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We present Monte Carlo simulations of the spanning-forest model (q! 0 limit of the ferromagnetic
Potts model) in spatial dimensions d � 3, 4, 5. We show that, in contrast to the two-dimensional case, the
model has a ferromagnetic second-order phase transition at a finite positive value wc. We present
numerical estimates of wc and of the thermal and magnetic critical exponents. We conjecture that the
upper critical dimension is 6.
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The Potts model [1,2] plays an important role in the
modern theory of phase transitions and critical phenomena
and is characterized by two parameters: the number q of
Potts spin states, and the nearest-neighbor coupling v �
e�J � 1. Initially q is a positive integer and v is a real
number in the interval �1 � v <�1, but the Fortuin-
Kasteleyn (FK) representation [3] shows that the partition
function ZG�q; v� of the q-state Potts model on any finite
graphG is in fact a polynomial in q and v. This allows us to
interpret q and v as taking arbitrary real or even complex
values and to study the phase diagram of the Potts model in
the real �q; v� plane or in complex �q; v� space. In particu-
lar, when q; v > 0 the FK representation has positive
weights and hence can be interpreted probabilistically as
a correlated bond-percolation model: the FK random-
cluster model [4]. In this way we can study all positive
values of q, integer or noninteger, within a unified
framework.

In two dimensions, the behavior of the ferromagnetic
(v > 0) Potts/random-cluster model is fairly well under-
stood, thanks to a combination of exact solutions [5],
Coulomb-gas methods [6], and conformal field theory
[7]. But in dimension d � 3, many important aspects
remain unclear: the location of the crossover between
second-order and first-order behavior [8]; the nature of
the critical exponents and their dependence on q; the value
of the upper critical dimension for noninteger q; and the
qualitative behavior of the critical curve vc�q� near q � 0.

Interesting special cases of the random-cluster model
arise in the limit q! 0. In particular, the limit q; v! 0
with w � v=q held fixed gives rise to a model of spanning
forests, i.e., spanning subgraphs without cycles, in which
each occupied edge gets a weight w [9]. Very recently, it
was shown [10]—generalizing Kirchhoff’s matrix-tree
theorem [11]—that this spanning-forest model can be
mapped onto a fermionic (Grassmann) theory involving a
quadratic (Gaussian) term and a special nearest-neighbor
four-fermion term. Moreover, this fermionic model pos-
sesses an OSP�1j2� supersymmetry and can be mapped, to
all orders of the perturbation theory in powers of 1=w, onto

an N-vector model [O�N�-invariant � model] analytically
continued to N � �1. It follows that, in two dimensions,
the spanning-forest model is perturbatively asymptotically
free, in close analogy to (large classes of) two-dimensional
� models and four-dimensional non-Abelian gauge theo-
ries. In particular, the only ferromagnetic (w> 0) critical
point lies at wc � �1, in agreement [12] with the exact
solutions on the square, triangular, and hexagonal lattices
[5] showing that vc�q� / q1=2 as q # 0.

In this Letter we study the spanning-forest model in
spatial dimensions d � 3, using Monte Carlo methods.
We will show that, in contrast to the two-dimensional
case, the model has a ‘‘ferromagnetic’’ second-order phase
transition at a finite positive value wc, and we will estimate
the thermal and magnetic critical exponents as well as a
universal amplitude ratio. It follows that vc�q� / q as q # 0.
Indeed, we see the present study of the spanning-forest
model as the first step in a comprehensive study of the
random-cluster model as a function of (noninteger) q.

For the random-cluster model with q � 1, a collective-
mode Monte Carlo algorithm has recently been invented by
Chayes and Machta [13]; it generalizes the well-known
Swendsen-Wang algorithm [14] and reduces to (a slight
variant of) it when q is an integer. But for q < 1, the only
available algorithm seems to be the Sweeny algorithm
[15], which is a local bond-update algorithm. Ordinarily
one would expect such a local algorithm to exhibit severe
critical slowing-down, at least when the specific heat is
divergent [16]. But the random-cluster model with q <
q0�d� � 2 has a nondivergent specific heat (i.e., critical
exponent �< 0), which suggests that the critical slowing-
down might not be so severe after all. Indeed, our numeri-
cal studies of the spanning-forest model (i.e., the q! 0
limit) in dimensions d � 2, 3, 4, 5 strongly suggest that
there is no critical slowing-down; i.e., the dynamic critical
exponent zexp associated with the exponential autocorrela-
tion time is zero. Better yet, the exponent zint;O associated
with the integrated autocorrelation time [17] turns out to be
negative for ‘‘global’’ observables such as the mean-square
cluster size; that is, one ‘‘effectively independent’’ sample

PRL 98, 030602 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
19 JANUARY 2007

0031-9007=07=98(3)=030602(4) 030602-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.98.030602


can be obtained in a time much less than a single
‘‘sweep’’—a kind of ‘‘critical speeding-up.’’

On the other hand, the Sweeny algorithm for q � 1
requires a nonlocal connectivity check each time one tries
to update a single bond. If done in the naive way (e.g., by
depth-first or breadth-first search), this would require a
CPU time of the order of the mean cluster size � / L�=� �
L�2 per ‘‘hit’’ of a single bond, leading to a severe ‘‘com-
putational critical slowing-down.’’ Recent work by com-
puter scientists on dynamic connectivity algorithms [18]
shows how this can be reduced to �logL�p, but at the
expense of fairly complicated algorithms and data struc-
tures. We therefore adopted an intermediate solution: a
simple ‘‘homemade’’ dynamic connectivity algorithm
that empirically has a slowing-down L�0:7. The details of
this algorithm, along with measurements of the dynamic
critical behavior of the Sweeny algorithm in the spanning-
forest limit, will be reported separately [19].

We simulated the spanning-forest model in dimensions
d � 3, 4, 5 on hypercubic lattices of size Ld with periodic
boundary conditions. We measured the cluster-size mo-
ments Sk �

P
clustersC#�C�k for k � 0, 2, 4. We focused

attention on the ratio R � hS4i=hS2
2i, which tends in the

infinite-volume limit to 0 in a disordered phase and to 1 in
an ordered phase, and is therefore diagnostic of a phase
transition. We also studied hS2i in order to estimate the
magnetic critical exponent.

In each dimension, we began by making a ‘‘coarse’’ set
of runs covering a wide range of w values, using modest-
sized lattices and modest statistics. If the plots of R vs w
indicated a likely phase transition, we then made a ‘‘fine’’
set of runs covering a small neighborhood of the estimated
critical point, using larger lattices and larger statistics.
Finally, using the results from these latter runs, we made
a ‘‘superfine’’ set of runs extremely close to the estimated
critical point, using as large lattices and statistics as we
could manage, with the goal of obtaining precise quanti-
tative estimates of the critical point wc and the critical

exponents. The complete set of runs reported in this Letter
used approximately 7 yr CPU time on a 3.2 GHz Xeon
EM64T processor.

The coarse plot of R vs w for dimension d � 3 and
lattice sizes 6 � L � 32 is shown in Fig. 1, and shows a
clear order-disorder transition at wc � 0:43. The corre-
sponding superfine plot, for lattice sizes 32 � L � 120,
is shown in Fig. 2. We fit the data to Ansätze obtained from

 

R � Rc � a1�w� wc�L1=� � a2�w� wc�2L2=�

� b1L�!1 � b2L�!2 � 	 	 	 (1)

by omitting various subsets of terms, and we systemati-
cally varied Lmin (the smallest L value included in the fit).
We also made analogous fits for hS2i=L�=�. Comparing all
these fits, we estimate the critical point wc � 0:433 65

0:000 02, the critical exponents � � 1:28
 0:04 and
�=� � 2:1675
 0:0010, and the universal amplitude ratio
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FIG. 1 (color online). Coarse plot of R vs w for spanning
forests in dimension d � 3 and lattice sizes 6 � L � 32.
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FIG. 2 (color online). ‘‘Superfine’’ plot of R vs w for spanning
forests in dimension d � 3 and lattice sizes 32 � L � 120.
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FIG. 3 (color online). Finite-size-scaling plot of R vs �w�
wc�L1=�, with wc � 0:433 65 and � � 1:28, for spanning forests
in dimension d � 3 and lattice sizes 8 � L � 120.
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Rc � 0:8598
 0:0003 (68% subjective confidence inter-
vals, including both statistical error and estimated system-
atic error due to unincluded corrections to scaling). A
finite-size-scaling plot using these parameters is shown in
Fig. 3. A coarse plot of hS2i=L�=� using the estimated value
of �=� is shown in Fig. 4.

The coarse plots of R vs w for dimensions d � 4, 5 are
shown in Figs. 5 and 6, respectively. Once again they show
a clear order-disorder transition. For lack of space, we
refrain from showing the corresponding superfine plots
(which use lattice sizes up to 644 and 205) and simply
give the results of fits to Ansätze of the general type (1). In
dimension d � 4, we estimate wc � 0:210 302

0:000 010, � � 0:80
 0:01, �=� � 2:1603
 0:0010,
and Rc � 0:739 07
 0:000 10. In dimension d � 5, we
estimate wc � 0:140 36
 0:000 02, � � 0:59
 0:02,
�=� � 2:08
 0:02, and Rc � 0:625
 0:015.

In Table I we summarize the estimated critical expo-
nents for ferromagnetic Potts models with q � 0 (this
work), 1 (percolation), and 2 (Ising) in dimensions d �
2, 3, 4, 5. It is evident that � varies quite sharply as a
function of q and d, while �=� varies much more slowly.
The dependences on dimension of � and �=� for q � 0 are
consistent with the conjecture that they are tending to the
mean-field values 1=2 and 2 in dimension d � 6, just as
they do for q � 1. This in turn supports the more general
conjecture that the upper critical dimension is 6 for all
random-cluster models with 0 � q < 2, and is 4 only when
q � 2.

This conjecture is supported by a field-theoretic
renormalization-group calculation in dimension d � 6�
� through order �3 [26] in which q � 2 plays a distin-
guished role (all the correction terms vanish there).
Specializing to q � 0, we have

 �=� � 2�
�
15
�

7�2
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�

�
26��3�
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�
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16 875

�
�3 �O��4�
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�
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�
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�

�
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125

�
173

27 000

�
�3 �O��4�

� 2� 0:333 333�� 0:033 333�2 � 0:032 058�3

�O��4�:

These series seem rather difficult to resum, especially
when � * 2, but they are in qualitative agreement with
the exponents listed in Table I. Moreover, a slightly better
agreement can be obtained by imposing the known exact
values at � � 4 on the interpolating function.

Details of these simulations and their data analysis,
including analysis of universal amplitude ratios other
than R, will be reported separately [19].
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FIG. 4 (color online). Plot of hS2i=L�=� vs w, with �=� �
2:1675, for spanning forests in dimension d � 3 and lattice sizes
6 � L � 32.
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FIG. 5 (color online). Coarse plot of R vs w for spanning
forests in dimension d � 4 and lattice sizes 4 � L � 20.
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FIG. 6 (color online). Coarse plot of R vs w for spanning
forests in dimension d � 5 and lattice sizes 4 � L � 12.
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