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Non-radiative transitions in semiconductors 
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Abstract 

Non-radiative transitions affect many aspects of semiconductor performance. Normally 
they reduce device efficiency by suppressing luminescence, creating defects, reducing 
carrier lifetimes, or enhancing diffusion during operation. The present review surveys 
both the theoretical and practical understanding of non-radiative transitions. It includes 
general theoretical results and the associated ideas, with the emphasis on phonon-induced 
and defect Auger processes. Most of the purely formal aspects are omitted, but the 
points of principle where uncertainties remain are discussed. The review also covers the 
relation between basic theoretical studies and practical applied work on device degrada- 
tion. This includes a description of the atomic processes involved in the more important 
mechanism of device deterioration and the theoretical understanding of the mechanism 
of these underlying processes. Finally, there is a survey of models proposed for ‘killer’ 
centres. 
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1. Introduction 

When a solid is stimulated into an excited state, it may recover by several alternative 
processes. Some, the radiative processes, lead to the emission of light. Others simply 
redistribute the absorbed energy among the lattice vibrations or among electronic 
excitations. These, the non-radiative transitions which ultimately degrade the absorbed 
energy to heat, are the subject of this review. 

Non-radiative transitions manifest themselves in many ways : suppressed lumines- 
cence, reduced carrier lifetimes, the creation of intrinsic defects, enhanced diffusion, and 
so on. Most of these diminish the efficiency of semiconductor devices. In a few cases 
only are the non-radiative transitions beneficial, for example when a semiconductor is to 
be used as a bolometer or when one wishes to isolate regions electrically or optically. 
However, in all cases the control of non-radiative transitions is potentially beneficial, 
Many devices work at well below their theoretical efficiencies, and there are clear ad- 
vantages in reducing power consumption and the associated difficulties of over-heating of 
components. Yet to control non-radiative transitions one needs either a large investment 
in materials preparation in the hope that the problem can be circumvented or an under- 
standing of the processes so that these effects can be minimised more easily. It is with the 
understanding of non-radiative transitions that theory can be of especial help. Much of the 
formal theory is exceptionally complex, and there remain some problems of principle. 
Despite this, there are a number of results which are sufficiently general and accurate to 
be of practical value. The present review concentrates on these in the context of III-V 
semiconductors. Wider discussions of multiphonon transitions are given in several other 
reviews (Jortner and Mukamel 1975, Stoneham 1975 chap 14, 1977a, Mott 1978, Toyo- 
zawa 1978, 1980, Newmark and Kosai 1981) and above all in the fine recent book by 
Englman (1980). The Auger processes, in which energy is transferred to electronic 
excitations, have also been reviewed recently (Robbins and Landsberg 1980), and these 
workers cover in depth areas I shall only discuss briefly. 

When planning this review, I did consider giving a systematic analysis of the centres 
seen. This rapidly became unacceptable. Whilst huge amounts of data were available 
(see, for example, Grimmeiss 1978), much relevant to this review was obtained uncriti- 
cally, sometimes inconsistently, and often for ill-defined defects. In consequence, I have 
elected to concentrate on some of the areas where points of principle arise and, in 
addition, to avoid areas previously reviewed. The present paper is thus complementary 
to my own previous reviews and to Englman’s book. 

Even though I shall concentrate on semiconductors, it would be misleading not to 
mention some other areas with related phenomena. The four fields in which non- 
radiative transitions are especially well understood are (i) transition metals (including 
rare-earth ions) in oxide hosts, where much work has been stimulated by the need for 
phosphors, (ii) alkali halides, where both reorientation and radiolysis have been the 
subject of detailed studies, (iii) molecules and molecular crystals, and (iv) chemical 
reaction studies. It is notable that, in all these cases, progress has been rapid because the 
centres involved and the states involved have been successfully identified. In semi- 
conductors, sadly, this is not usually the case, with consequences that should become 
clear. 
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This introduction concludes by discussing a number of general features common to 
many aspects of non-radiative transitions. 

1 .I. Energy suyfaces: tlze conJiguration-coordinate diagram 

One of the central concepts is that of an energy surface. The related idea of a configura- 
tion-coordinate diagram is widely used and abused. As a simple way to describe complex 
phenomena, the idea is magnificent. As a complete description, it is potentially deceptive. 
This subsection supplements the discussion in Stoneham (1975), with emphasis on special 
points we need later. 

1.1.1. Normal modes and other coordinates: perfect crystal. We start from the perfect 
host lattice in its electronic ground state (assumed non-degenerate for present purposes). 
The motion of the nuclei is determined by a Hamiltonian of the form 

H = E  .3Mtp.t2+ C 3 ~ 1 J J ' z j ~ j - I -  E 

where the vectorial and tensor subscripts are suppressed. The individual atoms are 
labelled i, and their momenta pi  and displacements xg; the harmonic interactions are 
described by the force-constant matrix Vtj. Provided we ignore the higher-order terms E ,  

one can take linear combinations of the x.6 to form normal modes qa so as to eliminate 
cross-terms proportional to (qu sa) with LY. # p :  

i 6 j 

H==Z 3pu4a2  +Z 3Kaqu2 + E.  
U U 

The new effective masses are pE and the new (diagonal) force constants are K,. 
atxc is not a normal mode in general, 

and motion in such a general coordinate cannot be regarded as motion of an independent 
oscillator. 

Note a given combination of displacements 

1.1.2. Defect terms fo r  energy surfaces. When there is a defect present in its ground state 
we can write the extra terms in the energy as (a) corrections to the existing masses, force 
constants and higher-order terms, which alter the normal modes (qa +- ga) ,  (b) an addi- 
tional constant term, important in the formation energy but not relevant dynamically, 
and (c) an important linear term: 

h= - Z f a q a =  - E f a g ,  
OL U 

where the fa are the generalised forces on modes qa. The effect of the linear term is to 
displace the equilibrium positions of the nuclei. The linear term does not affect the 
eigenvalues or eigenvectors of the harmonic Hamiltonian : 

3 p p  + +kq2 - fq= +p($ + S ) 2  + $k(q + 6)2 - 4 f 2/ k  
where 6 =flk is the displacement and f 2/2k is the relaxation energy. 

The configuration-coordinate picture attempts to represent all these terms, especially 
the linear ones, as well as possible within the framework of a single coordinate. It is 
quite common for the one-coordinate picture to fail (see 51.2). Even when a one- 
coordinate description works well, it may do so only for a finite range of temperatures or 
phenomena. One can imagine choosing a particular configuration coordinate in various 
ways : 
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(i) maximise relaxation energy; 
(ii) optimum optical lineshape; 

(iii) optimal low-temperature transition probabilities ; 
(iv) optimal high-temperature transition probabilities ; 

and various more exotic options. One has no assurance that one chosen effective frequency 
will represent all features well, nor even that the configuration coordinate will itself be 
sensibly constant from case to case. There is one obvious conclusion which I shall stress 
in several places: if one does not know rather a lot about the atomic nature of a defect, 
there is no point in going beyond rather primitive descriptions of non-radiative transitions 
in making fits to experimental data. 

1.2. Promoting and accepting modes 

We shall use later an expression for the non-radiative transition rate in the form 
2rr 

77 
W=- [MI2 G(w) 

where M is a transition matrix element and G(w) is a generalisation of the usual 6(w) 
expressing energy conservation. It can be seen that the lattice vibrations may enter in 
two different ways. First, the energy-conservation factor will balance the electronic 
energy with the vibrational energy into which it is converted. The modes involved here 
are the accepting modes; the configuration-coordinate diagram implicitly refers to just 
such a mode. Secondly, the matrix element inducing the transition may vary with lattice 
geometry. If so, the modes which affect the matrix element are the promoting modes 
(see figure 1). 

Several remarks are essential. First, these ‘modes’ are strictly ‘reaction coordinates’, 
i.e. they are not necessarily the normal modes of either the ground or excited state of the 
system. Secondly, a mode may be both promoting and accepting, neither promoting nor 
accepting, or either one: the two categories are not exclusive. Sometimes there are 
distinctions by symmetry. A good example is given by Huang and Rhys (1950). Consider 
the F centre in ionic crystals where, in essence, there is a 2p to Is transition at a hydrogen- 
like defect. The totally symmetric (Alg) modes are the accepting modes, reflecting the 
difference in radial charge density in the two states. The promoting modes, which must 

Figure 1. Notation for a simple two-level system. Q is the accepting mode. EO is the ‘zero-phonon’ 
energy. EH and EM’ are the relaxation energies. The absorption energy is Eo + EM and the 
emission energy EO- EM‘. The parameter A is EM(Eo+  EM)-^. 



1256 A M Stoneham 

Figure 2. Examples of energy surfaces. (a) Energy surfaces for an idealised centre, without degeneracy, 
interacting with both a promoting and an accepting mode. (b) Avoided crossing. This corre- 
sponds roughly to (a), though here the accepting mode is also a promoting mode. (c) Avoided 
crossing. An alternative form to (b). 

mix the Is and 2p states, have the same symmetry as an electric field (TlJ at the site. 
Here the accepting and promoting modes are quite distinct, with opposite parity. Figure 
2(a) shows a generalisation of the configuration-coordinate diagram for a case like this, 
and emphasises one of the circumstances in which one-coordinate models are inadequate. 
This may be contrasted with figures 2(b) and (c), where there is an avoided crossing 
resulting from the accepting mode acting partly as a promoting mode. Thirdly, the 
matrix element does not need to be linear in the promoting mode. Figure 3 shows a 
variety of possibilities, all leading to characteristically different temperature dependences. 

I 

Q --* 

Figure 3. Dependence of matrix element on geometry. Here 0 is the promoting mode. Various charac- 
teristic forms are shown, illustrating both ‘linear’ (6) and ‘threshold’ (c) deviations from the 
Condon approximation (a). 
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1.3. Thermodynamics of non-radiatiue transitions 

There are several slight but important problems in assigning a specific ‘level in the gap’ 
to a particular defect state. These may be outlined as follows. 

( i )  Thermal versus optical transitions: the Stokes shift. Broad-band optical transitions 
occur essentially at constant geometry (the Franck-Condon principle), whereas thermal 
transitions take place with essentially the minimum energy. The difference (figure 1)  
is the relaxation energy and can easily be several tenths of an eV. Note in particular that 
this sequence of optical transitions, whose sole effect is to take an electron in the valence 
band (ev) to the conduction band (ec), requires more energy (ha1 +kw2) than tfie gap EG: 

because of the relaxation energy in each state of the reaction. Here AN+ and A(N-1)+ 
are the charge states of the defect species A involved. 

(ii) Defect energies. Theoretical defect energies and experimental ones need not 
correspond. First, there is a distinction between one-electron levels and the (niany- 
electron) level which may be needed. One-electron levels of deep centres and ‘energies 
in the gap’ are not related simply. Secondly, most theories predict thermodynamic 
internal energies U. Such theoretical values cannot be compared directly with the free 
energies G actually observed at constant pressure and finite temperature. 

(iii) Thermodynamic quantities. In suitable cases, experiments can give both enthalpies 
H a n d  entropies S. One example is when both the thermal emission rate et and capture 
cross section ut can be measured over a range of temperatures. The principle of detailed 
balance shows that the two are related by 

et = ut vth Neff  exp (- AGIkT) 
where V t h E  4 3 k T / m *  is the thermal velocity and Neff is the effective density of states. 
Rearranging : 

AG=kTIn (utUthNeff/et). 

If AG= A H - T A S  is plotted as a function of T, the low-temperature limit is A H  and the 
slope is - AS. 

The entropy contains two main contributions. One is configurational, essentially 
involving the degeneracy in our context. The second is vibrational. As has been noted 
(e.g. Lowther 1980) the two are not distinct when there is a Jahn-Teller effect. Moreover, 
the vibronic entropy may be distinctly temperature-dependent. There is a simple rule 
(which is essentially the point of van Vechten (1975a, b, see also Heine and Henry 
1978)) that the vibrational entropy contribution is only large when the transition involves 
a substantial change in charge density, e.g. a compact to a diffuse state. As a final point, 
we note that the entropy changes at constant pressure and at constant volume differ by a 
leading term ASD - ASv 3 [(thermal expansion coefficient)/(isothermal bulk modulus)] x 
(change in volume at constant pressure). This may be quite large. 

(iv) Apparent activation energies. Quantities like emission rates and capture cross 
sections often have a temperature dependence dominated by an Arrhenius factor of the 
form exp (- &/kT). However, there is usually a slowly varying pre-exponential factor 
too. If the true dependence is given by the function f = Tn exp (- &/lcT), then the effective 
activation energy Eeff = k T 2  (dfld T)/f becomes 

teff = E + nkT. 

The correction term can be quite significant if E is small. 
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(U) Isolated defects. Activation energies are measured ideally for isolated defects in a 
uniform host. Such ideals may not be realised. In particular, high concentrations of 
defects can introduce impurity bands associated with their excited states, and these may 
suggest artificially low ionisation energies. Some experiments exploit situations involving 
high electric fields or carrier density inhomogeneities, both of which can mislead the 
unwary. 

(vi)  Slzijts relative to band edges. It is frequently said from examination of the 
temperature or pressure dependence of some transition energy that ‘a level L is pinned 
to band edge B’, and some conclusion is then proposed about the wavefunction of the 
bound state corresponding to L. For very shallow donors and acceptors this has some 
merit, though the wavefunction may still have significant components from higher bands. 
For deep levels, or for isovalent impurities, the description is more misleading than 
helpful. Distant bands can be extremely important even if only one band is important; 
a simple examination of model systems (like the Slater-Koster model) shows the band 
edge alone does not define the level for a given perturbation. 

2. Non-radiative transition rates 

This section derives some of the important expressions for non-radiative transition rates. 
The underlying results are in three main categories. First, there are transition rates 
between two distinct electronic states. It is these which are used in the second category, 
in which the evolution and kinetics among an ensemble of states are considered. Thirdly 
there are the cooling transitions (described in more detail in 53) by which vibrational 
energy in the accepting mode is transferred to other vibrational degrees of freedom 
(dissipative relaxation). These three types of result, combined in different ways, lead to 
carrier capture rates, to questions of the existence or non-existence of luminescence, to 
interpretations of the effects of perturbations, and to assessments of the usefulness of the 
various possible approaches to electronic structure on which predictions might be based. 
On this last aspect, it is important to distinguish between those results which depend only 
on the energy surfaces &(e) and those which need electronic wavefunctions i,h(r; Q) too. 
Many of the features of non-radiative transition theory are common to chemical reaction 
theory. A very clear and stimulating discussion of reaction paths on energy surfaces is 
given by Muller (1980). Figure 4 summarises some of the relationships. 

2.1. Transitions between two bound states 

2.1.1 Basic definitions. In the non-radiative transition, electronic energy is transformed 
into thermal energy. Clearly, if the initial and final electronic states are labelled i and f, 

rates € I Q )  

/ \  
Type of Branching 
recombination- ratios : 
enhanced luminescence 
process or not ? 

Figure 4. Status of energy surfaces E@) in non-radiative transition studies. 
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and if the corresponding occupancies of the phonon modes are {n} and {n‘), the transition 
rate involves probabilities of the form Wif ({n}, {n‘}). These transition probabilities are 
not those usually observed in solids, where experiment normally keeps track only of 
the electronic state. The observed probabilities are of the form 

wif = ( x wif ({n), in’})) 

with an average over the initial phonon occupancies and a sum over the possible final 
vibrational states. The initial state need not correspond to thermal equilibrium. The 
lack of equilibrium can result from selective population of the initial states, or from 
transient non-equilibrium phonon distributions. 

We now use two ideas mentioned in $ 1 ,  namely potential energy surfaces Ei(Q) and 
Ef( Q), which will be described by a configuration-coordinate diagram, and a factorisation 
of the wavefunction into an electronic and a vibrational part. The transition probability 
will then take the form 

(27r/+i) I (electronic matrix element) 12 x (lattice response component). 

The electronic component and the factorisation will be discussed in more detail later 
($2.1.31, For present purposes we concentrate on the two energy surfaces shown in 
figure 1. This diagram defines several energies. The energies involved in low-temperature 
optical measurements are the energy (EO + EM) for an upward Franck-Condon transition, 
the corresponding downward transition energy (EO - EM,)  and the energy of the zero- 
phonon line, Eo. The ‘crossover’ energy EA above the upper minimum will prove 
important later. It is related to the other energies by 

{N 

EA = (Eo - E M ) ~ / ~ E M  
when EM=EMT.  If we introduce an effective phonon energy hw, we can now define 
three dimensionless parameters : 

(i) p Eo/Ao, the number of accepting phonons corresponding to the zero-phonon 
line energy. Multiphonon processes have large values of p ; the statistical limit is p $- 1. 
Transitions withp = 1 occur as components of cascade capture, and spin-lattice relaxation 
involves both p = 1 (direct) and p = 2 (Raman) processes. 

(2) SO E M / ~ w ,  the Huang-Rhys factor. The strong coupling limit is SO$- 1 and the 
weak coupling limit is SO< 1. These regimes are defined by SO alone for optical spectra, 
where the lineshape function (52.1.4) is critical. In such situations it is immaterial whether 
the upper minimum lies inside or outside the lower energy surface (figure 5). For non- 
radiative transitions, So/p is more critical. 

(iii) A EM (EO +  EM)-^ = SO (SO +p)-l, the ratio of the relaxation energy to the 
Franck-Condon absorption energy. A determines the relative values of EM and EA. 
For A<*, EA exceeds E ~ I ;  for A=+, EA vanishes, the upper minimum coinciding with 
the point of intersection. For A > +  the upper minimum lies outside the lower curve 
(figure 5). 

2.1.2. Partitioning: upper bounds to rates. When one considers optical transitions, there 
is a fairly clear division into (i) the electronic system which is to be excited or de-excited, 
(ii) the electromagnetic field, and (iii) the interaction between the electronic system and 
the field. There is rarely any difficulty in deciding between which states the transitions 
occur, simply because the energy transfer takes place between two distinct subsystems. 
When one considers non-radiative transitions, however, one is concerned with a closed 
system, and problems can arise if the states between which the transitions occur are 
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Weak coupling 

bJ 
Strong coupling 4 < A <  4 

Strong coupling 
A > +  

Figure 5. Four important cases from weak to strong coupling. All four are realised in practice. A is 
so (So+p)-'. 

chosen carelessly (see also Englman 1980, $8.3). As a trivial example, suppose one has 
a time-independent Hamiltonian H= HO + h, with time-independent eigenstates $io of 
HO and $1 of H. Clearly, if the system starts at state $1 at t=O, it will remain there. 
However, if the time-dependent Schrodinger equation is solved with the system $10 at 
time t =O,  the component h of the full Hamiltonian will cause the state to change with 
time, possibly very rapidly, and in a way which depends on the partitioning of H into 
HO and h. This example makes it obvious that both the choice of basis and the boundary 
condition are important. In much the same way the usual second-order perturbation 
theory would give different results if the electronic states were for a static lattice than if 
they were Born-Oppenheimer states. 

Since spurious overestimates of transition probabilities can arise, it is useful to look 
at upper bounds to rates. There are no rules quite so powerful as the f sum rule of 
optical transitions, but we may note several arguments. 

(i) Certain transitions require a M i c e  condition to be satisfied. If Q is the reaction 
coordinate (usually the accepting mode) then the condition is normally either (a) Q has 
some critical value, Q = Qc, to within some specified accuracy 6 Q, or (b) Q exceeds some 
threshold, Q >  Qc. The first class includes cases where transitions involve a rapid 
electronic motion without energy exchange to the sluggish lattice ; the second includes 
the traditional 'over an energy barrier' transitions. The important point is that only one 
transition between two discrete states, if any, occurs each time Q satisfies the condition. 
Even if the electronic transition can occur many times whilst the condition is satisfied, 
the net effect of these many forward and reverse transitions is either one transition or no 
transitions. The net transition rate which results is thus: 

(number of times per second the lattice condition is satisfied) 

x (efficiency factor 7,O < r] < 1). 
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It should be stressed that this does not hold, without changes, when a continuum of 
states is involved. However, for two states: 

maximum rate= rate of occurrence of events satisfying the lattice conditions. 

This rate is itself bounded by wmax, the most rapid lattice vibration frequency (the 
longitudinal optic frequency in most cases ; a local mode frequency where appropriate). 
Thus these phonon-induced transitions occur at a rate less than "ax. 

(ii) The same restriction also applies when one assumes a limit from either dephasing 
or energy relaxation towards a final state. The rates of change of Q (defined by, for ex- 
ample, (dQ/dt)/( Q2)1/2) or of dephasing (defined by the fractional dispersion of the 
phonons involved) are again bounded by amax.  

(iii) Whilst limits on Auger processes are less clear, parallel arguments suggest the 
plasma frequency as a bound. 

These several arguments provide only general rules, and are not complete. Never- 
theless, they do refute the view sometimes heard that theory A is better than theory B 
merely because it predicts a higher rate. 

2.1.3. Electronic matrix elements. The electronic matrix element frequently causes 
feelings of discomfort. One reason is that, even when the matrix element is correctly 
defined, it may be beyond the power of many methods to calculate accurately. Another 
is that choices which are mainly matters of convenience are sometimes regarded as 
matters of principle. As noted in $1, there is plenty of freedom in choosing a basis, 
provided the remaining terms in the Hamiltonian are included to high enough order and 
provided the correct time-dependent property is calculated. This point is taken up in a 
recent paper by Morgan (1981). 

(a) Adiabatic approximations. For non-degenerate systems (and here it is Jahn- 
Teller systems and the like, rather than systems with isolated close approaches of energy 
surfaces, which are excluded) four basis sets are commonly invoked: 

(i) crude adiabatic (static, Hartree, etc); 
(ii) Born-Oppenheimer adiabatic; 

(iii) Born-Huang adiabatic; 
(iv) diabatic. 

There is a particularly lucid discussion of (i)-(iii) by Azumi and Matsuzaki (1977). 
Markham's (1956) penetrating paper concentrates on the same approaches. Both papers 
list earlier workers and their nomenclature, and Englman (1980, 58.1) gives a more 
recent survey. Morgan (1981) gives explicit calculations in several schemes. The dia- 
batic choice is particularly common in molecular collision theory, and is sometimes 
invoked in non-radiative transitions when there is a crossing of energy surfaces. Some- 
times the diabatic choice is implicit rather than explicit, notably in the use of the 
Landau-Zener expressions. There are substantial differences between the normal non- 
radiative transition situation and the molecular collision case so that, for practical 
purposes, diabatic representations are mainly of use for rather specific technical problems 
in which the crossover region is dominant. 

From the many studies, several points emerge. First, it is always possible to transfer 
from one basis to another. This is usually done by perturbation expansion (see Azumi 
and Matsuzaki 1977) though choice of detail remains. Huang (1981) demonstrates 
elegantly the equivalence of the adiabatic and static forms and points to potential 
dangers. Secondly, one is frequently faced with a decision about the Condon approxima- 
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tion: is a matrix element of the form 

Q12(Q)=/d3r#l*(r, Q) Q#z(r, Q)  
independent of Q? The evidence in general terms is rather weak (see Stoneham 1975, 
§10.3), even for C2 representing the optical dipole operator. In the static approximation, 
the Condon approximation is always implied. This is not an advantage, as sometimes 
claimed; it simply means that the geometry dependence of the wavefunctions must be 
handled separately. Normally such dependence is handled by the Herzberg-Teller 
expansion (for details, see Azumi and Matsuzaki (1977)). Thirdly, some discussions of 
the relative merits of static or adiabatic approximations are framed in the form ‘is the 
best description of the individual initial and final states one in which the lattice distortion 
is fixed by the mean electronic charge distribution in that state (essentially the static 
approximation) or one in which the distortion follows the electronic motion ?’. The 
question is important (for discussions, see Markham (1956), Buimistrov and Pekar (1957) 
and Stoneham (1975, p243)). However, it is almost entirely irrelevant for non-radiative 
transitions in which 08-diagonal elements are needed and for which the ‘best’ description 
of one state may not be the ‘best’ for the other. In particular, any phenomenon which 
depends on level crossing or on a narrowly avoided crossing will usually involve distor- 
tions well away from the ‘average’ geometry of either state, and will involve rapid changes 
with geometry of electronic wavefunction. 

(b) Beyond the Condon approximation. Here a number of schemes have been 
examined, such as those shown in figure 3. The standard Condon approximation assumes 
Q12(Q) independent of Q. One can easily envisage other cases. Thus, if the two states 
involve different sites, and if Q affects the potential barrier between these sites, then Q12 

will saturate once the barrier vanishes. In this case one might expect threshold behaviour. 
The ‘linear’ and ‘threshold’ cases may be acceptable approximations for different tem- 
perature regimes in a single system, depending on the amplitude of vibration in the 
promoting mode. Discussions are given by Kovarskii and Sinyavskii (1963), Sinyavskii 
and Kovarskii (1962, 1964, 1967), Flynn and Stoneham (1970), Ridley (1978a, b) and 
Goto et aI(1980). 

( 6 )  Specijic examyIes of matrix elements. We now give some examples of matrix 
elements. If the initial and final vibronic states are 1 i), If) then the total matrix element 
is ( i IH-El  f); the transition operator is that part of the Hamiltonian not diagonalised, 
less a term which corrects for non-orthogonalities of I i) and If). The electronic matrix 
element, which is one factor only, is conveniently given as the total matrix element 
divided by the overlap of the vibrational components, i.e. 

(iIH-EIf)/(XiIXf)=Mii. 

Consider, for example, the case of Born-Oppenheimer adiabatic basis states. For these 
the total matrix element is 

with momenta P, = - iha/aQ, and masses MY. In this case the effective electronic matrix 
element is 

Even without detailed evaluation, several features are clear. First, there are selection 
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rules. Some of these reflect point symmetry. Thus if Qv has odd parity, only $i and $t 
of opposite parity will have a finite second term, and only $1 and $f of the same parity 
have a finite first term. Other selection rules derive from the harmonic oscillator selection 
rules: P, connects oscillator states differing by n = k 2. When the Condon approxima- 
tion fails these selection rules are weakened with significant consequences (Ridley 1978a, b). 
Secondly, and indeed resulting from the oscillator matrix elements, there are differences 
in definitions which can confuse. Thus Brailsford and Chang (1970) and Freed and 
Jortner (1970) make rather similar approximations, but define empirical matrix elements 
C,BC and CVFJ, respectively, related thus: 

1 C,BC 1 2 = %  (nv + 4) 1 CFJ 1 2. 2 

Thirdly, since the matrix element contains a sum of terms from the various promoting 
modes, there can be interference between their contributions (see, for example, Stoneham 
1967, Sarai and Kakitani 1981). 

Most authors start from expressions like the one just given for the effective electronic 
matrix element and evaluate the terms of their choice directly. In principle, this should 
present no special problems; in practice, calculations tend to be of low accuracy. This is 
why Huang and Rhys (1950) worked in terms of the electric field produced by longitudinal 
optic phonons for 2p-1s transitions at an F centre, and why Henry and Lang (1977) 
used a quasi-classical model. These two results lead to the following electronic matrix 
element : 

Huang and Rhys : 

where a is the polaron coupling constant, p is the net number of phonons emitted, rD is 
the polaron radius [(P/2m*)/fiw]1/2, xT is the matrix element (1,b2~lxl$l~) and Qc is 
the cell volume. The temperature-dependent factor comes from the promoting mode 
in this case : 

I M H R  I 2 = - 8T a (F) (2n + 1) ipxip2/~c 3 

h2 3/2 
Henry and Lang : I MHL I = (&2a3/&) ( ~ z )  &112/nc 

where E is the binding energy and a=(h2&/2m8)1/2 is the effective radius of the bound 
state. One notes that neither result shows a dramatic dependence of /MI2 on binding 
energy, as sometimes suggested. 

2.1.4. The lattice response component. The second important factor is a measure of how 
readily the lattice takes up energy when there is a perturbation. This factor appears in 
several contexts in solid-state physics, notably optical lineshapes, quantum diffusion 
and the present types of non-radiative transition. The response is most conveniently 
expressed in terms of a lineshapefunction G(w) or its Fourier transform, the characteristic 
function g(t). These appear in expressions for optical cross sections (see Stoneham 1975, 
$10.7) where, for example, G(w) is the generalisation of the simple delta function S(W) 
appropriate for an optical transition with photon energy hw when there is no coupling 
to the lattice: 

O3 dtexp(-iwt)g(t) 
- -M 

g(t)=fmm dw exp (t-iwt) G(w). 
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In non-radiative transitions fiw is the energy which is not taken up by the accepting 
modes; it is zero for some important cases. When energy is partly dissipated via Auger 
or radiative mechanisms, or when the occupancy of the promoting modes changes, then 
w is finite. 

The lineshape function can be written in the form 

where the x are the vibrational wavefunctions for the initial (i) and final (f) states with 
occupation numbers defined by in}, (n’}. The standard simplifications then follow : the 
neglect of anharmonic terms, the assumption that the modes remain the same, i.e. that 
whilst they may change mean value and frequency, they are not mixed (invalid in Jahn- 
Teller systems and possibly many others), and the assumption that no frequencies change. 
In this limit the matrix element G(w) factorises into a product of terms from each mode. 
The delta function, however, couples the modes through the wif(,)(,,) term, and it is here 
that the Fourier transform to g( t )  gives technical advantages. We shall not discuss this 
here (see, for example, Englman and Jortner 1970, Stoneham 1975, Robertson and 
Friedman 1976, Englman 1980), and shall simply quote some of the most important 
cases of G(w, T) for w = 0, thermal equilibrium in the initial state, and linear coupling. 

We begin with results for decay from an excited state in the statistical limit p & l .  
This is the commonest case encountered in non-radiative transitions in semiconductors. 
Results for the reverse, excitation, process can be obtained using detailed balance, with 
care. 

(i) Expressions valid at T=O. In this limit the coupling strength is not important: 

Note that this can be rewritten so as to replace p In (PISO) by yEo/hw, where y=ln 
(PISo) varies only slowly with the various parameters. This is the source of the widely 
quoted result that the rate is proportional to exp (- yEo/fiw) at absolute zero temperature, 
a special case of the energy gap rule. The factor exp ( - S O )  which appears can be regarded 
as a ‘phonon dressing’ factor for the transition matrix element of 52.1.3, i.e. M - t  Meff= 
M exp ( -S0/2);  at high temperatures, however, the corresponding factor is absorbed 
into other parts of G(w), so one must be careful to use M and Meff consistently. 

(ii) Expressions valid for  weak coupling. When SO< 1 one can write 

G(T)=G(T=O) [l +n(T)]P 

where n is the occupation number. This will give a temperature dependence tending 
towards TP at higher temperatures. A second result is a more general form of the energy 
gap rule. The argument can be seen rather generally. Suppose the rates of ap-phonon 
process and a (p - 1) phonon process are related by 

wp = p wp-1 

with /3 a small factor to be discussed. Suppose also that the lowest-order process always 
dominates, i.e. the smallest value of p and the largest hw dominate. Then the major 
process has p = Eo/hwmax and a rate Wo/3P (which cannot be taken seriously for small p )  
which can be rewritten as 
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i.e. the rate decreases exponentially as the energy release EO (recall 13 is small, so In 13 is 
negative). 

(iii) Expressions valid for  strong coupling, SO 9 1. 

where IN(x) is a Bessel function of order N. For excitation to a higher state, the sign of 
the (Eoi2kT) term in the exponential is changed. In suitable and quite general limits 
(see Englman and Jortner 1970, Ridley 1978a, b, Markvardt and Landsberg 1981) one 
finds the simpler and better-known form: 

exp (- Ea/kT*) 1 1 G(T)=- ____ 
4 2 ~  EMkT" 

with kT* =#w coth (tiw/2kT), so that kT* and k T  are identical at high temperatures. 
This last expression shows thermal activation. Ignoring the slow temperature dependence 
of the pre-factor, the activation energy is E A Z ( E O - E M ) ~ / ~ E M ,  i.e. just the energy of the 
crossover above the initial state (figure 1). As the coupling and the temperature increase, 
the low-temperature 'tunnelling' component (which involves the 'dressed' matrix element 
M exp (- S0/2)) gives way to the activated 'crossover' component. Note too that EA 
contains terms linear and quadratic in EO: there is no longer a simple energy gap rule. 

(io) Various generalisations. In some of the generalisations it is hard to separate the 
matrix element part and the lattice response part. Readers who become bewildered when 
making direct comparisons should note first that most authors give the temperature 
dependences of the promoting and accepting mode contributions combined together 
(e.g. Huang and Rhys 1950, Englman and Jortner 1970). Secondly, violations of the 
Condon approximation lead to further changes (e.g. Ridley (1978a, b), whose results 
include as special cases the earlier ones of Kovarskii and Sinyavaskii (1963)). Some of 
these changes come from altered energy denominators, others from altered selection 
rules. Thirdly, there are always the multifarious factors depending weakly on tempera- 
ture which appear in capture cross sections and not in all expressions for non-radiative 
transitions; examples include the thermal velocity and Sommerfeld factor dependences 
(e.g. Bonch-Bruevich and Landsberg 1968, PBssler 1978). 

The more direct generalisations include the following. 
(U) Initial state not in thermal equilibrium. Brailsford and Chang (1970) developed 

the theory for a single initial vibronic state, and their work can be used for analysis of 
any defined initial distribution. We shall discuss what such a distribution might be in 
the next subsection. 

(b) Changes in frequency in the transition. Here Lin and Eyring (1972) collect together 
results. Even here there is no mode mixing. 

(c)  Anharmonic terms, again with no mode mixing. Sturge (1973) and Mikami et a1 
(1975) both discuss cases where anharmonic terms produce very profound effects. They 
use two entirely different methods : Sturge exploits Morse potentials instead of parabolic 
energy surfaces, whereas Mikami et a1 add cubic terms which 'tilt' the surfaces. 

( d )  Several of the standard formulae assume weak coupling to many modes (a dis- 
tinction which is not relevant unless there is phonon dispersion). Sarai and Kakitani 
(1981) discuss the large displacement limit. They also note the existence of interference 
effects when there are several distinct promoting modes. 

(e) Generalisations to discuss the consequences of phonon dispersion. These have 
been analysed in some detail by Weissman and Jortner (1978) and to a lesser extent in 
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papers such as those by Englman and Jortner (1970) and Passler (1974a, b). For our 
present purposes one should note first that the effective frequency is temperature- 
dependent, and secondly that the effective frequency depends on the property of interest: 
it will be different for calculating the ground-state relaxation energy, the optical absorp- 
tion and the non-radiative rate. The effective frequency is usually discussed in terms of 
moments, weighted by the mode Huang-Rhys factor, e.g. 2 : i W i N  Sio(Ani + B)/xiSio 
(Ani+B) where A and B are small integers (see, for example, Evangelou 1981). So far 
as experiment is concerned, it is often found that weff is close to either the highest host 
frequency or to some local mode or local resonance frequency. However, one knows too 
that, in optical spectra, the dominant phonons may also be of lower energy, from near 
maxima in the density of states. We shall see later that other cases do occur, and it is 
not true that the same frequency will be found for every centre in a given host. 

We now turn to the limit in which very little energy is transferred to the accepting 
modes, i.e. p~ 0. This covers diffusion, spin-lattice relaxation and various defect 
reorientation and tunnelling problems. A fuller discussion is given by Stoneham (1975, 
1979). The important processes are these. 

(U) One-phonon processes, in which a phonon of energy fiw=Eo is absorbed or 
emitted. The rate is proportional to (n+ 1) in emission, and so linear in T in the usual 
condition k T $  EO. 

(vi)  Two-phonon processes, in which the energy differences of two phonons Awl- 
~ W Z = E O  combine to provide the transition energy. The phonons with energy - k T  
dominate usually, giving a rate proportional to T X ,  where N is typically 5-9. Note the 
different origin of the high power from case (ii). In some cases there may be a resonant 
interaction with an excited state, provided the excitation energy A is less than fiwmax. 
In such systems, the rate varies as exp (- AjkT). 

In both case (U) and the resonant instance of case (ui) the transitions involve only a 
narrow energy band of phonons. Non-equilibrium effects are well-documented, and 
include the phonon bottleneck and phonon avalanche situations. Two-phonon processes 
can also exhibit interference effects between the resonant and non-resonant contributions. 

2.1.5. The Landau-Zener method. Many quasi-classical discussions of non-radiative 
transitions combine the idea of a classical motion over a potential energy surface with a 
branching each time surfaces meet, the branching ratio being given by the so-called 
Landau-Zener probability (Landau 1932a, b, Stueckelberg 1932, Zener 1932). Whilst 
this approach has some merits, it is neither generally applicable nor specifically suited 
to many of the situations in which it is used. 

The original equations gave results for two (isolated) intersecting levels E1 and EZ 
with a matrix element 812 independent of separation. If E1 and E2 vary linearly with 
spacing R, the branching probabilities are given in terms of P, where 

with v the classical approach velocity. For very slow velocities, there is a high probability 
of following the adiabatic surface; for high velocities, the motion tends to be ballistic. 
Generalisations by Coulson and Zalewski (1962), Bykhovskii et aZ(l965) and Delos and 
Thorsen (1972) cover various points, including continua of states. 

Even for molecules, there are open questions and problems (Bates 1960, Coulson 
and Zalewski 1962), some relating to the choice of basis. Some of these features of 
concern also extend to solids: it is not clear whether 812 is independent of R, nor that E1 
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and EZ are adequately linear, nor even that the exponent in P is satisfactorily defined. 
Still less is it clear that the classical velocity U is sensibly constant at important parts of 
the trajectory such as classical turning points. Probably the main weakness in solid-state 
applications is the neglect of other degrees of freedom (specifically vibrational) and the 
implied neglect of dissipation other than through some primitive phenomenological 
model. One of the most useful applications is that of Henry and Lang (1977), who made 
the specific generalisation discussed in $2.2. The accuracy of the Landau-Zener approach 
in cooling transitions is less well established, though the results obtained (see 53) agree 
qualitatively with those obtained otherwise. 

2.2. Free-bound transitions 

The discussions in the earlier subsection considered transitions between only two discrete 
levels. There are at least three circumstances in which this does not suffice. First, even 
if there is just a single bound state, the conduction band from which an electron is cap- 
tured comprises a continuum of states (Henry and Lang 1977, figure 6(a)). Secondly, for 
defects like shallow donors, there may exist a continuous range of states between the 

Figure 6. Cascade processes. The upper and lower shaded areas correspond, respectively, to the con- 
tinuum of unbound states and the region of discrete but dense states among which cascades 
are possible. (U) Direct multiphonon, e.g. Henry and Lang (1977); (b) intermediate cascade, 
e.g. Rees et aZ(l980); (c) cascade, e.g. Lax (1960). 

ground state and conduction band such that no splitting exceeds the maximum phonon 
energy. In such cases (Lax (1960) and many subsequent workers; figure 6(c)) cascade 
theory is appropriate. Thirdly, there may be a spectrum of closely spaced levels, yet 
with a gap between the lowest of these and the ground state. Here (Rees et a1 1980, 
figure 6(b)) one expects a final multiphonon transition after what is akin to a cascade 
process. In all these three cases, which we now consider, one estimates a capture cross 
section rather than a state-to-state transition probability. Typical values are given in 
table 1. 

2.2.1. Capture into an isolated leuelfrom a continuum. One important aspect is that the 
excited vibrational states with the electron in the ground (trapped) state /gin})  are degen- 
erate with conduction band states I cin’}) with low vibrational excitation. In semi-classical 
descriptions the vibration excursions which bring the trapped state close to the free states 
are critical. Precise crossing is not essential (cf figure 6) but obviously there are differences 
in detail. One should not forget that transitions among the unbound states occur. 
T N Morgan (1979 private communication) has noted a useful description in terms of 
separate one-phonon continua, two-phonon continua, etc. 

There is thus the possibility of transitions both into and out of the captured state 
80 
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Table 1. Capture mechanisms. 

Mechanism Radiative Auger Phonon 
~~ 

Typical cross 10-5-10-4 
section typical capture: trap: 101-104 A2 (Ge:Sb+). 

Neutral centre: 10-1-101 (Ge:NiO) 
Repulsive: 10-8-10-5 Az (Ge:Mn-) 

Wide variation: 10-1 Az 10-2-104 A2, e.g. for electron 

Conditions for Depends on states High carrier and defect Low defect concentration; strong 
dominance and energies concentration coupling to lattice 

(N=  1017 cm-3 
typical for Ge) 

Temperature Small dependence Small dependence Power law or exponential 
dependence 
Concentration None Linear with None 
dependence concentration until 

screening is important? 

t Since the role of screening is sometimes controversial, we note the careful discussion in appendix C 
of Burt (1981a) and the distinction between dynamic screening (usually small) and static screening (often 
large). 

during the capture process. The actual rate at which the carriers reach the ground 
vibronic state is a balance between the rate of these capture and emission transitions and 
the cooling transitions discussed later. Normally the cooling transitions are assumed fast. 

Sumi (1980a, b) and Henry and Lang (1977) both illustrate their analyses using a 
quasi-classical description and the Landau-Zener formula to describe the possible 
outcomes of the two types of transition. The specific aspect which is important in both 
the Henry-Lang and Sumi results is the Landau-Zener prediction of a branching ratio 
at an intersection and its dependence on the thermal velocity in the accepting mode and 
on the relative derivatives of the energies of the two states as functions of the accepting 
mode. The results are given for slightly different systems (figure 8). Sumi’s results are 
expressed in the form 

emission rate = (emission rate, uncorrected) ~ ( y )  

Figure 7. Avoided crossing with a continuum of states. This corresponds roughly to the discrete cases 
of figure 2. 
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l a )  l b i  IC1 

Conduction 
band 

C ture 

re-emission 
WYh 

Ground / 
Capture state \Ground state 

Figure 8. The three cases (Henry and Lang (U ) ;  Sumi I (b) and I1 (c)) in which are treated capture and 
reemission involving continua. Both the standard coniiguration-coordinate and simplified 
forms are given. 

where the emission rate can be related to the capture rate by detailed balance. Here 7 
is a monotonic increasing function (figure 9) of the parameter y given by 

4 BS$ 112 kT .=(a.) G 
where 2B is the full bandwidth of the (tight-binding) band, and A is the Franck-Condon 
energy for emission. Note that the effects of re-emission become negligible as y becomes 
large (7 --f l), e.g. at high temperatures, strong coupling or wide bandwidth. This is the 
opposite conclusion from Henry and Lang (1977) whose corresponding factor is their 
Ptt (their equations 106 and 110) which has a slow contrary dependence. I have not 
resolved this difference. 

O " i /  0.2 q -  R I  

I I 

0 2 4 6 
T 

Figure 9. Sumi's results showing the variation of 7 (the pre-exponential factor in units (mean frequency/ 
27r) with ~"(433) ( S O ~ / A ~ ) ~ / ~  kT/ho. 
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2.2.2. Capture at  a deep level via an excited state. In a formal sense, this is one of the 
simpler cases, for the final multiphonon step may indeed be between non-degenerate 
levels, and the cascade sequence may be less critical than for shallow defects. Discussions 
for Si: Se and Si:S are given by Rees et aZ(l980) and Gibb et aZ(1977), who note that 
capture will usually be described by two time constants. In particular, capacitance 
transients monitor the change in charge state, not necessarily the occupancy of the real 
ground state. Discussions of rate equations generally and of other relevant points are 
given by Landsberg (1956), Stoneham (1975, 514.5) and Picltin (1978); further features 
are covered in 52.2.3. 

2.2.3. Cascade processes. The cascade hypothesis asserts that carriers are captured into 
some highly excited state, and that they then continue to lose energy primarily by a 
cascade of one-phonon transitions between the bound states. Since the energy levels are 
separated by less than the phonon energy, we are normally considering shallow centres. 
Since shallow centres normally exhibit weak coupling, all the individual transitions can 
be estimated effectively by perturbation theory. 

Calculations of cascade capture rates involve two main components. The first is the 
initial capture cross section o,(E) for an electron of energy E into one of several possible 
excited states 1.). The second is the ‘sticking probability’ P,, for which the usual 
definition is the probability that a carrier in state I a )  will reach the ground state before 
escaping from the trap. There is a substantial literature on both components, the most 
convenient summaries being Bonch-Bruevich and Landsberg (1968), Stoneham (1975, 
514.4) and Abakumov et a1 (1978). The last of these discusses developments which 
resolve some of the outstanding difficulties in the absolute values of the rates. Given 
these several surveys, I shall merely discuss some specific issues here. 

The first point concerns the effects of net charge on the initial capture step. Clearly 
one expects differences between the processes X++e -+ XO+e -+ X- and X-+ e -+ X2- 

because of the difference in Coulomb interactions in the initial state. This can have 
striking consequences. The Coulombic contribution gives the so-called Sommerfeld 
factor, whose effect is to give a net increase or decrease in electron density near the 
centre relative to the free-electron case. For electrons of momentum p in the limit that 
kT is much less than the effective Rydberg (defined as Pm*e4/&2h-2, irrespective of the 
sign of the charge 2). Bonch-Bruevich and Landsberg give these expressions for the 
Sommerfeld factors: 

attractive j 
neutral I 

repulsive j exp ( - j )  

where j is p/pz withpz=2nA2 ( q / l Z l  m*e2)-l. 

expressed in terms of S, p and the binding energy E .  If we write 
Passler’s (1977) analysis leads to related factors in the multiphonon cross section 

then the factors which appear in the rate are these: 

attractive 4 P  1 / 2 / 4 7 r  

neutral 1 
repulsive (8/43)P2/3 exp (- 3 P1/3). 
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For repulsive centres one confirms that higher energies and temperatures favour capture. 
It is known for optical transitions (see, for example, Stoneham 1975, p337 et seq; also 
Ridley 1980) that there can be significant corrections even for neutral centres because of 
the defect effects on the free-electron wavefunction. Sadly, we must still agree with the 
comment of Bonch-Bruevich and Landsberg: ‘this factor may usually be neglected, at 
least at the present state of the subject’. 

The sticking probability has been the subject of changes in view. These changes are 
of two types. First, the formal definition does not correspond to experiment. In experi- 
ment, capture can occur and contribute effectively to many observable properties without 
the ground state being involved. This feature is analysed by Beleznay and Andor (1978). 
Secondly, Abakumov and Yassievich (1976) have corrected some of the earlier deriva- 
tions of the sticking probability, and this leads to a significant increase in Pa. The 
source of the error is that one cannot always replace averages over energy P(E)  by the 
same function of the mean energy F((E)) .  In particular, acoustic phonon emission 
continues to play a significant role when the carrier kinetic energy falls below mvsz, with 
vs the velocity of sound. 

2.3. EfSects of perturbations 

In most practical devices non-radiative transitions occur at defects which are neither 
isolated nor in regions free from applied fields. The applied fields are either electric 
fields, stress fields or magnetic fields. 

The effects of nearby defects are of three main types. One is that selection rules are 
relaxed (see, for example, Vend and Fischer 1981). A second is that there may be impur- 
ity banding effects, so that the nature of the excited states is altered. This type of effect 
occurs at rather low concentrations: the effective Bohr radii of donor bound states with 
principal quantum number n ~ 7  in Si cannot be ignored for concentrations above 
1014 cm-3. The third effect is that, for shallow isoelectronic centres, even the modest 
fields of nearby impurities may prevent capture, and hence inhibit radiative recombina- 
tion. This has been discussed in the context of dislocation in GaP by Tasker and 
Stoneham (1977). Magnetic fields have rather special effects, notably through the spin 
dependence of capture cross sections. Stress fields (apart from implied effects from the 
proximity of dislocations) appear relatively unimportant, except perhaps in guiding the 
forced diffusion of defects. Electric fields are of major importance, of course, since they 
underlie device operation, and there have been several studies of effects on capture and 
emission rates. The effects on shallow defects are reviewed by Bonch-Bruevich and 
Landsberg (1968), who comment on two specific aspects. One is that the field affects 
the velocity distribution of free carriers, increasing their mean velocity. This lowers the 
capture rate at attractive centres (whether Coulombic or short-range binding), where 
slowly moving carriers are most readily captured, but enhances the capture by repulsive 
centres where a barrier is to be overcome. The second effect is that reverse processes 
(emission) are enhanced. One contribution is the Poole-Frenkel effect, where the 
ionisation energy along the field direction is reduced ; other contributions can appear 
from the very different phenomena associated with impact ionisation and autoionisation. 
Electric-field effects are of special importance when the energy changes induced (of order 
Elel x orbital diameter) exceed the energy level separations since the orbital diameter 
increases as the binding decreases. Shallow defects are especially susceptible. 

Electric-field effects for deep levels, in which multiphonon mechanisms are critical, 
have been the subject of a series of studies by Korol (1977) and Makram-Ebeid and his 
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colleagues. Here both quasi-classical methods (Pons and Makram-Ebeid 1979) and the 
Bardeen tunnelling transition formalism (Makram-Ebeid and Lannoo 198 1) have been 
used to find the effects of electric fields on emission rates, i.e. a multiphonon equivalent 
of the Poole-Frenkel phenomenon. Experimentally (see also Makram-Ebeid 1980a, b, 
Makram-Ebeid et a1 1981), the results have consequences for both the conventional 
(DLTS) and optically-refilled (ODLTS) forms of deep-level transient spectroscopy. The 
key result is this: the emission rate can be expressed in the form: 

e=eno+ E W p ( S , p l ,  Awl r ( A p I E l )  
p = - W  

in which eno is the value in the absence of the field: 

W, = exp p& - S coth (&)I Ip ( S cosech __ 
2kT 

corresponding to the lattice factor in Huang-Rhys theory, and I'(A,) is the elastic tunnel 
transition rate from a localised state at depth Ap from the conduction band at the site 
of the trap; A p r E c - E ~ + p r 2 w .  In Korol's (1977) calculation, and in later calculations 
by Pons (1979), the dependence of I' on a field of magnitude / E ]  takes the form 

with a, b being constants of the order of unity, taking values a=$ and b=$ in the Pons 
and Makram-Ebeid analysis. The net effect is that the emission rate increases rapidly 
with field and with temperature. One can devise parallels with the usual Poole-Frenkel 
result, but the strong phonon coupling leads to significant differences. We shall discuss 
some of the results of experiments in electric fields later. 

3. Cooling transitions 

It is a common assumption that a non-radiative transition takes place from a distribution 
over vibrational states in thermal equilibrium. In this section I consider transitions far 
from thermal equilibrium. These arise commonly in two cases: when a carrier is captured 
into a highly excited vibronic state, and when a carrier is optically excited into a highly 
excited vibronic state in a Franck-Condon transition. The main question discussed is 
the route by which a lower electronic state is reached. Just as in electronic transitions, 
we may define strong and weak damping. In weak damping, the case we shall usually 
consider, each vibronic state survives for several lattice vibrations. With strong damping 
(e.g. Seitz 1940) the oscillations may fail even to reach the classical turning point of the 
starting state before settling into the lowest state (e.g. moving directly from B to C in 
figure 10 without reaching B'). I shall not describe hot luminescence, i.e. radiative transi- 
tions directly from higher vibronic levels. Clearly, this only occurs with relatively weak 
damping; a brief survey is given in Stoneham (1975, $12.2.6). 

3.1. Transitions within a single level 

Suppose the defect is prepared in an excited vibronic state (whether a specific state or a 
mixture) of an isolated electronic level interacting only with an accepting mode Q.  If 
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Accepting coordinate 

Figure 10. Optical absorption (A -+ B), luminescence (C --f D) and various cooling transitions between 
vibronic levels. The crossover is labelled X. Note the accepting coordinate is not usually a 
normal mode. 

this system is left to evolve at very low temperatures, there is a widespread view that it 
will end in the lowest vibronic state. As defined, however, no such thing will occur: there 
may be some complicated vibrational motion but, without a means of dissipating energy, 
there will be no evolution towards the lowest state. How, then, do cooling transitions 
occur? Obviously, anharmonic interactions with other modes 4.1, through terms propor- 
tional to Qqtqj or Q2q.1, will always occur. Another important mechanism arises because 
(as remarked in $1.1) the accepting mode is usually a reaction coordinate, not a normal 
mode. This distinction is important, and it is useful to elaborate. In a harmonic lattice 
the potential energy is a quadratic function &Er, sxr Vrsxs of the positions x. This form 
contains cross-terms r # s. The normal mode transformation takes linear combinations 
qa=E;raarXr so that the potential energy separates, giving +.i;K,q,2. The importance of  
the transformation is that the harmonic system can now be treated as a collection of 
dynamically independent oscillators. Suppose a defect is introduced which does not 
change the modes (e.g. linear coupling only), The accepting ‘mode’ is chosen to maximise 
the relaxation energy, a point implicit in most discussions. But this choice will give, in 
general, Q=E;,A,q, ,  a sum of contributions from several modes. If we write Q in the 
form Aoqo+Z’A,q,, where Aoqo is the dominant component (there is some limited 
freedom here, since degenerate modes can be mixed freely), then the potential energy 
can be rewritten in the form ~ K O Q O ~ + ~ ’ ~ B , Q O ~ ~ + .  . . . It is the terms like the second 
which allow dephasing and cooling transitions, i.e. loss of energy from motion in the 
accepting ‘mode’. 

We note one simple and acceptably general result. The cooling transition from the 
nth to the (n- 1)th vibrational state will be induced by either an anharmonic term or a 
term coming from the extent to which Q is not a normal mode. In both cases the operator 
involved has the form f ( q t , .  . .) Q, linear in Q. The transition probability will be 
proportional to f 2 I ( n  I Q I n - 1) I 2, i.e. to f zn. The cooling rate is roughly proportional 
to the degree of excitation (n) in the accepting ‘mode’. 

A second obvious point is this. When one is really dealing with an accepting mode 
which is a normal mode (e.g. a local mode associated with a light atom, like hydrogen), 
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the anharmonic terms should dominate and cooling could be slow. If, however, the 
accepting mode is built from a strong admixture of many modes (e.g. when it has a 
frequency near the peak of the density of states of phonons in the perfect solid), cooling 
will be very rapid, and sustained systematic motion in the accepting ‘mode’ will not 
occur. 

3.2. Transitions between two states 

We now consider the intersecting energy surfaces and assume the defect has been excited 
to a state above this crossover (whether the crossing is avoided or not is immaterial here). 
As cooling occurs, will the system end on the upper or lower energy surface? 

An outline of the solution can be seen without difficulty ( A M  Stoneham 1977 
unpublished work, Stoneham and Bartram 1978, Bartram and Stoneham, to be published). 
The first important idea is this: within a narrow energy range about the crossover, the 
vibronic states from both surfaces will be heavily mixed. There will be some states with 
roughly equal contributions from upper and lower surfaces, and the others will be equally 
balanced between those principally derived from one or other of the surfaces. The second 
important idea is that it is the transition out of this crossover band of states which 
decides whether the system ends on the upper or lower surface: the branching ratio is 
determined by what happens near the crossover. If we combine the ideas with the result 
just derived (in which the cooling rate is proportional to the phonon occupancy) we 
conclude: 

probability of ending on lower surface 
probability of ending on upper surface D(nLx/nux) 

where D is a degeneracy factor and ~ L X ,  nux are the degrees of vibrational excitation at 
the crossover for the lower and upper surfaces, respectively. If the effective frequencies 
are the same, the branching ratio is simply in the ratio of the energies EXA, EXC of 
figure 10. 

This result proves to be important. It does, however, avoid several issues, and some 
of these have been discussed elsewhere (Dexter and Fowler 1967, Bartram and Stoneham 
1975, 1979, Stoneham 1977, Stoneham and Bartram 1978, Nasu and Kayanuma 1978, 
Kayanuma and Nasu 1978, Kayanuma 1979, Kusunoki 1979, Leung and Song 1980). 
First, it assumes cooling is slow enough that the system can indeed exhibit several vibra- 
tions in each vibronic state. Seitz (1940), for example, considers a case of strong damping 
in which, essentially, the system ‘slides’ down the upper curve without necessarily 
approximating the classical crossover. Secondly, the picture ignores the behaviour 
before the crossover band is reached; in fact, there are transitions from one surface to 
the other in the early stages (see, for example, Leung and Song 1980), and there are also 
constraints depending on the way the system is prepared. Thirdly, the precise mechan- 
ism of mixing is important. Stoneham and Bartram (1978) treat a separate promoting 
mode explicitly (as in figure 2(a)) whereas Kayanuma and Nasu (1978), for example, 
replace the promoting mode by a constant transfer matrix element. Finally, we should 
return to the ever-popular Landau-Zener picture ($2.1.5). This considers two energy 
surfaces with the system approaching the intersection with a thermal velocity. The 
relative probabilities of remaining on the same surface or of transferring to the other are 
then given in terms of the velocity and the energy surface geometries. To a certain level 
this prescription parallels the ideas given: the critical stage occurs when the system has 
cooled so the classical turning point and the crossover coincide. However, there are 
unsatisfactory features for solids (which are not important in the traditional molecular 
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applications) : one is not dealing with well-defined isolated surfaces, nor does one repre- 
sent the cooling properly, though it is possible (e.g. Kusunoki 1979) to include a simplified 
phenomenological damping. 

3.3. The Dexter-Klick-Russell criterion : luminescence or not ? 

One important result follows directly from the assumption underlying the results in the 
last subsection, that all the important transitions from one surface to another take place 
via the band of states at the crossover. This means that if, at low temperatures, optical 
excitation is to states below the crossover, the system will merely cool to the lowest 
vibrational state of the upper surface, and then luminesce in appropriate cases. If 
excitation is to states above the crossover, then the branching ratio will ensure the system 
usually cools directly, non-radiatively, to the lowest state of the lower surface. Thus, 
whether luminescence occurs or not depends on the two configuration-coordinate curves 
and the precise state into which excitation occurs. Like all simple descriptions, it has 
obvious limits even for isolated defects. Weak damping has already been mentioned. 
Other channels can short-circuit the routes discussed. Cases with S< 1 and p small, as 
in spin-lattice relaxation or cascade processes, will have direct few-phonon non-radiative 
processes and only weak radiative transitions. 

Dexter et a1 (1955) put this idea in a useful form by assuming the initial optical 
absorption to involve a Francl-Condon transition (accepting mode coordinate fixed) 
with energy Eabg. For luminescence to occur in a Franck-Condon transition at energy 
Eem, assuming equal vibrational frequencies in ground and excited states, this condition 
must hold : 

A ' ~ ( E a b s - E e m ) / 2 E a b s ~ $ .  

Twenty years later, when far more data were available for a comprehensive check, Bartram 
and Stoneham (1975) found a rather better criterion to be 

A E (relaxation energy Shw)/Eabs < t. 
The two conditions would be identical if the energy surfaces were exactly those assumed. 
However, the Bartram-Stoneham form has two advantages. First, it only requires data 
from optical absorption to predict whether luminescence occurs, since S and fiw can be 
estimated from the temperature dependence of the linewidth. Secondly, it emphasises 
correctly that only the energy surfaces near and above the crossover matter. Any special 
effects in the relaxed excited state (e.g. Jahn-Teller distortions) are irrelevant, though 
they will affect Eem and hence A'. 

The condition A S 4  divides defects into two classes very well, notably the substantial 
list of F-centre data cited by Bartram and Stoneham. Even for the F centres, there are 
special cases (LiCl is one (Takiyama 1978)) which appear to be exceptions, though the 
position is not completely clear. More interesting is the range + < A  < 3, since this pro- 
vides a test of the rule given in the last subsection. Including the correct degeneracy 
factor (Bartram and Stoneham 1979) the luminescence efficiency should not exceed 
+(1-2A)2, and this is indeed consistent with observation in magnitude with values 
reported for F centres in NaI and NaBr. Figure 11 illustrates the variation of the 
luminescence efficiency with A. 

3.4. Evolution of the excited state 

The dynamics of evolution of the excited state is an area in which there are very few 
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Figure 11. Efficiency of luminescence as a function of A=& (So+p)-l in a simple two-level system. 

calculations. One reason is that the system may be far from equilibrium, and many 
standard results do not apply directly (see Stoneham 1980). A second reason is that the 
way in which the system is excited is important: it may well make a difference if a short 
pulse of intense optical excitation is used instead of prolonged low-intensity mono- 
chromatic light (see, for example, Stoneham and Bartram 1978). The issue is still less 
obvious when excitation is the result of carrier recombination. A third reason is that 
our knowledge of the energy surfaces in these regions may be minimal. Indeed, for 
many of the important systems showing recombination-enhanced motion, the nature 
of the defect may not be known, let alone the energy surface. One can hope for a full 
theoretical analysis only in special cases where the atomic structure is known in detail. 
A promising system is Gap:  (Zn, 0) (Feenstra and McGill 1981) where recombination- 
induced reactions have been studied. 

Given these circumstances, one is forced to resort to simple analytic calculations 
(e.g. those in this subsection, or the analogies with chemical reaction theory exploited 
by Weeks et aZ(1975)), or to use numerical methods. Englman and his colleagues have 
used this second approach (Barnett and Englman 1970, Englman and Barnett 1970, 
Englman and Ranfagni 1980, Englman 1981) and have been able to model many of the 
phenomena of interest: dephasing, competition between ‘horizontal’ (tunnelling) and 
‘vertical’ (cooling) transitions. Engleman’s recent exploitation of a wavepacket descrip- 
tion within the WKB method in the context of complex energy surfaces may well have 
application in semiconductor systems, though even here a phenomenological treatment 
of dissipation is involved. 

4. Special cases of non-radiative transitions 

This section discusses some important classes of non-radiative transitions which embody 
some of the principles discussed in the last two sections. Non-radiative transitions have 
many effects beyond carrier capture and competition with luminescence, and the dramatic 
phenomena of recombination-enhanced processes and persistent photoconductivity 
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show this clearly. A further example, following the same principles, is that of energy 
transfer (see, for example, Knox 1968, Dexter et al 1969, Soules and Duke 1971). Again 
one finds a lattice factor precisely parallel to the function G(E) of 52. Whilst there are other 
systems-especially organic-in which energy transfer is more important, one should 
not ignore the possibility of transfer from one species to another in semiconductors. 

4.1. Recombination-enhanced processes 

For the purposes of this subsection, I shall regard any process enhanced by raising 
carrier densities as recombination-enhanced, whether the carrier densities are raised 
optically, by ionising radiation, by injection, or by some indirect mechanisms. Such 
processes have two main characteristics. 

(i) The processes are athermal, or show a relatively weak temperature dependence. 
As a result, accelerated aging experiments at high temperatures may give unduly opti- 
mistic ideas of lifetime. Thus Bellamy and Kimerling (1978) noted the degradation of 
GaAs/Pt Schottky barrier structures for use in IMPATT devices was controlled in acceler- 
ated aging tests by an interface reaction with a 1.6 eV activation energy; in the lower 
temperature avalanche conditions relevant in operation, the rate-controlling step was 
recombination-enhanced diffusion with an activation energy 0.3 eV. 

(ii) The processes occur during device operation, and hardly ever ‘on the shelf’. The 
excitation rate is important, not merely the total dose. Characteristic degradation effects 
of recombination enhancement are seen in injection-mode devices, where minority 
carrier injection under forward bias leads to dramatic effects not seen under reverse bias, 
nor on heating. 

Kimerling (1978) has given an excellent review of these processes. Specific aspects are 
surveyed by Dean and Choyke (1977), Stoneham et a2 (1978) and Stoneham (1979, 1980). 

The consequences of recombination enhancement are very varied, and not confined 
to semiconductors. The underlying processes are usually defect production (possibly 
transient), dislocation climb, enhanced diffusion rates, and phenomena which involve 
these processes. Defect production is documented especially clearly in alkali halides 
(Itoh 1976, Stoneham 1979), though there is some evidence too for SiOz. The import- 
ance of recombination-enhanced dislocation climb was recognised rapidly through the 
dark-line defect mechanism : dislocation networks acting as non-radiative recombination 
centres were seen to grow on the active regions of GaAs heterostructure lasers and GaP 
light-emitting diodes. One of the earliest noted and most puzzling cases of enhanced 
diffusion is the elusive interstitial in Si and Ge, where the motion is enhanced by ionisation 
created by the same bombardment as produces the defect. 

It is possible to group all these various phenomena into three main categories. 
(i) Local heating models. Here the recombination energy is converted into vibrational 

energy in the mode corresponding to the reaction coordinate for the motion of interest. 
A combination of this recombination energy and of thermal energy is used in passing 
over the potential barrier to motion. Since any losses are positive, the enhanced and 
unenhanced activation energies can differ at most by the recombination energy. 

(ii) Local excitation models. Here the recombination energy is transmitted to the 
electronic degrees of freedom. Thus the defect may be excited into a state with a lower 
activation energy for motion. Here the enhanced activation energy may be reduced from 
the unenhanced one by more than the recombination energy, though in such cases there 
must be a selection rule to ensure that diffusion is via the excited electronic state only 
when enhancement occurs. 
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(iii) Bourgoin-Corbett model (1972). The moving defect occupies different sites in 
different charge states. Successive alternate capture of electrons and holes take the 
defect from one charge state to another, and hence from one site to another. Since this 
process is limited by capture, and capture rates tend to fall with rising temperature, one 
may even find a negative activation energy here. 

This nomenclature is not universally used; however, descriptions like ‘hot spot’ or 
‘phonon kick‘ imply specific features of the precise reaction which are often not known or 

Table 2. Recombination-enhanced processes. In this table I have retained the assignments of the 
original authors and included only those cases where a careful analysis has been attempted. 
ET= activation energy of thermal anneal, ETLE= activation energy of injection anneal and 
E~=energy release by capture of a free carrier. 

System Mechanism proposed Comments 

e- damage centres 
in GaAs 

0.18 eV 
0.41 eV 

e- damage centres 
in GaP 

0.14eV 
0.23 eV 
0.32eV 
0.48 eV 
0.62eV 
0.74 eV 

Gap: implanted 
H isotopes 
Gap: (Zn, 0) 
Si :A1 
Si :Bi 

SiC:H Si 

KC1:exciton 

Diamond 
self-interstitial 

Local heating 

Local heating 

Not identified 

Local heating 
Bourgoin-Corbett, 
but involving +, 0 
and -states 
Local heating 

Local excitation 

Local excitation 

Not charge-state effect 

ET= 1.75 eV, ER= 1.2 eV, ERE=O.BS eV 

Not charge-state effect 

1 .7  2.15 ) 

Er=1.4, En=1.09, E R E = O . ~ ~  

l a 3  1.3 2’1 2.0 }Atherma1 

1.7 1.8 ) 
1.3 0.62* 0.62 
2.1 1 .5  0.83 

Strong non-monotonic isotope dependence 
of anneal of (intrinsic) damage centres 
Effective dissociation of well-defined centre 
Not charge-state effect 
Different charge states monitored by EPR 

Light impurity atom ensures local modes 
occur 
Production of neutral vacancy and intersitial 
via identifiable excited state. Theory of 
energy surfaces exists 
Probably not local heating, nor Bourgoin- 
Corbett. Mechanism may also hold for Si, 
Ge. Theory of energy surfaces exists 

of only limited application. In looking at the broader aspects of these many processes, 
the useful classification is simply whether the recombination energy is channelled into 
the electronic or vibrational degrees of freedom. The main questions addressed in this 
subsection are the factors which affect the rates and the ways in which one can decide 
which mechanism is operating. (For a summary, see table 2.) 

In deciding which mechanism is important, a good starting point is the discussion of 
interstitial A1 in silicon by Troxell et aZ(1979). Their arguments can be put into two broad 
classes (see Stoneham 1980). One group requires consistency; if these arguments are 
violated, the mechanism can be ruled out. The second group of arguments hinge on 
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what is reasonable; in principle, other experiments or detailed calculations could change 
the status of a mechanism. The ‘reasonable’ arguments mainly concern efficiencies of 
complex processes. The consistency arguments are more varied : does the mechanism 
leave the system stable when there is no enhancement? Do the energies balance correctly: 
is the recombination energy sufficient? If there is saturation, does it occur where one 
would expect from known capture cross sections ? 

The main features of the local heating model are given by Weeks et al (1975) and 
Kimerling (1978); Markvardt (1980) and Markvardt and Landsberg (1981) have 
re-examined the multiphonon aspects. The Weeks et al result gives a reaction rate 
which contains an efficiency 7, which describes the fraction of recombination events which 
result in a successful reaction. This is written in the form 

Here the first factor ( k D / k L )  is the ratio of the rate of energy flow within the ‘defect 
molecule’ to the rate of loss to the surrounding lattice. The second factor expresses the 
probability that energy distributed among S molecular modes can find its way to the 
reaction coordinate (here we intentionally avoid the Weeks et a1 phrase ‘critical reactive 
mode’, since the reaction coordinate is not normally a normal mode). The language here 
is that of chemical reaction theory. We can also express the same physical ideas in more 
conventional solid-state terms. This is important, for a solid-state defect is rarely an 
isolated unit weakly interacting with its host. Further, the notions of energy flow within 
the defect molecule and to the environment are not concepts which can be applied in all 
cases. In the terms of $82 and 3 we must ask three questions. First, which states are 
populated initially? Here we need to know both the vibronic states involved and whether 
there are phase relations which correspond to a systematic motion in some reaction 
coordinate. Obviously it is important how the state is populated. For example, there will 
be differences between population via Franck-Condon transitions and via a cooling 
transition from some mixed state. Secondly, if there is a systematic motion, is it in the 
right direction? This is most easily seen in the Franck-Condon case. If the mode 
Huang-Rhys factors Sno are written in terms of the Fa, the differences in defect forces 
between the initial and final states, as Sno=$Fn+(l/hwn3) Fn, then the ‘phonon kick‘ is 
along Z‘~CnFn(l/&mwn2) en, where en is the corresponding eigenvector. If the reaction 
coordinate is written R=XnA,e,, then R. Tis a measure of the degree to which the motion 
is in the right direction, and (R * T)2 measures the energy transfer. Thirdly, if the system- 
atic motion is excited in the right direction, will it persist long enough for the reaction to 
occur by a combination of thermal and recombination-induced motion? Clearly this 
involves the issues discussed in $3 ; equally clearly, there are very few systems for which 
reasonable a priori predictions could be made. 

4.2. Persistent photoconductivity 

Normally, photoconductivity persists for only a short time after optical excitation. 
However, in many compound semiconductors photoconductivity can persist at a high 
level for hours, sometimes days, after the excitation has been removed. It is essential 
that the sample remains at low temperatures. Indeed, the conductivity persists until the 
sample is heated above a characteristic temperature. The phenomenon has been observed 
in both III-V and II-VI hosts: AI, Gal-,As (Nelson 1977), GaAsl-,P, (Craford et al 
1968), CdS (Wright et al 1968), Cdt-zZnzTe (Burkey et al 1976), CdTe (Lorentz et al 
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1964, MacMillan 1972, Iseler et a1 1972), including alloys with changes of anion and of 
cation. By far the most fully studied systems have been GaAs or AI,Gal-,As. 

The implications are most easily seen by noting that, if simple capture of the carriers 
were involved, the capture cross section would be less than 10-14 A2(lO-30 cm2), many 
orders of magnitude below that of any well-characterised centre in other semiconductors. 
Moreover, there is a pronounced temperature dependence at surprisingly low tempera- 
tures: even at 100 K, thermal activation with an energy of a few tenths of a volt is seen. 

Some potential explanations can be dismissed readily from the systematics of cases 
seen. There is no sign that the behaviour is correlated with a repulsive Coulomb inter- 
action which hinders capture ; indeed, known repulsive centres show much smaller effects 
from the repulsion. Even the donor or acceptor nature of the capture centre does not 
seem critical, except perhaps at the lowest temperatures. Likewise, from the range of 
hosts one can doubt any explanation based on some peculiarity of the band structure. 
Spin-orbit couplings are too large to rely on spin selection rules. It is likely that any 

Carrier 

(valence) band 
, in conduction 

Figure 12. Energy surfaces for the large Stokes shift model of persistent photoconductivity. The energies 
involved are Em from free-carrier capture, EO from Hall data, EPC from the photoconductivity 
threshold, and E, from thermal emission. 

common defect energy-level structure must have some simple generic feature, rather than 
some fortuitous complex structure. Two models remain. 

(i) The strong vibronic coupling model (Lang and Logan 1977, Lang et al 1979). 
Here the assumed configuration-coordinate model includes two important states (figure 
12): a free-carrier state, with only small relaxation, into which the carrier is excited, and 
a strongly relaxed state with the carrier localised at the defect. The large lattice relaxation 
is the ultimate reason why the capture is inhibited. Similar energy diagrams have also 
been used to explain long-lived spin resonance in defect-excited states in diamond 
(Loubser and van Wyk 1978). 

(ii) The spatial separation model (Queisser and Theodoru 1979, Theodoru and 
Queisser 1.980) in which a macroscopic potential barrier separates the photogenerated 
electrons and holes. This barrier could be a junction, or an interface between different 
compounds. 

Both models have strong support in specific cases. How often situations favour one 
mechanism or the other does not seem to be agreed yet. 
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5. Auger processes 

In Auger processes, most (possibly all) the energy released in the non-radiative transition 
is taken up as the kinetic energy of the free carriers. From this we can conclude at once 
that (a) Auger processes become increasingly favoured as carrier concentrations rise, 
(b) they will have a modest temperature dependence in most cases, since carrier concentra- 
tions change less than vibration amplitudes with temperature, and (e) Auger processes 
will compete more effectively with multiphonon processes at low temperatures, as the 
multiphonon contribution becomes small. 

Given the multitude of possible Auger processes (see, for example, Landsberg and 
Robbins 1978) and the several reviews available (Stoneham 1975, 814.4.3, Robbins 
1980b) it would seem superfluous to attempt a comprehensive survey. Rather I have 
singled out a small number of features which warrant attention. Other specific examples 
occur later, including the possible role of colloids as killer centres (86.4). 

5.1. Defect-free Auger processes 

Even though this review is mainly concerned with impurity-induced non-radiative 
transitions, some preliminary remarks about Auger recombination in perfect crystals 
may be useful. Here energy and momentum conservation are strong constraints. A 
typical process might involve three particles, either two holes and one electron, or two 
electrons and one hole. The transition probability involves an integral over all final- 
state wavevectors and energies, and an average over initial-state wavevectors and energies. 
The integrand contains four main factors. Two parallel those in multiphonon transitions, 
namely a matrix element and an energy-conservation factor. The other two factors ensure 
momentum conservation and incorporate the various statistical aspects as combinations 
of Fermi-Dirac occupation numbers. 

The main features can be seen from quite general arguments (e.g. Haug 1978). 
These give the standard dependences on carrier concentration one would expect from 
mass-action arguments (e.g. wn2p for two electrons and a hole in a non-degenerate 
semiconductor), though there are complications at high excitation levels. The tempera- 
ture dependence comes from the statistics factor in the absence of special selection rules, 
and so any temperature effects should often be modest. As usual, absolute rates cause 
some problems, including screening. For fuller discussions of matrix elements, see 
Antonic and Landsberg (1963), Dzwig (1979), Lochmann and Haug (1980) and Burt 
(1 98 1). 

A final point concerns phonon-assisted Auger transitions. Usually the phonon acts 
to coiiserve momentum: it is analogous to a promoting phonon, not an accepting 
phonon. Since only one phonon is involved, the temperature dependence is weak. This 
process is distinct from the Auger multiphonon process we discuss later. 

5.2. Impurity-associated Auger processes 

The impurity-associated Auger processes differ in three main respects. First, the momen- 
tum conservation is altered, for the translational symmetry has been destroyed. Secondly, 
the consequences of energy conservation are modified by the discreteness of the energy 
levels of the defect. Finally, even the free-particle wavefunctions are modified by the 
presence of the defect: plane-wave band functions need not suffice. 

The Auger processes can be classified in several ways. One is given in table 3, which 
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Table 3. Impurity-associated Auger processes. 

Numbers of carriers 
involved Lifetime dependence 

Free Bound n, p of free carriers) Examples? 
(concentrations N of defects, 

(4 2 1 Np (electron) Nn (hole), 
Nn 

Both seen for donors in Ge (Koenig et a2 1962). 
Other mechanisms listed 

(b) 1 2 N h + m  -+ e + n  
No cases demonstrated; proposed for an He-type 
defect in Gap, possibly GaP:O by Jaros (1978) 
and Riddoch and Jaros (1980) 

(cl 0 3 or more No direct dependence on le(eh)l-+ a+, 
N, n, p ,  though population of Exciton at neutral donor in (a) GaP:S 
the initial state will depend (Nelson et a1 1966), (b) Si donors (Schmid 
on carrier concentrations 1977, 1978), (c) CUZO (Khas 1965), (d)  alkali 

halides .. .. .. -. - 
) 4 Q + h  
Exciton at neutral accentor. (a) GaP:X 
(Dean et aI1971), (6) Si (Schmid 1977, 1978). 
(6) Si (Schmid 1977, 1978, Osborne and 
Smith 1977) 
leheh) -+ a+ (eh) (Merz et a1 1969) 

Other Auger-type process 
(4 e + w - + m + e *  Inelastic scatter (ZnS:Mn, Gordon and Allen 1980) 

(e) /e*+ m2 -+ m ~ +  ma Inter-defect energy transfer, possibly involving multiphonon 
transitions (many systems; see, for example, Knox 1968, Dexter et al 
1969, Soules and Duke 1971) 
Intra-defect energy transfer with multiphonon cooperation (Itoh 
et aIl980) 

+ 0 +e Inter-defect Auger processes for Gap: 0 (Dean and Henry 1968, 
+ @ + h  Galetal1981) 

[@eel+[ehl+ [@e*]+ 0 

t For fuller details see Stoneham (1975, p541) or Landsberg et af (1964) or Landsberg and Robbins 
(1978). 

covers the processes seen. Many other processes are postulated, and I have not listed 
those suggested but still to be observed in III-V or similar semiconductors. Clearly, in 
most cases the rate of reaction is given in the form (defect concentration) x (some power 
of carrier concentrations). The powers v are typically 1 or 0, so defect Auger processes 
can be important at much lower carrier concentrations than free-carrier processes. 

The best-studied impurity Auger processes are those involving three bound carriers, 
as in an exciton bound to a neutral donor or acceptor. Here the striking feature is the 
dependence on donor (or acceptor) binding energy: the rate increases as the fourth 
power of the binding energy (Dean et a1 1971). Of the E B ~  dependence, roughly Eg3I2 
comes from the scaling of the bound-state wavefunction and Eg5I2 from momentum 
conservation. Rough estimates of the absolute rates for GaP: S using results scaled from 
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Table 4. 

Device Phenomenon Mechanism proposed Reference (R = review) 

cw lasers; lasers 
for optical 
communications 

Injection lasers 
(buried 
heterostructure) 

Double- 
heterostructure 
lasers 

Light-emitting 

Tunnel diodes 

IMPATT devices 
(GaAs : Pt 
Schottky barrier) 

Rapid degradation 
(time scale of hours 
at room temperature) 
Gradual degradation 
(time scale of the 
order of years) 

Pulsations 

Large dark spots 

Dark line defects 
(GaAs, Gap) 

Catastrophic damage 

Suppression of 
luminescence 

Dark line defects. 
Abrupt degradation. 
Dislocation, surface 
and interface 
recombination 

Full in peak current 
with time in operation 
Degradation 

Seeded dislocation Hayashi (1981) (R) 

Non-seeded dislocation Hayashi (1981) (R) 
loops; climb by interstitial 
condensation, accelerated 
by stress 
Macroscopic regions or 
surfaces which are 
non-radiative rather than 
amplifying 
Recombination at scribed Henry and Logan (1977) 
surface. Minority carriers 
transported to groove by 
current flow in uncontacted 
samples containing p-n 
junctions 
Growth of dislocation 
network. Climb in active 
region; dislocation gives 
non-radiative van Vechten (1975a, b) 
recombination 
Local melting from heat 
generated by 
recombination. Epitaxial 
recrystallisation leaves 
frozen-in defects 
(U)  ZnO dissociation 
in Gap. 
(b) 0.75 eV killer centre 
in GaP 
(c) 0.92 eV killer centre 
in GaP 
Three-dimensional 
networks of dislocation 
dipoles. Epitaxially 
recrystallised material made 
non-radiative. Generation 
of dislocation loops and 
other structures by glide at 
high temperatures limited 
by carrier diffusion 

Henry (1980a, b) 

Kimerling (1978) (R), 
Petroff and Hartman (1974), 
Hutchinson and Dobson (1975), 

Henry et af (1979) 

Dean and Choyke (1977) (R) 

Dapkus and Henry (1976) 

Wight (1977) 

Petroff et a1 (1976), Ueda et a2 
(1980), Wight (1977) 

Interface reactions at 
high temperatures; 
recombination-enhanced 
reactions at low 
temperatures 

Kimerling (1978) (R) 

81 
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the internal conversion problem of nuclear physics (Nelson et a1 1966) give unexpectedly 
good agreement for the ratio of the Auger to radiative recombination rates. 

Since the bound-carrier energy levels are discrete, Auger transitions only involving 
bound carriers cannot occur as a rule without an extra energy reservoir being involved. 
Phonon cooperation is to guarantee energy, not momentum, conservation. There is 
thus a basic difference between phonon-assisted Auger processes with and without defect 
involvement. Rebsch (1979) has discussed the multiphonon enhancement for processes 
involving one bound and two free carriers. Another impurity case is energy transfer 
between defects, well-known for many years (Dexter et a1 1969, Soules and Duke 1971) 
and involving theory closely resembling that of $2. Indeed, the main difference comes 
from the fact that each defect has accepting modes of its own, so the lineshape function 
G(w, T )  is replaced by a convolution of two lineshape functions. J W Allen (1981 
private communication) has argued that energy transfer is necessary to explain con- 
sistently the optical lineshapes and the luminescence quenching of ZnSe: Mn and also 
some sample-to-sample variations observed. Another example of a phonon-assisted 
Auger process occurs in the self-trapped exciton in KCI, where it is important because 
it provides a new channel of decay. The process, which could have parallels in semi- 
conductors, involves the transfer of excitation of the electron component of the exciton 
to the hole component (Itoh et a1 1980). 

Finally, we come to the question of transition matrix elements. For very shallow 
centres, effective mass theory and scaling are adequate. For deeper defects, this is not so. 
Bess (1958) and Jaros (1978) have both commented on the effects of correlation among 
the bound particles and the modification of the free-carrier wavefunctions by the defect. 
The calculation of Itoh et a1 incorporated a self-consistent molecular orbital treatment of 
the modulation of the electron-electron interaction by the lattice vibrations. Treatments 
at this level would seem essential for compact states, except in rare cases where one could 
draw on free-atom data. 

5.3. Laser annealing 

Three related methods of modifying the surface region of a solid, typically an ion- 
implanted semiconductor, are pulsed laser anneal, continuous laser anneal and electron 
beam heating. Of these, the commonest, the most controversial as to mechanism, and the 
most relevant here is pulsed laser anneal. A laser pulse of a few J cm-2 of above band- 
gap light produces effects broadly consistent with local melting and epitaxial resolidifica- 
tion. Bigger pulses cause damage, smaller pulses have little effect; the essence of effective 
application is to produce consistent anneals within the ‘window’ of operating conditions. 
For many purposes it is not important to know whether the ‘molten’ state resembles that 
of the normal thermal melt or whether the high excitation produces a distinct ‘plasma- 
like’ state. 

In all three methods the energy input per atom is enormous. If 1.5 J cm-2 is actually 
absorbed in a 10 pm layer of Si, the energy input is around 5 eV per atom, four times 
larger than the low-temperature band gap and an order of magnitude higher than the 
latent heat of melting. Certainly some light will be reflected, and some may be re-radiated 
rapidly. Nevertheless, it is of some practical importance to know the spatial and temporal 
distribution of the energy which finally ends as atomic motion, since this affects the 
dynamics of recovery and the distribution of impurity species with depth. 

The fullest analyses of the non-radiative transitions are those of Yoffa (1980) and 
Dumke (1980). Both note that Auger recombination is fast at  high carrier densities. 
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Indeed, Yoffa observes that the electrons and holes rapidly reach quasi-equilibrium, 
with a quasi-Fermi level, at a temperature which is lowered by thermal excitation of 
plasmons. The extra degrees of freedom associated with plasmons are here an important 
energy sink, especially on a very short time scale, as the quasi-equilibrium is set up in 
roughly 10-14s; the Auger processes give recombination on a time scale of a few 
picoseconds. 

6. Theory and practice and non-radiative transitions 

Links between calculations of (for example) the electronic structure of a defect and the 
observed deterioration of behaviour in a semiconductor device may be tenuous, and the 
details rarely established in depth. This section examines the relationship. To do this, 
three main features are examined. First, which are the semiconductor problems which 
appear to be determined by non-radiative transitions? Secondly, how does one charac- 
terise defects which cause non-radiative transitions? Thirdly, how can theory be used to 
decide how a particular defect will behave and its influence on semiconductor behaviour? 
It will be seen that theory is used in two main ways. One is phenomenological: can one 
model device behaviour in terms of specific carrier concentrations, mobilities and 
recombination rates (which may be influenced by defects) ? Can one characterise uniquely 
specific defects by a few parameters like binding energy, relaxation energy, etc? The other 
use involves the quantitative calculations of defect electronic structure. It will become 
clear that the factors which influence non-radiative rates themselves impose limits on 
those theoretical methods likely to be useful in all but a few special cases. 

6.1. Non-radiatice transitions in devices 

No doubt scientific curiosity has provoked some studies of non-radiative transitions. 
Yet the main driving force in this area has been and will continue to be demand for more 
efficient devices. In this subsection we note some of the specific device problems and 
the types of non-radiative transition postulated to explain them (see table 4). We remark 
that the defects responsible may appear in a device at any stage: in crystal growth, in 
device assembly, and during operation. 

(a)  Processes limited by carrier transport. In these an effective non-radiative mechan- 
ism is necessary, but its nature is not critical. Examples include the large dark spot 
phenomena in double-heterostructure lasers, as well as many of the usual dislocation and 
surface effects. 

(b)  Macroscopic inhomogeneity. Here the non-radiative regions giving rise to pulsa- 
tion in injection lasers are an example. In principle, precipitates and inclusions may have 
much the same properties as non-radiative point defects, and a special case will be 
discussed in 86.4. 

( c )  Point-defect production. In certain cases dislocation climb occurs far too rapidly 
to be explained by thermal diffusion of those defects present in equilibrium. In these 
cases one must postulate a mechanism of recombination-induced defect production. 

( d )  Recombination-enhanced motion. This is manifest in several forms : in dislocation 
climb, in dislocation glide, and in various defect reactions (84.1). I include here all 
effects of transient defects too. 

(e) Conventional non-radiative transitions. These occur at point defects and line defects 
where they are, of course, essential, but not always rate-determining. This is (at least 
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partly) because careful materials preparation eliminates many of the obvious problem 
species. 

Within the context of the present review, processes (c), ( d )  and (e) are the most 
important. Of these, the role of dislocations needs special comment (a recent summary 
of the issues is given by Petroff (1979)). Without going into details, we note first that 
dislocation climb involves the motion of two species (e.g. Ga and As). Secondly, since 
defects of these two species are unlikely to be present in equal supersaturation in as-grown 
samples, one has to postulate a defect reaction in which the one in excess can react with 
the dislocation jog so as to generate a vacancy-interstitial pair of the other. Climb 
then occurs by the absorption of the species in excess and the emission of one member 
of the vacancy-interstitial pair. Petroff and Kimerling (1976) (see also Petroff 1979) 
have proposed one model based on excess interstitial Ga and As Frenkel defect produc- 
tion, though some uncertainties remain. Indeed, both the climb mechanism and the 
precise origin and nature of the point defects are in doubt. However, it is clear that 
recombination-enhanced motion of point defects is an essential component. 

6.2. The fitting of defect parameters 

How does one characterise a defect, given data on capture cross sections as a function 
of temperature and possibly some extra information like optical absorption, or perhaps 
electric-field effects? For present purposes I assume there are no awkward gaps in the 
data, and that there is no problem with incomplete resolution of contributions from 
several defects. 

Ideally, one would end with some four parameters, or more in a more general model, 
namely an enthalpy HZ and entropy of ionisation, a relaxation energy, SoAw, and an 
effective phonon energy Aw. These parameters are then used in three ways. One is as a 
label, like ‘the electron trap at 0.4 eV below the conduction band’. A second is as a test 
of a particular atomic model: is the degeneracy right? Is the optical threshold consistent 
with a specific charge state? The third use is as a consistency check: are the trends 
among related cases consistent? Do the zero-phonon lines or phonon replicas show 
isotope effects ? The trends might be those with ionisation energy, where quantum defect 
theory is the connecting link, or it might be a chemical trend, as in the discussions by 
Hjalmarson et a1 (1980). 

The ideal situation is rarely, if ever achieved, even with the most careful fits to 
formulae like those in 52. Indeed, in the circumstances which usually prevail, any detailed 
fit to a complicated form of G(w, T )  or U ( T )  will give a false illusion of accuracy. This 
depressing conclusion arises from the fact that one is trying to describe a complicated 
incompletely specified system with a grossly oversimplified model. However, the con- 
clusion focuses attention on the fact that it is efective parameters, such as an efective 
phonon energy, which are involved, and the implied effects on other parameters. The 
best one can hope for, if one has no established atomic model, is a set of parameters 
which describe adequately and consistently the range of experimental results. The fit 
may not be unique. 

Why does this situation arise? The most important contributing reason is this: 
if one does not have an atomic model, one does not know what temperature dependence 
(or even which selection rule) to associate with the promoting mode. The factor IMI2 
in 52 could be independent of temperature, or linear, the two choices usually made. Yet 
one can identify circumstances in which it will show thermal activation or even the 
opposite trend with temperature (52.1). A second problem is that the usual theory con- 
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cerns thermodynamic internal energies (zero temperature and constant volume rather 
than constant pressure). A third problem concerns the effective frequencies. Even if 
there is linear coupling alone, so long as there is interaction with a range Aw of lattice 
modes, the effective frequency will itself depend on temperature. The issue becomes still 
more complicated when the effective frequencies change between the two states involved 
(as will usually be the case for deep levels because of the change in charge density) or 
when there is substantial anharmonicity. There are also many other minor corrections. 
Auger processes could provide another channel at low temperatures (e.g. Robbins 1980a). 
Thermal expansion of the host is usually unimportant, but should not be forgotten. 
Changes in concentrations of other shallow defects may lead to impurity banding and 
shifts of ionisation energies. Dynamic Jahn-Teller effects can lead to a change of the 
symmetries of the important vibronic states over modest temperature ranges. Nor must 
one forget the Sommerfeld factors which depend on the defect charge state, which is 
often unknown. 

These arguments apply to defects whose atomic nature is uncertain. In special cases 
there may be enough information to over-determine the parameters of the model, and 
hence to have a consistency check too; an example is the neutral vacancy in diamond 
(Stoneham 1977) where the Jahn-Teller effect can be analysed in some detail. The 
most-analysed results where doubts about atomic nature remain are for GaAs, and here 
there has been controversy recently. The situation can be understood from the two 
tables. The first (table 5) assembles results on the B centre in GaAs. This gives one of 
the only two deep levels present in undoped GaAs grown by liquid-phase epitaxy. The 
level lies at 0.71 eV above the valence band and is not associated with some of the 
transition metals (Cu, Fe, Mn, Cr) first suspected. The capture cross section is given in 
figure 3 of Henry and Lang (1977). 

Table 6 summarises some of the results for two defects in GaAs. One is the E3 level 
at 0.31 eV below the conduction band, formed by bombardment by electrons with MeV 
energies in layers of GaAs grown by vapour-phase epitaxy (Lang and Kimerling 1974). 
The E3 level may be associated with an intrinsic vacancy, both Ga and As vacancies 
having their supporters. The other is the EL2 centre, possibly associated with oxygen 
(though some samples with more EL2 defects than total oxygen impurities have been 
reported), and a native defect in bulk GaAs layers as well as those from vapour-phase 
epitaxy. The ensemble of the data show a helpful, if incomplete, consistency. The data 
in tables 5 and 6 also show an important point: the effective frequency depends on the 
defect as well as on the host. One cannot simply guess the frequency from the phonon 
dispersion curves of the host. For comparison, the LO phonon energies are 37 meV in 
GaAs and 49.5 meV in Gap; the TO energies are 33 meV in GaAs and 45 meV in Gap. 

A third table is in order too, covering two defects where there is some information 
about the atomic nature (table 7). One is the ZnQ centre in Gap, the other a centre 
associated with Cr in GaAs which acts predominantly as a hole trap. There is some 
doubt about details of the GaAs: Cr centre, e.g. whether Jahn-Teller terms matter, or 
which charge state is involved. One notices a further different effective frequency. 

6.3. Relation to the theory of electronic structure 

We now turn to what calculations of electronic structure can contribute to under- 
standing non-radiative transitions. I shall discuss the case of point defects, though 
most of the arguments carry through unaltered for line defects. 

It is worth remarking that, in inany important systems, it is unlikely that either theory 
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Table 5. Analysis of the B centre in GaAs. 

Author Method hw(meV) SO P So/p Comments 

Ridley 
(1978a, b) 

Burt 
(1 979) 

Passler 
(1980) 

Robbins 
(1 980a) 

Markvardt 
(1981) 

Fit broad trend. 37 1 
Higher temperature (chosen) 
values of U( T) 
important 

lower temperatures (chosen) 
Fit broad U( T )  at  37 -3 

Fit fuller expression 22.3 7.7 
over wide 
temperature range 

Revision for Auger - 18 N 12 
process e s 

Semiclassical 1D - 45 Not 
model using given 
detailed T 
dependence from 
experiment 

Burt Graphical giving - 18 - 17 
(1981a, b) So/p against p 

32.3 0.24 

-40 0 . 3  

-16 Not 
given 

-40 -0.3 

Trend of U( T) at lowest 
temperatures less 
satisfactory 

Exploits large p to get SO 
approximately from 
u(T=O). No assurance 
that U accurate a t  high T 
without further refinement 
If Auger processes are as 
important as Robbins 
suggests, these parameters 
are not consistent with 
observed values 
Some dependence on 
assumed electron 
concentration 
Predicts energy difference 
of upper and lower states 
versus Q. Needs accurate 
U (TI 

Some dependence on 
assumed electron 
concentration 

or experiment alone can give a complete picture. Experiment alone cannot always probe, 
let alone characterise fully, the transient states which may be involved for very short 
times only, and theory alone will always be limited as to the range of states and geo- 
metries which can be studied in depth. However, the two together may give a rather 

Table 6. E3 and EL2 defects in GaAs. 

Level Experiment 
SoAo Aw 

References SO (mev) (meV) 

E3 Capacitative transients a 7 . 5 k 2 . 4  75225 10.5+1.5 
Cross section versus a, I-, - 95k10 - 
temperature 
Differential capacitative c 9+  1 100+15 1 1 1 1  
transient 

EL2 Differential capacitative c 6 . 5 1 1 . 5  125115 2015 
transient 
Cross section versus c, d 5 .5*4 115150 2 0 k 3  
temperature photoionisation e .- - 120 

a, Pons and Makram-Ebeid (1980). 
b, Henry and Lang (1977). 
c, Makram-Ebeid (1980a, b). 
d, Mitoneau et a1 (1979). 
e, Bois et a1 (1979). 
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Table 7. Impurity centres in GaAs and Gap. 

Centre Method Reference SO S O ~ W  (meV) hw (meV) 

Gap: (Zn, 0) Luminescence a 10.2 19.0 18.6 
Differential capacitative b 11.1 206 18.6 
transient (chosen) 
Photoluminescence e 6.0 

GaAs:Cr Cross Section versus C 
temperature 
Optical absorption d 
Electric-field effects on b 
emission rate 

170 28 

180 40+5 
195+15 35+10 

a, Henry and Lang (1977). 
b, Makram-Ebeid (1980a, b). 
c, Makram-Ebeid et a1 (1981). 
d, Hennel et a1 (1980). 
e, Feenstra and McGill (1981). 

complete picture of the nature of non-radiative transitions and of the critical steps. 
This is the case, for example, in the area of photochemical damage in alkali halides. 

From previous sections (e.g. figure 4) it is obvious that the energy surfaces E&) 
comes from one of the two critical components. Thus, in simple multiphonon transitions &(e) determine the parameters such as S, p and fiweff. In cooling transitions the branch- 
ing ratio depends on the precise shapes, especially near any crossing point. One of the 
models of persistent photoconductivity depends directly on the relationships of the 
several energy surfaces. Obviously the lowest-energy geometries for the different charge 
states must correspond to different defect sites if the Bourgoin-Corbett mechanism is to 
operate. For a local heating mechanism to be efficient, the effective frequency should 
not be close to the main peak in the phonon density of states of the host. For a local 
excitation model, one should be able to identify the important excited state. 

Energy surfaces can be obtained either by direct calculation or by the analysis of 
experimental data. Indeed, in 56.2 the fits of capture data to S , p  and fiweff could be 
regarded as determining an energy surface, in just the way optical spectra are used to 
derive configuration-coordinate diagrams. Unfortunately, the procedure has only limited 
scope, for the contribution of promoting modes or of Jahn-Teller terms may be hidden. 
In special cases one can get rather detailed information from optical spectra, one example 
being the so-called GR1 centre (neutral vacancy) in diamond, where fine structure in 
the optical spectrum permits a reasonably complete analysis of the energy surface in this 
Jahn-Teller system (Stoneham 1977b). Direct calculations of energy surfaces are relatively 
rare, and may still over-simplify greatly the description of the vibrational degrees of 
freedom. One must exclude here papers which call the sum of one-electron eigenvalues a 
‘total’ energy, since this double-counts electron-electron interactions and omits nuclear- 
nuclear interactions. Despite some valuable qualitative insights (e.g. Corbett et al 1973), 
the approximations have consequences which are often dramatic (e.g. Larkins 1971), 
especially for geometries such as the bond-centred interstitial (see the comments of 
Mainwood et a1 (1978)). Only a few cases of energy surfaces seem to have been studied 
self-consistently, and these few are mainly intrinsic defects of the simplest kind. There 
is very little overlap with systems in which non-radiative transitions are observed, the 
study of self-interstitials being closest (Mainwood et al 1978). This gap is not yet another 
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sign of the theorists’ ivory tower, but reflects both the real difficulty of accurate calcula- 
tion and the fact that the atomic natures of many key defects are still not known. More- 
over, one specific technical difficulty has barely been touched : in non-radiative transitions, 
one is almost inevitably involved in energy surfaces in excited states. Problems arise of 
convergence, of accuracy, and in some cases even of identifying the important state 
among many contenders. Further, some approaches are strictly applicable only to the 
ground state, the density functional approach being one instance. Even where a method 
has adequate generality, the choice of basis may remain a problem. It is hardly surprising 
that, at the present time, a semi-empirical method (CNDQ) has been the one most widely 
applied to the problems discussed here or to parallel situations in more ionic systems. 

The second of the two critical components in non-radiative rates concerns the transi- 
tion matrix element. For multiphonon transitions this inevitably leads to the question 
of the promoting mode, and to whether it is or is not the same as the accepting mode. 
For Auger processes at deep centres one has the particular complication that the wave- 
functions of all the localised electrons change when one electron changes its state. 

The general picture to emerge from 56.2 was that much theory had been aimed at 
phenomenology for simple models, and that in many cases these were in forms which 
have no major advantages in direct application. The discussion in the present subsection 
has equally unsatisfactory conclusions : there have been very few attempts to calculate 
energy surfaces or matrix elements, or indeed to provide a framework within which the 
complex components of non-radiative transitions can be handled. 

6.4. Killer centres 

A persistent problem is the identification of ‘ltiller centres’, those imperfections which 
cause rapid recombination even at low concentrations. For present purposes we shall 
assume transport of the carriers to the defect centre is not rate-determining. What 
models have been proposed for ‘killers’ ? 

(a) Defects with many closely spaced bound states. In these systems the cascade 
mechanism is possible (energy separations 5 phonon energies). Shallow donors and 
acceptors exhibit high carrier capture cross sections ; indeed, any Coulomb-attractive 
centre will have close highly excited states which may prove effective. It is widely 
believed that transition-metal impurities are effective killer centres but, whilst some 
examples are known (e.g. Ni in Gap), there are wide variations in effectiveness from host 
to host. 

(b) Defects with favourable vibrational properties. For fast multiphonon processes 
one has two demands which could conflict: a high-frequency accepting mode, so that 
few phonons need be emitted, and a large-amplitude motion in the promoting mode. 
One can envisage centres where both occur, e.g. ‘split-interstitial centres’ (Stoneham 
1977) where there is both a high-frequency local mode and a low-frequency resonance. 
These types of defect are best known in metals (e.g. Dederichs et a1 1972); examples have 
been seen in semiconductors, including the di-carbon centre in silicon (Watkins and 
Brower 1976), but the concentrations are so low that studies of non-radiative transitions 
have not been attempted. 

(c)  Defects with strong electron-lattice coupling. ‘Strong’ is used here in the sense of 
$1, i.e. a large change in displacement is involved. Simple vacancy centres have large 
state-dependent Jahn-Teller energies (see, for example, Watkins 1975) and so would be 
candidates, either in isolation or associated with impurities. It is tempting to argue dis- 
locations will be effective because, in a restricted sense, one can relate the rebonding at 
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them to that which occurs in vacancies. However, this appears to be naive. Certainly 
decorated dislocations are effective in causing recombination (Blumtritt et al 1979). 
For clean dislocations there is also a dependence on the precise degree of dissociation, 
Burgers vector and chemical state (Ourmazd and Booker 1979, Petroff et al 1980). 
Moreover, a dislocation may merely concentrate non-radiative centres present in the 
bulk, and make no other contribution itself (Queisser 1980). Further, in special cases 
the dislocation may be critical yet only indirectly involved, as when the electric field from 
a charged dislocation inhibits capture into shallow levels (Tasker and Stoneham 1977). 

( d )  Rapid Auger processes. These are mediated by the electron-electron interaction. 
One of the important factors therefore is the localisation of the captured carriers; 
another is the effect of an attractive potential of the defect on the free carriers (e.g. the 
Sommerfeld factor). Thus deep levels have an advantage, and this is confirmed in 
detailed work. Specific examples proposed in this context are the antisite-vacancy 
complexes like VGa-PGa"'VGa- or Vp+Gap2-Vp+ discussed by van Vechten (1975a, b) 
and the He-like defects discussed by Jaros (1978). The examples discussed by van 
Vechten could exhibit multiphonon transitions, as in (c )  above. 

A final example is of a rather different nature. In GaP there is a killer centre, the 
so-called 0.75 eV defect (Wight 1977), which has a large capture cross section and can 
cause recombination at a formidable rate without saturation. It correlates with dis- 
locations, but carrier diffusion limits mean it cannot be a dislocation itself. Nor 
apparently is the defect a transition metal, as doping experiments show. Also the defect 
is not generated by standard radiation damage. In GaP grown by slow-growth liquid- 
phase epitaxy the killer centre is missing, though it appears as soon as these GaP samples 
are used in devices. One possible explanation is that the killer centre is a metallic pre- 
cipitate, perhaps a Ga colloid. The recombination energy of carriers is transferred 
initially into energy of the conduction electrons, and energy from this reservoir is then 
removed by standard thermal conduction (A M Stoneham 1977, unpublished work). 
Provided the colloids can indeed mimic a 0.75 eV level, the model has distinct advan- 
tages. One can see how it might suppress luminescence (indeed, Glaubermanet et al 
(1969) note that colloids in ionic crystals quench radiative recombination); one can 
see how the defects might correlate with dislocations (which would act as sinks for 
excess P) without being a dislocation; one can see why the centres might emerge on use 
as a device; one can understand the lack of influence of transition metals; and more 
detailed discussion shows how hard direct observation of the defect responsible would 
be. However, since colloids have been studied widely in other systems, there exists a 
basis of knowledge from which one might identify ways to minimise colloid formation 
and hence (if the model is correct) control this killer centre. 
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