)||NPC(current node) == true then

10: E(d)← E(d) ∩ (ni, count)

11: break

12: else

13: current node← LFA(current node, d)

14: end if

15: end while

16: end for

17: return E(d)

As described previously in section 2.3.3, the neighbour nodes can be classified by their abilities

as alternate next hops. However, E-LFAs concern only two types of LFAs which are: a) Loop-Free

Condition (LFC), and b) Node-Protection Condition (NPC).

The notion of having other conditions such as Downstream Condition (DSC) is that network oper-

ators may want to avoid short period of forwarding loops in the presence of multiple failures. Neverthe-

less, E-LFAs do not incur such problem which lavishes the network capacity.



3.2. Computing Enhanced Loop-Free Alternates 53

Let G = (V,E) be the graph with vertices V = {v1, v2, ...} and edges E ∈ V × V repre-

senting the network topology. Normal LFAs of all sources to destination d are denoted as L0(d) =

{LFA0(v1, d), LFA0(v2, d), ...}. To compute E-LFAs, L(d) = {LFA(v1, d), LFA(v2, d), ...} repre-

sents a set of LFAs from all source nodes to d where LFA(vi, d) is equal to LFA0(vi, d) or the primary

next hop of vi, np(vi, d), if no eligible LFA exists.

Given a source s with a set of neighbours without np(s, d), N , and a destination d, E-LFAs can be

computed using Algorithm 3.1.

Consider a failure-detecting node s. If a destination d has no normal LFA, s considers each neigh-

bour in N to find a set of eligible E-LFAs with their corresponding counters, E(d). Each neighbour

node, ni, is considered. If it does not satisfy the condition (LFC or NPC), LFA(ni, d) becomes a can-

didate. If this does not meet the condition, the same process is repeated. The iteration continues until

either a node along the path via a number of alternate next hops satisfies the condition or a loop occurs

in the path (i.e. the path traverses the same node more than once). For the latter case, ni cannot be used

as an E-LFA. If ni is an eligible E-LFA, it is added into E(d) with its corresponding counter. This

counter determines the number of repetitions a packet must traverse through a series of alternate next

hops of intermediate nodes until it can be forwarded along the shortest path again. Once the algorithm

completes, s determines all nodes in E(d) and selects the node that provides the shortest path to d as

E-LFA.

R1

R2 R4

R3 R5

R6

1

1

1

11

3 3

2

LFA(R3, R6) = R5

Figure 3.1: A simple network topology illustrating LFA from R3 to R6.

A simple network topology used to illustrate E-LFA computation is shown in Figure 3.1. It can be

seen that all nodes in the network except R1 have eligible LFAs to R6. For example, if link R3→R1

fails, R3 can forwards the packets destined for R6 via R5 successfully without creating any forwarding

loop. However, if link R1→R2 fails, all packets traversing via R1 to R6 are dropped until the network

re-converges. This potentially incurs a significant amount of packet loss. With E-LFAs, R1 determines

its neighbour node, R3, which is not its primary next hop to R6. Since LFA from R3 to R6 (i.e. R5)

satisfies the LFA condition, R1 employs R3 as its E-LFA to R6.

It is important to note that, U-turn [7] has similar approach where the alternate next hops of neigh-

bour nodes are taken into consideration. However, U-turn makes use of the immediate neighbours only



3.3. Packet Processing and Forwarding 54

while E-LFAs are capable of creating alternate paths via both nodes with and without eligible LFAs. This

results in E-LFAs having a higher repair coverage. Furthermore, since network failures are not limited

to a single type, it is often worth enhancing the routing table entries with information for each type of

failures. However, the ultimate decision belongs to the network operators.

3.3 Packet Processing and Forwarding
In the normal case, a router forwards the packets via the shortest path. When a failure occurs, the

detecting node forwards the packets to affected destinations using LFAs. However, for destinations

without normal LFAs but E-LFAs, the detecting node marks each packet with the number of repetitions

it has to be forwarded along the alternate next hops. When an intermediate node receives a re-routed

packet, it decrements the number of repetitions by 1 and forwards it using its local LFA based on the

destination. Once this number reaches 0, the packet can be forwarded using the normal shortest path.

Algorithm 3.2 summarise the packet processing process.

Algorithm 3.2 Packet processing at node s.

Input: in pkt

Output: out pkt

1: if in pkt.counter == 0 then

2: if (s, np(s, in pkt.d)) == failed then

3: in pkt.counter ← counter(s, in pkt.d)− 1

4: return out pkt← in pkt

5: else

6: return out pkt← in pkt

7: end if

8: else

9: if (s, ns(s, in pkt.d)) == failed then

10: Drop(in pkt)

11: return null

12: else

13: in pkt.counter ← in pkt.counter − 1

14: return out pkt← in pkt

15: end if

16: end if

E-LFAs omit the consideration of DSC and ECA conditions without creating any pitfalls. The

routing technique employs an additional bit to indicate a re-routed packet. Therefore, if a re-routed

packet encounters another failure, it is dropped immediately to avoid transient loops1.

1If multiple failures occur, a re-routed without indication may be caught in a loop until its TTL expires. This results in a

network being utilised futilely.



3.4. Termination of Using LFAs and E-LFAs 55

3.4 Termination of Using LFAs and E-LFAs
When a failure occurs, the detecting router is responsible for advertising the failure to the rest of the

network. A router receiving this information updates its database and determines whether any paths to

destinations are affected by the failure. If one or more destinations are affected, re-calculation of shortest

paths is mandatory. The means for employing LFAs and E-LFAs are similar as they allow packets to be

re-routed immediately without waiting for the completion of network re-convergence. However, a router

using LFAs basically limits the amount of time of the alternate next hops usage. After that, it continues

to use new primary next hops based on the new network map [8]. This avoids possible transient loops

during convergence process.

On the other hand, the termination of using E-LFAs cannot be determined by confining the amount

of time. If the network converges, new LFAs and E-LFAs are re-computed. Therefore, re-routed packets

that have been marked but not delivered may be forwarded incorrectly. Routing via E-LFAs is performed

with an assumption of intermittent failures. Therefore, it suppresses the failure notification for a period of

time. If the failure persists, a router must trigger the convergence process. In addition, several techniques

are recommended [134, 14] for minimising possible micro-loops during network convergence.

3.5 Properties
The key property of E-LFAs is loop-free forwarding. Trivially, routing under failure-free case is loop-free

as E-LFAs employ normal shortest path routing where all routers share a consistent network topology.

For recoverable failure scenarios, routing can be divided into two cases: a) one or more LFAs exist and

b) one or more E-LFAs exist. Theorem 3.1 and Theorem 3.2 describe the loop-free characteristic of

routing under LFAs and E-LFAs.

Theorem 3.1. Given a destination d, routing in the presence of a single failure via LFA of the failure-

detecting node, s, does not cause the packet to traverse any link more than once.

Proof. Although there are many types of LFAs specified in the basic specification [8], only LFC and

NPC are determined. Equation 2.1–2.2 are criteria for link and node protection LFAs.

Let s be the failure-detecting node and d be the destination. If the path from a neighbour of s, ni,

to d is shorter than the path from ni to d via s, a path from ni to d does not involve s. Thus, the path

does not involve the failed link s→np(s, d) where np(s, d) is the next hop of the shortest path from s to

d. Since packets are forwarded along the shortest path from ni to d without traversing through the failed

link, employing ni to protect link failure is loop-free.

Similarly, if a path ni to d is shorter than the path from ni to d via np(s, d), a path from ni to d

does not involve np(s, d). This implies that the shortest path from ni to d does not contain s. Therefore,

employing ni to protect node failure is also loop-free.

Theorem 3.2. Given a destination d, routing in the presence of a single failure via E-LFA of the failure-

detecting node, s, does not cause the packet to traverse any link more than once.



3.6. Performance Evaluation 56

Proof. E-LFAs inherit the property of normal LFAs which provides a loop-free environment. The prop-

erty can be proved by induction of the computation illustrated in Algorithm 3.1. In the process of finding

E-LFA, if the node is previously considered by the algorithm, the neighbour of s, ni cannot be used as

an E-LFA and is discarded. Thus, if Algorithm 3.1 yields an eligible E-LFA, it implicitly guarantees a

loop-free path.

3.6 Performance Evaluation
This section presents the evaluation of E-LFAs. The broad areas of investigation include protocol over-

heads, characteristics of the alternate paths, the impact of failures and associated recovery mechanisms

on link load.

Regarding the overheads, computational and memory overheads imposed on each router in order

to compute and store LFA or E-LFA for each destination are considered. Furthermore, the number of

bits required in the packet header for employing the forwarding mechanism is evaluated. To analyse

backup path characteristics, their stretch and number of hops are considered and compared to OSPF re-

route2 which is used as a benchmark throughout this evaluation. The repair coverage, which is the main

contribution of E-LFAs is compared with LFAs. It is important to note that, fast re-route mechanisms

achieve the performance level reported immediately after a failure is detected, whereas OSPF re-route

normally requires several seconds of re-convergence stabilisation before it can achieve its reported per-

formance. Since neither LFAs nor E-LFAs can guarantee a full repair coverage, the post-failure traffic

characteristics of the network is not considered.

3.6.1 Method

Self-implemented Java software model is created to compute LFAs and E-LFAs. The simulations are

run on a machine with a 2.16 GHz Intel Core 2 Duo processor and 2 GB memory. This Java software

are verified through both dynamic (experimentation) and static (analysis) verifications3.

Table 3.1: Properties of topologies used in simulations.

Topology Type # of nodes # of links In-/Out degree

Abilene Real 11 28 1.273

GEANT Real 23 74 1.609

Abovenet (AS 6461) Inferred 138 744 2.906

Sprint (AS 1239) Inferred 315 1944 3.086

Tiscali (AS 3257) Inferred 161 656 2.037

Waxman Random 100 400 2.000

Barabasi-Albert Random 100 394 1.970

Barabasi-Albert-2 Random 100 766 3.830

2The path used upon completion of the re-convergence process.
3All classes have been tested through functional test and the code are verified based on the code conventions.



3.6. Performance Evaluation 57

The Abilene [133] and GEANT [37] topologies are used in order to obtain realistic results. To

illustrate that E-LFAs can perform better than LFAs for an arbitrary network topology, Rocketfuel data

[115] and synthetic topologies generated by BRITE [79] based on Waxman, Barabasi-Albert (BA) and

Barabasi-Albert-2 (BA-2) models are also used.

As some inferred topologies have notable high path diversity (e.g. Sprintlink) [122] due to false

links result from Domain Name System (DNS) misnaming [132], Abovenet, Sprintlink, and Tiscali are

used instead of a single topology to ensure accurate results. In addition, the standard error is provided to

ensure that the results are reproducible.

3.6.2 Overheads

The followings evaluate different types of overheads:

Computational Overhead

The computational overhead of E-LFAs are determined by the time complexity of computing E-LFAs

and their corresponding counters. The results for different topologies are shown in Table 3.2. The

complexity of Algorithm 3.1 is bounded by O(V 2 × E) for all nodes in the network, where V and E

represent the vertices and the edges in the network. However, it can be seen that, for the largest network

topology (i.e. Sprintlink), the computation time is lower than 2 ms.

Table 3.2: Repair coverage of different topologies under LFAs and E-LFAs.

Topology
Link protection (%) Node protection (%) Time (ms)

LFAs E-LFAs LFAs E-LFAs LFC StdErr NPC StdErr

Abilene 65.455 89.091 58.537 85.366 0.029 0.001 0.039 0.001

GEANT 91.107 99.209 81.250 88.889 0.067 0.002 0.096 0.002

Abovenet 97.549 99.558 81.884 94.823 0.332 0.002 0.402 0.003

Sprintlink 96.242 98.815 77.733 95.417 1.383 0.004 1.516 0.003

Tiscali 88.063 97.205 78.792 93.391 0.402 0.003 0.461 0.003

Waxman 91.404 99.677 87.432 97.989 0.183 0.002 0.200 0.004

Barabasi-Albert 92.707 99.869 81.201 95.361 0.183 0.003 0.263 0.003

Barabasi-Albert-2 98.802 99.969 95.917 99.886 0.185 0.003 0.271 0.003

Memory Overhead

Similar to LFAs, E-LFAs do not require any additional routing table entries to provide fast re-route.

However, the entry of each existing destination must be enhanced with information about the E-LFA

and its corresponding counter. This does not incur any significant memory overhead and is generally

considered a good trade-off for routing resilience.

Packet Overhead

Packet overhead can be evaluated by the number of bits required in the packet header in order to permit

packet forwarding via E-LFAs. From simulation results, the maximum value of a counter required is 3.



3.6. Performance Evaluation 58

However, more than 99.586% of E-LFAs require only 1 bit and at most 3 bits for link protection, and

more than 99.943% of E-LFAs require only 2 bits and at most 3 bits for node protection. In addition, an

extra bit is recommended for re-routed packet indication. Thus, re-routing via E-LFAs requires 4 bits to

protect either single link or node failure cases. Since there are two versions of IP packets deployed in the

current networks, a part of Type of Service (TOS) field in IPv4 packet and a part of Traffic Class field in

IPv6 packet can be used.

3.6.3 Repair Coverage

The repair coverage in term of percentage of protectable destinations are illustrated in Table 3.2. It can

be seen that E-LFAs improve the repair coverage of normal LFAs in all topologies regardless of the

protection condition. In average, 7.758% more links and 13.547% more nodes are protected. However,

it is important to note that, a router still employs alternate paths via LFAs if they exist. Performing

the recursive method repeatedly can further increase the repair coverage in certain cases. However, the

difference in performance is negligible compared to the additional memory and complexity required in

the forwarding plane.

3.6.4 Stretch

Providing fast re-route via loop-free alternate next hops can alleviate forwarding discontinuation prob-

lem. In a network that employs only LFAs, the stretch of an alternate path is not significant as the path

cost is basically the sum of the link cost connected the detecting node and its LFA, and the shortest path

from its LFA to the destination. However, enhancing the repair coverage with E-LFAs may incur higher

path length stretch as the packet needs to traverse via a number of alternate next hops before it can be

forwarded along the shortest path. Figure 3.2 illustrates the stretch of alternate paths of different topolo-

gies. To ensure an unbiased evaluation, only paths between node pairs with existing LFAs or E-LFAs

are taken into consideration. OSPF re-route paths are best possible paths that avoid the failed elements

(local links or local nodes). The graphs illustrate inverse cumulative distribution function of the stretch

of E-LFAs in comparison with OSPF re-route.

From simulation results, the averages of optimal stretch of considered paths across all topologies

are 1.237 for link protection and 1.213 for node protection while the average stretch of paths via LFAs

and E-LFAs are 1.257 under LFC and 1.252 under NPC.

In addition to stretch, the number of hops of an alternate path also reflects the link utilisation. Figure

3.3 illustrates the numbers of hops forming alternate paths. The comparison is made between OSPF re-

route for link protection and E-LFAs under LFC, and OSPF re-route for node protection and E-LFAs

under NPC.

The average numbers of hops of OSPF re-route are 4.731 for link protection and 4.744 for node

protection while paths via LFAs and E-LFAs have average numbers of hops equal to 4.741 under LFC

and 4.750 under NPC. Although the results of the optimal shortest paths are not plotted due to different

number of paths being considered (i.e. LFAs and E-LFAs do not exist for all node pairs), the average

number of hops of the shortest paths across all topologies is 4.271.



3.7. Conclusions 59

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route (link)
E-LFAs (LFC)

OSPF re-route (node)
E-LFAs (NPC)

(a) Abilene

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route (link)
E-LFAs (LFC)

OSPF re-route (node)
E-LFAs (NPC)

(b) GEANT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route (link)
E-LFAs (LFC)

OSPF re-route (node)
E-LFAs (NPC)

(c) Abovenet

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route (link)
E-LFAs (LFC)

OSPF re-route (node)
E-LFAs (NPC)

(d) Sprintlink

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route (link)
E-LFAs (LFC)

OSPF re-route (node)
E-LFAs (NPC)

(e) Tiscali

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route (link)
E-LFAs (LFC)

OSPF re-route (node)
E-LFAs (NPC)

(f) Waxman

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route (link)
E-LFAs (LFC)

OSPF re-route (node)
E-LFAs (NPC)

(g) Barabasi-Albert

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route (link)
E-LFAs (LFC)

OSPF re-route (node)
E-LFAs (NPC)

(h) Barabasi-Albert-2

Figure 3.2: Stretch comparison between OSPF re-route and E-LFAs.

3.7 Conclusions

This chapter presented a technique called the Enhanced Loop-Free Alternates (E-LFAs) to elevate the

repair coverage provided by Loop-Free Alternates (LFAs) [8]. Depending on the preference of network

operators, a router can recover packets from either local link or local node failures based on different

conditions.

E-LFAs are determined by using a simple recursive method on the normal LFAs. If a neighbour

is not qualified as LFA of the detecting node, its LFA is considered instead. The process iterates until

a node that is capable of forwarding packets to the destination without traversing the failed element is

found. Consequently, the neighbour of the detecting node starting that path can be assigned as an E-LFA.

Furthermore, additional information about the number of times a re-routed packet must traverse through

the alternate next hops via E-LFA until it can be forwarded along the shortest path again must be stored.

E-LFAs inherit the loop-free property of LFAs, which was proved in Section 3.5. The simulation

results showed that by employing E-LFAs, the repair coverage can be improved up to 7.758% for link

protection and 13.547% for node protection in average relative to a 100% of protectable destinations.

Furthermore, the path length stretch and the overheads of E-LFAs are considerably low. It is greatly



3.7. Conclusions 60

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16  18

1 
- P

(#
 o

f h
op

s !
 X

)

X

OSPF re-route (link)
E-LFAs (LFC)

OSPF re-route (node)
E-LFAs (NPC)

(a) Abilene

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16  18

1 
- P

(#
 o

f h
op

s !
 X

)

X

OSPF re-route (link)
E-LFAs (LFC)

OSPF re-route (node)
E-LFAs (NPC)

(b) GEANT

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16  18

1 
- P

(#
 o

f h
op

s !
 X

)

X

OSPF re-route (link)
E-LFAs (LFC)

OSPF re-route (node)
E-LFAs (NPC)

(c) Abovenet

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16  18

1 
- P

(#
 o

f h
op

s !
 X

)

X

OSPF re-route (link)
E-LFAs (LFC)

OSPF re-route (node)
E-LFAs (NPC)

(d) Sprintlink

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16  18

1 
- P

(#
 o

f h
op

s !
 X

)

X

OSPF re-route (link)
E-LFAs (LFC)

OSPF re-route (node)
E-LFAs (NPC)

(e) Tiscali

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16  18

1 
- P

(#
 o

f h
op

s !
 X

)

X

OSPF re-route (link)
E-LFAs (LFC)

OSPF re-route (node)
E-LFAs (NPC)

(f) Waxman

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16  18

1 
- P

(#
 o

f h
op

s !
 X

)

X

OSPF re-route (link)
E-LFAs (LFC)

OSPF re-route (node)
E-LFAs (NPC)

(g) Barabasi-Albert

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16  18

1 
- P

(#
 o

f h
op

s !
 X

)

X

OSPF re-route (link)
E-LFAs (LFC)

OSPF re-route (node)
E-LFAs (NPC)

(h) Barabasi-Albert-2

Figure 3.3: Number of hops of a path before and after failures under OSPF re-route and E-LFAs.

believed that E-LFAs are good alternatives for improving network reliability without sacrificing the

performance of normal routing or increasing the complexity in the management plane.



Chapter 4

Achieving Full Fast Failure Recovery

4.1 Introduction
The concept of fast re-route is specified in the IP Fast Re-Route (IPFRR) framework [113] and discussed

in Section 2.3.3. However, it is clearly illustrated that a simple technique such as Loop-Free Alternates

(LFAs) [8] cannot guarantee full protection against single failures. Chapter 3 introduces a technique

called Enhanced Loop-Free Alternates (E-LFAs) to elevate the repair coverage of normal LFAs. How-

ever, providing a near optimal coverage is not sufficient in a network operator point of view. Therefore,

it is important to design a routing strategy which is capable of fully handling single (either link or node)

failures without jeopardising the network performance with respect to other metrics (e.g. router perfor-

mance and network traffic).

This chapter presents a novel approach called Full Fast Failure Recovery (F3R). It is based on an

approach similar to tree colouring using a simple shortest path algorithm to build two disjoint trees.

Basically, F3R provides end systems access to two disjoint trees: red and blue. The routing technique

enhances the information about the next hop and its complement to permit full protection against single

link failures. Furthermore, F3R allows a router to perform traditional forwarding process. That is, only

destination address is required to forward the packets.

In general, F3R is considered an IPFRR technique as it provides fast re-route mechanism using

pre-computed paths. In other words, when a link fails, another path which is the complementary path

is used for packet forwarding. This allows a router to suppress the global advertisement of transient

failures, which eliminates the routing instability problem due to redundant convergence processes1. To

permit a consistent routing, the failure-detecting node must indicate the packet as being “re-routed” so

that other nodes can determine a path the packet must traverse. Explicit notification of failure is not

essential and other types of signalling is not required to fast re-route a packet under F3R. Once the

failure is recovered, the packets are forwarded via the normal paths. Nevertheless, an exception is made

when a failure persists longer and the detecting router must trigger the re-convergence process. When

this occurs, all routers must re-calculate both the first and second sets of paths.

The deployment of F3R technique is simple for network employing a link-state routing protocol

such as OSPF or IS-IS as each node has the global knowledge of the underlying network topology.

1It has been observed that most failures are transient, most of which last less than a minute [52, 73].



4.2. Disjoint Trees 62

Furthermore, routing under F3R guarantees a loop-free environment as all routers share a consistent

view of routing paths. The followings summarise the main features of F3R:

• It provides different loop-free paths for routing in normal and different failure scenarios.

• It guarantees a 100% repair coverage against any single link failures and eliminates routing insta-

bilities caused by redundant failure notifications, which trigger the network to re-converge.

• It requires minimum changes to traditional IP routing as the only requirements are packet marking

and an additional information about the next hop for each existing routing table entry in the routing

table.

4.2 Disjoint Trees
In general, the paths between any node pairs in the network are computed based on the weights of links

forming them. Routing protocols such as OSPF and IS-IS employ link-state algorithm; hence, each

router has a global knowledge of the network map. Consequently, the least cost paths are chosen for

packet forwarding to ensure that a routing protocol utilises the network resources efficiently. Never-

theless, link weights do not always imply the actual physical distances as it is often determined and

explicitly set by network operators.

Constructing two disjoint trees rooted at the same destination for an arbitrary network can elevate its

reliability. That is, one tree is used for normal routing and the other for routing under failure scenarios.

However, it is not always possible to find a tree that is fully disjoint with the shortest path tree in the same

network topology. Therefore, migrating out of the shortest path paradigm is one of the simplest solutions

to permit disjoint trees approach. This is also known as tree colouring where one tree is indicated as red

and another as blue. Some technique uses tree colouring to handle dual link failures [60] given that all

elements in the network are three-edge-connected. Although F3R handles only single link failure, it does

not pose any requirements on the network topology. Furthermore, the technique works for an arbitrary

network.

4.3 Computing Red Trees
Intuitively, disjoint trees rooted at the same destination given the same network graph can be found if

both trees are created with regard to one another. More precisely, if either tree consists of at least one

edge cut set2, its disjoint does not exist.

Let G = (V,E) be a directed graph with vertices V = {v1, v2, ...} and edges E ∈ V × V repre-

senting the network topology. A weight w(i, j) ∈ R > 0 is assigned to each edge (i, j). Given a node in

V , ni and a set of vertices being considered, C, a subgraph is defined as follows.

If {G1, G2, ...} represents the set of connected graphs in G− {ni}, {H1,H2, ...} denotes the sub-

graphs of G from the nodes in {G1 + {ni}, G2 + {ni}, ...}.

2An edge cut set defines a group of edges whose total removal renders the graph disconnected.



4.3. Computing Red Trees 63

Let H(G, ni) be the set of subgraphs, induced by ni on G. If ni is not a node cut set of size 1, then

H(G, ni) = G. Subgraphs are therefore, defined as any connected graphs induced by the removal of

node ni. Algorithm 4.1 computes the red tree rooted at the destination, d.

Algorithm 4.1 Computing the red tree rooted at d.

Input: d, G, H(G′, d)

Output: Tred(d)

1: G′ ← G

2: Tred(d)← ShortestPath(G′, d)

3: C ← d

4: while C 6= ∅ do

5: ni ← φ(C)

6: C ← C − {ni}

7: for all H ∈ H(G′, ni) do

8: N ← n(H,ni)

9: min node← x : minx∈n(H,ni)(w(x, ni))

10: for all x ∈ n(H,ni)− {min node} do

11: E′ ← E′ − (x, ni)

12: E′ ← E′ − (ni, x)

13: end for

14: C ← C ∪ {min node}

15: Tred(d)← ShortestPath(H, d)

16: end for

17: end while

18: return Tred(d)

Each subgraph contains a set of nodes, n(H,ni), adjacent to ni. The algorithm reduces the size of

n(H,ni) to 1 by removing all links except for the one with a minimum weight. The links being removed

are considered redundant. The node connected by the remaining link, min node is added to C. Note

that, φ(C) implies the first element in C. After that, Tred(d) is adjusted using the shortest path algorithm

(except when the size of n(H,ni) is equal to 1). The process iterates until no more nodes need to be

considered (i.e. C becomes empty). Upon the completion of the algorithm, Tred(d) can be used for

either in normal or failure cases.

To elaborate the computation of red tree, a simple network topology illustrated in Figure 4.1 is used

as an example. From Figure 4.1, bold arrows form a shortest path tree rooted at R6. This tree is used to

initialise Tred(R6) for red tree computation given the destination is R6.

The algorithm first determines the immediate child nodes of R6 in Tred(R6), R4 and R5. Since R4

is connected to R6 through a minimum weight link, link R5—R6 is removed. After that, Tred(R6) is

adjusted based on the shortest path algorithm (Figure 4.2b). Link R4—R6 becomes a part of the final red



4.3. Computing Red Trees 64

R1

R2 R4

R3 R5

R6

1

1

1

33

3

7

Figure 4.1: A simple network topology used for F3R illustration.

tree. Next, the immediate neighbours of R4 are determined. As link R2—R4 has a minimum weight, link

R3—R4 is removed and Tred(R6) is adjusted similarly as in the previous step. The remaining nodes:

R2, R1, R3, and R5 are yet considered. However, only one immediate child node belongs to each of

these nodes; hence, no further action is required.

R6

R5R4

R2 R3

R1

1

1

1

3

3

7

1

1 3 7

3
1

(a) Remove R5—R6.

R6

R5

R4

R2 R3

R1

1

1

1

3

3 7

1

1 3

7
3

1

(b) Adjust the SPT.

R6

R5

R4

R2 R3

R1

1

1

1 3 7

1

1

7
3

1

(c) Remove R3—R4.

1 1 1 3 7
R6 R5R4 R2 R3R1

1 1 1 3 7

(d) Red tree rooted at R6.

Figure 4.2: Computation of red tree rooted at R6.

Figure 4.2d illustrates the final red tree, Tred(R6) used for routing tables construction. It can be

seen that Tred(R6) does not consist of any set of edges that forms an edge cut set in the network graph

(given that the graph is directed).



4.4. Computing Blue Trees 65

4.4 Computing Blue Trees
After the red tree, Tred(d) is constructed, its corresponding blue tree, Tblue(d) can be found by re-

calculating the link weights in the directed graph, G.

Let E(Tred(d)) be a set of links in G employed by Tred(d). The simplest method that can be used

to compute Tblue(d), is to perform a shortest path algorithm on a network graph G with E(Tred(d)).

However, G is often rendered disconnected when all links in E(Tred(d)) are completely removed. This

is due to the unpredictable formation of an arbitrary network (i.e. G may consist of one or more single

degree nodes). Thus, F3R increases the weights of links in E(Tred(d)) by a very large value so that

traversing through all links in the network costs less than passing through a single link in E(Tred(d)). If

a link in E(Tred(d)) is still employed in the Tblue(d), it implies that there is no disjoint element for that

particular link in G. The large value used to compute blue trees is defined as the sum of weights of all

links in E:

Wt :=
∑

(i,j)∈E

w(i, j) (4.1)

Using Wt as a link weights re-calculation factor, Algorithm 4.2 computes the blue tree rooted at the

destination, d.

Algorithm 4.2 Computing the blue tree rooted at d.

Input: d, G, E(Tred(d))

Output: Tblue(d)

1: G′ ← G

2: for all (i, j) ∈ E′(Tred(d)) do

3: w(i, j)← w(i, j) + Wt

4: end for

5: return Tblue(d)← ShortestPath(G′, d)

Consider the network shown in Figure 4.1. Tred(R6) is obtained in Section 4.3. Using Equation 4.1,

Wt of the network is equal to 19. The algorithm first increases the weights of all links in E(Tred(R6)) by

19. After that, F3R runs the shortest path algorithm on the re-calculated set of links to obtain Tblue(R6),

which is directed disjoint from Tred(R6). Figure 4.3 illustrates the final blue tree, Tblue(R6).

1 26

22

1 1

3
3

7

7
22R6

R4

R5 R3

R2R1

Figure 4.3: Blue tree rooted at R6.



4.5. Packet Processing and Forwarding 66

It is important to note that, all links considered in Algorithm 4.1 and Algorithm 4.2 are assumed

to be directed. However, F3R can be employed in both directed and undirected network graphs to fully

protect all recoverable single link failures.

4.5 Packet Processing and Forwarding
Under F3R routing strategy, each router can forward packets in accordance to two disjoint trees, a packet

must be marked to retain the routing consistency throughout the network. In F3R, neither tree offers

optimal routing paths to all destinations. That is, even if in failure-free case, least cost paths may not

be employed. Nevertheless, deploying F3R allows network operators to overcome the forwarding dis-

continuation during network re-convergence. Let in pkt be the incoming packet and out pkt be the

outgoing packet to node d, arriving at node s, Algorithm 4.3 summarises the packet processing at node

s.

Algorithm 4.3 Packet processing at node s.

Input: in pkt

Output: out pkt

1: if in pkt.R == 0 then

2: if (s, nin pkt.T (s, in pkt.d)) == failed then

3: in pkt.R← 1

4: in pkt.T ← in pkt.Inverse(T )

5: return out pkt← in pkt

6: else

7: return out pkt← in pkt

8: end if

9: else

10: if (s, nin pkt.T (s, in pkt.d)) == failed then

11: Drop(in pkt)

12: return null

13: else

14: return out pkt← in pkt

15: end if

16: end if

Based on similar operations, two different options for marking re-routed packets under F3R are

proposed as follows:

R-bit Marking Scheme

This marking scheme allows packets to be forwarded normally without any marking. In the presence

of a failure, the detecting node sets R-bit to indicate a re-routed packet. To employ this scheme, either

red or blue tree must be indicated as primary and the other, secondary. In general, the tree that provides



4.6. Suppressing Failure Notification 67

a greater number of shorter paths is set as primary to provide as many efficient paths as possible. The

complementary tree is used to re-route packets in case of failures.

R-bit/T-bit Marking Scheme

This marking scheme allows packets to be forwarded along the shorter path provided by two disjoint

trees. However, it requires routers to consider traffic engineering awareness in the failure-free cases.

Under this marking scheme, R-bit indicates whether the packet has yet experienced the failure. This bit

is initially set to 0 by the packet originating router. However, the router must set T-bit to identify the

routing tree that provides a shorter path given the same destination. When a failure occurs, the detecting

node inverts both bits and forwards the packets according to the other routing tree (i.e. red or blue).

If only R-bit is employed, line 4 of Algorithm 4.3 can be omitted while nin pkt.T (s, in pkt.d) in

lines 2 and 10, represent the next hop link in the primary and secondary routing trees respectively. For

deployment in IP networks, it is recommended that few bits in the Type of Service (TOS) field in IPv4

packet or the Traffic Class field in IPv6 packet are used.

4.6 Suppressing Failure Notification
The aim of F3R is to reduce the packet loss rates during network re-convergence in particular for those

caused by intermittent failures. F3R provides a routing strategy that can re-route packets whenever a

single link failure occurs; hence, re-converging the network is not necessary unless the failure persists

for a certain duration. Routing under F3R suppresses the failure notification for a minute to reduce

unnecessary instabilities and forwarding discontinuation. However, in case of persistent failures, the

convergence process is eventually triggered and both trees (i.e. red and blue) must be re-computed.

4.7 Optimisation
As can be seen in Algorithm 4.1 and Algorithm 4.2, the computations of both trees heavily depend

on the shortest path algorithm. Furthermore, extracting the subgraphs of a network also relies on the

shortest path algorithm for simplicity. Consequently, the complexity of F3R increases proportionally to

the number of shortest paths finding operations. Therefore, F3R employs the incremental Shortest Path

First (iSPF) algorithm [75] to reduce its computation time. That is, the shortest path algorithm needs to

be run on affected parts of the graph only. Moreover, this computation can be performed by a number of

routers in large networks in a distributed fashion to speed up the routing tables construction.

4.8 Properties
The two key properties of F3R are: a) full repair coverage for recoverable single link failures and b)

loop-free forwarding. First, Theorem 4.1 shows that routing under F3R is complete under both normal

and failure scenarios.

Theorem 4.1. Given a source s, a destination d, its next hop in Tred(d), nred(s, d), and its next hop in

Tblue, nblue(s, d). If G is not disconnected after the removal of link (s, nred(s, d)), then there exists a

path from s to d via nblue(s, d) that does not traverse link (s, nred(s, d)) under fast re-route using F3R.



4.9. Performance Evaluation 68

Proof. Let D be the set of paths from s to d that do not include (s, nred(s, d)). If D = ∅, the failure is

non-recoverable. Thus, the proof proceeds to ensure that when D 6= ∅, F3R always finds an alternate

path from s to d in D successfully.

For each subgraph, H in H(G′, d), all links are categorised into: a) avoidable components, Ea, and

b) unavoidable components, Eu. Ea contains a set of links which can be removed from Tred(d) without

disconnecting H while Eu contains a set of links that can be used only if an alternate path from s to d

does not exist. For each node in Tred(d), F3R eliminates all links in Ea leaving only Eu in Tred(d).

Thus, no links in Eu can be removed without rendering the graph disconnected.

F3R constructs Tblue(d) with regard to Tred(d) using Wt as a link weights re-calculation factor.

Since each link in Eu is increased by Wt, no links in Eu is employed in Tblue(d) given that D 6= ∅.

Let E(Tred(d)) be a set of links in Tred(d) and E(Tblue(d)) be a set of links in Tblue(d). As

E(Tred(d)) ∩ Eu = E(Tred(d)) and E(Tblue(d)) ∩ Eu = ∅, E(Tred(d)) ∩ E(Tblue(d)) = ∅. This

implies that Tred(d) and Tblue(d) are disjoint trees. Therefore, if link (s, nred(s, d)) fails, a packet can

be forwarded to d via (s, nblue(s, d)).

Theorem 4.2. If there exists a path from s to d without link (s, nred(s, d)), fast re-route using F3R can

forward packets from s to d without traversing (s, nred(s, d)).

Proof. Let Pred(s, d) be the path in Tred(d) and Pblue(s, d) be the path in Tblue(d) from s to d. By

definition, a tree is a connected graph without cycles. Thus, routing along a single tree either Tred(d) or

Tblue(d) does not cause a forwarding loop.

If link (s, nred(s, d)) fails, a packet can be re-routed via link (s, nblue(s, d)) to d successfully as

Tred(d) and Tblue(d) are disjoint.

4.9 Performance Evaluation
This section evaluates the performance of F3R routing strategy. Similar to Chapter 3, overheads incurred

by the routing technique and the repair coverage are considered. Since F3R does not employ the optimal

shortest paths under normal scenario, a comparison between F3R paths and the shortest paths is also

given.

4.9.1 Method

This chapter employs similar method used in Section 3.6 for evaluation of alternate paths characteristics.

However, extensions to the Java software are made to permit F3R paths computation. These extensions

are verified as described in Section 3.6. A machine with 2.16 GHz Intel Core 2 Duo processor and 2 GB

memory is used throughout the evaluation. The evaluation of F3R employs the same set of topologies

used in Section 3.6.

4.9.2 Overheads

The followings evaluate different types of overheads:



4.9. Performance Evaluation 69

Computational Overhead

The computation time required for completing F3R algorithm is divided into: a) the time required to

compute red trees and b) the time required to compute blue trees. The expected results of b) are trivial

as only a linear operation and iSPF need to be performed. Assuming the computation is not distributed,

the time complexity incurred on each router to calculate blue trees for all destinations can be at worst,

represented by O(V 3 + E × V ) where V is the number of vertices and E is the number of edges. This

notation assumes a simple priority queue implementation of Dijkstra’s algorithm, where its complexity is

O(V 2). If a Fibonacci heap is implemented, the time complexity can be reduced to O(E2 +V 2× log V )

given that the complexity of the heap is O(E + V × log V ). The results show that given the largest

backbone topology used in simulation (i.e. Sprintlink), the time to compute blue trees for all destinations

on each router is less than 100 ms which is considerably low.

On the contrary, the empirical results of a) show that as the network size grows, the amount of time

required to compute red trees increases significantly. For small networks such as Abilene and GEANT,

the average of computation times of red trees for all nodes in the network are 0.459 ms and 1.276 ms

respectively. Nevertheless, for networks consist of more than 100 nodes, the computation can be very

slow. For examples, the average computation times of red trees of the Abovenet and Tiscali are more

than 11 minutes and 23 minutes, respectively. Recall that, for each node in the shortest path tree rooted

at the destination being considered, subgraphs of the tree below that node need to be decomposed. This

process incurs a very long computation time. For a strongly connected network (i.e. all elements are

recoverable), this process can be omitted and the time required to compute red trees can be considerably

shorter. More precisely, the computational complexity required to compute red trees for all nodes in the

topology can be represented by O(V 5 × E).

As a result, F3R is recommended for networks smaller than 100 nodes or larger strongly connected

networks (where the decomposition of subgraphs can be omitted).

Memory Overhead

Similar to other IPFRR techniques that employ pre-computed paths, F3R requires a router to enhance the

existing routing table entries with additional information about the alternate next hops. This requirement

is similar to that of multi-topology approach, but limit the number of next hops required per destination

to 2.

Packet Overhead

Refer to Section 4.5, F3R requires 1 bit for R-bit and 2 bits for R-bit/T-bit marking scheme to provide

fast re-route in case of single link failures. Unlike E-LFAs, the packet overhead of F3R is not topology

dependent. Furthermore, no additional bit is required to guarantee a loop-free forwarding due to the

characteristics of disjoint trees. These bits can be stored in Type of Service (TOS) field in IPv4 packet

or Traffic Class field in IPv6 packet.



4.9. Performance Evaluation 70

4.9.3 Repair Coverage

The repair coverage of F3R is proven in Section 4.8. It guarantees a 100% coverage for all protectable

destinations under any single link failure scenarios.

4.9.4 Stretch

The path length stretch is one of the most important factors that determines the feasibility of a resilient

mechanism. If the paths obtained have too high stretch, the impact on network traffic can be severe.

Figure 4.4 shows that the stretch of F3R paths is very high in relative to the optimal shortest paths. The

graphs illustrate inverse cumulative distribution function of the stretch of F3R in comparison with OSPF

re-route. The average of optimal stretch is 1.221 while the average stretches of normal and alternate

paths provided by F3R (under R-bit/T-bit marking scheme) are 1.258 and 11.153. Interestingly, it can

be clearly seen that, although not directly proportional, larger networks often incur significantly higher

stretch. This is due to the characteristics of disjoint trees, which either one has a very inefficient path

towards the same destination.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route
F3R

F3R re-route

(a) Abilene

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route
F3R

F3R re-route

(b) GEANT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route
F3R

F3R re-route

(c) Abovenet

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route
F3R

F3R re-route

(d) Sprintlink

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route
F3R

F3R re-route

(e) Tiscali

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route
F3R

F3R re-route

(f) Waxman

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route
F3R

F3R re-route

(g) Barabasi-Albert

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route
F3R

F3R re-route

(h) Barabasi-Albert-2

Figure 4.4: Stretch comparison between OSPF re-route and F3R under normal and failure cases.

In most cases, the stretch and the number of links used in a path are directly proportional (i.e. it is

likely that the larger number of hops a path requires, the higher stretch it incurs). However, when the



4.10. Conclusions 71

stretch is near optimal, it is important to incorporate the number of hops in the evaluation to ensure the

optimality. The simulation results of F3R show that, no further evaluation must be made as it is clearly

seen that, the stretch incurs by the routing strategy is significant. Furthermore, this trivially incurs a huge

impact on network load in particular for large topologies.

In general, a simple method can be used to test the impact on network load. Under same failure

scenarios, the traffic matrix is injected into the network so that it saturates most links after the network

re-converges. After that, the traffic characteristics such as the Maximum Link Utilisation (MLU) and the

total network overhead are measured. If the values of these parameters under an IPFRR technique far

exceed those of normal convergence, then the impact on network is considered very high. For routing

under F3R, high path length stretch reflects poor link utilisation; hence, if the network is saturated by

traffic matrix injection, most links are potentially overloaded.

4.10 Conclusions
This chapter introduced a new IPFRR technique based on disjoint trees called Full Fast Failure Recovery

(F3R). The technique can re-route packets from all recoverable single link failures. It aimed to alleviate

the packet loss rates resulted from forwarding discontinuation during network re-convergence. Although

it is similar in spirit to the tree-colouring-based technique such as [60], F3R does not make any as-

sumption on the formation of underlying network topology. That is, it can be deployed in an arbitrary

network.

The technique has two key properties which are completeness and correctness. These properties

were proved mathematically. An extensive evaluation was made mainly based on paths characteristics.

However, the protocol overheads were also considered.

F3R’s computational overhead is considerably high depending on the size of a network. It was

observed that F3R is practical for deployment in networks that have less than 100 nodes. The approach

may be feasible in larger networks only if they are strongly connected as the computation time can be

reduced by omitting the subgraphs decomposition process. Furthermore, the computations of disjoint

trees may be distributed performed to reduce computational processing on individual router. On the

contrary, the memory and packet overheads are considerably low. Nevertheless, the paths employed

during failure scenarios have a significantly higher stretch than that of optimal shortest paths upon the

completion of re-convergence process. More precisely, larger networks incur higher stretch paths under

F3R routing technique. For smaller topologies such as Abilene and GEANT, the F3R paths seem to be

practical.



Chapter 5

Alternate Next Hop Counting Mechanism

5.1 Introduction
In general, computing backup paths that can be used to deliver packets correctly can be very simple and

optimal if the failures are globally known immediately after they occur. However, this is not possible due

to unavoidable propagation delay of failure advertisements. One way to allow consistent routing using

alternate paths is to employ source routing with a risk of a router performance being degraded as well

as the incurrence of security concerns. These include the advertisements of falsified route information

and Denial-of-Service (DoS) attacks [106]. Designing a hop-by-hop routing protocol that can recover

from failures quickly while keeping the administrative complexity to a minimum is difficult. It is mainly

because of inconsistent network map among routers during network re-convergence, which often leads

to packet loss and forwarding loops. Consider a network topology in Figure 5.1, if link R5→R6 fails,

the most conventional method for R5 to find a new route is to re-calculate the shortest paths for affected

destinations1 based on the updated link-state database2. However, the knowledge of the new shortest

path R5→R2→R1→R4→R6 is locally known only to R5 before it generates and sends any failure

notification messages to other nodes. Consequently, packets destined for R6 routed via R5 may be

caught in a forwarding loop or dropped (if their TTL expires) until all intermediate routers update their

routing tables.

Alternate next hop counting is a novel mechanism used in conjunction with specific backup path

computation to provide fast re-route in traditional IP networks [69]. Re-routing in this technique relies

on the Alternate Next Hop Counter (ANHC) in the packet header to ensure correct forwarding. After

the normal shortest paths are calculated, a router first determines the sum of all link weights Wt. For

each node pair (s, d), a router adds Wt to the weights of the links present in the shortest path between

s and d and re-calculates the shortest path from s to d. This secondary path is used to calculate the

alternate next hop that s will use to send packets to d if the shortest path becomes unavailable. To allow

a consistent routing only on the basis of alternate next hops, each router sets the ANHC value for every

destination equal to the number of times the packet needs to be forwarded using the alternate next hops.

If the ANHC holds a positive number, a router decreases its value by 1 and forwards the packet to the

1For a network shown in Figure 5.1, only R6 is affected when link R5→R6 fails.
2Note that this process is part of the basic specification of current routing protocols such OSPF and IS-IS.



5.2. Computing Alternate Paths 73

R1

R2

R3

R5

R4

R6

1 1

1

2 2

3 3

Figure 5.1: A simple network topology illustrating shortest paths to R6.

alternate next hop corresponding to its own secondary path to d. If the ANHC value equals 0, the router

forwards the packet via its normal path to d (the next hop according to the shortest path route). The main

features of fast re-route using ANHC are summarised as follows:

• It is based on the normal shortest path algorithm, which can be easily implemented and deployed

without any major modifications to existing routing standards. That is, no additional mechanisms

such as tunnelling and source routing are required.

• It offers optimal paths in normal scenarios and the corresponding loop-free alternate paths in the

presence of single link failures. This can significantly reduce the amount of packet loss due to

network re-convergence.

• It guarantees a 100% repair coverage for any single link failures and eliminates routing instabilities

caused by redundant failure notifications, which trigger the network to re-converge.

5.2 Computing Alternate Paths
To employ an IPFRR technique such as LFAs, a router must be enhanced with additional information

about the alternate next hop. Basically, the algorithm used to compute alternate paths or alternate next

hops can be different from one routing strategy to another. Although fast re-route using ANHC uses

different algorithm, its memory overhead is comparable to that of LFAs. This requirement is considered

minimal given that a full protection is guaranteed.

Furthermore, designing an algorithm that suits the objectives is essential. For example, some algo-

rithms may guarantee a backup path that can protect a node failure while the others can re-route packets

successfully only if the root cause of failures is a fibre cut. One simple method described previously is to

remove the next hop link from the network map (i.e. set the link weight in the adjacency matrix equals

to infinity) and re-calculate the shortest paths. However, this method results in an inconsistent routing in

traditional IP networks where the forwarding process relies only on the destination address.

Fast re-route using ANHC computes alternate next hops to protect local link failures. It calculates

the backup path not only with regard to the next hop link but the entire path to each destination. This



5.2. Computing Alternate Paths 74

creates a correlation among routes for all origins to the same destination. It is important to note that,

this routing strategy is based on normal shortest path algorithm such as Dijkstra’s algorithm; hence, the

algorithm may fail due to network partitioning if all primary links are completely removed. Heuristically,

the backup path computation is performed by increasing the weight of all links incorporate in the normal

path with a very large value to ensure that the secondary path has as few links in common with the normal

path as possible (i.e. maximally link disjoint path) without failing the algorithm.

Let G = (V,E) be the graph with vertices V = {v1, v2, ...} and edges E ∈ V × V representing

the network topology. A weight w(i, j) ∈ R > 0 is assigned to each edge (i, j). The total weight of all

links in E is denoted by Wt as in equation 4.1.

Increasing the weight of a link by Wt is equivalent to replacing it with an infinite value. Let Ep(s, d)

be the set of links used in a normal path from s to d. The primary next hop and its alternate are denoted

as np(s, d) and ns(s, d). Using Wt as a link weight re-calculation factor, Algorithm 5.1 is run on each

router for each source-destination pair. In Algorithm 5.1, the output of ShortestPath is a shortest path

tree Ts rooted at s, with Ts(d) being the shortest path from s to d excluding s, and φ(Ts(d)), the first

node in Ts(d). The alternate next hop from s to d, ns(s, d), can be found using the algorithm illustrated

below.

Algorithm 5.1 Computing the alternate next hop.

Input: s, d, G, Ep(s, d)

Output: ns(s, d)

1: G′ ← G

2: for all (i, j) ∈ Ep(s, d) do

3: w′(i, j)← w(i, j) + Wt

4: end for

5: T ′
s = ShortestPath(G′, s)

6: Hs(s, d)← T ′
s(d)

7: ns(s, d)← φ(T ′
s(d))

8: return ns(s, d)

The outputs of Algorithm 5.1 over all node pairs are S(d) = {ns(v1, d), ns(v2, d), ...}, the alternate

next hop nodes that every node uses to route packets to d under failure conditions, and Hs(s, d) =

{h1, h2, ...}, where Hs(s, d) is the backup path from s to d excluding s, and hi represents the i-th next

hop in the backup path from s to d. Thus, Algorithm 5.1 calculates an alternate next hop for each

source-destination pair, which is the first hop of an alternate path that is maximally link disjoint from its

corresponding normal path. For example, let R5 be the source and R6 be the destination of a network

shown in Figure 5.1. The weight of link R5→R6 is increased by 13 (i.e. Wt). After that, R5 runs the

shortest path algorithm based on the graph with new link weights and obtains the alternate next hop

towards R6. Table 5.1 shows the alternate next hops from each node to R6.

Of course, each node s ∈ G must calculate a different ns(s, d) for a given destination d. As a result,



5.3. Computing ANHC Values 75

Table 5.1: Next hops from each node to R6.

Node R1 R2 R3 R4 R5

Normal next hop R2 R5 R5 R6 R6

Alternate next hop R4 R1 R1 R1 R2

alternate paths for a destination d are not consistent throughout the network. Fast re-route using ANHC

is different from some other resilient mechanisms precisely because the alternate path locally known to

each router does not have to be consistent. This implies that there is no guarantee that a path formed

by concatenating the alternate next hops to a particular destination is loop-free. Thus, the technique

needs to employ a mechanism that uses these pre-computed alternate next hops to route packets to

their destinations via loop-free paths. A mechanism called alternate next hop counting is proposed to

eliminate this path inconsistency problem.

5.3 Computing ANHC Values
As each router in the network may have different backup paths for the same destination, forwarding

must be aided with an additional mechanism that allows correct operation under failure conditions. Fast

re-route using ANHC uses alternate next hop counting to ensure that no forwarding loop is possible in

the presence of a single link failure. The followings illustrate how, with inconsistent information on the

local alternate paths, packets can be forwarded consistently under fast re-route using ANHC.

Alternate next hop counting makes use of an Alternate Next Hop Counter (ANHC) stored in the

packet header. A few bits in the Type of Service (TOS) field in IPv4 packet or the Traffic Class field in

IPv6 packet are sufficient to store the ANHC.

As defined in Section 5.1 for Algorithm 5.1, S(d) = {ns(v1, d), ns(v2, d), ...}, the AHNC(s, d)

value can be obtained using Algorithm 5.2.

The algorithm first considers the current node which is initialised with s. The first hop in the

alternate path from s to d is then compared with the alternate next hop of current node to d. If they

are the same node, ANHC(s, d) is incremented by 1 and the alternate next hop of current node to

d becomes current node. After that, the second hop in the alternate path from s to d is used for

comparison. This process iterates until either it reaches d or the condition fails, implying that it is no

longer necessary to route via the alternate next hops. From this point, the packet can be forwarded

normally. When the algorithm is terminated, ANHC(s, d) is obtained.

Using the network shown in Figure 5.1, an example of the ANHC computation for the path from

R5 to R6 (the alternate next hops from all nodes to R6 can be found for convenience in Table 5.1)

is illustrated. Let R5 be the source and R6 be the destination. The shortest path from R5 to R6 is

R5→R6 and its alternate path locally known to R5 is R5→R2→R1→R4→R6. For a node pair that has

an alternate path, the condition in the first iteration of the algorithm is always true. The first hop of the

alternate path from R5 to R6 is R2. The condition is true as R2 is also the alternate next hop of R5; hence,

the value of ANHC is incremented by 1. Next, R5 considers the alternate next hop of R2, which is R1.



5.4. Computing ANHC Values Using Loop-Free Condition 76

Algorithm 5.2 Computing the ANHC value.

Input: s, d, Hs(s, d), S(d)

Output: ANHC(s, d)

1: ANHC(s, d)← 0

2: current node← s

3: i← 1

4: while hi 6= d do

5: if hi == ns(current node, d) then

6: ANHC(s, d)← ANHC(s, d) + 1

7: current node← hi

8: i← i + 1

9: else

10: break

11: end if

12: end while

13: return ANHC(s, d)

Since R1 is also the second hop of the alternate path from R5 to R6, the value of ANHC is incremented

by 1. Similar result is obtained by considering R1; therefore, the value of ANHC becomes 3. As the last

hop of the alternate path from R5 to R6 is different from the alternate next hop of R4 to R6, the loop is

broken. The ANHC value for node pair from R5 to R6 is therefore, equal to 3. For simplicity in case

of equal-cost paths in this example, the next hop with the lowest node number has the priority over the

others. Table 5.2 shows the calculated ANHC value of each node pair in the network.

Table 5.2: The ANHC value of each node pair.

From/To R1 R2 R3 R4 R5 R6

R1 - 2 2 2 1 1

R2 2 - 1 1 2 2

R3 1 1 - 1 1 2

R4 1 1 1 - 1 1

R5 1 1 1 2 - 3

R6 1 1 1 2 2 -

5.4 Computing ANHC Values Using Loop-Free Condition
In addition to Algorithm 5.2, there is an alternate algorithm known as recursive LFAs (rLFAs), which can

be used to compute the ANHC values [69]. The main concept is based on a shortest path tree paradigm.

Figure 5.2a illustrates the shortest path tree rooted at R6. If link R2–R5 fails (Figure 5.2b), packets



5.5. Packet Processing and Forwarding 77

cannot be forwarded normally from any node within the same branch below the point of failures in the

shortest path tree. That is, packets cannot be forwarded to R6 successfully from R2 or R1. However,

once the packets are forwarded to another branch in the shortest path tree, routers can continue their

normal routing operations without creating forwarding loops. For example, packets can be forwarded

along the shortest path from R4 without traversing back to the point of failure, R2–R5. Another example

is shown in Figure 5.2c, where packets can be forwarded to R6 normally once they reach R4.

R6

R5R4

R2 R3

R1

1

1

1

3

3

3

7

R6

R5

R4

R2 R3

R1

1

1

1

3

3 7

1

1 3

7
3

1

R6

R4R5

R2 R3

R1

1

1

1

2

3

2

3

(a) Shortest path tree rooted at R6.

R6

R5R4

R2 R3

R1

1

1

1

3

3

3

7

R6

R5

R4

R2 R3

R1

1

1

1

3

3 7

1

1 3

7
3

1

R6

R4R5

R2 R3

R1

1

1

1

2

3

2

3

×

(b) Link R2–R5 fails.

R6

R5R4

R2 R3

R1

1

1

1

3

3

3

7

R6

R5

R4

R2 R3

R1

1

1

1

3

3 7

1

1 3

7
3

1

R6

R4R5

R2 R3

R1

1

1

1

2

3

2

3

×

(c) Link R3–R5 fails.

Figure 5.2: Concept of recursive LFAs.

Recall the Loop-Free Condition (LFC) a node uses to determine its link-protection LFAs, ANHC

values can be computed by utilising Equation 2.1.

Figure 5.2c is used to illustrate this alternate method for ANHC value computation. Since link

R3–R5 fails, R3 cannot forward packets to R6 in the normal shortest path. After using Algorithm 5.1

to compute the alternate next hops for all node pairs, the corresponding ANHC value from R3 to R6 is

computed as follows. First, R3 determines its alternate next hop, R1, using LFC. As the distance from

R1→R6 is shorter than that of path R1→R3→R5→R6, the computation terminates and the ANHC value

from R3 to R6 remains as 1. This implies that, when R3 detects a failure while sending packets to R6, it

needs to forward the packets to its alternate next hop, R1, before these packets can be forwarded along

the normal shortest path again.

Algorithm 5.2 and Algorithm 5.3 share the same properties, which are described later in this chapter.

In addition, they require identical computational complexity and do not incur any significant difference in

terms of overheads. The simulation results are generated based on Algorithm 5.2 without any comparison

with Algorithm 5.3 as their re-routing paths are almost identical.

5.5 Packet Processing and Forwarding
Since the alternate next hop counting mechanism does not affect normal route calculation, packets can

be forwarded to all destinations via the shortest paths in the absence of failures. When a node s detects



5.5. Packet Processing and Forwarding 78

Algorithm 5.3 Computing the ANHC value using LFC.

Input: s, d, Hs(s, d), S(d)

Output: ANHC(s, d)

1: ANHC(s, d)← 1

2: current node← s

3: C = ∅

4: while current node 6= d||current node /∈ C do

5: C ← C ∪ current node

6: if cost(current node, d) < cost(current node, s) + cost(s, d) then

7: break

8: else

9: ANHC(s, d)← ANHC(s, d) + 1

10: current node← ns(current node, d)

11: end if

12: end while

13: return ANHC(s, d)

a failure in one of its outgoing links, it marks those packets which would be forwarded through the

affected link with the ANHC value corresponding to the destination router of the packet. If an alternate

path to that node exists, it decrements the ANHC value in the packet header and forwards the packet

to its alternate next hop. When a node receives a marked packet, it determines the value of ANHC. If

ANHC holds a positive number, its value is decremented by 1 and the packet is forwarded to the local

alternate next hop. However, if the ANHC value is 0, the node forwards the packet to its normal next

hop until it reaches the destination. Algorithm 5.4 summarises the operations when a packet arrives at

each node.

The followings illustrate the packet processing and forwarding operations at each node under fast re-

route using ANHC. Let R6 be the destination. When link R5→R6 fails, R5 detects the failure. Any pack-

ets being forwarded to R6 via R5 need to be re-routed. To avoid unnecessary re-convergence episodes

for transient failures, failure advertisements are suppressed for a given duration. Instead, packets for

affected destinations are re-routed using backup paths.

First, R5 determines whether the ANHC value of the packet to be routed is 0. If it is, the packet is

forwarded normally (to its shortest path next hop) unless the next hop would be reached through a failed

link. In this case, the router sets the ANHC based on the destination router for this packet. The ANHC

value from R5 to R6 is 3. The node thus forwards the packet to its alternate next hop, R2, decrementing

the ANHC value to 2 in the process and updating it on the packet. Once R2 receives the packet, it

determines that since ANHC > 0, it must be decremented to 1 and updated on the packet, which is

forwarded to R1 (its alternate next hop). The packet arrives at R1 and since again ANHC > 0, it goes

through the same process and reaches R4. When R4 receives the packet, the ANHC value is 0; therefore,



5.6. Suppressing Failure Notification 79

Algorithm 5.4 Packet processing at node s.

Input: in pkt

Output: out pkt

1: if in pkt.ANHC == 0 then

2: if (s, np(s, in pkt.d)) == failed then

3: in pkt.ANHC ← ANHC(s, in pkt.d)− 1

4: return out pkt← in pkt

5: else

6: return out pkt← in pkt

7: end if

8: else

9: if (s, ns(s, in pkt.d)) == failed then

10: Drop(in pkt)

11: return null

12: else

13: in pkt.ANHC ← in pkt.ANHC − 1

14: return out pkt← in pkt

15: end if

16: end if

R4 forwards the packet to the destination via its normal next hop.

It is important to note that fast re-route using ANHC handles only single link failures. Certain cases

of multiple failures can lead to forwarding loops. For example, when link R5→R6 fails, a re-routed

packet is forwarded via the path R5→R2→R1→R4→R6. However, if link R4→R6 fails at the same

time the packet arrives at R4, it is not discarded since the value of ANHC is 0. This packet is then

marked by R4 and forwarded via the path R4→R1→R2→R5→R6. Consequently, the packet is caught

in a forwarding loop between R5 and R4 until its TTL expires or either link is recovered.

This problem can be trivially corrected by employing an extra bit to indicate a re-routed packet.

That is, if a packet encounters a failure, the detecting node also marks it using this bit, in addition to

the ANHC. If a marked packet experiences a failure again, it is dropped immediately as the routing

technique does not handle multiple failures.

5.6 Suppressing Failure Notification
As has been discussed before, intermittent failures can lead to long episodes of lack of synchronisation

between the link-state databases at all nodes, which generates routing instability [52, 73]. Fast re-route

using ANHC ameliorates this problem by suppressing the failure notification for a certain amount of

time, τ . During this period, destinations affected by link failures can receive packets through ANHC

recovery routes with only increased delay, and without jeopardising unaffected routes. As a rule of



5.7. Bounds on Alternate Path Length 80

thumb, a suppression time τ of around 1 minute for the triggering of a re-convergence process could

help to avoid routing instability while maintaining routing flexibility to topology changes. Of course,

backup paths and alternate next hops must be re-computed once the routing protocol re-converges.

5.7 Bounds on Alternate Path Length

Intuitively, in case of failure, the resilient routing technique described in Section 5.5 routes packets along

the first hops of maximally disjoint paths terminating on their destination node until, after a number of

hops equal to the ANHC, a node is reached where they can be routed using the normal shortest path tree

of the network. The shortest path route from this node needs not be equal to the backup path calculated

by the failure-detecting node - in fact, it is frequently shorter, as it does not need to be maximally disjoint.

Thus, the length of the actual path that the packets traverse under failure scenarios is no greater than the

length of the backup path to their destination starting from their failure-detecting node.

Furthermore, since all failure-avoiding packets traverse a number of hops equal to their ANHC

before they are shortest-path routed, the length of the actual path that the packets traverse under failure

scenarios is no shorter than the ANHC to their destination starting from their source.

R1

R2

R3

R5

R4

R6

2 2

10

1 1

3 3

2

Figure 5.3: An unexpected shorter alternate path from R3 to R6.

Figure 5.3 illustrates an example of an unexpected shorter alternate path from R3 to R6. The

normal path of R3 to R6 is R3→R5→R4→R6. Based on Algorithm 5.1, the alternate path known to R3

is R3→R1→R2→R5→R6 and its corresponding ANHC value is 1. When link R3→R5 fails, R3 sets

the ANHC to 1, decrements it to 0 and forwards the packet to R1, which is its alternate next hop. The

detecting node (i.e. R3) expects R1 to forward the packet to R2. Nevertheless, ANHC does not hold a

positive number when the packet arrives at R1. Thus, R1 chooses to forward the packet to R4 which is

its normal next hop. This causes the packet to traverse along a shorter alternate path that is not known

to R3. Although this actual path is unexpected, it does not impact the loop-free property of the routing

technique. Moreover, a network operator still has a knowledge on how the traffic is re-directed in the

presence of single link failures.



5.8. Optimisation 81

5.8 Optimisation
Evidently, the computations of alternate next hops and their corresponding ANHC values imply ad-

ditional processing for network elements. Since these only need to be performed for stable topology

configurations to pre-compute and cache relevant values (as opposed to be carried out constantly), these

can be “amortized” over longer time periods. Thus, it is feasible to perform the algorithm at practical

speeds, even using commodity hardware.

If additional efficiency is required, optimised shortest path algorithms can be used. One such algo-

rithm is the incremental Shortest Path First (iSPF) algorithm [75], which avoids the calculation of the

whole shortest path tree and instead terminates the computation once the shortest path between a source

and a destination is found. This significantly reduces the computation time of the alternate next hops.

5.9 Properties
The two key properties of fast re-route using ANHC are: a) full repair coverage for recoverable single

link failures and b) loop-free forwarding. These properties are guaranteed if the routing scheme is

complete and correct in the presence of recoverable failures. For the remainder, it is assumed that

equal-cost paths can be distinguished, so that all paths are essentially cost-unique, and all algorithms

choose from between equal-cost paths following a deterministic algorithm. Typical ways of achieving

this involve differentiating by the number of hops on each path, or choosing on the basis of the interface

ID for the first link.

First, Theorem 5.1 shows that fast re-route using ANHC is complete in the presence of any recov-

erable single link failures.

Theorem 5.1. If G is not disconnected after the removal of link (s, np(s, d)), then there exists a path

from s to d via (s, ns(s, d)) that does not traverse link (s, np(s, d)) under fast re-route using ANHC.

Proof. LetD be the set of paths from s to d that do not include (s, np(s, d)). IfD = ∅, the failure is non-

recoverable by definition. Thus, the proof is needed to ensure that when D 6= ∅, the ANHC algorithm

always finds an alternate path from s to d in D.

The proof is proceeded by contradiction, assuming thatD 6= ∅ and nonetheless the algorithm knows

that np(s, d) = ns(s, d). This implies that the weight of all paths in D is strictly higher than Wt, since

the algorithm adds Wt to the weight of each one of the links of the primary shortest path in order to find

the alternate path from s to d, and w(i, j) > 0 ∀(i, j). However, the longest path from s to d over G

would be an Eulerian path, whose weight could be of at most Wt; thus, the weight of all paths inD could

be of at most Wt. Hence, a contradiction is obtained, and D 6= ∅ implies that np(s, d) 6= ns(s, d).

Second, Theorem 5.2 shows that incorporating the pre-computed alternate next hops with the al-

ternate next hop counting mechanism can forward re-routed packets to the destination correctly under

failure scenarios. Note that, the packet forwarding in normal case is based on the shortest path tree;

hence, it is correct.



5.10. Performance Evaluation 82

Theorem 5.2. If there exists a path from s to d without link (s, np(s, d)), fast re-route using ANHC can

forward packets from s to d without traversing (s, np(s, d).

Proof. Let Tp(d) be the shortest path tree rooted at d and Hs(s, d) = {h1, h2, ...} be the hop sequence

of the alternate path from s to d excluding s, which is locally known to s. Denote Tp(ds) as the subgraph

of Tp(d) below s, which includes s with a set of vertices N .

Given E is a set of vertices in N that are employed by the alternate path from s to d. Each node

ei in E has the alternate next hop, ns(ei, d). As each node ei shares some links in the Tp(d) with s,

Hs(s, d) must involve ns(ei, d).

A re-routed packet can encounter a failed link (s, np(s, d)) if and only if it traverses along Tp(d)

starting from any node in E. However, a node forwards a re-routed packet through Tp(d) only if the

ANHC value is 0 - after this the packet is no longer routed through alternate next hops.

Since all nodes in E have alternate next hops that coincide with the alternate path from s to d,

no re-routed packets arriving at ei have a zero value ANHC. Thus, packets are not routed along Tp(d)

starting from ei. Furthermore, packets are not routed via Tp(d) starting from a node in N that does not

belong to E either, since N − E and Hs(s, d) are disjoint sets.

Finally, routing via Tp(d) from any node outside N does not cause packets to traverse (s, np(s, d)),

because these nodes are not elements of Tp(ds).

Therefore, it can be concluded that a path for re-routing packets from s to d does not involve the

failed link (s, np(s, d)).

It is important to note that, alternate path locally known to each router is used for ANHC value

calculation only and the routing technique does not hinder the network operator from knowing the actual

alternate path used for packet re-routing.

5.10 Performance Evaluation
This section presents the evaluation of fast re-route using ANHC. Similar to Chapter 3–4, the broad areas

of investigation include protocol overheads, characteristics of the alternate paths, and the impact of fail-

ures and associated recovery mechanisms on link load. The shortest paths upon completion of network

re-convergence known as OSPF re-route paths are used as benchmarks throughout the evaluation.

5.10.1 Method

Method used in this chapter is similar to that of Chapter 3–4. Self-implemented Java software model

is designed to compute alternate next hops and their corresponding ANHC values based on Algorithm

5.1 and Algorithm 5.2. Furthermore, additional extensions are made to determine the network traffic in

post-failure scenarios, as the congestion level caused by fast re-route mechanisms should not far exceed

those imposed by typical routing re-convergence. In addition to topologies used in Section 4.9, Point-

of-Presence (PoP) level topologies are also used. The simulations are run on a machine with a 2.16 GHz

Intel Core 2 Duo processor and 2 GB memory.

Unfortunately, real traffic matrices are unavailable for Rocketfuel network topologies. Thus, the

gravity model [80] is used to generate traffic matrices composed of edge-to-edge flows. To use realistic



5.10. Performance Evaluation 83

inputs to the gravity model, the data from the U.S. Census Bureau [126] and the United Nations Statistics

Division [125] are employed to calculate the city population of each node in the network. However, with

Rocketfuel topologies, not all nodes in the backbone area can be mapped onto the actual geographical

locations, as the precise location of each node and the corresponding population that is being served by it

are unknown. Therefore, PoP-level topologies are used instead for traffic simulation. More importantly,

Rocketfuel topologies are not equipped with information on link capacity which is needed for calculating

the link utilisation. A technique based on the Breadth-First Search (BFS) algorithm is used to assign

link capacity [68]. To examine the traffic characteristics, the traffic matrices are scaled such that the

Maximum Link Utilisation (MLU) does not exceed 100% under normal routing or after re-convergence.

5.10.2 Overheads

The followings evaluate different types of overheads:

Computational Overhead

The computation time required for calculating essential parameters to permit fast re-route using ANHC

can be divided into: a) alternate next hops computation time and b) ANHC value computation time. The

time complexity for each network topology used in simulations is shown in Table 5.3. Trivially, the times

taken to compute alternate next hops and their corresponding ANHC values are directly proportional to

the network size. Nevertheless, the largest topology (i.e. Sprintlink) requires less than 100 ms for

alternate next hops computation3. A standard error of each measurement given in Table 5.3 shows that

the corresponding result is reproducible. Furthermore, ANHC value computation time is negligible for

all topologies. Thus, fast re-route using ANHC does not incur any significant computational overhead

and can be employed in normal routers without jeopardising their performance.

Table 5.3: Computational overhead introduced by fast re-route using ANHC.

Topology
Computation time (ms)

ANHs StdErr ANHC StdErr

Abilene 0.108 0.002 0.006 0.001

GEANT 0.120 0.003 0.008 0.001

Abovenet (AS 6461) 11.920 0.034 0.020 0.001

Sprint (AS 1239) 77.091 0.391 0.051 0.005

Tiscali (AS 3257) 18.981 0.104 0.025 0.003

Waxman 3.091 0.018 0.015 0.002

Barabasi-Albert 3.383 0.015 0.016 0.002

Barabasi-Albert-2 2.554 0.017 0.015 0.002

More precisely, computing the alternate next hops for all node pairs requires O(V 4+D×V 2) while

computing the number of repetitions requires O(D × V 2), where V and D represents the number of

3The computation time is averaged among all routers.



5.10. Performance Evaluation 84

nodes and the diameter of the network. Therefore, the overall computational overhead can be expressed

as O(V 4 + D × V 2) + O(D × V 2).

Memory Overhead

In order to enable re-routing with alternate next hop counting, a router must store additional information

for each existing destination. That is, apart from the normal next hop, its alternate and the corresponding

ANHC value must be maintained. However, no additional routing table entries are required; hence, fast

re-route using ANHC does not entail excessive memory overhead.

Packet Overhead

Fast re-route using ANHC requires a few bits in the packet header to store the ANHC value. It is

recommended that a part of Type of Service (TOS) field can be used for IPv4, and a part of Traffic Class

field can be used for IPv6. Simulation results show that more than 90% of the alternate paths have an

ANHC value less than 3. For a large backbone topology such as Sprintlink which has 315 nodes and

1944 links, a maximum ANHC value of 8 is found. In practice, a maximum ANHC value of 7 is needed

in the packet, as the failure-detecting node decrements the ANHC value before it forwards the packet

to the alternate next hop. Thus, only 3 bits are required for ANHC. To prevent forwarding loops in

the presence of multiple failures, an extra bit is used to indicate a re-routed packet. Consequently, fast

re-route using ANHC needs no more than 4 bits for an optimal packet re-routing in practical topologies.

5.10.3 Repair Coverage

As proven in Section 5.9, fast re-route using ANHC guarantees full protection against any recoverable

single link failures. Therefore, the repair coverage is always 100%. Comparison with other resilient

mechanisms such as LFAs is difficult, since their repair coverage heavily depends on the network topol-

ogy.

5.10.4 Stretch

It is important to ensure that the stretch is not too high to avoid high delay which is not tolerable in

sensitive applications. Figure 5.4 illustrates the stretch of alternate paths across different topologies

in comparison with OSPF re-route (i.e. the shortest paths after re-convergence). The graphs illustrate

inverse cumulative distribution function of the stretch of ANHC in comparison with OSPF re-route. It

can be seen that fast re-route using ANHC offers a recovery via alternate paths that are near optimal

regardless of the underlying network topology. The average of optimal stretch across all topologies is

1.221 while the average stretch provided by ANHC re-route is 1.305. In most cases, the cost of an

alternate path is close to that of the shortest path.

On the other hand, the number of hops of a path should also be considered, as it reflects the number

of links a path utilises for routing packets. Figure 5.5 illustrates the number of hops required by the

shortest paths, the second shortest paths, and the actual alternate paths calculated based on Algorithm

5.1 and Algorithm 5.2. The average numbers of hops of OSPF re-route paths and fast re-route using

ANHC are 4.821 and 4.934 respectively. It can be concluded that fast re-route using ANHC can alleviate

the problem of forwarding disruptions due to single link failures using near optimal paths.



5.10. Performance Evaluation 85

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route
ANHC re-route

(a) Abilene

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route
ANHC re-route

(b) GEANT

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route
ANHC re-route

(c) Abovenet

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route
ANHC re-route

(d) Sprintlink

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route
ANHC re-route

(e) Tiscali

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route
ANHC re-route

(f) Waxman

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route
ANHC re-route

(g) Barabasi-Albert

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route
ANHC re-route

(h) Barabasi-Albert-2

Figure 5.4: Stretch comparison between OSPF re-route and fast re-route using ANHC.

5.10.5 Maximum Link Utilisation

The MLU over different failure scenarios of each topology is used to evaluate the impact of alternate

paths on network traffic. Figure 5.6 illustrates the fraction of links in the network with MLU exceeding

the value in x-axes. Interestingly, unlike other IPFRR techniques [74], none of the links in all topologies

are overloaded under fast re-route using ANHC. Moreover, the technique also performs as well as normal

re-convergence in an arbitrary network.

5.10.6 Total Network Overhead

This metric is directly proportional to the number of hops employed by the actual alternate path. It re-

flects the characteristics of traffic load in the network after failure. The relative increase of the network

overhead under fast re-route using ANHC is measured and compared with OSPF re-route for different

failure cases. Figure 5.7 shows that there is no significant increase in the traffic load when fast re-route

using ANHC is employed. For the Sprintlink network, the worst-case failure causes the network over-

head to increase by 7.094% under fast re-route using ANHC while the normal re-convergence increases

the traffic load by 6.377%. However, in most cases, the failure incurs an increase in the network over-

head less than 2%. The performance difference between OSPF re-route and ANHC re-route is negligible



5.11. Conclusions 86

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16  18

1 
- P

(#
 o

f h
op

s !
 X

)

X

OSPF
OSPF re-route

ANHC re-route

(a) Abilene

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16  18

1 
- P

(#
 o

f h
op

s !
 X

)

X

OSPF
OSPF re-route

ANHC re-route

(b) GEANT

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16  18

1 
- P

(#
 o

f h
op

s !
 X

)

X

OSPF
OSPF re-route

ANHC re-route

(c) Abovenet

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16  18

1 
- P

(#
 o

f h
op

s !
 X

)

X

OSPF
OSPF re-route

ANHC re-route

(d) Sprintlink

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16  18

1 
- P

(#
 o

f h
op

s !
 X

)

X

OSPF
OSPF re-route

ANHC re-route

(e) Tiscali

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16  18

1 
- P

(#
 o

f h
op

s !
 X

)

X

OSPF
OSPF re-route

ANHC re-route

(f) Waxman

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16  18

1 
- P

(#
 o

f h
op

s !
 X

)

X

OSPF
OSPF re-route

ANHC re-route

(g) Barabasi-Albert

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16  18

1 
- P

(#
 o

f h
op

s !
 X

)

X

OSPF
OSPF re-route

ANHC re-route

(h) Barabasi-Albert-2

Figure 5.5: Number of hops of a path before and after failures under OSPF re-route and ANHC re-route.

considering the failure occurs only for temporarily.

5.11 Conclusions
A new IPFRR technique based on the Alternate Next Hop Counter (ANHC) used to handle transient

link failures was introduced. In the normal scenario, packets are forwarded along the shortest path

calculated similarly as in traditional IP routing. When a link fails, the detecting router is responsible for

setting the pre-computed ANHC value in the packet header. For each router receiving a re-routed packet,

it performs the forwarding based on the ANHC value. If ANHC holds a positive number, the router

decrements it by 1 and forwards the packet to its alternate next hop. When the value of ANHC becomes

0, the packet is forwarded along the normal path. Two algorithms for computing the alternate paths and

their corresponding ANHC values were presented. Furthermore, the completeness and correctness of the

algorithms were proved.

As the paths provided by OSPF re-route are the shortest paths after a failure, they were used as

benchmarks throughout the evaluation. From simulation results, it can be concluded that fast re-route

using ANHC requires no significant overheads and can be easily deployed without major modifications.

Moreover, it can fully protects single link failures using low stretch alternate paths. Both real and syn-



5.11. Conclusions 87

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

1 
- P

(M
LU

 !
 X

)

X

OSPF
OSPF re-route

ANHC re-route

(a) Abovenet (PoP-level)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

1 
- P

(M
LU

 !
 X

)

X

OSPF
OSPF re-route

ANHC re-route

(b) Sprintlink (PoP-level)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

1 
- P

(M
LU

 !
 X

)

X

OSPF
OSPF re-route

ANHC re-route

(c) Tiscali (PoP-level)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

1 
- P

(M
LU

 !
 X

)

X

OSPF
OSPF re-route

ANHC re-route

(d) Abilene

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

1 
- P

(M
LU

 !
 X

)

X

OSPF
OSPF re-route

ANHC re-route

(e) GEANT

Figure 5.6: Maximum link utilisation before and after failures under OSPF re-route and ANHC re-route.

 0

 2

 4

 6

 8

 10

 12

 0  10  20  30  40  50  60

Re
la

tiv
e 

in
cr

ea
se

 (p
er

 c
en

t)

Failed link ID

OSPF re-route
ANHC re-route

(a) Abovenet (PoP-level)

 0

 2

 4

 6

 8

 10

 12

 0  24  48  72  96  120  144

Re
la

tiv
e 

in
cr

ea
se

 (p
er

 c
en

t)

Failed link ID

OSPF re-route
ANHC re-route

(b) Sprintlink (PoP-level)

 0

 2

 4

 6

 8

 10

 12

 0  25  50  75  100  125  150

Re
la

tiv
e 

in
cr

ea
se

 (p
er

 c
en

t)

Failed link ID

OSPF re-route
ANHC re-route

(c) Tiscali (PoP-level)

 0

 10

 20

 30

 40

 0  4  8  12  16  20  24

Re
la

tiv
e 

in
cr

ea
se

 (p
er

 c
en

t)

Failed link ID

OSPF re-route
ANHC re-route

(d) Abilene

 0

 10

 20

 30

 40

 0  10  20  30  40  50  60  70

Re
la

tiv
e 

in
cr

ea
se

 (p
er

 c
en

t)

Failed link ID

OSPF re-route
ANHC re-route

(e) GEANT

Figure 5.7: Relative increase of the total network overhead after failures under OSPF re-route and ANHC

re-route.

thetic traffic matrices based on the gravity model were used for examining the impact of fast re-route

using ANHC on the traffic load after different failure scenarios. It was illustrated that fast re-route using

ANHC does not overload other operable links in the network. It is greatly believed that fast re-route

using ANHC can significantly enhance the network reliability without any expensive requirements.



Chapter 6

Resilient Routing Using Packet Re-Cycling

6.1 Introduction
The number of proposed resilient mechanisms in the past few decades has shown that the network reli-

ability is a challenging topic. Nevertheless, most of these approaches aim to increase the resilience by

employing backup paths to re-route traffic from single failures, some of which, handle only link failure

scenarios. A notable advanced technique that intend to minimise the packet losses from multiple failures,

to be precise, any number of failures, is known as Failure-Carrying Packets (FCP) [65].

Although FCP has some interesting properties such as full-protection against network failures and

loop-free forwarding, the technique incurs a significant amount of overheads. For example, it requires

a large amount of space in the packet header to store the up-to-date failure information. In addition,

a real-time computation at each router is also required once an FCP arrives, in order to determine the

current available shortest paths to destinations that are affected by the failures.

This chapter introduces a novel approach known as Packet Re-cycling (PR) for routing resilience.

PR employs backup paths for fast re-routing packets that encounter failures. Regardless of the concept

of backup paths, the definition of these paths in PR is significantly different from those of other resilient

routing schemes. Specifically, PR relies on a system of cycles where each uni-directional link in the

network is associated with a uni-directional cycle that can be used to bypass itself if a failure occurs,

through a process called cycle-following described in Section 6.4. This is done in such a way that,

if further failures are encountered on links along the backup path, the backup paths of these links are

guaranteed to avoid previously encountered failures, for all failure cases where a path still exists between

a source and a destination.

Unlike FCP, this is achieved without including failure information in the packet header, or re-

calculating routing tables on real-time basis. Each PR-enabled router initialises the protocol by con-

structing its routing table using a conventional shortest path algorithm (e.g. Dijkstra’s algorithm). The

tables resulting from this process allow forwarding during failure-free conditions, and do not impose

any excessive requirements on the current routing paradigm. To equip a router with PR fast re-route

capability, each router must implement a cycle-following table, an additional information repository that

is used to forward packets along the backup paths during the cycle-following process. The additional

information required to populate the cycle-following table is obtained from the cellular embedding of a



6.2. Cellular Graph Embeddings 89

network graph, which is done offline prior to the initialisation of the protocol. Once the embedding is

complete, a router can derive the necessary information and construct the cycle-following table.

Once routing and cycle-following tables are constructed, a router can forward packets normally

under failure-free cases, while the PR instance triggers a re-routing process when one or more failures

are presented in the network. Depending on the location of each re-routed packet, the cycle-following

protocol is initialised and terminated along the backup paths. The main features of PR are summarised

as follows:

• It offers a full-protection against any number of failures.

• It incurs minimal overheads compared to other resilient approaches.

• It does not require any significant modifications to the traditional routing paradigm, allowing for

practical implementation.

The following section describes the cellular graph embeddings, which needs to be done prior to the

initialisation of PR.

6.2 Cellular Graph Embeddings
An embedding [40] of a graph G on a closed surface S is a way of drawing G on S so that no two

distinct nodes coincide and there are no edge crossings. This means that, in an embedding, links become

lines on S, which only meet at nodes, that become points on S. Thus, an embedding of G in S is a

way of arranging the nodes and links of G in space so that all of them lie on S and no link crossings

occur. To exemplify this, the most basic embedding problem, the embedding of a graph on the sphere

(S0, the orientable surface1 of genus2 zero) is reminded. A graph that is embeddable on the sphere is

called planar, and the issue of graph planarity has been studied in great depth [41, 40, 13]. PR requires

this process to be done on an arbitrary surface S, not only on the plane.

This section focuses only on a particular kind of embedding that is specially useful for implementing

PR known as the minimum genus embedding [86]. This is because it provides a cellular cycle system, a

system of cycles in G so that every link is included in exactly two cycles.

Thus, just as links have start and end nodes, in minimum genus embeddings, links have right and

left cycles. Furthermore, a cellular embedding of G on S has the property that the cells (the areas over

S that are delimited by each cycle in the system) are topologically equivalent (homeomorphic) to open

discs. Since S is fully covered by them, they also form a partition of S (a set of maximal, connected

subsets). This means that, after the embedding process is performed, the network can be thought of as a

polyhedron. In this case, the faces of the polyhedron correspond to the cells, its vertices to the nodes in

the network and each polygon delimiting a polyhedral face corresponds to a cellular cycle in G. Formal

definitions of these concepts are described below.

1A surface is orientable if it does not contain a subspace that is topologically equivalent to Möbius, a space formed from a

rectangular strip with a half-twist.
2The number of handles on the surface.



6.3. Constructing Routing and Cycle-Following Tables 90

Definition 6.1 (Minimum genus embedding). Minimum genus embedding of a graph G on a surface

S has the property that the genus (or non-orientable genus) of S is the minimum possible for the G in

question. A system of cycles so that every link belongs to exactly two cycles (i.e. a cellular cycle system)

can be used to define a cellular embedding of the network on a surface.

The property of a minimum genus embedding for a graph that makes it ideal for the definition of

a cellular cycle system is that it is a cellular embedding [86]. This means that it divides the embedding

surface S in such a way that links are analogous to the edges of a polyhedron, and the regions bounded by

them are equivalent to its facets (they are all topologically equivalent to open discs). Thus, a minimum

genus embedding allows the network to be understood as a polyhedral structure in which each link is the

frontier between two facets, each facet determines a cellular cycle in the network, and the union of all

the facets (cycles) in the network spans all its links (twice).

Once a minimum genus embedding is found, the associated facets define a cellular embedding. It

is necessary to assign, in a consistent fashion, a rotation sense to each one of the cells. In mathematical

terms, this amounts to defining an orientation. Just as a link has a directionality, a cellular cycle has an

orientation. These orientations on the embedded G are defined using the right-hand rule [96, 40]. These

orientations allow PR to associate, for data transmission over each link and in any particular direction,

a main cycle that represents the direction of data flow in failure-free conditions and a complementary

cycle, in the opposite direction, that can be used as a backup if the link has failed.

This allows PR to systematically avoid failures in much the same way that the right-hand rule allows

the solution of labyrinths. As the construction of PR is related to the cellular cycle system, which involves

graph theory, a network topology is represented by an embedding of its graph consistently throughout

this chapter.

6.3 Constructing Routing and Cycle-Following Tables
Once the embedding is complete, each router needs to construct routing and cycling tables. Routing

tables are generally obtained as in normal routing protocol such as OSPF and IS-IS. However, the cycle-

following table needs to be explicitly constructed. The cycle-following table of a router is a three-column

table with i entries, where i is the number of interfaces of a router. Each column stores the information

as follows:

• First column—indicates the address of the incoming interface of each packet.

• Second column—indicates the address of the outgoing interface of each packet corresponding

to the incoming interface. This follows the cellular cycling system, which allows PR to cycle-

following packets.

• Third column—indicates the address of a complementary interface (i.e. next hop of the backup

path) used to re-route packets if a failure occurs. Basically, each interface stored in this column

belongs to the complementary cycle of the corresponding outgoing interface stored in the second

column.



6.3. Constructing Routing and Cycle-Following Tables 91

Let IY,X represent an interface at node X receiving packets from node Y . The embedding of a

network illustrated in Figure 6.13 is used to illustrate the construction of a cycle-following table.

C4

R1

R2

R3

R4

R5

R6C1 C2 C3

Figure 6.1: A cellular embedding of a simple network topology.

The cycle-following table is constructed based on an oriented embedding of a network graph. Let

Io(X, Y ) represent an outgoing interface at node X sending packets to node Y and Ii(X, Y ) represent an

incoming interface at node X receiving packets from node Y. Using R2 as an example, its cycle-following

table is a three-column table with three entries since R2 has three interfaces. Table 6.1 illustrates a cycle-

following table at R2.

Table 6.1: Cycle-following table at node R2.

Incoming interface Outgoing interface Complementary interface

Ii(R2, R1) Io(R2, R3) Io(R2, R4)

Ii(R2, R3) Io(R2, R4) Io(R2, R1)

Ii(R2, R4) Io(R2, R1) Io(R2, R3)

Consider the incoming interface Ii(R2, R3), it corresponds in the positive orientation to cycle C2,

and in the negative orientation to cycle C1. This means that, if a packet enters R2 through Ii(R2, R3)

to follow its positively oriented cycle C2, the packet needs to be forwarded to interface Io(R2, R4). To

determine the complementary outgoing interface, it is noted that cycle C4 is complementary to cycle

C2 over the edge implied by the outgoing interface Io(R2, R4). Thus, in this case the complementary

cycle is C4 and the value installed in the complementary outgoing interface of the cycle-following table

is Io(R2, R1), the next hop interface over C4 from R2. In the same way, a packet entering R2 through

Ii(R2, R4) should be forwarded using Io(R2, R1) in order to follow its main cycle, C4, and through

Io(R2, R3) to follow C1, its complementary cycle.

As is clear from the preceding discussion, the first two columns of the cycle-following table can be

used to forward packets along the cellular cycles of the network, and essentially are an implementation

3It may seem that cycle C4 has the opposite orientation to the other cellular cycles; this is an artifact of the stereographic

projection used to represent on the plane what is really an embedding on the sphere. It can be trivially verified that each link

belongs to exactly two cycles, each one flowing in opposing direction, thus satisfying the conditions for a cellular embedding.



6.4. Cycle-Following Protocol 92

for the rotation system induced by the cellular embedding [86]. Note that, the forwarding table is a

permutation over the output interfaces. In addition, the information stored in cycle-following tables are

used to define alternate routes if the corresponding outgoing interface in the second column fails.

6.4 Cycle-Following Protocol
The cycle-following protocol is the key for failure protection in PR. It can be deployed in two different

modes: a) single failure recovery and b) multiple failures recovery. Both modes are operated under

different requirements and are described as follows.

6.4.1 Single Failure Recovery

Once routing and cycle-following tables are constructed, PR can guarantee full failure recovery from

any single link failures in arbitrary 2-connected networks without any additional information. However,

it requires a single bit known as PR bit in the packet header. To achieve this, routers forward packets

normally according to the routing table, until a failure is detected. At that point, the detecting router

marks packets for all affected destinations with the PR bit to indicate that they must be forwarded us-

ing cycle-following tables instead of routing tables. After that, these packets are forwarded along the

complementary interface associated with the failed outgoing interface. Routers receiving packets with

the PR bit set forward them as indicated by the cycle-following interface associated with their ingress

interface. By design, each router forwards packets along a cellular cycle (in this particular case, the

complementary cycle of the failed link), until they eventually reach the router on the other side of the

failed link. When that router attempts to send these packets over the failed link again to continue the

cycle-following process, the failure is encountered one more time, and this can be interpreted as a signal

that cycle-following is no longer necessary. Therefore, the normal shortest path routing can resume. This

signal triggering is also regarded as the termination condition of a cycle-following process.

The concept behind this termination condition is as follows. Since all link weights are positive, the

next hop is always closer to the destination than the current hop. Thus, once the packet reaches the other

side of the failed link, it will not encounter the same failure again if forwarded along the shortest path.

C4

C1 C2 C3R1

R2

R3

R4

R5

R6)

Figure 6.2: Single failure case for illustrating the cycle-following protocol.

Figure 6.2 illustrates an example of a single failure case. Let R1 be the source and R6 be the des-

tination. The bold arrow lines form a shortest path tree rooted at the destination. First, R1 forwards



6.4. Cycle-Following Protocol 93

packets to R2 according to the routing table. Once R2 detects a failure between itself and R3, it re-

alises that the shortest path to the destination is no longer available. Thus, it marks packets destined for

R6 and other affected destinations with PR bit and initiates the cycle-following protocol. In this case,

only packets originated for R6 are determined. Since the outgoing interface of the failed link corre-

sponds to the positive orientation of C1, R2 forwards packets to R4 through its complementary interface

shown in Table 6.1. In addition, other nodes along C2 continue the cycle-following process via the path

R2→R4→R5→R3. Once the packets arrive at R3, their PR bit is reset and forwarded to R6 along the

conventional shortest path, R3→R5→R6.

It is interesting to note that, even this simple scheme can protect a network from specific instances of

multiple link failures. If, for instance, failures are presented not only at R2—R3, but also at R5—R6, the

shortest path forwarding would fail at R5→R6 after it resumes the shortest path routing. Nevertheless,

the cycle-following process is triggered for the second time at R5 where it detects a failure. From here,

the recovery is identical to the previous example.

Algorithm 6.1 summarises the packet processing at each node under PR.

Algorithm 6.1 Packet processing at node s for single failure recovery.

Input: in pkt

1: if in pkt.PR == 0 then

2: if Routing.Iout == failed then

3: in pkt.PR← 1

4: Cycle− follow(in pkt)

5: else

6: Route(in pkt)

7: end if

8: else

9: if Cycle− following.Iout == failed then

10: in pkt.PR← 0

11: Route(in pkt)

12: else

13: Cycle− follow(in pkt)

14: end if

15: end if

6.4.2 Multiple Failures Recovery

Although the aforementioned cycle-following algorithm is capable of handling specific cases of multiple

failures, it does not always guarantee a loop-free forwarding. Consider the scenario in Figure 6.3 for

example. Let R1 be the source and R6 be the destination. With Algorithm 6.1, packets are forwarded

along the normal shortest path until they reach R2 where a failure between R2 and R3 is detected. Con-

sequently, PR bit of the packets is marked and the packets are cycle-followed along the complementary



6.4. Cycle-Following Protocol 94

cycle, C2. However, since another failure is presented, R2 reverts the PR bit to 0 (hence, terminating

the cycle-following process) and forwards the packets via the shortest path. As a result, R2 attempts to

forward packets via the shortest and cycle-following paths until the TTL expires. In this case, the require-

ment for packet processing at R2 is increased without gaining any actual throughput. For other cases,

where packets are caught in a loop between two or more nodes, the network utilisation also increases.

C4

C1 C2 C3R1

R2

R3

R4

R5

R6)
)!*+,,-

Figure 6.3: Multiple failures case for illustrating the cycle-following protocol.

To solve the problem, PR is enriched by adding an additional column in the routing table that stores

the number of hops over the shortest path to each existing destination. The protocol is then updated with

a more detailed termination condition known as the decreasing distance termination condition or DDT.

When a failure is presented, the detecting router sets the PR bit as in Algorithm 6.1, but in addition,

it also marks the packet header with the number of hops remaining along the shortest path to reach the

destination from the router behind the link failure. This information is encoded into CTR bits. When

a packet encounters further failures while cycle-following, each failure-detecting router compares the

number of hops from itself to the destination with that one encoded in the CTR bits. If its own distance

is smaller, the router overwrites CTR bits with this value and clears the PR bit. After that, the packet

can be forwarded along the shortest path. However, if its distance is larger or equal to that of encoded in

CTR bits, the packets are forwarded along the complementary cycle of the failed interface.

This mechanism eliminates the aforementioned forwarding loop issue. In addition, it allows PR to

handle episodes where many links or nodes4 are involved. Given the scenario in Figure 6.3, when R2

detects that R2—R3 is down, it sets the PR bit and set 3 as the value of the CTR bits. After that, R2

attempts to send the packets to R4 via C2. However, it also detects that the link R2—R4 is not active.

Differently from Algorithm 6.1, R2 compares the value encoded in CTR bits with its own distance to the

destination. Since the value stored in the packet header is still smaller, R2 continues the cycle-following

process by forwarding the packets along C1 until it reaches the other side of failure at R3. Once R3

receives the packets, it performs similar comparison. However, it realises that the distance from itself to

the destination is shorter than that of implied by the CTR bits in the packet header. Thus, it clears the

PR bit, replaces the CTR bits with its own distance, and forwards the packets through the shortest path,

4A node failure can be regarded as multiple link failures. For example, if a failed node has four interfaces, the scenario is

identical to a four link failures scenario.



6.5. Properties 95

R3→R5→R6.

Algorithm 6.2 Packet processing at node s for multiple failures recovery.

Input: in pkt

1: if in pkt.PR == 0 then

2: if Routing.Iout == failed then

3: in pkt.PR← 1

4: if in pkt.CTR 6= 0 then

5: if Hops(s, in pkt.d) < in pkt.CTR then

6: in pkt.CTR← Hops(s, in pkt.d)

7: else

8: in pkt.CTR← Hops(s, in pkt.d)

9: end if

10: Cycle− follow(in pkt)

11: else

12: Route(in pkt)

13: end if

14: else

15: if Cycle− following.Iout == failed then

16: if Hops(s, in pkt.d) < in pkt.CTR then

17: in pkt.PR← 0

18: in pkt.CTR← Hops(s, in pkt.d)

19: Route(in pkt)

20: else

21: Cycle− follow(in pkt)

22: end if

23: else

24: Cycle− follow(in pkt)

25: end if

26: end if

27: end if

6.5 Properties
This section proves the correctness of the cycle-following protocol described previously. This is accom-

plished in three steps. First, the effects of applying the cycle-following protocol with no termination

criteria is considered. Second, the proposed termination criteria for multiple failures recovery are proved

that they are sufficient to ensure termination of the protocol. Last, the results of the first two steps are

used to prove that the cycle-following protocol is guaranteed to deliver packets to their destinations if a



6.5. Properties 96

route exists.

6.5.1 Cycle-Following Properties

Consider a network graph that is cellularly embedded on an orientable, closed surface S using a cellular

cycle system. As detailed in Section 6.2, the cellular embedding of G guarantees that each edge e either

separates two different cells or separates a single cell that is “curved”, so that it meets itself along e

(in this case, the main cycle and its complement are the same). Of course, this also applies to arbitrary

compact regions over S.

It is useful to draw parallels between topological operations involving regions in S (and their bound-

aries) and the behaviour of the cycle-following protocol. Therefore, it is proposed that a join operation

is performed on regions in S that share a link along their boundaries. A join performed between two of

these regions consists of removing this shared link, taking the resultant connected region as the result

of the operation. When a packet encounters a link failure, the path it follows under the guidance of the

cycle-following protocol with no termination conditions coincides with a boundary component of the re-

gion obtained by joining all cells in S that have at least one failed link on their boundaries. Appendix A5

provides full proofs for PR. The concept is now used to explore the conditions under which the protocol

terminates.

6.5.2 Termination Properties

The cycle-following protocol presented in Section 6.4 induces continuous looping in the network; it is

only with explicit termination conditions that this can be prevented. Of course, the conditions proposed

in Section 6.4.1 are clearly sufficient for those failure episodes involving a single link. For episodes

involving many links, the route that packets take as a result of these failures and whether the termination

conditions are sufficient in these cases need to be considered. Appendix A.2 shows that the proposed

termination conditions are sufficient. The reason for this is that, when generating new regions by joining

cells, the result is always a set of disconnected regions surrounding those nodes and links inaccessible to

any given packet source. Then, if a curve following the route over the shortest path tree to the destination

encounters one of these regions, it must cross its boundary at least twice: once going in, and once going

out (otherwise, either the source or the destination would lie within the inaccessible region, implying that

there is no available path between them and thus no recovery is possible). By definition, the intersection

point going out is closer to the destination than that of the intersection point going in, which is where

PR and CTR bits are initially set. Since the packets follow the boundary of the region, the protocol is

guaranteed to terminate at the intersection point.

6.5.3 Forwarding Loop Resolution

The argument presented in Section 6.5.2 implies that the termination criteria of Section A.2 are sufficient

to ensure that packets do not loop continuously. To this end, it is noted that, the progress of a packet

through the network is characterised as a set of intercalated episodes of conventional routing and cycle-

following. By definition, the value in CTR bits decreases with each hop when routing. Furthermore,

5The properties of PR are formally proved in Appendix A by Raul Landa.



6.6. Performance Evaluation 97

cycle-following episodes always terminate in nodes with lower CTR than that where they started. Thus,

since these two kinds of forwarding can only decrease the CTR, which is itself finite (only connected

networks with finite weights are considered), a packet is guaranteed to reach the destination in a finite

number of steps.

6.6 Performance Evaluation
This section compare the performance of PR in comparison with FCP and normal re-convergence. Due to

a limited number of existing mechanisms for full-protection, no other approaches can be used unbiasedly.

For consistency, the re-convergence process of routing protocols such as OSPF and IS-IS is regarded as

OSPF re-route throughout the chapter.

6.6.1 Method

A self-implemented Java software model is designed for analysing the path characteristics of the OSPF

re-route, FCP, and PR. These path characteristics include the path length stretch based on link weights

and that of based on the number of hops between a source and a destination. Similar to Chapter 3–5,

simulations are run on a machine with a 2.16 GHz Intel Core 2 Duo processor and 2 GB memory and

the same set of verification methods are used.

In addition, the planarity software6 [16] is used for network graph embedding. The software pro-

vides a range of necessary functions for determining the planarity of a network graph as well as extracting

the combinatorial planar embedding, which provides the adjacency lists in a consistent cyclic order for

each vertex. This is very useful, in particular for constructing the cellular cycle system described in

Section 6.2.

In this chapter, Abilene [133] and Teleglobe [115] are used for simulations due to its planar charac-

teristic that is required by the planarity software.

6.6.2 Overheads

The followings evaluate different types of overheads:

Computational Overhead

Routing using FCP requires on-demand computation at nodes, while traditional re-convergence requires,

in addition, the flooding of failure information throughout the network in order to maintain routing

consistency. Although FCP can reduce its computation overhead by requiring routers to maintain per-

flow routing state, computation of new routes when an FCP arrives at each router is unavoidable. PR, on

the other hand, requires an offline computation of the cellular graph embedding. However, it does not

require any additional computational overhead after this initialisation, making PR suitable for real-time

operations.

Regarding the complexity of an embedding, the general case is NP-hard [86]. However, linear time

algorithms exist for graph embedding on surfaces of known genus [85], which may provide useful 2-cell

embeddings for arbitrary networks. In case of planar graphs, very efficient O(n) algorithms are available

6Available at: http://code.google.com/p/planarity/wiki/History



6.6. Performance Evaluation 98

[16].

Memory Overhead

The amount of memory that PR requires within each router is incurred by two types of information: a)

an additional column in the routing table for each existing destination for storing the number of hops

to the destination node and b) a cycle-following table at each router. Since the former type of memory

overhead is commonly required by most resilient mechanisms and the latter one does not incur as much

memory requirement, it can be concluded that PR does not impose any significant memory overhead.

Packet Overhead

Regarding the overheads in each packet header, FCP employs more bits in the packet header than are

currently available, making its deployment difficult. On the contrary, PR requires a single bit, PR bit,

to indicate the forwarding mechanism, which protect all single link failure cases while additional CTR

bits can be used to store the smallest number of hops from the points of failures to a given destination,

in order to guarantee a full-protection for any combinations of failures. The size of these CTR bits is in

the order of log2(d), where d is the diameter of a network. To be precise, PR needs log2(d + 1) + 1 bits

in the packet header to ensure that all network links are protected. For example, if a network diameter is

equal to 7, the number of bits required is equal to 4. It is recommended that the space in pool 2 DSCP,

which is reserved for experimental or local use [94] can be employed.

Note that, OSPF re-route does not incur any memory overhead or impose any requirements for space

in the packet header. However, the process cannot be directly compared as its recovery performance is

not immediate causing a large amount of packets to drop. This re-convergence is used solely for an

analytical comparison.

6.6.3 Repair Coverage

PR properties are proved in Section 6.5. Such properties imply full repair coverage for any number of

failures. That means PR always guarantee a repair coverage of 100%. Comparison with other resilient

mechanisms is unnecessary as the only known full-protection techniques are FCP and re-convergence.

6.6.4 Stretch

Consistently with prior work, the stretch of a path as the ratio between the total path cost while cycle-

following and the path cost of the normal shortest path. Figure 6.4 illustrates the stretch of Abilene and

Teleglobe under different failure scenarios. The graphs illustrate inverse cumulative distribution function

of the stretch of PR in comparison with OSPF re-route.

It can be seen that fast re-route under PR incur considerable amount of stretch compared to other two

techniques. This may be the result of the range of weights assigned to links in each network topology. It

is interesting to examine the stretch in based on the number of hops instead of the link weights.

Although the link weights are used to calculate the shortest path and the stretch incurred by backup

paths as it often reflects the utilisation of a link, manually assigned weights are not necessarily represent

the link capacity. Figure 6.5 shows the number of hops incurred by the backup paths computed using

normal re-convergence, FCP, and PR. The results in Figure 6.4 and Figure 6.5 are significantly different,



6.6. Performance Evaluation 99

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  4  7  10  13  16  19

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route
FCP

PR

(a) Abilene with 1 failures

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  4  7  10  13  16  19

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route
FCP

PR

(b) Abilene with 4 failures

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  4  7  10  13  16  19

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route
FCP

PR

(c) Teleglobe with 1 failures

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  4  7  10  13  16  19

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route
FCP

PR

(d) Teleglobe with 10 failures

Figure 6.4: Stretch comparison between OSPF re-route, FCP, and fast re-route using PR.

especially for those of Teleglobe. In addition, Abilene with 4 failures cases represent the worst-case

scenarios. In other words, if there are 5 or more failures in Abilene network, the network is partitioned

into two or more isolated areas.

As PR trades off path length for reliability, path stretch is usually higher than that achieved with

FCP. However, since this higher path length stretch is the only price to be paid at forwarding time for

full failure protection using very few bits on the packet header, no real-time computations and only very

limited memory requirements on routers, PR is still a good alternative to other resilient mechanisms.

PR is an engineering solution that enables network providers and equipment manufacturers to per-

form several trade-offs. By performing relatively expensive computations off-line, PR releases routers

from real-time route re-calculation when failures occur, and by providing an ordered basis for the explo-

ration of backup paths, it allows full failure protection through increased stretch for the saved packets.

Overall, PR can be of great usefulness in many IPv4/IPv6 deployment scenarios, particularly because its

exceedingly modest requirements in term of packet header space, which might be very useful in cases

where such space is restricted or the use of IP options is difficult. Depending on the desired deployment

strategy, ISPs can include extra rules and policies to limit PR to certain types of traffic (for example by

limiting it to certain classes identifiable by the remaining DSCP bits).

Although PR is designed to offer intra-domain routing resilience, extending this approach to pre-

fixes outside the boundaries of the ISP announced through BGP is possible. Multi-homed ISPs that



6.7. Conclusions 100

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  3  5  7  9  11  13  15

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route
FCP

PR

(a) Abilene with 1 failures

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  3  5  7  9  11  13  15

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route
FCP

PR

(b) Abilene with 4 failures

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  3  5  7  9  11  13  15

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route
FCP

PR

(c) Teleglobe with 1 failures

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  3  5  7  9  11  13  15

1 
- P

(S
tre

tc
h 
! 

X
)

X

OSPF re-route
FCP

PR

(d) Teleglobe with 10 failures

Figure 6.5: Stretch based on the number of hops of backup paths under OSPF re-route, FCP, and fast

re-route using PR.

receive several announcements for the same prefix via different outgoing links can map this onto a con-

nectivity graph, and use PR to obtain cycle-following routes.

As with all alternate forwarding schemes, PR must cater for the possibility of link flapping. This

can be done simply by ensuring that link-state transitions only happen after the link remains idle long

enough to ensure that packets that encountered the link in its failed state do not encounter it again in its

normal state during the cycle-following process.

6.7 Conclusions
This chapter presented a novel approach for routing resilience known as Packet Re-cycling (PR), which

makes use of cellular cycle system provided by the embedding of a network graph. Unlike other resilient

mechanisms, PR guarantees a full failure protection as long as a source and a destination are not isolated.

Advantageously, PR does not impose any additional requirements on the normal routing operations.

However, in the presence of failures, PR employs an intercalated episodes of shortest path routing and a

mechanism called cycle-following to deliver packets to their corresponding destinations for all affected

paths. The proofs showed that with PR, a packet always reaches the destination in a finite time regardless

of the number of failures presented.

Two techniques, OSPF re-route and FCP were used as benchmarks throughout the evaluation of PR.

The simulation results showed that PR incurred considerable amount of path length stretch. However, it



6.7. Conclusions 101

can be argued that the results of re-routing paths created by PR were not optimised and this imposition

is the only trade-off PR has in order to protect all failures. In contrast, FCP paths incurred both the

requirements for real-time computation and a large space for storing failure information in each packet

header. OSPF re-route, on the other hand, does not provide any means for fast re-route; hence, its

illustrated performance was not immediate.



Chapter 7

Conclusion and Future Work

This chapter concludes the thesis by summarising the work carried out and suggesting areas for future

work.

7.1 Conclusions
Network reliability problem is one of the most concern issues in the current Internet. The overview of

routing in the Internet, both inside a single domain and across domains was given in Chapter 2. The

chapter also detailed the existing routing protocols as well as identified their strengths and weaknesses.

It exposed that the need for convergence process in case of failures and other unpredictable changes can

cause a vast amount of data loss. Evidently, this is not tolerable in many applications, especially for

those that rely on sensitive data transmission. The lack of resilience has also prohibited many service

providers from enabling new range of sophisticated applications.

Existing solutions that has been recently proposed to elevate the problem were described in details.

These techniques were analysed in order to identify their benefits and pitfalls. It was concluded that the

applicability of routing strategy depends ultimately on the demand of network operators. However, none

of the resilient mechanisms can be considered as universal solutions; hence, the research area will still

remain challenging for sometime.

Although a convergence-free network can be obtained through the use of Failure-Carrying Packets

(FCP) [65], it was mentioned that, shifting out from the current routing paradigm requires a lot of effort

and appropriate methods that can offer a seamless migration.

From the analysis, it was clear that none of the existing solutions are optimal. While certain routing

strategies can solve the reliability problem in some networks, they may potentially incur side effects such

as degradation of router performance. Consequently, a number of alternative fast re-route techniques for

routing resilience, which are feasible in practical networks was proposed as follows.

7.1.1 Enhanced Loop-Free Alternates

The Enhanced Loop-Free Alternates, which is also known as E-LFAs was introduced in Chapter 3 to in-

crease the performance of an existing IP Fast Re-Route (IPFRR) solution, Loop-Free Alternates (LFAs)

[8]. An evaluation on various properties of the algorithm namely, paths characteristics, protocol over-

heads, and impacts on network traffic was made to ensure practicability and satisfactory results. Al-



7.1. Conclusions 103

though E-LFAs cannot maximise the repair coverage to a 100% given that network elements are recov-

erable, they provided near optimal results for all topologies used.

7.1.2 Full Fast Failure Recovery

Graph theories are generally applied in routing to provide efficient methods that construct consistent

routing tables. However, some algorithms are both computation and memory expensive. Chapter 4

presented a novel routing technique aiming for failure protection against single link failures known as

Full Fast Failure Recovery (F3R). This approach is suitable for small networks without jeopardising

other operable parts. F3R relies on link disjoint trees assuming the network is a directed graph. If

routing in one tree fails, packets can be routed via another tree successfully if the failed element can be

avoided. However, simulation results showed that, although the technique is better than E-LFAs in term

of repair coverage (i.e. full protection for any recoverable single link failures), it requires significant

computational processing time to the extent that it is not acceptable for real deployment. Moreover, the

stretch of paths under F3R is very high and can potentially increase the traffic congestion in other parts

of a network. Thus, it was concluded that F3R is applicable only for small networks of size less than 100

nodes with low to medium level of utilisation.

7.1.3 Alternate Next Hop Counting

Chapter 5 introduced another IPFRR solution using Alternate Next Hop Counters (ANHC) to provide

full protection for any recoverable link failures. The technique uses a forwarding mechanism known as

alternate next hop counting where each router receiving a re-routed packet considers its ANHC value and

forwards the packet to the next hop accordingly. The technique was evaluated using real, inferred, and

synthetic topologies to ensure as accurate and realistic results as possible. In order to ensure that when a

failure occurs, the recovery scheme does not jeopardise the rest of the network, the traffic characteristics

of post-failure scenarios were also evaluated. The results illustrated that fast re-route using ANHC does

not incur any significant overheads or increase the traffic load more than normal routing re-convergence.

In addition, it was proved that the technique provides full protection and the pre-computed paths can be

used immediately to achieve such performance, while re-convergence process typically requires several

seconds to yield similar outcomes.

7.1.4 Packet Re-Cycling

In general, the traditional routing paradigm allows routers to forward packets mainly based on the des-

tination IP address. Moreover, it requires additional resilient mechanisms to alleviate the packet losses

during network re-convergence. This prohibits the network from migrating towards the future Internet.

Intuitively, a different routing paradigm may be employed as an alternative. Theoretically, an arbitrary

network can be decomposed into cycles through cellular graph embeddings. To be precise, a particular

kind of embedding known as minimum genus embedding, which provides a cellular cycle system was

used to extract these cycles from a network graph. Chapter 6 introduced an alternative approach, Packet

Re-cycling (PR), which utilises the cycle system constructed based on the aforementioned embedding.

Routing are performed normally when there is no failure presented. However, in the presence of failures,



7.2. Future Work 104

PR re-routes the traffic using the cycle-following process, which follows the positive orientation of the

complementary cycle. PR can be deployed for either single link failure recovery or multiple failures

recovery without imposing any expensive requirements.

Simulation results on realistic network topologies showed that, without any optimising technique,

PR incurred considerable amount of stretch in the re-routing paths. However, it was considered to be a

good trade-off given that it is the only price to be paid for full failure protection.

7.2 Future Work
The future work primarily lies on the improvements and analyses of the PR protocol presented in Chapter

6 as it provides full failure protection. The followings describe the tentative areas of work on PR.

7.2.1 Optimisation of PR

Although it is previously mentioned that PR is capable of handling any number of failures, it is important

to note that, the backup paths provided may have high stretch. This is because the technique has not yet

been optimised. Some of these longer backup paths may traverse the boundary of a network. Thus, the

probability of higher stretch backup paths can be found in larger networks. However, different strategies

for overcoming this issue may be used. The future work in this area includes:

Hierarchical Routing

Since PR aims primarily on resilience at an intra-domain level, it is possible to make use of hierarchi-

cal routing concept described in a routing protocol such as OSPF. For example, if an OSPF network

is divided into a number of areas, each area can be embedded separately. This will fix some of the

optimisation problem arisen in PR as follows:

• It reduces the complexity of network embeddings since the size of a graph for each area is smaller

than the whole network.

• The stretch can be potentially lowered due to shorter backup paths because the boundary of each

area is essentially shorter than or equal to the boundary of its network.

• The number of bits required in the packet header (CTR bits) may be smaller than that of non-

hierarchical routing networks due to the fact that the diameter of an OSPF area is equal to (if the

number of areas is 1) or shorter than that of the original topology.

However, these benefits have a trade-off as the links connecting areas being unprotected by PR.

This issue will also be investigated in the future work.

Dual Network Embeddings

Multi-Topology (MT) routing is one of the approaches that can increase the network reliability. This

concept can be used in PR. Chapter 6 described that PR requires a fixed orientation in a cellular cycle

system that is provided by the minimum genus embedding. However, this fixed orientation causes high

stretch for specific backup paths (under different failure combinations). Implementing two different

network embeddings (so-called dual network embeddings) with the opposite orientation can elevate this



7.2. Future Work 105

problem as nodes are capable of choosing the orientation for the cycle-following process so that packets

will be forwarded using the embedding with better route.

7.2.2 Analysing the Repair Coverage of Single Bit PR

It is known that with a single bit, PR can handle all single link failure scenarios. However, it can be used

to re-route packets from certain multiple failures instances depending on their locations and whether they

are recoverable. The future work in this area includes an investigation of the repair coverage of PR for

multiple failures using only single bit in the packet header.

7.2.3 NetFPGA Implementation of PR

In order to analyse the applicability and observe the realistic operations of PR, the technique needs to be

implemented. Since the deployment in real network is infeasible, NetFPGA1 will be used to assess the

performance issues. In addition, the HEN2 infrastructure may be used to validate all practical details of

the protocols.

The aforementioned future work areas will be investigated thoroughly in order to address vital issues

imposed by PR. It is greatly believed that PR will be a very attractive alternative for resilient routing in

networks that require high reliability. This will also allow the deployments of services and applications

that need reliable data transmission.

1A platform used to build a high-speed network switches and routers (http://www.netfpga.org/).
2A heterogeneous experimental network operated by the University College Londons Network Research Group

(http://hen.cs.ucl.ac.uk/).



Appendix A

Packet Re-cycling Proofs

The following sections prove the properties of Packet Re-cycling (PR) mechanism presented in Chapter

61.

A.1 Cycle-Following Properties

(a) Shared edge. (b) Self-contact edge.

Figure A.1: Joins and self-joins of cells.

The proof proceeds from the definitions presented in Section 6.2. Let G = (V,E) be the graph with

vertices V = {v1, v2, ...} and edges E ∈ V × V representing the network topology that is cellularly

embedded on an orientable closed surface, S using a cellular cycle system, C. As detailed in [86, 40],

the cellular embedding of G guarantees that each edge e either separates two different cells, or separates

a single cell that is “curved”, so that it meets itself along e. In the former case, it implies that the two

cells shared edge e. In the latter case, edge e is a self-contact edge of the cell (see Figure A.1).

Using cell boundaries in G as building blocks, paths between any node pairs can be constructed on

a closed surface, S, depending on the set of failures present in the network. It is necessary to define the

1The properties in this appendix are proved by Raul Landa.



A.1. Cycle-Following Properties 107

following terms:

Definition A.1 (Join boundary). The two distinct cells are considered to have joined along a shared

edge, e if the edge is removed; thus it creates a new maximally connected subset of S whose single

boundary component is formed by joining the boundaries of the original two cells, once that the shared

edge is removed. This creates a closed curve that follows the boundary of the joined cell. This boundary

is called the join boundary associated with e in S.

Definition A.2 (Self-join boundary). A single cell has self-join along a self-contact edge e if the edge

is removed; thus it creates a new maximally connected subset of S whose boundary is the union of the

connected boundary components of the original cell, after the removal of the edge. In this case, there

are two boundary components, each one associated with one of the nodes that e is incident to. Each one

of these boundary components is a closed, continuous curve passing through that node. These boundary

components are called the self-join boundary associated with e in S.

Definition A.3 (Failure profile). A failure profile, F ⊂ E, is defined as a set of failed edges, unavailable

for traffic flow.

It is advantageous to understand the effects that a given F has on cycle-following over S. Therefore,

the definition of failure boundary is defined as follows:

Definition A.4 (Failure boundary). A failure boundary, ∂F is defined as a boundary induced by the

failure profile F in S as the union of all joined boundaries of shared edges in F with all the self-join

boundaries of all self-contact edges in F .

A topological characteristics of ∂F is described using the following theorem:

Theorem A.1. ∂F consists of a set of closed curves. These curves are called F -boundary cycles, which

ares denoted as B, so that ∂F = {B1, B2, ..., Bk} for a failure boundary with k-connected components.

Proof. Let F = {e1, e2, ..., en} be a failure profile. ∂F can be constructed by performing the joins

required by F one by one. Let ∂F = ∅ and consider e1, the first edge in F , only two following cases are

possible:

• e1 is a shared edge between two cells. In this case, ∂F becomes the joined boundary of e1, which

is a closed curve.

• e1 is a self-contact edge of a cell. In this case, ∂F becomes the self-join boundary of e1, which is

a set of two closed curves.

The proof continues with consideration of links ei ∈ F where i > 1, those ei which are not yet in

∂F are covered by the previous two cases, and their corresponding closed curves are thus immediately

added to ∂F . On the other hand, for those ei already in F , the following possibilities are considered:

• ei is shared between ∂F and an external cell. In this case, the cell outside ∂F is joined with

∂F along e and the new border segment acquired in this process becomes homotopic to the orig-

inal curve between the end points of the failed edge. Therefore, the topological structure of the

boundary remains unchanged, remaining a collection of closed curves.



A.1. Cycle-Following Properties 108

• ei is shared between two components of ∂F . In this case, when the join is performed, both

components are broken; hence, they are removed from ∂F – and a new closed curve formed by

joining the two Bj at the two end points of ei is included in ∂F instead.

• ei is a self-contact edge of Bj . In this case, when performing the self-join, this curve is broken

and removed from ∂F , with the two new boundary components resulting from the self-join being

included in ∂F .

Theorem A.2 stated below concerns the behaviour of a packet encountering a failure and then being

forwarded using the cycle-following protocol described in Section 6.4 with no termination condition.

Theorem A.2. Let a packet encounter a failed edge, ei ∈ F as it is forwarded using conventional

routing. If, at that point, the packet is forwarded using cycle-following with no termination condition,

the packet follows Bj , the F -boundary cycle induced by F that passes through that point.

Proof. The proof is proceeded by induction on |F |. For |F | = 1, let F1 = {e1} and consider the

case where e1 is a shared link between two cells. In this case, when the failure is encountered, the

protocol forwards the packet following the boundary corresponding to the complementary cycle of e1,

which continues until the failure is encountered once more. Then, the packet is forwarded following

the boundary of the complementary cycle of the cycle it is currently following; this corresponds to the

original cycle which included e1 in the positive orientation. Thus, for |F | = 1, B1 is just the join

boundary of e1, and ∂F1 = {B1}. Therefore, the only F -boundary cycle of F1 is followed. In the

case of e1 being a self-contact edge, the packet follows either of the two cycles formed by the failure,

depending on what node it starts cycle-following. Since both cycles are F -boundary cycles of F1 (they

coincide with the self-join boundary of e1), this proves the theorem for |F | = 1. Now, assume that the

case holds for |F | = n − 1, and focus on the behaviour of the protocol with one additional failed link

so that Fn = {e1, e2, ..., en} and the failure region becomes ∂Fn. First, note that, if en does not lie

in Bn−1
j , the F -boundary cycle of Fn−1 that the packet is following by assumption, the followed path

remains unchanged, and the theorem is proved. If, however, en does lie in Bn−1
j , the following scenarios

are considered:

• en is shared between Bn−1
j and an external cell. In this case, it can be seen that the packet follows

the complementary cycle of en along the border of this cell, until en is encountered again, at which

point forwarding following the previous cycle resumes. Thus, the route taken coincides with the

join boundary of Bn−1
j with the cell defined by the complementary cycle of en.

• en is shared between two components of ∂F . This case is very similar to the previous one. When

the packet reaches en, they follow Bn−1
k the F -boundary cycle with which Bn−1

j shares en, until

the failure is encountered again and forwarding proceeds along Bn−1
j . This route coincides with

the boundary of the region obtained by joining the two regions which have Bn−1
j and Bn−1

k as

boundaries, which itself is an F -boundary cycle in ∂Fn.



A.2. Termination Properties 109

• en is a self-contact edge of Bn−1
j . In this case, en is associated with the same cycle in both the

complementary and the positively oriented directions. This cycle must consist, thus, of two cycles

starting and ending in the nodes at both ends of en, which are then connected through en to build

a single cycle. Therefore, when the failure at en is encountered and the packet is being forwarded

along its complementary cycle, the packet simply traverses one of the cycles at the end points of

en, depending on which end point of en is the packet in. Since both of these cycles are in the

self-join boundary of en, they are both F -boundary cycles in ∂Fn.

A.2 Termination Properties
Using Theorem A.2, the termination properties of PR can be proved as follows:

Theorem A.3. Let G = {V,E} be a connected graph of which a cellular embedding is known, and

let each e ∈ E be associated with a cost c > 0, which is used to calculate a shortest path tree T

rooted at a given destination d. Furthermore, consider a failure profile, Fn = {e1, e2, ..., en} applied

to G. Let a packet sent from any source node s 6= d encounters, at a node f , a failed edge ef ∈ Fn

as it is being routed along T towards d. Then, if there is a path between s and d, the cycle-following

protocol described in Section 6.4.1 extended with the termination condition detailed in Section 6.4.2

always terminates.

Proof. The proof is proceeded by induction on n, the number of failures of the failure profile, F , being

considered. For the case n = 1 (thus implying F = {e1}), the protocol terminates when the failure is

encountered for a second time, after the failed link has been avoided and the distance to the destination

has been reduced by an amount equal to the cost of e1 since all link weights are positive. Therefore, the

theorem holds for n = 1. Assume that the theorem holds for a failure profile Fn−1 with n − 1 failures,

and consider the addition of a single extra failure to create Fn = {e1, e2, ..., en}. By Theorem A.2, it is

known that, before the consideration of a failure at en, the packet follows Bn−1
j , an F -boundary cycle

induced by Fn−1 that passes through f . If en is neither shared with Bn−1
j , nor a self-contact edge for

Bn−1
j , the path followed by the packet is not modified and the protocol terminates at the same node

where it terminates when considering Fn−1, immediately proving the theorem. Two possibilities are

described below:

• en is shared with Bn−1
j . In this case, consider en as being shared either with another F -boundary

cycle Bn−1
k or with an external cell. In both cases, there is at least one node along Bn

j , the new

cycle followed by the packet, where the conditions for termination is known to hold – the node on

the other side of en. This is because Bn
j must visit all noes that were being visited previously by

Bn−1
j .

• en is a self-contact edge for Bn−1
j . In this case, G is disconnected into two disjoint regions, each

one having as a boundary component one of the two cycles created by the self-join. Since the case

where f is disconnected from node d is explicitly removed, it is known that d lies inside a region



A.3. Forwarding Loop Resolution 110

f!
Ri

fs d

Ro

n
Bp

*

Figure A.2: Cycle-following protocol termination with self-joins.

with an F -boundary cycle that includes f (Ro in Figure A.2). Furthermore, f ′, the node at the

other side of en and within the disconnected region (Ri in Figure A.2), is the parent of f in T ,

and is thus closer to d than f . Since, by construction, there must be a continuous path from s to d

under failure-free conditions, this path must start at f , enter the disconnected region through en,

and then eventually re-enter the connected component where d lies. Thus, there must be a node

along Bn
j which is closer to d than f , and the protocol is guaranteed to terminate there.

A.3 Forwarding Loop Resolution
As shown in Section 6.4.1, the cycle-following protocol induces continuous looping in the network

without explicit termination conditions addressed in Section 6.4.2. The following proves that those

conditions proposed in Section 6.4.2 are sufficient to ensure that packets do not loop continuously.

Theorem A.4. If there is a path available from a given source node s and a given destination node d,

the protocol always reaches the destination in a finite time.

Proof. The proof is simple. First, note that the progress of a packet through the network is characterised

as a set of intercalated episodes of conventional routing and cycle-following processes. By definition, the

distance towards the destination when routing decreases with each hop. Furthermore, by Theorem A.3,

it is proved that cycle-following episodes terminate, and the termination criteria described in Section

6.4.2 ensure that cycle-following episodes always terminate closer to the destination than where they

start. Thus, since these two kinds of forwarding can only decrease the distance to the destination, which

is itself finite (only connected networks are considered), the destination is eventually reached in a finite

number of steps.



Appendix B

Acronyms and Abbreviations

ABR Area Border Router

Adj-RIB-In Adjacent Information Base, Incoming

Adj-RIB-Out Adjacent Information Base, Outgoing

ANHC Alternate Next Hop Counter

ARPANET Advanced Research Projects Agency Network

AS Autonomous System

ASN AS Number

ATM Asynchronous Transfer Mode

BA Barabasi-Albert

BA-2 Barabasi-Albert-2

BGP Border Gateway Protocol

CCP Cost-Carrying Packets

CIDR Classless Inter-Domain Routing

CLV Code-Length-Value

CSNP Complete Sequence Number PDU

DDT Decreasing Distance Termination

DG-RON Destination-Guided Detouring via Resilient Overlay Network

DIS Designated Intermediate System

DNS Domain Name System

DoS Denial-of-Service



Appendix B. Acronyms and Abbreviations 112

DSC Downstream Condition

DSCP Differentiated Services Code Point

DUAL Diffusing Update Algorithm

DVMRP Distance Vector Multicast Routing Protocol

EBGP External BGP

ECR Edge Controllable Routing

ECMP Equal-Cost Multi-Paths

EGP Exterior Gateway Protocol

EIGRP Enhanced Interior Gateway Routing Protocol

E-LFA Enhanced Loop-Free Alternates

F3R Full Fast Failure Recovery

FCP Failure Carrying Packets

FDDI Fibre Distributed Data Interface

FIB Forwarding Information Base

FIR Failure Insensitive Routing

HMAC - MD5 Hashed Message Authentication Codes - Message Digest 5

IANA Internet Assigned Numbers Authority

IBGP Internal BGP

IETF Internet Engineering Task Force

IGP Interior Gateway Protocol

IGRP Interior Gateway Routing Protocol

IP Internet Protocol

IPFRR IP Fast Re-Route

IPSec IP Security

IPv4 IP version 4

IPv6 IP version 6

IS-IS Intermediate System to Intermediate System



Appendix B. Acronyms and Abbreviations 113

ISP Internet Service Provider

LAN Local Area Network

LFA Loop-Free Alternates

LFC Loop-Free Condition

Loc-RIB Local Routing Information Base

LSA Link-State Advertisement

LSP Link-State Protocol Data Unit

M-ISIS Multi-Topology Routing in IS-IS

MP Merge Point

MT-OSPF Multi-Topology in OSPF

MT-OSPFv3 Multi-Topology in OSPFv3

MIB Management Information Base

MLU Maximum Link Utilisation

MPLS Multi-Protocol Label Switching

MPLS-FRR MPLS Fast Re-Route

MT Multi-Topology

MTU Maximum Transmission Unit

NAT Network Address Translation

NBMA Non-Broadcast Multi-Access

NET Network Entity Title

NGN Next Generation Network

NPC Node-Protection Condition

NS-2 Network Simulator 2

NSSA Not-So-Stubby-Area

oFIB ordered FIB

OSI Open Systems Interconnection

OSPF Open Shortest Path First



Appendix B. Acronyms and Abbreviations 114

OSPFv2 OSPF version 2

OSPFv3 OSPF version 3

PDU Protocol Data Unit

PLR Point of Local Repair

PLSN Path Locking with Safe-Neighbours

PoP Point-of-Presence

PRC Packet Re-cycling

PSNP Partial Sequence Number PDU

QoS Quality of Service

RIB Routing Information Base

RIP Routing Information Protocol

RIP-MTI RIP with Minimal Topology Information

RIPng RIP next generation

RIPv1 RIP version 1

RIPv2 RIP version 2

rLFAs Recursive Loop-Free Alternates

rMRC Relaxed MRC

RON Resilient Overlay Network

RRL Resilient Routing Layers

RSVP Resource ReServation Protocol

RSVP-TE RSVP Traffic Engineering

RT Route Tag

RTE Routing Table Entry

SLA Sevice Level Agreement

SPF Shortest Path First

SRLG Shared Risk Link Group

SRMG Shared Risk Mixed Group



Appendix B. Acronyms and Abbreviations 115

SRNG Shared Risk Node Group

TCP Transmission Control Protocol

TE Traffic Engineering

TLV Type-Length-Value

TOS Type of Service

UDP User Datagram Protocol

VoD Video on Demand



Bibliography

[1] C. Alaettinoglu, V. Jacobson, and H. Yu. Towards milli-second IGP conver-

gence. IETF Internet draft, Nov 2000. http://tools.ietf.org/html/

draft-alaettinoglu-isis-convergence-00.

[2] B. Albrightson, J. J. Garcia-Luna-Aceves, and J. Boyle. EIGRP—a fast routing protocol based on

distance vectors. In Proc. Networld Interop, pages 1–13, Berlin, Germany, Jun 1994.

[3] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris. The case for Resilient Overlay

Network. In Proc. USENIX HotOS, pages 152–157, Elmau/Oberbayern, Germany, May 2001.

[4] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris. Resilient Overlay Network. In

Proc. ACM SOSP, pages 131–145, Banff, Canada, Oct 2001.

[5] G. Apostolopoulos, D. Williams, S. Kamat, R. Guerin, A. Orda, and T. Przygienda. QoS rout-

ing mechanisms and OSPF extensions. RFC 2676, Aug 1999. http://tools.ietf.org/

html/rfc2676.

[6] R. Atkinson and M. Fanto. RIPv2 cryptographic authentication. RFC 4822, Feb 2007. http:

//tools.ietf.org/html/rfc4822.

[7] A. Atlas. U-turn alternates for IP/LDP fast-reroute. IETF Internet draft, Feb 2006. http:

//tools.ietf.org/html/draft-atlas-ip-local-protect-uturn-03.

[8] A. Atlas and A. Zinin. Basic specification for IP fast reroute Loop-Free Alternates. RFC 5286,

Sep 2008. http://tools.ietf.org/html/rfc5286.

[9] R. Bartos and M. Raman. A heuristic approach to service restoration in MPLS networks. In Proc.

IEEE ICC, pages 117–121, Helsinki, Finland, 2001 Jun.

[10] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[11] D. P. Bertsekas. A simple and fast label correcting algorithm for shortest paths. Networks,

23(7):703–709, 1993.

[12] R. Bhandari. Optimal physical diversity algorithms and survivable networks. In Proc. IEEE ISCC,

pages 433–441, Alexandria, Egypt, Jul 1997.

http://tools.ietf.org/html/draft-alaettinoglu-isis-convergence-00
http://tools.ietf.org/html/draft-alaettinoglu-isis-convergence-00
http://tools.ietf.org/html/rfc2676
http://tools.ietf.org/html/rfc2676
http://tools.ietf.org/html/rfc4822
http://tools.ietf.org/html/rfc4822
http://tools.ietf.org/html/draft-atlas-ip-local-protect-uturn-03
http://tools.ietf.org/html/draft-atlas-ip-local-protect-uturn-03
http://tools.ietf.org/html/rfc5286


Bibliography 117

[13] N. Biggs. Algebraic Graph Theory. Cambridge University Press, 2nd edition, 1993.

[14] O. Bonaventure, M. Shand, S. Bryant, and S. Previdi. Loop-free convergence us-

ing oFIB. IETF Internet draft, Feb 2008. http://tools.ietf.org/html/

draft-ietf-rtgwg-ordered-fib-02.

[15] E. Bouillet and J.-F. Labourdette. Distributed computation of shared backup path in mesh optical

networks using probabilistic methods. IEEE/ACM Transactions on Networking, 12(5):920–930,

2004.

[16] J. M. Boyer and W. J. Myrvold. On the cutting edge: Simplified O(n) planarity by edge addition.

Journal of Graph Algorithms and Applications, 8(3):241–273, 2004.

[17] S. Bryant, C. Filsfils, S. Previdi, and M. Shand. IP fast reroute using tunnels. IETF Internet

draft, Nov 2007. http://tools.ietf.org/id/http://tools.ietf.org/html/

draft-bryant-ipfrr-tunnels-03.

[18] S. Bryant, M. Shand, and S. Previdi. IP fast reroute using not-via ad-

dresses. IETF Internet draft, Feb 2008. http://tools.ietf.org/html/

draft-ietf-rtgwg-ipfrr-notvia-addresses-03.

[19] R. Callon. Use of OSI IS-IS for routing in TCP/IP and dual environments. RFC 1195, Dec 1990.

http://tools.ietf.org/html/rfc1195.

[20] B. Chun, J. M. Hellerstein, R. Huebsch, S. R. Jeffery, B. T. Loo, S. Mardanbeigi, T. Roscoe,

S. Rhea, S. Shenker, and I. Stoica. Querying at Internet scale. In Proc. ACM SIGMOD, pages

935–936, Paris, France, Jun 2004.

[21] T. Cicic, A. F. Hansen, A. Kvalbein, M. Hartmann, R. Martin, and M. Menth. Relaxed Multiple

Routing Configurations for IP fast reroute. In Proc. IEEE/IFIP NOMS, pages 457–464, Bahia,

Brazil, Apr 2008.

[22] J. D. Clercq, D. Ooms, M. Carugi, and F. L. Faucheur. BGP-MPLS IP Virtual Private Networks

(VPNs) extension for IPv6 VPN. IETF Internet draft, Sep 2006. http://tools.ietf.org/

html/rfc4659.

[23] R. Cohen, K. Erez, D. ben Avraham, and S. Havlin. Resilience of the Internet to random break-

downs. Physical Review Letters, 85(21):4625–4628, 2000.

[24] R. Coltun, D. Ferguson, J. Moy, and A. Lindem. OSPF for IPv6. RFC 5340, Jul 2008. http:

//tools.ietf.org/html/rfc5340.

[25] S. Deering and R. Hinden. Internet Protocol, version 6 (IPv6) specification. RFC 2460, Dec 1998.

http://tools.ietf.org/html/rfc2460.

http://tools.ietf.org/html/draft-ietf-rtgwg-ordered-fib-02
http://tools.ietf.org/html/draft-ietf-rtgwg-ordered-fib-02
http://tools.ietf.org/id/http://tools.ietf.org/html/draft-bryant-ipfrr-tunnels-03
http://tools.ietf.org/id/http://tools.ietf.org/html/draft-bryant-ipfrr-tunnels-03
http://tools.ietf.org/html/draft-ietf-rtgwg-ipfrr-notvia-addresses-03
http://tools.ietf.org/html/draft-ietf-rtgwg-ipfrr-notvia-addresses-03
http://tools.ietf.org/html/rfc1195
http://tools.ietf.org/html/rfc4659
http://tools.ietf.org/html/rfc4659
http://tools.ietf.org/html/rfc5340
http://tools.ietf.org/html/rfc5340
http://tools.ietf.org/html/rfc2460


Bibliography 118

[26] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink. Small forwarding tables for fast routing

lookups. In Proc. ACM SIGCOMM, pages 3–14, Cannes, France, Sep 1997.

[27] E. W. Dijkstra. A note on two problems in connection with graphs. Numerische Mathematik,

1(6):269–270, 1959.

[28] M. Domingues, C. Friacas, and P. Veiga. Is global IPv6 deployment on track? Internet Research,

17(5):505–518, 2007.

[29] J. C. Doyle, D. L. Alderson, L. Li, S. Low, M. Roughan, S. Shalunov, R. Tanaka, and W. Will-

inger. The ’robust yet fragile’ nature of the Internet. Proc. of the National Academy of Sciences,

102(41):14497–14502, 2005.

[30] D. A. Dunn, W. D. Grover, and M. H. MacGregor. Comparison of k-shortest paths and maximum

flow routing for network facility restoration. IEEE JSAC, 12(1):88–99, 1994.

[31] G. Ellinas, A. G. Hailemariam, and T. E. Stern. Protection cycles in mesh WDM networks. IEEE

JSAC, 18(10):1924–1937, 2000.

[32] D. Estrin and Y. Rekhter. A unified approach to inter-domain routing. RFC 1322, May 1992.

http://tools.ietf.org/html/rfc1322.

[33] D. Farinachi. Introduction to enhanced igrp (EIGRP). Cisco’s Design Technotes: 13669, Jul 1993.

[34] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, 1962.

[35] P. Francois, O. Bonaventure, M. Shand, S. Bryant, and S. Previdi. Loop-free conver-

gence using oFIB. IETF Internet draft, Feb 2008. http://tools.ietf.org/html/

draft-ietf-rtgwg-ordered-fib-02.

[36] J. J. Garcia-Luna-Aceves. A unified approach to loop-free routing using distance vector or link

states. ACM SIGCOMM Computer Communication Review, 19(4):212–223, 1989.

[37] GEANT. The GEANT topology. Online, Dec 2004. http://www.geant.net/upload/

pdf/GEANT Topology 12-2004.pdf.

[38] S. Gjessing. Implementation of two resilience mechanisms using multi topology routing and stub

routers. In Proc. IEEE AICT/ICIW, pages 29–29, Guadeloupe, French Caribbean, Feb 2006.

[39] M. R. Goyal and K. K. W. Feng. Achieving faster failure detection in OSPF networks. In Proc.

IEEE ICC, pages 296–300, Anchorage, AK, May 2003.

[40] J. Gross and J. Yellen. Graph Theory and its Applications. CRC Press, 1999.

[41] J. L. Gross and R. H. Rosen. A linear time planarity algorithm for 2-complexes. Journal of the

ACM, (4):611–617, 1979.

http://tools.ietf.org/html/rfc1322
http://tools.ietf.org/html/draft-ietf-rtgwg-ordered-fib-02
http://tools.ietf.org/html/draft-ietf-rtgwg-ordered-fib-02
http://www.geant.net/upload/pdf/GEANT_Topology_12-2004.pdf
http://www.geant.net/upload/pdf/GEANT_Topology_12-2004.pdf


Bibliography 119

[42] W. D. Grover. Mesh-Based Survivable Networks, Options and Strategies for Optical MPLS,

SONET, and ATM Networking. Prentice-Hall, first edition, 2004.

[43] W. D. Grover and D. Stamatelakis. Cycle-oriented distributed preconfiguration: Ring-like speed

with mesh-like capacity for self-planning network restoration. In Proc. IEEE ICC, pages 537–543,

Atlanta, GA, Jun 1998.

[44] S. H. Gunderson. Global IPv6 statistics—measuring the current state of IPv6 for ordinary users.

RIPE 57, Oct 2008.

[45] A. Haider and R. Harris. Recovery techniques in next generation networks. IEEE Communications

Surveys & Tutorials, 9(3):2–17, 2007.

[46] A. F. Hansen, A. Kvalbein, T. Cicic, S. Gjessing, and O. Lysne. Resilient routing layers for

recovery in packet network. In Proc. IEEE DSN, pages 238–247, Yokohama, Japan, Jun 2005.

[47] C. Hedrick. Routing Information Protocol. RFC 1058, Jun 1988. http://tools.ietf.

org/html/rfc1058.

[48] C. L. Hedrick. An introduction to IGRP. Cisco’s Technology White Paper: 26825, Aug 1991.

[49] H. Huang and J. Copeland. Hamiltonian cycle protection: A novel approach to mesh WDM

optical network protection. In Proc. IEEE HPSR, pages 31–35, Dallas, TX, May 2001.

[50] C. Huitema. Routing in the Internet. Prentice-Hall, second edition, 2000.

[51] G. Huston. IPv4 exhaustion nears. The ISP Column, 2007.

[52] G. Iannaccone, C.-N. Chuah, R. Mortier, S. Bhattacharyya, and C. Diot. Analysis of link failures

in an IP backbone. In Proc. ACM IMW, pages 237–242, Marseille, France, Nov 2002.

[53] A. Iselt, A. Kirstadter, A. Pardigon, and T. Schwabe. Resilient routing using MPLS and ECMP.

In Proc. IEEE HPSR, pages 345–349, Phoenix, AZ, Apr 2004.

[54] ISO/IEC. Intermediate System to Intermediate System intra-domain routeing information ex-

change protocol for use in conjunction with the protocol for providing the connectionless-mode

network service (ISO 8473). Technical Report 10589:2002, ISO/IEC, Nov 2002.

[55] A. Itai and M. Rodeh. The multi-tree approach to reliability in distributed networks. In Proc.

IEEE SFCS, pages 137–147, Singer Island, FL, Oct 1984.

[56] A. Itai and M. Rodeh. The multi-tree approach to reliability in distributed networks. Information

and Computation, 79(1):43–59, 1988.

[57] J. Kang and M. J. Reed. Bandwidth protection in MPLS networks using p-cycle structure. In

Proc. DRCN, pages 356–362, Alberta, Canada, Oct 2003.

http://tools.ietf.org/html/rfc1058
http://tools.ietf.org/html/rfc1058


Bibliography 120

[58] D. Katz, K. Kompella, and D. Yeung. Traffic engineering (TE) Extensions to OSPF Version 2.

RFC 3630, Sep 2003. http://tools.ietf.org/html/rfc3630.

[59] S. Keshav. An Engineering Approach to Computer Networking: ATM Networks, the Internet, and

the Telephone Network. Addison-Wesley, 1997.

[60] S. Kini, S. Ramasubramanian, A. Kvalbein, and A. F. Hansen. Fast recovery from dual link

failures in IP networks. In Proc. IEEE INFOCOM, pages 1368–1376, Rio de Janeiro, Brazil, Apr

2009.

[61] A. Kvalbein, T. Cicic, and S. Gjessing. Post-failure routing performance with Multiple Routing

Configurations. In Proc. IEEE INFOCOM, pages 98–106, Anchorage, AK, May 2007.

[62] A. Kvalbein, A. F. Hansen, T. Cicic, S. Gjessing, and O. Lysne. Fast recovery from link failures

using resilient routing layers. In Proc. IEEE ISCC, pages 554–560, Cartagena, Spain, Jun 2005.

[63] A. Kvalbein, A. F. Hansen, T. Cicic, S. Gjessing, and O. Lysne. Fast IP network recovery using

Multiple Routing Configurations. In Proc. IEEE INFOCOM, pages 23–29, Barcelona, Spain, Apr

2006.

[64] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed Internet routing convergence.

IEEE/ACM Transactions on Networking, 9(3):293–306, 2001.

[65] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson, S. Shenker, and I. Stoica. Achieving

convergence-free routing using Failure-Carrying Packets. In Proc. ACM SIGCOMM, pages 241–

252, Kyoto, Japan, Aug 2007.

[66] A. Li, P. Francois, and X. Yang. On improving the efficiency and manageability of notvia. In

Proc. ACM CoNEXT, pages 1–12, New York, NY, Dec 2007.

[67] A. Li, X. Yang, and D. Wetherall. SafeGuard: safe forwarding during route changes. In Proc.

ACM CoNEXT, pages 301–312, Rome, Italy, Dec 2009.

[68] W. Liu, H. T. Karaoglu, A. Gupta, M. Yuksel, and K. Kar. Edge-to-edge bailout forward con-

tracts for single-domain Internet services. In Proc. IEEE IWQoS, pages 259–268, Enschede, The

Netherlands, June 2008.

[69] S. Sae Lor, R. Landa, R. Ali, and M. Rio. Handling transient link failures using alternate next hop

counters. In Proc. IFIP Networking, LNCS 6091, pages 186–197, Chennai, India, May 2010.

[70] G. Malkin. RIP version 2. RFC 2453, Nov 1998. http://tools.ietf.org/html/

rfc2453.

[71] G. Malkin and F. Baker. RIP version 2 MIB extension. RFC 1724, Nov 1994. http://tools.

ietf.org/html/rfc1724.

http://tools.ietf.org/html/rfc3630
http://tools.ietf.org/html/rfc2453
http://tools.ietf.org/html/rfc2453
http://tools.ietf.org/html/rfc1724
http://tools.ietf.org/html/rfc1724


Bibliography 121

[72] G. Malkin and R. Minnear. RIPng for IPv6. RFC 2080, Jan 1997. http://tools.ietf.

org/html/rfc2080.

[73] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and C. Diot. Characterization

of failures in an IP backbone network. In Proc. IEEE INFOCOM, pages 2307–2317, Hong Kong,

Mar 2004.

[74] R. Martin, M. Menth, M. Hartmann, T. Cicic, and A. Kvalbein. The effect of combining loop-free

alternates and not-via addresses. Research Report 432, Institute of Computer Science, University

of Würzburg, Würzburg, Germany, Sep 2007.

[75] J. M. McQuillan, I. Richer, and E. C. Rosen. The new routing algorithm for the ARPANET. IEEE

Transactions on Communications, 28(5):711–719, 1980.

[76] M. Medard, S. G. Finn, and R. A. Barry. A novel approach to automatic protection switching

using trees. In Proc. IEEE ICC, pages 272–276, Québec, Canada, Jun 1997.

[77] M. Medard, S. G. Finn, and R. A. Barry. Redundant trees for preplanned recovery in arbitrary

vertex-redundant or edge-redundant graphs. IEEE/ACM Transactions on Networking, 7(5):641–

652, 1999.

[78] D. Medhi and K. Ramasamy. Network Routing: Algorithms, Protocols, and Architectures. Morgan

Kaufmann Publishers, 2007.

[79] A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: an approach to universal topology gener-

ation. In Proc. IEEE MASCOTS, pages 346–353, Cincinnati, OH, Aug 2001.

[80] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot. Traffic matrix estimation:

Existing techniques and new directions. In Proc. ACM SIGCOMM, pages 161–174, Pittsburgh,

PA, Aug 2002.

[81] M. Menth and R. Martin. Network resilience through multi-topology routing. Research Report

335, Institute of Computer Science, University of Würzburg, Würzburg, Germany, May 2004.

[82] C. Metz, C. Barth, and C. Filsfils. Beyond MPLS...less is more. IEEE Internet Computing,

11(5):72–76, 2007.

[83] G. Meyer. Extensions to RIP to support demand circuits. RFC 1582, Feb 1994. http://

tools.ietf.org/html/rfc1582.

[84] S. Mirtorabi and A. Roy. Multi-Topology routing in OSPFv3 (MT-OSPFv3). IETF Internet draft,

Jul 2007. http://tools.ietf.org/html/draft-ietf-ospf-mt-ospfv3-03.

[85] B. Mohar. A linear time algorithm for embedding graphs in an arbitrary surface. SIAM Journal

on Discrete Mathematics, 12(1):6–26, 1999.

[86] B. Mohar and C. Thomassen. Graphs on Surfaces. The Johns Hopkins University Press, 2001.

http://tools.ietf.org/html/rfc2080
http://tools.ietf.org/html/rfc2080
http://tools.ietf.org/html/rfc1582
http://tools.ietf.org/html/rfc1582
http://tools.ietf.org/html/draft-ietf-ospf-mt-ospfv3-03


Bibliography 122

[87] D. R. Morrison. PATRICIA—practical algorithm to retrieve information coded in alphanumeric.

Journal of Association for Computing Machinery, 15(4):514–534, 1968.

[88] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala. Path splicing. In Proc. ACM SIGCOMM,

pages 27–38, Seattle, WA, Aug 2008.

[89] J. Moy. Multicast extensions to OSPF. RFC 1584, Mar 1994. http://tools.ietf.org/

html/rfc1584.

[90] J. Moy. OSPF version 2. RFC 2328, Apr 1998. http://tools.ietf.org/html/

rfc2328.

[91] J. T. Moy. OSPF: Anatomy of an Internet Routing Protocol. Addison-Wesley, 1998.

[92] P. Murphy. The OSPF Not-So-Stubby Area NSSA option. RFC 3101, Jan 2003. http://

tools.ietf.org/html/rfc3101.

[93] S. Nelakuditi, S. Lee, Y. Yu, Z.-L. Zhang, and C.-N. Chuah. Fast local rerouting for handling

transient link failures. IEEE/ACM Transactions on Networking, 15(2):359–372, 2007.

[94] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the differentiated services filed (DS

field) in the IPv4 and IPv6 headers. RFC 2474, Dec 1998. http://tools.ietf.org/

html/rfc2474.

[95] R. Ogier and N. Shacham. A distributed algorithm for finding shortest pairs of disjoint paths. In

Proc. IEEE INFOCOM, pages 173–192, Ontario, Canada, Apr 1989.

[96] B. O’Neill. Elementary Differential Geometry. Academic Press, 1966.

[97] P. Pan, G. Swallow, and A. Atlas. Fast reroute extensions to RSVP-TE for LSP tunnels. RFC

4090, May 2005. http://tools.ietf.org/html/rfc4090.

[98] J. Postel. Internet Protocol. RFC 791, Sep 1981. http://tools.ietf.org/html/

rfc791.

[99] T. Przygienda, N. Shen, and N. Sheth. M-ISIS: Multi topology (MT) routing in Intermediate

System to Intermediate Systems (IS-ISs). RFC 5120, Feb 2008. http://tools.ietf.org/

html/rfc5120.

[100] P. Psenak, S. Mirtorabi, A. Roy, L. Nguyen, and P. Pillay-Esnault. Multi-Topology routing in

OSPF. RFC 4915, Jun 2007. http://tools.ietf.org/html/rfc4915.

[101] T. Pusateri. Distance Vector Multicast Routing Protocol. IETF Internet draft, Oct 2003. http:

//tools.ietf.org/html/draft-ietf-idmr-dvmrp-v3-11.

[102] S. Qazi and T. Moors. Scalable resilient overlay networks using destination-guided detouring. In

Proc. IEEE ICC, pages 428–434, Glasgow, Scotland, Jun 2007.

http://tools.ietf.org/html/rfc1584
http://tools.ietf.org/html/rfc1584
http://tools.ietf.org/html/rfc2328
http://tools.ietf.org/html/rfc2328
http://tools.ietf.org/html/rfc3101
http://tools.ietf.org/html/rfc3101
http://tools.ietf.org/html/rfc2474
http://tools.ietf.org/html/rfc2474
http://tools.ietf.org/html/rfc4090
http://tools.ietf.org/html/rfc791
http://tools.ietf.org/html/rfc791
http://tools.ietf.org/html/rfc5120
http://tools.ietf.org/html/rfc5120
http://tools.ietf.org/html/rfc4915
http://tools.ietf.org/html/draft-ietf-idmr-dvmrp-v3-11
http://tools.ietf.org/html/draft-ietf-idmr-dvmrp-v3-11


Bibliography 123

[103] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4). RFC 4271, Jan 2006.

http://tools.ietf.org/html/rfc4271.

[104] E. Rosen and Y. Rekhter. BGP/MPLS IP Virtual Private Networks (VPNs). IETF Internet draft,

Feb 2006. http://tools.ietf.org/html/rfc4364.

[105] E. C. Rosen. Exterior Gateway Protocol (EGP). RFC 827, Oct 1982.

[106] K. Sanzgiri, B. Dahill, B. N. Levine, C. Shields, and E. M. Belding-Royer. A secure routing

protocol for ad hoc networks. In Proc. IEEE ICNP, pages 78–87, Paris, France, Nov 2002.

[107] M. Scheffel, C. Gruber, T. Schwabe, and R. Prinz. Optimal multi-topology routing for IP re-

silience. AEU International Journal of Electronics and Communications, 60(1):35–39, 2006.

[108] A. Schmid and C. Steigner. Avoiding counting to infinity in distance vector routing. Telecommu-

nication Systems, 19(3–4):497–514, 2002.

[109] L. J. Seamonson and E. C. Rosen. ”STUB” Exterior Gateway Protocol. RFC 888, Jan 1984.

[110] R. Sedgewick. Algorithms. Addison-Wesley, 1984.

[111] S. Z. Shaikh. Span-disjoint paths for physical diversity in networks. In Proc. IEEE ISCC, pages

127–133, Alexandria, Egypt, Jun 1995.

[112] M. Shand and S. Bryant. A framework for loop-free convergence. IETF Internet draft, Jun 2009.

http://tools.ietf.org/html/draft-ietf-rtgwg-lf-conv-frmwk-05.

[113] M. Shand and S. Bryant. IP fast reroute framework. IETF Internet draft, Feb 2009. http:

//tools.ietf.org/html/draft-ietf-rtgwg-ipfrr-framework-10.

[114] D. Sidhu, R. Nair, and S. Abdallah. Finding disjoint paths in networks. ACM SIGCOMM Com-

puter Communication Review, 21(4):43–51, 1991.

[115] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson. Measuring ISP topologies with Rocket-

fuel. IEEE/ACM Transactions on Networking, 12(1):2–16, 2004.

[116] A. Sridharan, R. Guerin, and C. Diot. Achieving near-optimal traffic engineering solutions for

current OSPF/IS-IS networks. IEEE/ACM Transactions on Networking, 13(2):234–247, 2005.

[117] D. Stamatelakis and W. D. Grover. IP layer restoration and network planning based on virtual

protection cycles. IEEE JSAC, 18(10):1938–1949, 2000.

[118] C. Steigner, E. Dickel, and T. Keupen. Rip-mti: A new way to cope with routing loops. In Proc.

ICN, pages 626–632, Cancun, Mexico, Apr 2008.

[119] J. W. Stewart. BGP4: Inter-Domain Routing in the Internet. Addison-Wesley, 1998.

[120] J. W. Suurballe. Disjoint paths in a network. Networks, 4(2):125–145, 1974.

http://tools.ietf.org/html/rfc4271
http://tools.ietf.org/html/rfc4364
http://tools.ietf.org/html/draft-ietf-rtgwg-lf-conv-frmwk-05
http://tools.ietf.org/html/draft-ietf-rtgwg-ipfrr-framework-10
http://tools.ietf.org/html/draft-ietf-rtgwg-ipfrr-framework-10


Bibliography 124

[121] J. W. Suurballe and R. E. Tarjan. A quick method for finding shortest paths of disjoint paths.

Networks, 14(2):325–336, 1984.

[122] R. Teixeira, K. Marzullo, S. Savage, and G. M. Voelker. In search of path diversity in ISP net-

works. In Proc. ACM IMC, pages 313–318, Miami, FL, Oct 2003.

[123] D. Thaler and C. Hopps. Multipath issues in unicast and multicast next-hop selection. RFC 2991,

Nov 2000. http://tools.ietf.org/html/rfc2991.

[124] D. Torrieri. Algorithms for finding an optimal set of short disjoint paths in a communication

network. IEEE Transactions on Communications, 40(11):1698–1702, 1992.

[125] United Nations Statistics Division. Demographic and social statistics. Online, Aug 2008. http:

//unstats.un.org/unsd/demographic/.

[126] U.S. Census Bureau. Census 2000 gateway. Online, Apr 2000. http://www.census.gov/

main/www/cen2000.html.

[127] D. Walton, A. Retana, E. Chen, and J. Scudder. Advertisement of multiple paths

in BGP. IETF Internet draft, Jul 2008. http://tools.ietf.org/html/

draft-walton-bgp-add-paths-06.

[128] B. Xiao, J. Cao, Z. Shao, and E. H.-M. Sha. An efficient algorithm for dynamic shortest path tree

update in network routing. Journal of Communications and Networks, 9(4):499–510, 2007.

[129] W. Xu and J. Rexford. MIRO: Multi-path Interdomain ROuting. In Proc. ACM SIGCOMM, pages

171–182, Pisa, Italy, Sep 2006.

[130] G. Xue, K. Thulasiraman, and L. Chen. Delay reduction in redundant trees for pre-planned pro-

tection against single link/node failure in 2-connected graphs. In Proc. IEEE GLOBECOM, pages

2691–2695, Taipei, Taiwan, Nov 2002.

[131] X. Yang and D. Wetherall. Source selectable path diversity via routing deflections. In Proc. ACM

SIGCOMM, pages 159–170, Pisa, Italy, Sep 2006.

[132] M. Zhang, Y. Ruan, and V. Pai. How DNS misnaming distorts Internet topology mapping. In

Proc. USENIX Annual Technical Conference, pages 369–374, Boston, MA, Jun 2006.

[133] Y. Zhang. The Abilene topology and traffic matrices. Online, Dec 2004. http://www.cs.

utexas.edu/∼yzhang/research/AbileneTM/.

[134] A. Zinin. Analysis and minimization of microloops in link-state routing pro-

tocols. IETF Internet draft, Oct 2005. http://tools.ietf.org/html/

draft-ietf-rtgwg-microloop-analysis-01.

http://tools.ietf.org/html/rfc2991
http://unstats.un.org/unsd/demographic/
http://unstats.un.org/unsd/demographic/
http://www.census.gov/main/www/cen2000.html
http://www.census.gov/main/www/cen2000.html
http://tools.ietf.org/html/draft-walton-bgp-add-paths-06
http://tools.ietf.org/html/draft-walton-bgp-add-paths-06
http://www.cs.utexas.edu/~yzhang/research/AbileneTM/
http://www.cs.utexas.edu/~yzhang/research/AbileneTM/
http://tools.ietf.org/html/draft-ietf-rtgwg-microloop-analysis-01
http://tools.ietf.org/html/draft-ietf-rtgwg-microloop-analysis-01

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Objectives
	Motivation and Challenges
	Contributions
	Publications
	Thesis Outline

	Resilient Routing
	Introduction
	Distance Vector Routing
	Link-State Routing
	Path Vector Routing

	Traditional Routing Protocols
	Intra-Domain Routing Protocols
	Inter-Domain Routing Protocols

	Resilient Routing
	Design Goals
	Modifying the Convergence Process
	IP Fast Re-Route
	Multi-Topology and Multi-Path Routing
	Overlay Networks
	MPLS-Based Resilience
	Disjoint Paths and Redundant Trees
	Protection Cycles and Pre-Configured Cycles
	Eliminating the Convergence Process

	Conclusions

	Enhanced Loop-Free Alternates
	Introduction
	Computing Enhanced Loop-Free Alternates
	Packet Processing and Forwarding
	Termination of Using LFAs and E-LFAs
	Properties
	Performance Evaluation
	Method
	Overheads
	Repair Coverage
	Stretch

	Conclusions

	Achieving Full Fast Failure Recovery
	Introduction
	Disjoint Trees
	Computing Red Trees
	Computing Blue Trees
	Packet Processing and Forwarding
	Suppressing Failure Notification
	Optimisation
	Properties
	Performance Evaluation
	Method
	Overheads
	Repair Coverage
	Stretch

	Conclusions

	Alternate Next Hop Counting Mechanism
	Introduction
	Computing Alternate Paths
	Computing ANHC Values
	Computing ANHC Values Using Loop-Free Condition
	Packet Processing and Forwarding
	Suppressing Failure Notification
	Bounds on Alternate Path Length
	Optimisation
	Properties
	Performance Evaluation
	Method
	Overheads
	Repair Coverage
	Stretch
	Maximum Link Utilisation
	Total Network Overhead

	Conclusions

	Resilient Routing Using Packet Re-Cycling
	Introduction
	Cellular Graph Embeddings
	Constructing Routing and Cycle-Following Tables
	Cycle-Following Protocol
	Single Failure Recovery
	Multiple Failures Recovery

	Properties
	Cycle-Following Properties
	Termination Properties
	Forwarding Loop Resolution

	Performance Evaluation
	Method
	Overheads
	Repair Coverage
	Stretch

	Conclusions

	Conclusion and Future Work
	Conclusions
	Enhanced Loop-Free Alternates
	Full Fast Failure Recovery
	Alternate Next Hop Counting
	Packet Re-Cycling

	Future Work
	Optimisation of PR
	Analysing the Repair Coverage of Single Bit PR
	NetFPGA Implementation of PR


	Appendices
	Packet Re-cycling Proofs
	Cycle-Following Properties
	Termination Properties
	Forwarding Loop Resolution

	Acronyms and Abbreviations
	Bibliography

