
Mobile Computing Middleware
for Context-Aware Applications

Licia Capra
Dept. of Computer Science
University College London

Gower Street, London WC1E 6BT, UK
L. Capra~cs. uc l . ac. uk

1. RESEARCH PROBLEM
Mobile computing devices, such as palmtop computers,

mobile phones and personal digital assistants have gained
wide-spread popularity. These devices will increasingly be
networked, thus enabling the construction of distributed ap-
plications that have to adapt to changes in context, such
as variations in network bandwidth, exhaustion of battery
power or reachability of services on other devices.

Even though devices and networking capabilities are be-
coming increasingly powerful, the design of mobile appli-
cations will continue to be constrained by physical limita-
tions. Mobile devices will continue to be battery driven
and users will be reluctant to carry heavy-weight devices.
Wide-area networking capabilities will continue to be based
on communication with basestations, with fluctuations in
bandwidth depending on physical location. Therefore, in
order to provide acceptable quality of service to their users,
applications have to be context-aware, which requires them
to adapt to context changes, such as exhaustion of battery
power or reachability of services on other devices.

Traditional middleware [3] for fixed distributed systems
cannot be used in this scenario, as the principle of trans-
parency that has driven its design runs counter to the new
degrees of awareness imposed by mobility. It is largely
agreed that different forms of middleware are needed for
the mobile setting.

Tuple space-based systems (e.g., Lime, TSpaces, Java-
Space) replace the synchronous communication paradigm
supported by many traditional distributed systems with a
decoupled and opportunistic style of communication: decou-
pied in the sense that computation proceeds even in pres-
ence of disconnections, opportunistic as it exploits connec-
tivity whenever it becomes available. These forms of decou-
piing are important in a mobile setting, where the parties
involved in communication change dynamically due to their
migration or connectivity patterns. However, tuple space-
based systems fail in supporting context awareness. Tuples

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to fists,
requires prior specific permission and/or a fee.
1CSE'02, May 19-25, 2002, Orlando, Florida, USA.
Copyright 2002 ACM 1-58113-472-X/02/0005...$5.00.

are flat data structures which do not allow complex data
organisation and therefore can hardly be exploited to pro-
vide a proper context representation to applications.

Context-aware computing is not a new computing para-
digm [4]; since it was proposed a decade ago, many re-
searchers have studied and developed systems that collect
context information and adapt to changes. However, few
contexts other than location have been proposed and used in
actual applications. To enable applications to adapt to het-
erogeneous hosts and networks, as well as variations in the
user's environment, location-awareness is not enough and
richer context information must be collected and used.

The hypothesis of this thesis is that a new form of middle-
ware can be developed that delivers better quality of service
to mobile applications. This middleware should maintain
in its internal data structures an updated representation of
context information, and make it available to the above run-
ning applications, so that they can listen to changes in the
context (i.e., inspection of the middleware), and influence
the behaviour of the middleware accordingly (i.e., adapta-
tion of the middleware).

2. THE REFLECTIVE MODEL
Our mobile computing middleware [1] is based on the prin-

ciple of reflection [5] and metadata.
M e t a d a t a . Through metadata we obtain separation of

concerns, that is, we distinguish what the middleware does
from how the middleware does it. In particular, each appli-
cation encodes in an application profile (i.e., in the middle-
ware metadata) meta-information regarding how the middle-
ware has to behave when executing in particular contexts.
This meta-information can be split into two parts: passive
information and active information.

Through passive information the application asks the mid-
dleware to listen to changes in the execution context and to
react accordingly, independently of the task the application
is performing at the moment. For example, the application
may ask the middleware to disconnect when the bandwidth
is fluctuating, or when the battery power is too low. We
therefore establish an association between particular con-
text configurations that depend on the value of one or more
resources the middleware monitors, and policies that have
to be applied.

Through active information the application creates asso-
ciations between the services that the middleware delivers,
the policies that have to be applied to deliver the services
and the environmental circumstances that must hold in or-

723

der for a policy to be applied. For example, different context
configurations may require the service 'access data ' to be de-
livered differently: a physical copy of data may be preferred
when there is a lot of free space on the device, while a net-
work reference may become necessary w:hen the amount of
available memory prevents us from creating a copy.

Application profiles are kept by the middleware. By in-
teracting with the underlying network OS, the middleware
maintains an updated representation of the context. When-
ever a change in the context is detected, the passive part of
the profile is consulted to find out which policy must be ap-
plied in accordance with the application needs. The active
part of the profile is used instead each time the application
directly asks the middleware to deliver a specific service. In
both situations, middleware learns how to behave according
to the information the application has passed down to it.

As both the needs of the user and the context may change
quite frequently, we cannot assume that the application fixes
its own profile once and for all at the time of installation.
We therefore need to provide the middleware with an initial
profile, and then grant the application the ability to dynam-
ically access and modify it. Here is where reflection comes
into play.

Ref l ec t ion . By definition, reflection allows a program
to dynamically access, reason about and alter its own in-
terpretation. Mainly adopted in programming languages at
the beginning, the principle of reflection has captured the
attention of middleware researchers over the last few years.
In particular, reflection has been used to add openness and
flexibility into middleware platforms. However, the solutions
proposed to date (reflective extensions of CORBA such as
OpenORB and dynamicTAO) are too heavyweight to run
on a portable device. Minimal CORBA specifications exist,
as well as light-weight CORBA implementations; however,
they do not suit the mobile setting as they support only
a synchronous form of communication and do not provide
reflective extensions of the basic mechanisms.

In our model, applications use a reflective API provided by
the middleware to access their own profile, so that changes
in this information immediately reflect into changes in the
middleware behaviour. Application profiles are written by
application designers and managed by the underlying mid-
dleware, that is, there must be an agreement between the
two parts about the representation of the profile. We chose
to model this information using the eXtensible Markup Lan-
guage (XML), as it supports a representation of information
that is both easily manipulatable by machines and readily
understandable by humans. In our scenario, the middleware
defines the grammar, that is the rules that must be followed
to write profiles, in an XML Schema; the application de-
signer then encodes the profile in an XML document that is
a valid instance of the grammar. Every change done to the
profile must comply with the grammar and this check can
be easily performed using standard XML parsers.

3. RESEARCH AGENDA
The main contribution of this research is an investigation

of the underlying principles of mobile computing middle-
ware, and in particular of reflection as a means to allow
applications to dynamically inspect and adapt middleware
behaviour according to the current execution context. Our
plans for the future are listed below.

D y n a m i c Conf l i c t R e s o l u t i o n . By changing, through

reflection, the meta-information contained in application pro-
files, application designers can dynamically influence the
middleware behaviour. While doing so, however, designers
can make mistakes and create profiles that contain ambigu-
ities, contradictions and other logical inconsistencies. We
refer to these inconsistencies as conflicts. We have designed,
and are currently formalising, a microeconomic approach
for conflict resolution that relies on second-price sealed-bid
auctions, sometimes called Vickrey auctions. Our approach
treats a mobile distributed system as an economy, where a
scarce set of goods must be allocated to a set of consumers.
Goods represent resources, such as processing power, mem-
ory, battery power, bandwidth, and the like, while con-
sumers are applications seeking to achieve their own goals,
by getting the resources they want and maximising their in-
dividual utility. Our conflict resolution mechanism is: sim-
ple (only a low computation and communication overhead
is imposed), customisable (the application can influence the
result of the conflict resolution mechanism), and stable (ad-
hering to the mechanism gives each application the highest
chance to have the conflict resolved in its favour).

M o b i l e C o d e T e c h n i q u e s . Reflection enables adapt-
ability and flexibility only in those conditions that the mid-
dlewaxe designers have considered likely to be unstable at
design time. We plan to integrate our model with mobile
code techniques [2] so that the middleware can dynamically
adapt its behaviour to unforeseen situations by download-
ing newly delivered protocols either from a service provider
or from other peers in reach which use the same behaviour.
Applications can use reflection to select, for example, from
where to download protocols based on application-specific
information (e.g., trusted hosts, quality of service, etc.).

E v a l u a t i o n . A first prototype that implements the reflec-
tive mechanism has been completed. In order to prove the
usefulness of our model in developing context-aware applica-
tions, and to evaluate its performances in a mobile setting,
we plan to develop mobile applications on top of our reflec-
tive middleware and run tests on a set of mobile devices.

4. REFERENCES
[1] L. Capra, W. Emmerich, and C. Mascolo. Reflective

Middleware Solutions for Context-Aware Applications.
In Proc. of REFLECTION 2001. The Third
International Conference on Metalevel Architectures
and Separation of Crosscutting Concerns, volume 2192
of LNCS, pages 126-133, Kyoto, Japan, Sept. 2001.

[2] L. Capra, C. Mascolo, S. Zachariadis, and
W. Emmerich. Towards a Mobile Computing
Middleware: a Synergy of Reflection and Mobile Code
Techniques. In In Proc. of the 8th IEEE Workshop on
Future Trends of Distributed Computing Systems
(FTDCS'2001), pages 148-154, Bologna, Italy, Oct.
2001.

[3] W. Emmerich. Software Engineering and Middleware:
A Roadmap. In The Future of Software Engineering -
22 ~d Int. Conf. on Software Engineering (ICSE2000),
pages 117-129. ACM Press, May 2000.

[4] B. Schilit, N. Adams, and R. Want. Context-Aware
Computing Applications. In Proc. of the Workshop on
Mobile Computing Systems and Applications, pages
85-90, Santa Cruz, CA, Dec. 1994.

[5] B. Smith. Reflection and Semantics in a Procedural
Programming Language. Phd thesis, MIT, Jan. 1982.

724

