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Abstract

We re-examine the theory of metastable impact electron spectroscopy (MIES) in its application to insulating
surfaces. This suggests a quantitative approach which takes advantage of recent developments in highly efficient
many-electron computational techniques. It gives a basis to the interpretation of experimental MIES spectra for
perfect and defective surfaces. Our method is based on a static approach to predicting Auger de-excitation (AD) rates
of He1(1s2s) projectiles. A key quantity is the surface density of states (DOS) projected on the 1s orbital of the He1
atom, which is calculated along its trajectory. We use density functional theory within both supercell geometry and
embedded cluster models to calculate MIES spectra for the perfect MgO surface and for an MgO surface with
different concentrations of adsorbed oxygen atoms. First we calculate the Auger de-excitation rates at various positions
of the projectile above the surface. To predict MIES spectra, we integrate over projectile trajectories, with a subsequent
weighted averaging with respect to various lateral positions of He1 above the MgO surface unit cell. It is important
to examine final-state effects for a correct comparison between theory and experiment, especially when there are
localised defect states. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction particle with the surface. The experimental tech-
nique based on this effect is known as metastable
impact electron spectroscopy (MIES) or metasta-When a slow, electronically excited rare gas
ble atom electron spectroscopy (MAES). The sev-atom impinges on a solid surface, its excitation
eral different processes leading to electron ejectionenergy can be transferred to kinetic energy of an
have been considered in Ref. [1]. Extensive appli-ejected electron. These measured kinetic energy
cations of this technique to study metal surfacesspectra contain information about electronic pro-
have recently been reviewed in Ref. [2]. However,cesses taking place during impact of the excited
there have been few applications of MIES to
insulating surfaces until recently, partly because of
the complications of surface charging. Yet there is* Corresponding author. Fax: +44-171-391-1360.

E-mail address: a.shluger@ucl.ac.uk (A.L. Shluger) strong interest in thin oxide films on metals, and
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advances in the controlled growth of such films directed into the vacuum). Simple arguments sug-
gest then that the total probability, P(R), will behas prompted increasing applications of MIES to

insulators, as reviewed in Ref. [3]. So far, the peaked at a distance Rmp from the surface of the
order of several Å. For an atom with a linearinterpretation of MIES spectra has been based on

intuitive models [4–6 ]. We shall re-examine these incident trajectory of constant velocity, the prob-
ability for the transition to occur anywhere on theideas so that we can apply state-of-the-art methods

to perfect surfaces, and also show how surface incoming part of the trajectory is given by the
integral ∆2

0
P(R)|dR/v

0
|=1−exp[−exp(aRmp)]. Indefects modify MIES spectra. This paper concen-

trates on one of the most common MIES situa- most cases, this has a value very close to unity
[1,7], since aRmp&1. Static calculations of thetions, in which metastable excited helium atoms,

He1(1s2s), approach an insulating surface with Auger processes based on Fermi Golden rule
expressions for the transition probability have beenthermal velocities. In many experiments (see

below) the informative part of the MIES spectra given, for example, in Refs. [8–13].
Significant progress has been achieved inon insulators comes from the so-called Auger

de-excitation (AD) process. In this process, a dynamic calculations of Auger processes using a
variety of methods. Thus, in Refs. [14–17], thesurface electron tunnels into the singly-occupied

1s state of the He1 atom, with simultaneous ejec- time-dependent Schroedinger equation is solved in
a space spanned by a limited set of Slater determi-tion of the excited He(2s) electron. The focus of

this paper is on the distribution of kinetic energies nants, y
a
, related to the processes of interest. The

full Hamiltonian Ĥ(t) used includes the atomof these ejected electrons.
The theory of AD processes for metal surfaces (ion)–surface interaction term explicitly [time

dependence enters via the projectile position R(t)has been discussed in detail in the literature. In
particular, Hagstrum [1] suggested a theory based above the surface]; the evolution of the wavefunc-

tion Y(t)=∑
a
C
a
(t)y

a
of the combined system ison standard perturbation theory (Fermi’s Golden

rule) and one-electron wavefunctions. His so-called calculated. The probability for reaching a chosen
final state yf after Auger de-excitation is thenstatic approach recognised the valuable assump-

tion that the projectile could be assumed to be Pf=|
yf|Y(2)�|2 by standard quantum mechan-
ics. Physically equivalent but mathematically dis-fixed at some position R along its path R(t) above

the surface. The transition rate (per unit time), tinct methods are used by some other workers. In
Refs. [18,19] the time evolution of the combinedR(R), can then be calculated for the process to

happen during the next instant dt. The distance system is studied using the Keldysh Green’s
function formalism [20] for time-dependentmoved in this interval is dR=v0 dt, where v0 is

the projectile velocity. The total probability Hamiltonian operators. Moyer and Orvek [21,
22] base a general theory on the equation ofP(R) dt=P(R)|dR/v0| for the transition to happen

in the time for the projectile to move from R to motion for the evolution operator U(t, −2)=

Y(t)|Y(−2)�, and apply it to the neutralisationR+dR is given as a product of R(R)dt and the

so-called escape probability, of slowly moving ions at metal surfaces. They find
that, for ions with energies above 2 eV, or at very
short ion–surface distances (around several Å), the

Pesc(R)=expA−P
R

2
R(R∞)K dR∞

v
0
KB, (1)

transition probability may have a complex oscilla-
tory behaviour. However, the transition probabili-
ties for slow energy particles, interacting weaklywhich is the probability for the transition not to

happen along the incoming part of the trajectory with the surface, are found to agree well with
predictions from the Fermi Golden rule expressionfrom infinity to R. Multiple exchanges of

electrons are not included. One expects the rate smeared out by a Lorentzian due to dynamical
effects.R(R)3exp(−az) to fall off exponentially because

of the decay of the surface wavefunctions into the Although the basic mechanisms of the AD
process are reasonably well understood, it has notvacuum (the z axis is the normal to the surface
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proved simple to apply existing theories to the to the effect of surface defects on the spectra
obtained by ultraviolet photoemission spectro-interpretation of experimental data. What is

needed is a combination of the AD theory and the scopy ( UPS) and MIES. Can our theory predict
particular ‘signatures’ in the MIES spectrum toelectronic structure of realistic systems, including

surface defects and adsorbed species. Such aid defect recognition in experiments? Comparison
with experiment needs both estimates of defectelectronic structure calculations are still complex

and time-consuming. In many cases, especially for concentrations on the surface and also the possi-
bility of different defect orientations. An importantinsulating surfaces, attempts to model MIES

spectra use simple or intuitive models. In Refs. point concerns the energies of local defect states
with respect to the oxygen O(2p) band observed[4,6,23] it is assumed that the main transition

mechanism is Auger de-excitation, and the MIES in UPS and MIES spectra, and their interpretation.
We shall argue that the defect-related features inspectra have been simulated by the surface density

of states (DOS) projected on the surface oxygen MIES spectra can be significantly shifted with
respect to those in projected DOS due to final-ions of the uppermost surface layer using a

Hartree–Fock method (the  code [24,25]) state effects; i.e., crystal electronic polarisation due
to the hole localisation on the defect after electronand a density functional theory (DFT) method

(the  code [26 ]). The effect of the overlap tunnelling to He1 in the AD process. We have
chosen as a representative defect one which hasbetween the surface and He(1s) wavefunctions was

taken into account only approximately by applying already been analysed in some detail in Refs. [27–
29]; namely, an oxygen atom adsorbed on thean additional z-dependent exponential factor to

the surface DOS. Other workers [5,6 ] estimated MgO(001) surface.
The paper is organised as follows. In Section 2the AD transition probability using a DOS pro-

jected on to the projectile 1s atomic orbital. we briefly review the theory of AD processes for
a slowly moving metastable atom (such as He1)However, they were not able to use state-of-the-

art methods for the surface electronic structure. incident on an insulating surface. This analysis
leads to a simple expression for the AD transitionYet the success of the simplified treatments [4–6 ],

especially for MIES features such as relative ener- rate based on the DOS projected on the He1(1s)
orbital. We also discuss the final-state effects (crys-gies of the different peaks, suggests that real spectra

are indeed related to the projection of the surface tal polarisation due to hole formation in the crys-
tal ) and the physical effects which may lead to theDOS on to the projectile orbital.

In this paper, we take the next step. We attempt broadening of the calculated spectra. Details of
the electronic structure methods used are alsoto calculate MIES spectra for typical cases using

both AD theory and density functional theory of given in Section 2. The results of our calculations
of the MIES spectra for perfect and defectivethe surface electronic structure. We demonstrate

how, by using a number of approximations, one surfaces are presented in Section 3; our discussions
and conclusions are given in Section 4.can obtain an expression for the MIES spectrum

which indeed appears to be proportional to the
projected surface DOS. A complete approach
includes also a detailed study of the dependence 2. Theory
of AD transition rate on the position of He1 with
respect to the surface. One must average over 2.1. Calculation of the transition rate
positions, and integrate over the projectile trajec-
tory. The MIES spectrum of the perfect MgO The interpretation of MIES experiments follows

the model of Refs. [1,30,31] shown in Fig. 1.surface that we predict is close in many ways to
the experimental one reported in Ref. [4]. The Excited helium atoms (atomic state 1s2s) approach

a surface with thermal velocities at an incidencedifferences between our theory and experiment
point to further challenges, which we discuss. angle of 45°. Their triplet/singlet (23S/21S ) ratio

is about 7:1 in real experiments [4]. For manyA second major issue which we address relates
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Hamiltonian without interaction and therefore do
not depend on R.

The transition probability per unit time to emit
an electron with momentum Q is:

R(Q)=
2p

B
∑
k

occ
|W

kQ
|2d(Ei−E(kQ)f ). (4)

We sum over all occupied states of the crystal. The
perturbation matrix element is given as [1,2]:

W
kQ
= P dr

1
dr
2

|r
1
−r

2
|

y1s(r1)y
k
(r
1
)y2s(r2)y

Q
(r
2
).

Fig. 1. Schematic representation of the Auger de-excitation pro-
(5)cess. The helium atom enters in an excited (1s, 2s) triplet state

and leaves in its ground singlet state.
This expression is valid in the Hartree–Fock
approximation; the system has triplet spin symme-
try in both initial and final states. In the case ofinsulators, the top of the valence band with respect

to the vacuum is much lower than the ionisation the singlet He1 atom, where the final state will
preserve the spin symmetry, there is an additionalpotential of He1. In such cases, only AD processes

are important. The static approach should apply, term which disappears in the triplet state through
integration over spins (see, for example, Ref. [2]).since He1 atoms have only thermal velocities, and

interact only weakly with most such surfaces. In the final state, the crystal will be polarised by
the hole created on emission of the electron. WeWe shall need a working model. Let us consider

a triplet He1 atom at position R=(x, y, z) above assume, however, that this effect on the electronic
wavefunctions is insignificant and neglect it inthe surface. In the initial state (before the trans-

ition; we use index i), we have the He1 atom and this study.
The double-space integral in Eq. (5) is verythe ground-state crystal surface. In the final state

(index f ), there is a hole with spin down in state difficult to calculate using the ab initio wavefunc-
tions y

k
specified on the real-space grid, as in mostk (with the energy −e

k
) and a free electron

with spin up, momentum Q and energy conventional plane-wave DFT calculations and
including those used in our work. However, weEKE(Q)≈(B2/2m)Q2; the helium atom is now in its

ground (singlet) state. The total energies of the can simplify the expression using the following
argument. The integral in Eq. (5) can be interpre-whole system in the initial and final states are:
ted as the matrix element 
y1s(r1)|VQ,2s(r1)|yk(r1)�Ei=E

0
+EHe1 (2)

of the Coulomb potential, V
Q,2s(r1), arising from

the charge density y2s(r2)yQ
(r2). Our Hartree–and

Fock calculations of the triplet He1 atom show
E (kQ)f =E (k)h +EHe+EKE(Q), (3)

that the He(2s) orbital is very diffuse (its radius is
≈2.26 Å); the He(1s) orbital is much more local-where E0 is the energy of the crystal prior to the

transition and E (k)h is its energy with one hole in ised (its radius is ≈0.40 Å). Given this, and the
fact that the orbital y

Q
(r2) is a plane wave, onestate (k3). We use standard quantum methods to

calculate the transition rate in the static approxi- can expect that the potential V
Q,2s(r1) varies only

slowly in space. If it is sensibly constant withinmation already described. The interaction between
the crystal and the He1 atom, Ĥint, depends explic- the area of significant overlap between the func-

tions y1s and y
k
, then we may simplify the integralitly on the actual position R of the helium atom

above the surface. The energies Ei and E (kQ)f in by taking the potential out of the matrix element.
The simplified integral is proportional to an over-Eqs. (2) and (3), respectively, correspond to the
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lap integral 
y1s(r1)|yk(r1)�. The obvious gain is used by other authors (see, e.g., Refs. [4,5,30,31]),
that, instead of the rather complicated double- but without detailed justification. A more general
space integral of Eq. (5), we have an overlap derivation of this result is given in the Appendix.
integral which can be easily calculated on a real- We are also aware of other routes to the same
space grid. Turning to the transition rate of Eq. result, based on more conventional approaches to
(4), we have now: Auger transitions [33].

R(Q)3C ∑
k

occ
|
y

k
|y1s�|2d(Ei−E(kQ)f )D. (6) 2.2. Calculation of MIES spectra

Our aim is to calculate a spectrum that can beThe expression in square brackets proves to be
compared directly with experiment. This means weproportional to the crystal DOS projected on the
must consider the trajectory of the incident heliumHe(1s) orbital. The energy in the d-function can
atom. In particular, one has to multiply the trans-be expressed in terms of one-electron energies e

k ition probability R(EKE, R) by the probability thatof the crystal orbitals y
k
. We adopt the following

definition: there has been no earlier transition, using the
escape probability of Eq. (1), whereE(k)h =E

0
−e

k
+W (k)pol . (7)

Here, W (k)pol accounts for all electron relaxation and R(R)=PR(EKE , R) dEKE (10)
correlation effects on forming the electron hole in
the AD process. This relaxation energy can be

in Eq. (1) is the total probability to emit ancalculated using simple models (e.g., Ref. [32]).
electron with any energy during the time dtUsing Eqs. (2), (3) and (7) in Eq. (6), we finally
between R and R+dR along the trajectory. Oneobtain:
must sum over all possible events, i.e., consider

R(EKE, R)=C · D1s(EKE+W (k)pol+EHe−EHe1 , R), transitions at all times t along the same trajectory,
which turns into an integral over the whole incom-(8)
ing trajectory of the projectile. The total spectrum

where C is a proportionality factor which we requires an ensemble average 
…� over the
assume is the same for perfect and defective sur- different starting positions of the helium atoms
faces. It will be discussed in a later section. This with respect to the surface unit cell, i.e., with
expression shows explicitly the dependence on the respect to all possible trajectories:
position of the helium atom and on the kinetic
energy of the emitted electron. The quantity

P(EKE)=TPR(EKE , R
t
)Pesc(Rt

) dtU, (11)

D1s(E, R)=∑
k

occ
|
y

k
|y1s�|2d(E−e

k
) (9)

where R
t

indicates explicitly the time dependence
of R. This general expression can be used for anyintroduced in Eq. (8) is the crystal DOS projected
trajectories of He1 atoms, provided there are noon the 1s orbital of the helium atom and calculated
multiple transitions.at the energy E=EKE+W (k)pol+EHe−EHe1 . The

We shall concentrate on a simplified model inprojected DOS can be calculated routinely with
which all the trajectories are assumed to be perpen-modern ab initio methods. For delocalised hole
dicular to the surface. In this case, the integralstates W (k)pol≈0. However, W (k)pol can be significant
over the trajectory is an integral over z, and theif an AD process creates a hole in a localised
averaging with respect to starting lateral positionsdefect state; this we shall refer to as the final-
of helium atoms at infinity is equivalent to averag-state effect.
ing over various positions of the projectile in theEq. (8) allows one to calculate the probability
x, y plane.(per unit time) of an AD process in which a free

As noted in the Introduction, the exponentialelectron of energy EKE≈(B2/2m)Q2 and momentum
Q is emitted. The projected DOS has also been decay of the crystal wavefunctions suggests that
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the rate R(EKE, R) should decay exponentially with has been estimated in Ref. [4] using a simple model
due to Ref. [36 ]. We have also run selected calcula-increasing distance z from the surface. The charac-

teristic decay length will depend on energy EKE; tions with the dispersion 0.8 eV, discussed later.
i.e., R(EKE, R)3exp[−a(EKE)z]. In the next sec-
tion, we show that the exponentials a(EKE) are of 2.3. Details of the calculation
the order of several inverse Å, and also depend on
which part of the surface unit cell the projectile We shall use two approaches within the widely

used density functional theory [37] (for its applica-impinges. The escape probability has the opposite
behaviour, being unity at large z and close to zero tions to oxide surfaces see, e.g., Ref. [38]). For the

calculations of the final-state effects, which essen-for small z. The integrand in Eq. (11) will be
peaked therefore at some Rmp(EKE). The peak is tially require calculations of ionisation energies,

we adopt an embedded cluster model [39,40]. Tonot sharp, so, in effect, the integration in Eq. (11)
will lead to some broadening of the transition model the MIES spectra, we calculated the pro-

jected DOS using a periodic model and plane waveprobability R(EKE, Rmp) from the value predicted
solely at the most probable target distance Rmp. basis set. This method has already been used to

study the MgO(001) surface [41] and adsorptionIn this paper we use the model suggested by
Hagstrum [1] to calculate the whole contribution on it of atomic [27–29] and molecular [28,29]

oxygen.over the projectile trajectory numerically. The final
spectrum P(EKE) is then obtained by averaging In the embedded cluster calculations, quantum

mechanical (QM ) clusters of up to 35 atoms werewith respect to different positions at which the
helium atom impinges on the surface. We shall treated using the DFT. Fig. 2 shows the largest

QM cluster, Mg25O10, which also includes andiscuss how this is done in practice in Section 3.
We note in passing that in the kinetic model adsorbed oxygen atom. It was embedded in a finite

cluster (region I ) of 12×12×6 ions treated in asuggested in Refs. [30,31] and applied to MgO
in Ref. [4], the problem with integration over polarisable ion model. Pair potentials [42] were

used to calculate the interactions between thesethe trajectory does not appear at all. In fact, the
problem is hidden in the time-dependence of ions, and the shell model [43] to treat the polarisa-

ble oxygen ions. The QM cluster and region I werethe helium atom concentrations N [He1] and
N[He]. The transition rate R(EKE, R) can be used embedded into an outer region of frozen ions,

which make the total number of ions in the systemdirectly as the input. However, we shall not pursue
this method here. 20×20×8. The effective charges on all classical

ions were ±2e (where e is the electron charge).An important issue concerns spectral broaden-
ing. Dynamical calculations of the atomic colli- This formulation provides correct values of the
sions with metal surfaces (see, e.g., Refs. [21,22])
show that the d-function which appears in the
transition rate formula above should be replaced
by a Lorentzian. The appropriate breadth depends
on the speed of the helium atom, its distance to
the surface, and the interaction potential. This
leads to a broadening of spectra calculated in any
static approach. This motional broadening is
accompanied by lifetime broadening of the incom- Fig. 2. The quantum cluster Mg25O10 containing an adsorbed

oxygen atom in the upright position above the central surfaceing atom [22]. There is also phonon broadening
oxygen ion. Oxygen ions are represented by white circles, mag-(see Refs. [32–36 ]), which is well described by a
nesium ions by black circles. The magnesium ions shown inGaussian of width which depends on temperature.
grey carry full-ionic pseudopotentials and one 1s orbital, as

We shall take these effects into account phenome- described in the text. The cluster shown is embedded into a
nologically by smearing out the calculated spectra finite array of polarisable ions surrounded by a finite array of

point charges (not shown).with a Gaussian of dispersion 0.5 eV. This value
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Madelung potential and its gradients on the ions surface used in this study (see the next section),
we find that the 1s wavefunction depends veryin region I and in the QM cluster.

The matrix elements of the electrostatic poten- little on the actual position of the helium atom
above the surface unit cell (on x, y) as well as ontial of the rest of the system, including the dipole

contributions from the polarised oxygen ions in z. This allows us to use the wavefunction calculated
for the free He1 atom. The overlap integral betweenregion I, are included in the Kohn–Sham equations

implemented in the modified 94 code the crystalline and He(1s) wavefunctions was cal-
culated numerically on the real-space grid. The[44]. The B3LYP functional [45] was employed to

calculate the electronic structure of QM clusters. results of the calculations were analysed and the
projected DOS calculated using the general visuali-All electrons of oxygen ions (shown in white in

Fig. 2) as well as of magnesium ions (shown in sation program 00 [49].
black) were described using the 6-31G standard
Gaussian basis set [46 ]. To facilitate calculations
of large QM clusters, the magnesium ions shown 3. Results
as grey in Fig. 2 were treated using the pseudo-
potentials of Wadt and Hay [47] and a 1s function 3.1. Perfect MgO(001) surface
described by two contracted Gaussians. For all
clusters considered, magnesium atoms that had In studying the perfect MgO(001) surface, we

use a four-layer slab with a unit cell containing 32less than three nearest quantum oxygens were
treated in the similar way. atoms. There are four magnesium and four oxygen

atoms in each layer, and the width is equivalentThe periodic DFT method we use is largely the
same as that of Refs. [27–29,39–41], except that to four atomic layers. A similar system was consid-

ered in Ref. [27], and we use the ionic geometryhere we use the local density approximation
(LDA) [48]. The calculations of the wavefunctions obtained there. The k-points that are not equiva-

lent by symmetry are identified by using the D4hy
k

and band energies e
k

were performed using the
 code [37]. The cell sizes, the vacuum widths point group. We use 10 k-points to obtain the

projected DOS and to calculate the transition rateand the system geometries are the same as in
our previous study on peroxides [27–29]. In all with Eqs. (8) and (9); these points correspond to

2058 tetrahedra in the Brillouin zone. The finalour calculations the interionic distance of
d0=2.122 Å has been used to specify the surface smeared DOS is not very sensitive to the number

of k-points used.unit cells. The projected DOS of Eq. (9) was
calculated using the method of tetrahedra as out- The projected DOS has been calculated for a

number of z values between 1 and 4 Å at the fourlined in Ref. [41]. First, the mesh of k-points
needed was generated using the point-group sym- positions of the projectile above the surface unit

cell shown in Fig. 3a. The maximum value of z ismetry of the cell. Then the wavefunctions and
energies of the surface electrons were calculated limited to ≈5 Å, which is half of the vacuum

width used in the electronic structure calculationsusing the  code for all non-equivalent k-
points.

To calculate the projected DOS, we need to
know the 1s wavefunction of the He1 atom. We
have used a linear combination of s-type Gaussian
atomic orbitals centred on the helium atom in an
ab initio Hartree–Fock calculation of the He1 atom
using the 94 code. The latter calculation
has been performed using an sp basis set derived

Fig. 3. Positions of the He1 atom: (a) above the (001) MgO
from the standard cc-pVQZ basis set [44] and surface for the perfect surface and (b) above the upright perox-
extended by adding four s and three p diffuse ide molecule. The positions above the interstitial sites which we

treat are shown by crosses.orbitals. For the range of distances z above the



38 L.N. Kantorovich et al. / Surface Science 444 (2000) 31–51

Fig. 4. Projected DOS calculated for different heights z of the Fig. 5. The exponent a(E ) as a function of binding energy E
helium atom above surface oxygen. The curves are normalised (see text) for the four positions of the helium atom above the
to the same intensity of the right-hand peak, which corresponds surface primitive unit cell. Numbers in brackets correspond to
to lower binding energies and a smaller inverse decay length. the four positions shown in Fig. 3a.

Fig. 4 emphasises the changes in shape of thein the slab model. The four lateral positions are:
(1) above the surface oxygen; (2) midway between predicted DOS with z by showing curves normal-

ised to highlight the approximate constancy ofoxygen and magnesium ions (side); (3) above the
centre of the cell (centre); and, finally, (4) above shape of the low-binding-energy peak. Clearly, it

is important to consider the integrated areathe surface magnesium ion. As expected, we found
that the dependence of the projected DOS D(z)=∆D1s(E, z) dE under each curve, which

should decay with z as well. We show this for theD1s(E, z) on z changes with energy. This is shown
in Fig. 4 for the helium atom above the oxygen four sites of Fig. 3a. For each site, and for every

energy E, we can fit the calculated projected DOSsite; for ease of comparison, the curves have been
normalised to the same intensity of the right-hand D1s(E, z) to an exponential form exp[−a(E )z]. The

inverse decay lengths a(E ) are plotted in Fig. 5.peak. Similar results are obtained above the other
three sites depicted in Fig. 3a. The intensity of the These curves have two reasonably flat regions,

separated by a region in which a(E ) changesleft-hand (high binding energy) peak decays much
faster than the right-hand ( low binding energy) rapidly. The flat regions show that the inverse

decay length a(E ) is almost constant across eachpeak for z values above ≈2.5 Å. This is because
states with higher binding energies decay more of the two peaks in the DOS (one peak corresponds

to binding energies between 6 and 8 eV; the otherrapidly into the vacuum. For the same reason, the
left-hand (higher binding energy) shoulder of the peak corresponds to binding energies between

about 3 and 4.5 eV ). The inverse decay lengthsmain peak moves to the right (towards lower
binding energies). In our previous study in Ref. [4] are very different for the two peaks; they also

depend strongly on the lateral position of thewe found that this holds approximately for the
Kohn–Sham orbitals calculated in the slab model helium atom above the surface.

To summarise, a(E ) is roughly constant overbetween z≈2 Å and the middle of the vacuum
width. We also showed that the corresponding the high-binding-energy peak, and corresponds to

a rapid decay into the vacuum. Over the low-exponentials are proportional to the square root
of binding energies associated with the orbitals binding-energy peak, a(E) is again roughly con-

stant, but smaller, so that decay is slower. They
k
, as it should be [50,51].
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results also show that decay is much slower above We shall use the same value of C for both the
perfect surface and for that with defects.magnesium and much faster above oxygen. Values

Our main choice is based on the value offor the two interstitial sites are intermediate, and
Rmp=2.5 Å for position 1 in Fig. 3a, above thesimilar in value to each other.
surface oxygen. This choice of Rmp was madeWe need to integrate the transition probability
initially intuitively on the grounds that it seemsalong the trajectory of the projectile, and then
likely that the value should be slightly larger thanaverage the results over the lateral positions. For
an interatomic spacing (since the spacing is relatedprojectiles approaching the surface along the
to the ionic radius). We find, in retrospect, thatnormal with constant velocity v0, the integral over
the value also gives the best agreement with thetime t in Eq. (11) can be replaced by an integral
experimental MIES spectrum for the cleanover z divided by the velocity. In addition, the
MgO(001) surface (see discussion at the end ofintegration with respect to the trajectory in Eq.
this section). Given this value, we can estimate C(1), which defines the escape probability, can also
from c=C/v0=(a1/f1) exp(a1Rmp) (see Ref. [1]).be replaced by dz∞/v0. Then, in order to calculate
Note that in all expressions only the combinationthe integral over dz∞/v0 in Eq. (1) for the escape
c=C/v0 is needed, we do not need to know theprobability, one has to have a simple and accurate
velocity v0 by itself. Here, a1 and f1 are constantsexpression for the total probability R(z)=C · D(z)
fitted to our calculated projected DOS above theas a function of z, where D(z) is the total area
oxygen site (position 1). We find c=3.5921×104under each projected DOS [cf. Eqs. (8) and (10)].
Å3 eV s−1. With this constant c, which is the sameWe find that D(z) can be approximated quite well
for any trajectory above both the perfect and theby a single exponential, D(z)≈f · exp(−az), which
defective surfaces, we can predict the total prob-results in a simple expression for the escape prob-
ability of Eq. (10) for the other positions on theability (see below). The exponents a for the four
surface including the corresponding Rmp, usingsites of Fig. 3a are, respectively, 3.25, 2.42, 2.24
only quantities which we have calculated:

and 1.78 Å−1. These energy-averaged values show
R
p
(z)≈Cf

p
exp(−a

p
z), where a

p
and f

p
are the

the same trends as the curves in Fig. 5. The main corresponding fitting constants for these other
contribution to these inverse decay lengths comes positions p. Using this expression, one can calcu-
from the range around the low-binding-energy late the escape probability, Eq. (1), for each lateral
peak. position on which the helium atom impinges.

There is a problem. The proportionality factor The MIES spectrum is given as follows:
C between the transition rate and the projected

P(EKE)=∑
p

w
p
P(p)(EKE) (12)DOS in Eq. (8) is difficult to calculate from first

principles. We can, however, obtain a consistent
andvalue of C if we start from a reasonable assumed

value for the target distance, Rmp, above only one
particular lateral position with respect to the sur- P(p)(EKE)=cP

0

2
D(p)1s (EKE , z)P(p)esc(z) dz. (13)

face unit cell. We have done this, and we have also
tried several possible values for this assumed value. Here, P(p)esc(z)≈exp[−c(f

p
/a
p
) exp(−a

p
z)] is the

We find that, provided we do not take too small escape probability and D(p)1s (E, z) is the projected
a value for Rmp, our results are not sensitive to DOS for the lateral position p. The integration
the choice. This means that we can predict MIES with respect to z was performed numerically; we
spectra which do not depend critically on C. Such used a projected DOS calculated for a mesh of z
predictions are, in fact, all that is needed for the values between 1 and 4 Å above the surface. In
interpretation of MIES: the precise value of C Eq. (12) w

p
are the weighting factors correspond-

would only be a useful observable if some signifi- ing to the lateral positions considered. Since each
cant fraction of incident helium atoms did not surface unit cell contains one oxygen atom, one

magnesium atom, four side and two centre posi-undergo an Auger process, and this is not the case.
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Fig. 6. Escape (a) and transition (b) probabilities for the helium
atom above the MgO(001) surface calculated using the assumed
most probable target distance of Rmp=2.5 Å above the Fig. 7. Calculated contributions to the spectra of emitted
oxygen atom. electrons from the four positions above the surface primitive

unit cell (a), and the calculated final distribution, Eq. (12),
surface DOS and the experimental [4] MIES spectra (b). Note

tions, the weights w
p

are 1/8, 1/2, 1/4 and 1/8, that we show kinetic energies, rather than binding energies, so
respectively. there is a shift equal to the helium excitation energy.

The escape probabilities calculated for the four
lateral positions are shown in Fig. 6a. Fig. 6b gives
the total transition probability that the helium Eq. (13)]. To make contact with experiment, we

should convert our spectra as a function of bindingatom will undergo the Auger transition on the
incoming part of its trajectory between z+dz and energy into functions of kinetic energy EKE for the

emitted electrons in accordance with Eq. (8). Thisz in time interval dt=dz/v0 [1]. The total transition
probability has been calculated as P

p
(z)≈cf

p
requires an estimate of the helium atom excitation
energy, EHe1−EHe . For consistency, we have calcu-exp(−a

p
z)P(p)esc(z). The transition probability peaks

at about 2.5, 2.8, 2.9 and 3.1 Å above the surface lated this energy, rather than taking the experimen-
tal value. We calculated the excitation energy offor the four lateral positions, respectively (the

value of 2.5 Å being our chosen value for above the helium atom into its lowest triplet state with
the Hartree–Fock 94 code, using the sameoxygen). The range of distances z for which the

Auger transition probability is most effective basis set as in Section 2.3. The energy obtained,
18.7 eV, is marginally smaller than the experimen-increases from about 1 Å above oxygen to about

2 Å above magnesium. This reflects the z-depen- tal value of 19.82 eV.
The calculated MIES contributions for each ofdence of the projected DOS shown in Fig. 5, where

the largest inverse decay length was found for the four normal trajectories (the four lateral posi-
tions) are shown in Fig. 7a. Every predicted MIEShelium above oxygen, and the smallest inverse

decay length for helium above magnesium. The curve in Fig. 7a displays a well-defined one-peak
structure. The highest intensity is for helium atomsarea under each curve P1(z), …, P4(z) is practically

equal to unity. This means that practically every which impinge above the oxygens. This is to be
expected, since the valence electrons of the surfacehelium atom will undergo a transition on the

incoming part of its trajectory. which participate in the AD process are localised
mostly on oxygen atoms (see, e.g., Ref. [41]).Our calculated transition spectra, P(p)(EKE), are

shown in Fig. 7a for each lateral position [see The final MIES spectra, containing averaging
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with respect to the four trajectories and calculated 3.2. Simulation of the MIES spectra for the upright
peroxidein accordance with Eq. (12), are shown in Fig. 7b.

Also shown is the total DOS for the MgO(001)
A crucial application of an approach like ourssurface, shifted by the 18.7 eV helium excitation

is the prediction and possible identification of theenergy to allow comparison with electron kinetic
signatures of surface defects. We discuss our initialenergies, as just described. We also show the
studies of adsorbed atomic oxygen, since this isexperimental MIES spectra from Ref. [4]. There
likely to be created easily. The adsorption ofare some striking similarities between the curves
oxygen atoms on the MgO(001) surface has beenof Fig. 7b, especially for higher kinetic energies,
studied in periodic DFT calculations in Refs. [27–above about 14 eV. In that region, there is a well-
29]. Atomic oxygen sticks to the nearest surfacedefined peak, and both the position and the slope
oxygen ion, forming a peroxy ion O2−2 . Theof the upper-energy side are predicted rather well.
adsorption energy can be over 2 eV, and dependsAt the low-kinetic-energy side, there are interes-
strongly on the oxygen coordination (plane, ter-ting differences. The total surface DOS has a two-
race, edge or corner). To gain additional Madelungpeak structure, well known from previous work
energy, the peroxy ion at the MgO surface is tiltedon the MgO(001) surface (see, e.g., Ref. [41]).
towards another surface oxygen along the [110]Indeed, the experimental UPS spectra reported in
direction [27–29]. For CaO(001), however, theRef. [4] clearly show a two-peak structure which
upright configuration of the peroxy ion is moreagrees with our calculated surface DOS. However,
favourable energetically, mainly because of thethe calculated MIES spectrum, which is shown in
bigger lattice constant [29]. The peroxy ion has anFig. 7b by the solid line, has only one prominent
easily recognisable signature in its DOS, corre-peak at low binding energies. The single prominent
sponding to the formation of a strong chemicalpeak agrees with the experimental MIES spectra
bond between the two oxygen atoms. There arereported in Ref. [4], also shown in Fig. 7b. The
three peaks in the DOS: below the O(2p) valence

disappearance of the MIES peak at lower kinetic
band (VB) due to the bonding O(2ps) and O(2pp)

energies (higher binding energies) is due to the orbitals, and the occupied antibonding O(2pp)
faster exponential decay of the orbitals associated state above the O(2p) VB [note that the unoccu-
with the higher binding energies at those z values pied antibonding O(2ps) state falls within the
at which the AD process has the maximum conduction band ]. These features are characteristic
probability. both of the upright and tilted configurations of

However, the predicted MIES peak is signifi- the ion.
cantly narrower than the experimental peak at low The upright configuration of peroxy has higher
kinetic energies. The possible reasons for the symmetry, and so is much easier for the projected
discrepancy at low kinetic energies will be discussed DOS calculation, since it requires fewer k-points.
in Section 4. Since we want to focus mainly on the qualitative

The results we have presented assume that the issues of the peroxy defect signature, we calculated
maximum probability corresponded to a target the MIES spectra only for this configuration. We
distance Rmp of 2.5 Å above the surface oxygen. believe that averaging over different defect orienta-
To check how this assumption could affect the tions will not affect our results significantly. We
results, we made similar calculations for both shall not consider in the present paper another
smaller and larger target distances. At smaller possibly significant aspect, namely the effect of the
distances, such as Rmp=1.5 Å, we find the contri- incidence angle of the He1 beam and of the angular
bution of the first DOS peak ( low kinetic energy, distribution of He1 atoms in the beam.
large binding energy) should be prominent, which We have used the same slab geometry as for
contradicts experiment. For larger values, such as the perfect MgO(001) surface of the previous
Rmp=3.0 Å, the prediction is essentially the same subsection with the vacuum width equivalent to

four atomic layers, but the total number of atomsas for the distance of 2.5 Å.
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has been increased by one oxygen (see Fig. 3b).
The relaxed geometry of atoms in the system has
been taken from Ref. [28]. Since the symmetry of
the system is very high (D4h), only six k-points
have been used in our projected DOS calculations,
which is equivalent to 750 tetrahedra. Likewise,
we have considered the same four lateral positions
(four trajectories) of the He1 atom as for the
perfect surface; we have also included a fifth
position (trajectory) above the adsorbed oxygen
(see Fig. 3b). The contributions to the spectra have
also been calculated in the same way as for the
perfect surface, assuming the same factor
c=3.5921×104 Å3 eV s−1 in the rate expression.
As mentioned earlier, this use of the same value
of c=C/v0 determines the corresponding Rmp for

Fig. 8. Calculated transition probabilities for the helium atomevery trajectory for the defective surface.
above a peroxide molecule at the MgO(001) surface. NumbersFirst, the projected DOS for each of the five in brackets correspond to the position numbers in Fig. 3b.

positions (trajectories) were calculated at a number
of z values above the surface. The preliminary

2.5 Å, the assumed target distance above theanalysis showed that, for positions 2, 3 and
oxygen site on the perfect surface. Above positions5, it is sufficient to sample the interval
2 and 3, which are the closest to the peroxy, the1.75 Å≤z≤5.25 Å, whereas for positions 1 and 4,
target distance is also higher than above the per-one must sample the z values between 1 and
fect sites.5.25 Å. For all cases, the area under the projected

The contributions to the MIES spectra for theDOS, D
p
(z), was fitted by a single exponential

five positions of the helium atom are shown infunction, D
p
(z)≈f

p
exp(−a

p
z). Then, both the

Fig. 9. They demonstrate some unexpected fea-escape probability, P(p)esc(z), and then the total
transition probability, P

p
(z), were calculated.

Finally, using these data, the transition spectra
were integrated over the trajectory of the projectile
above each of the five positions.

Fig. 8 shows the total probabilities of the AD
process as a function of the distance z from the
original MgO surface for all five lateral positions
of the helium atom. As expected, above the oxygen
ions nearest to the peroxy, and above the surface
magnesium ions (positions 1 and 4, respectively),
the probabilities are similar to the ones calculated
for the perfect surface (cf. Fig. 6b). This means
that the He1 atom does not feel the peroxide
molecule very much unless it impinges very close
to it. The influence of the peroxide is clear for the
three other lateral positions. The most probable
target distance Rmp in position 5 is shifted upwards
to 4.75 Å because the adsorbed oxygen sticks out Fig. 9. Calculated contributions to the MIES spectra from the
of the surface by 1.4 Å. This value of Rmp is 3.35 Å five positions of the He1 atom above the peroxide molecule.

Numbers in brackets correspond to Fig. 3b.above the adsorbed atom, slightly higher than
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Fig. 10. Calculated projected DOS for the five positions of the He1 atom near the peroxide molecule (marked peroxide) at the most
probable target distances (see text). For comparison, similar results are shown for the four positions above the perfect MgO surface,
also at the corresponding target distances (marked ‘surface’). The positions numbers are shown in brackets. The DOS is shown in
arbitrary units, although the absolute values are comparable from one case to another.

tures. First of all, we see that the largest contribu- the equivalent perfect surface sites. The contribu-
tion from the magnesium site is largely unaffectedtion is above the oxygen nearest to the peroxide

oxygen atom (position 1). All other contributions, by the presence of the peroxy. We can understand
the relatively small contribution above theincluding that from adsorbed oxygen atom, are

much smaller. To understand this result, we plot adsorbed oxygen itself by the large target distance
(about 4.75 Å with respect to the surface plane),in Fig. 10 the projected DOS above all five posi-

tions near the peroxide at the corresponding target which cuts out most of the contributions from
other surface oxygens. Indeed, the target distancedistances; namely, 2.5, 4.25, 3.75, 3.5 and 4.75 Å

for the positions from 1 to 5, respectively (see is smaller for position 2 and even smaller for
position 3, and the projected DOS is significantlyFig. 8). The corresponding projected DOS for the

perfect MgO surface above equivalent positions increased. On the other hand, the projected DOS
for position 1 (above the nearest oxygen to thefor the corresponding target distances (see

Fig. 6b), and in the same units, are also shown for peroxy) is enhanced with respect to the perfect
surface due to the proximity of the adsorbedcomparison.

The contribution from the peroxy oxygen is oxygen atom. Thus, we expect that, on average,
the peroxide molecule will reduce the yield in thevery small compared with that of the nearest

surface oxygen. The contribution from this nearest MIES experiment in the energy region associated
with the MgO binding energies, especially at highoxygen is slightly greater than the contribution

from an oxygen on the perfect surface. The contri- concentrations of the defect.
Another feature is seen clearly in Figs. 9 and 10butions at interstitial positions 2 and 3 adjacent

to the peroxide system are smaller than those for at high kinetic energies, between 16 and 19 eV for
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the peroxy ion. These energies are associated with shown in Fig. 11. Two effects are evident. First of
all, there is a feature at high kinetic energies, abovethe occupied antibonding O(2pp) states localised

on the peroxy, with binding energies some 0.45 eV the top of the valence band. This is due to anti-
bonding O(2pp) states of the peroxide moleculeabove the VB top (see Refs. [27–29]).

In order to calculate the final MIES spectra [27,28]. The other two peaks associated with the
lower lying binding local states of the peroxidecorresponding to a certain concentration of perox-

ide molecules at the surface, one has to sample the defect do not appear in the MIES spectrum
because of the fast decay of their wavefunctions.surface area, weighting the various contributions

to the spectra, as in Eq. (12). This calculation can Secondly, at high peroxide concentrations, ampli-
tudes are reduced in the total spectrum. This isbe done as follows. Consider a surface area of N

primitive unit cells of the perfect surface. There seen in Fig. 11b, and is what one would expect
from our previous remarks that surface coveragewill be exactly N, 4N, 2N and N positions 1, 2, 3

and 4 of the perfect surface. If there is one peroxide by oxygen atoms actually reduces the MIES
spectra in the energy region associated with themolecule in this area, we will have to ‘remove’ a

certain number of the perfect positions around perfect MgO surface.
the peroxide and ‘substitute’ them with the
corresponding positions of the defective system. 3.3. Polarisation shift for the peroxide feature
The total MIES spectra will then be given as
Pd(EKE)=P(EKE)+DPd(EKE), where P(EKE) is the We pointed out in Section 2 that the actual

positions of the peaks associated with localisedspectrum of the perfect surface and
defect states can be shifted by electron relaxation
and crystal polarisation associated with the hole

DPd(EKE)=
c

8 G ∑
p=1
4

g
p
[P(p)d (EKE)−P(p)(EKE)] produced in the final state. Our estimates show

that other terms are negligible; e.g., the polarisa-
tion terms (including any image interactions) asso-+P(5)d (EKE)−P(1)(EKE)H (14)
ciated with the helium atom, which is in its ground

is the difference spectrum. Here c=1/N is the
fractional peroxide concentration, the summation
is performed over the first four positions of the
helium atom (above oxygen, side, centre and above
magnesium), P(p)d (EKE) is the contribution to the
spectrum from the given position p of the peroxide
system, and g

p
is the number of the corresponding

positions of the perfect system around the peroxide
molecule to be replaced (excluding the oxygen site
occupied by the peroxide itself ). For N≥8 the
weighting factors g

p
do not depend on N (for

the first four positions they are all equal to 4) and
the difference spectrum appears to be linear with
respect to the peroxide concentration. For smaller
N these factors depend on N and therefore there
is some nonlinearity. If N=2 then g1=1 and
g4=2; for N=4 and 6 we have g1=2 and g4=3;

Fig. 11. Calculated total MIES spectra of the emitted electronsin all these cases g2=g3=4.
(a) and the difference spectra with the perfect surface (b) for

The calculated total P(EKE) and the difference the surface containing one peroxide molecule per N primitive
MIES spectra DPd(EKE) for the MgO surface cov- surface unit cells. The same (arbitrary) units are used for the

intensity.ered with peroxide molecules of different N are
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state. To calculate the final state shift, one has to Thus the peroxide state calculated in this way is
located about 0.46 eV above the top of the valenceestimate the energy W (k)pol for the local state e

k
associated with the antibonding O(2pp) peroxy- band. The hole state appears to be delocalised

almost equally among all the oxygen ions in therelated state. However, this is difficult, since we
are using one-electron Kohn–Sham energies, and quantum cluster, including the adsorbed oxygen.

The result does not change if we increase theit is not clear how to relate them to the total
energies in order to calculate this shift [see Eq. (7)]. cluster size: both the hole delocalisation and the

relative position of the peroxide state with respectHowever, it is still possible to estimate the
correct position of the defect-related peak in the to the top of the valence band remain virtually the

same. In fact, the energy is very close to theMIES spectrum with respect to the top of
the valence band. Using energy conservation, and position of the middle of the band of O(2pp)

states obtained in our periodic calculations. Thus,combining Eqs. (2) and (3), we obtain for the
kinetic energy of an emitted electron: due to the hole delocalisation, the final-state cor-

rection in this case is very small.
EKE=(E

0
−E(k)h )+(EHe1−EHe). (15)

In DFT the difference of total energies E
0
−E(k)h is

the exact ionisation energy of the system if the 4. Discussion
state k is the last occupied state [52]. Consider the
perfect system first. The largest kinetic energy of In this work we have combined DFT periodic

calculations of the surface electronic structure withthe emitted electrons is given by Eq. (15) in which
E
0
−E(k)h is the exact ionisation energy of the static perturbation treatment of the Auger

de-excitation process. This has enabled us to calcu-perfect surface. It is associated with the top of the
VB in the MIES spectra. The same consideration late MIES spectra for the perfect MgO surface

and for the surface with an adsorbed oxygen atom.for the defective system gives the maximum energy
with E

0
−E(k)h being the ionisation energy for The interaction between He1 and the surface is

treated within first-order perturbation theory,the peroxide defect. Since the difference
EHe1−EHe≈18.7 eV in our calculations is a con- giving the Golden rule formula for the transition

rate, Eq. (4). As stressed in the Introduction, thisstant, the relative position of the defect peak in the
MIES with respect to the top of the VB in the approach needs the interaction between the meta-

stable atom and the surface to be weak. This mightsame spectra will be given as the difference of the
ionisation energies of the peroxide and the per- not be the case, for the diffuse occupied 2s state

of the He1 atom might be affected by the largefect systems.
In calculating the ionisation energy of the per- gradient of the surface electrostatic potential [54].

This would polarise the helium atom, shift the 1sfect surface, we used several quantum clusters of
increasing size, as in Ref. [53]. The hole created and 2s energies, and curve the He1 trajectories so

as to modify the role of the He1 interaction withafter the ionisation of these clusters is delocalised
over all cluster oxygens and, for the cluster different surface ions. The surface ions can also be

polarised by He1, although rough estimates suggestMg17O5, we obtained the ionisation energy of
6.86 eV. Then an oxygen atom was added to this this is not important. Since the AD process is non-

stationary, it is impossible to consider these effectscluster, and the geometry of the whole system was
optimised, taking into account the lattice polarisa- easily in a static approach. However, we have

made some estimates, by treating He1 quantumtion. The OMO distance in the peroxide, the
charge distribution and the relaxation of the sur- mechanically, and using pseudopotentials to repre-

sent the surface cations and the shell model pre-face ions obtained in this calculation are close to
those obtained in our periodic calculations. The sentation for the surface oxygens. The results of

these calculations show that, in the distance range‘vertical’ ionisation energy of this system (with
only oxygen shells in a region immediately sur- between He1 and the perfect surface z≥2.5 Å,

there is no significant change of the excitationrounding the cluster allowed to respond) is 6.4 eV.
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energy EHe1−EHe of the helium atom. When He1 experimental spectrum being too wide might be
various impurities, adsorbed species or defects suchapproaches the adsorbed oxygen atom up to about

3 Å, this energy changes only by 0.3 eV due to the as steps, kinks, etc. at the surface, which may
result in different features at the low-kinetic-energyweak Coulomb potential of the peroxide molecule.

Since the polarisability of the surface magne- wing. For example, we have seen in Section 3.2
that, according to our calculations, a peroxidesium ion is much smaller than that of the surface

oxygen (which is much larger than that in the bulk defect produces some feature in this region of the
MIES spectrum. Although it is true that real[55]), He1 interacts differently with the surface

magnesium and oxygen ions. We simulated the surfaces are rough and contain many defects and
adsorbed foreign material, the MIES experimentspossible curving of the He1 trajectories in a classical

model taking into account the electrostatic and are performed at high vacuum with a careful
control over the purity of the samples used in thevan der Waals’ interactions of He1 with the surface.

These calculations have demonstrated that He1 experiment [4]. It is very unlikely that there are
more than 1% of defects at the MgO surface intrajectories are likely to deviate significantly from

linear trajectory only at beam temperatures less the MIES experiments, and these cannot lead to a
substantial broadening of the spectra. Note alsothan liquid nitrogen and at very small incidence

angles. Based on these results, we believe that our that there is still no direct experimental evidence
for peroxide defects at the MgO surface.approach is valid for the present experimental

conditions. Therefore, it is the theoretical spectrum which
appears to be too narrow. We now speculate onComparison of the MIES spectrum calculated

for the perfect MgO surface with the experimental possible reasons for this. Several of our approxim-
ations and simplifications need to be considered.one in Fig. 7b demonstrates good qualitative

agreement and reproduces the high-kinetic-energy First of all, the Gaussian smearing of 0.5 eV taken
from the earlier work [4] could be significantlypart of the spectrum well. It is this part which is

not affected by secondary electrons. Although we underestimated. It corresponds to phonon broad-
ening of the UPS spectra according to the estimatesdid manage to reproduce quite well the experimen-

tal one-peak structure of the spectrum (in contrast due to Ref. [36 ]. We have used the same value for
the phonon broadening because, in both cases, theto the well recognised two-peak structure of the

DOS which is very close to the UPS spectrum of initial and final states of the surface are identical.
However, different processes are involved in UPSMgO [4]), the calculated MIES spectrum appears

to be too narrow which results in worse agreement and MIES spectra, so that the broadening may
not necessarily be identical. In addition, as hasat the low kinetic energies.

Several reasons may affect the comparison of been already mentioned in Section 2.2, other
reasons for the smearing also exist which have thethe theoretical and experimental spectra at the

low-kinetic-energy part of the spectrum. Our first effect of using an even wider Gaussian. It is
difficult, however, to do any estimates of theseidea was that the width of the experimental

spectrum was broadened by other effects which effects at the present stage.
We should also mention our assumption con-depend on sample preparation. In particular, one

part may be due to secondary electrons enhancing cerning the choice of the unknown proportionality
factor C between the projected DOS and thethe intensity in the low-kinetic-energy wing of the

observed peak. Careful analysis shows that this is transition rate, see Eq. (8) and Section 3.1. The
value of C is constrained within sensible limits.unlikely. In the first place, the intensity of the

secondaries should not increase with increasing Indeed, as has been mentioned at the end of
Section 3.1, smaller values of Rmp than 2.5 Å forelectron energy. Secondly, the MIES spectra are

found to be practically identical for differently the trajectories which impinge above the oxygens
would lead to a wider spectrum due to the reap-prepared MgO films and for a single crystal, after

subtracting the contribution of the secondary pearance of the second (at high binding energies)
peak. This would lead to a rather different struc-electrons [56]. Another possible reason for the
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ture of the whole spectrum, and would contradict There are no reliable MIES experimental data
on adsorbed oxygen atoms on the MgO surface.the experimentally observed one-peak MIES

spectrum. We have also tried higher values for Three peaks which have been observed in the
MIES spectra during oxidation of a magnesiumRmp (up to 3.5 Å); we find the predictions to be

almost identical, although the MIES spectra film on the Si(110) substrate in molecular oxygen
atmosphere, have been attributed initially tobecome slightly narrower due to an effective cut-

off of the high-binding-energy side of the first peroxy species at the surfaces [4]. They are absent
in the UPS spectra of the same system, whichpeak. We retain the same value of C/v0 in all

calculations, both for the perfect and the defective implies that they belong to adsorbed species. These
additional peaks had similar character to the sur-surfaces, and this determines the corresponding

values of Rmp for every trajectory considered. face DOS calculated in Refs. [27–29] for oxygen
atom adsorption on the MgO(001) surface: twoAnother simplification that has been used

throughout this work is the assumption of normal of them are below the O(2p) VB and one is above
it. These data provided one of the reasons for atrajectories. Lifting this should lead to further

broadening of the MIES spectra. To understand preliminary assignment. However, a more detailed
experimental study reported in Ref. [57] suggeststhis, consider two extreme cases: zero and 90°

incidence angles. The latter case corresponds to that these peaks should rather be attributed to
carbonate formation on the MgO surface. Theorythe normal trajectories considered in this work,

where the electrons with high binding energies do [28,29] also suggests that it is unlikely that oxygen
molecules will dissociate to atoms on the perfectnot contribute. In the former case, electrons with

all binding energies will contribute for the trajecto- MgO surface to form peroxy species. Other pro-
cesses, such as an interaction of oxygen moleculesries which are closer than about 2.5 Å to the

surface. This should result in some broadening at with the surface F centres, have not been seriously
considered. As with most other experimental tech-the low-kinetic-energy wing. At the incidence angle

of 45° used in the real experiment, we have an niques, one method is often not enough to establish
the chemical identity of adsorbed species. Theintermediate situation. In addition to that, one has

to consider all possible directions of the trajecto- advantage of our theoretical approach is that it
not only can predict the MIES spectrum, but alsories; for instance, the directions [100] (above both

species) and [110] (only above oxygens) will give can provide reliable information regarding adsorp-
tion energies and diffusion barriers of adsorbeddifferent spectra and might result in some extra

broadening. species, which can be correlated, for instance, with
temperature-programmed desorption and otherWe have also made a number of subtle approx-

imations that are difficult to assess fully at the spectroscopic data [53].
One may also notice some similarity betweenpresent stage. First of all, the transition rate has

been calculated using the projected DOS. Although MIES and scanning tunnelling microscopy (STM)
[58,59] techniques. Both methods give some insightwe believe that this approximation is not significant

and we give at least two justifications for it, it may into the structure of the topmost layer of the
surface because they are based on electron tunnel-still lead to some change in shape of the theoretical

spectra. Additional work is needed to understand ling between the crystal surface and a probe. The
probe is a metastable atom in the MIES, and a tipthe actual consequences of this simplification; we

shall do this in the near future. We also mention in the STM experiment. Another observation is
based on our findings concerning the most prob-that we have used DFT wavefunctions in the LDA

approximation in the vacuum region some distance able target distances Rmp for the peroxide defect.
We find that Rmp becomes larger in the vicinity of(from 1 to 5 Å) away from the surface where the

electronic density is very low and changes signifi- a defect which sticks out of the surface, compared
with the value for trajectories which impinge oncantly with the distance. This approximation can

also lead to some additional change of the calcu- perfect surface sites. We believe that this is a very
general result: one can say that the target distanceslated spectrum.
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follow the topology of the surface in a similar way to all occupied states of the crystal. We do not
to that of the tip in STM. Obviously, there are specify explicitly the interaction operator between
important differences between the two techniques. the two subsystems, Ĥint, which mediates the trans-
The STM gives a local geometrical information; ition. In the formula above the exact initial state
the MIES method provides overall electronic struc- wavefunction of the whole system corresponding
ture information about the whole surface of the to a non-interacting He1 atom and the surface is
sample. given as

Yi(XN
, Y )=Â[Y

0
(X
N

)YHe1(Y )], (A2)
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where Y(k)h (X
N−1) is the wavefunction of the crystal

with one hole in it [(N−1)-electron system], i.e.
with the state (k3) destroyed, and the free electronAppendix A
wavefunction, normalised per volume V, is
y

Q
(x)=(1/EV) eiQrx

(
(s), where x

(
(s) is the corre-In this Appendix we show how the projected

sponding spin-up function. YHe(Y ) is the wave-DOS expression for the AD transition rate used
function of the ground singlet state of the heliumin the main text [see Eq. (8)] can be derived
atom.independently. In our analysis we use the first-

To simplify the matrix element in Eq. (A1), weorder perturbation theory to calculate the trans-
use the following approximation which is reminis-ition rate. It has been mentioned in the
cent of the well-known Mulliken approximationIntroduction that, in the case of MIES and oxide
in semiempirical quantum chemistry [61]:surfaces, this method should be valid. Let us

consider one He1 atom at the position R=(x, y, z)
above the surface. Using Fermi’s Golden rule, we


Yi |Ĥint |Y(kQ)f �=
1

2
[
Yi |Ĥint |Yi�write down the transition probability per unit time

to emit an electron with momentum Q as:
+
Y(kQ)f |Ĥint |Y(kQ)f �]
Yi |Y(kQ)f �

R(Q)=
2p

B
∑
k

occ
|
Yi |Ĥint |Y(kQ)f �|2d(Ei−E (kQ)f ),

(see also discussion in Ref. [33]). The expression
in square brackets above is an average interaction

(A1)
energy between the two systems in the initial and
final states, Eint(R). Therefore, one approximatelywhere we summed over all events corresponding
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gets: sufficient to use the second diagram only as the
third diagram is of the next order with respect to
overlap and will be neglected here. This is wellR(Q)≈

2p

B
Eint(R)2∑

k

occ
|
Yi |Y(kQ)f �|2d(Ei−E (kQ)f ).

justified as the overlap between the wavefunctions
of the surface electrons and the helium atom is(A4)
extremely small at the distances where the trans-

To facilitate the calculation of the overlap integ- ition happens. Therefore, keeping only the contri-
ral in the equation above, we first combine the bution from the first diagram and using the general
free electron and the crystal hole wavefunctions rules formulated in Ref. [63], we have:
into one N-electron wavefunction, Y(kQ)h (X

N
)=

Â[Y(k)h (X
N−1)y

Q
(x
N

)], so that the integral to calcu- 
Yi |Y(kQ)f �=−Pr(x; x∞|0; h(kQ))
late becomes:

×r(x∞; x|He1 ; He) dx dx∞, (A6)
Yi |Y(kQ)f �=
Y
0
(X
N

)YHe1(Y )|Â

×[Y(kQ)h (X
N

)YHe(Y )]� (A5) where we introduced two transition density matri-
ces [60] of the first order, defined as:(see, e.g., Ref. [60]). This type of overlap integral

is met in the Theory of Electronic Separability [60].
r(x; x∞|0; h(kQ))=NPY

0
(x, X∞)1Y(kQ)h (x∞, X∞) dX∞Indeed, we have two electronic groups here: one

containing N electrons, and another one, contain-
(A7)ing only two electrons. The wavefunctions of the

two electronic groups cannot be treated as being and
strongly orthogonal (see, e.g., Ref. [60]), however,
as we are interested in their overlap. The Arrow

r(x; x∞|He1 ; He)=2PYHe1(x, x
2
)1YHe(x∞, x

2
) dx

2
,Diagram method developed in Refs. [62,63]

appears to be an ideal mathematical tool in this
(A8)case. Since there are only two electronic groups,

one of which contains only two electrons, we have and X∞=(x2, …, x
N
).

only three diagrams to consider as are shown in The integral in Eq. (A6) is not easy to calculate
Fig. A1. in the general case. In the one-electron approxima-

The first (trivial ) diagram contains no permuta- tion r(x; x∞|0; h(kQ))=y
k3

(x)1y
Q((x∞) and r(x∞; x|

tion and therefore does not give any contribution He1; He)=y2s,((x∞)1y1s,3(x) (see, e.g., Ref. [60]).
to the overlap integral due to orthogonality of the Using these expressions in Eq. (A6) and per-
helium wavefunctions YHe1 and YHe corresponding forming spin integrations, we finally have
to different spin states of the atom. The second 
Yi |Y(kQ)f �=
y2s |yQ

�
y
k
|y1s� which allows us to

diagram contains one permutation whereas the represent the transition rate of Eq. (A4) as
third diagram contains two permutations between
the helium and the crystal wavefunctions. It is

R(Q)=
2p

B
Eint(R)2 |
y2s |yQ

�|2

C∑
k

occ
|
y

k
|y1s�|2d(Ei−E (kQ)f )D.

Note that since the overlap integral

y2s|yQ

�3eiQR, the position R of the helium atom
disappears from its module. Therefore, the R-
dependence comes from the interaction energy,Fig. A1. Arrow diagrams between the helium atom and the
Eint(R), and the overlap integrals 
y

k
|y1s� betweencrystal used in the calculation of the overlap integral in Eq.

(A5). the surface electrons and the 1s helium orbital.
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