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Introduction:  Planetary bodies are essentially 

crystalline aggregates. The structure and evolution of 
all such bodies are thus fundamentally due to the mi-
croscopic behaviour of the component crystals - equi-
librium structures, elasticity, and transport properties 
for example. Determining the magnitudes of these 
properties for the different ‘ices’ and for the highly 
hydrated phases thought to exist in the interiors of 
outer solar-system moons requires a coordinated mul-
tidisciplinary approach involving a combination of 
experimental and computational techniques. All of the 
substances of interest exhibit complex polymorphism 
over the range of pressures and temperatures found in 
the largest icy moons; however, apart from the case of 
water ice, little is known about the existence, stability 
fields, and physical properties of these numerous 
polymorphs. The objective of this contribution is to 
describe the applicability of quantum mechanical first-
principles techniques to addressing a range of prob-
lems, with a particular emphasis on diffusion creep. 

Computational method: Material properties can 
be calculated with high precision from quantum me-
chanical first principles. These so-called ‘ab initio’ 
methods use only the fundamental physical constants 
(e.g., the Planck Constant and the mass of the elec-
tron), the nuclear mass and the atomic coordinates as 
inputs.  There are no empirical parameters in the ideal 
solution and so the problem of transferability does not 
arise, as it does with fitted potentials.  The most effi-
cient (i.e., least computationally expensive) technique 
is the electron density-based approach embodied in 
Kohn-Sham Density Functional Theory (DFT) [1]; the 
approximations necessary to solve the Schrödinger 
equation (in particular those relating to the electron 
exchange and correlation energy) have been shown to 
give good results with hydrogen-bonded crystals [e.g., 
2]. Any property we wish to determine may be found 
from derivatives of the total energy of the crystal as it 
is perturbed from its equilibrium state. For example, 
the incompressibility is determined from the change in 
internal energy due to changes in the molar volume (at 
absolute zero temperature); elastic constants are found 
by calculating the change in internal energy when a 
crystal structure is strained; and vibrational frequen-
cies are found from the change in internal energy as 
individual atoms are shifted fractionally from their 
equilibrium positions. We can sample the total energy 
hypersurface any way we desire. Although many 
planetary ices and hydrates have complex crystal struc-
tures (low symmetry and large unit-cells), ab initio 

calculations are tractable, as demonstrated in the con-
tribution by Brand et al. (this volume).  

Applicability to diffusion creep:  At very low 
strain rates, such as obtain in planetary interiors, solid-
state flow is most likely to be dominated by diffusion 
creep processes, controlled by molecular or atomic 
volume diffusion and grain-boundary diffusion. These 
diffusion coefficients have the general form of an Ar-
rhenius law, D = D0exp(-E/kT), where E is the activa-
tion energy, typically ~ 20 kJmol-1. In water ice, labo-
ratory creep rates are - necessarily - measured at much 
larger strain rates, where the deformation is controlled 
by other processes (such as grain boundary sliding).  
Due to grain growth, and the practical difficulties in-
volved, it is thought unlikely that pure diffusion creep 
in water ice can be measured in the laboratory [3].  
Note that much of the contemporary discussion per-
tains only to the low-pressure phase ice Ih; data on the 
diffusion creep of high-pressure ice phases is equally 
relevant (ice VI, for example may form layers up to 
400 km thick in the largest icy moons), and considera-
bly more difficult to measure.  Creep measurements 
upon other planetary hydrates and ice-rock mixtures 
are fairly sparse (see contributions by Grindrod et al., 
and Middleton et al., this issue). 

Volume diffusion in ice might normally be ex-
pected to occur by atomic diffusion (H and O), but 
spectroscopic measurements indicate identical rates for 
both species, leading to the conclusion that the mecha-
nism in ice Ih is molecular interstitial diffusion [4]. 
Given the relatively large voids in the structure of low-
pressure ices, it is likely that molecular diffusion is 
also important in ices II and III. The increasing ten-
dency towards interpenetrating hydrogen bonds in ices 
IV, V, and VI, means that pathways for molecular in-
terstitial diffusion are blocked [e.g., 5]. Thus, in the 
high-pressure ices, atomic diffusion is likely to domi-
nate. However, only in ice VII has the proton diffusion 
coefficient been measured [6]. In sulfate hydrates, vol-
ume diffusion of H2O may be related to the availability 
of non cation-coordinated water molecules, of which 
there is one in epsomite (MgSO4·7H2O), two in mir-
abilite (Na2SO4·10H2O), and five in meridianiite 
(MgSO4·11H2O); the sparse data suggest a rheological 
trend from rock-like strength in epsomite through to 
ice-like strength in meridianiite.  Sulfuric acid hydrates 
(6½ and 8H2O), which are plausibly of relevance in 
the icy crust of Europa, are molecular sandwiches con-
taining layers with ice-like structure [7,8], and are 
therefore likely to be relatively weak. 
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Dealing with grain-boundary diffusion is poten-
tially more difficult, although it has been suggested 
that a good proxy is the self-diffusion coefficient of 
supercooled water [9].  This has interesting implica-
tions for the rheological behaviour of high-pressure 
ices, since supercooled water actually becomes more 
fluid at high-pressure [10].  

An early ab initio approach to calculating absolute 
diffusion coefficients employed static DFT to deter-
mine the activation-energy term (by exploring the en-
ergy surface surrounding an atomic defect), and then 
used a statistical theory to determine the rate at which 
defects attempt to 'jump' the activation-energy barrier. 
This methodology met with success for simple oxides, 
employing Vineyard theory [11] to determine the pre-
exponential frequency factor [e.g., 12,13]. However, 
the static ab initio calculations do not account for im-
portant contributions from vibrational entropy or an-
harmonicity (which must be addressed by corrections 
to Vineyard theory). Furthermore, the technique re-
quires some a priori knowledge of diffusion pathways 
through the structure, which is relatively straightfor-
ward in simple close-packed ionic crystals, but be-
comes increasingly intractable in complex molecular 
crystals.  

A dynamic rather than a static computational tech-
nique is therefore more desirable, in which no a priori 
knowledge of diffusion paths or mechanism are neces-
sary, and the system evolves over time (i.e., atoms 
and/or molecules diffuse) according to the classical- or 
quantum-chemical rules imposed upon it. This is the 
basis of molecular dynamics (MD) calculations, which 
are capable of yielding both the activation energy and 
the pre-exponential term. In MD, atoms are moved 
according to a force matrix obtained from either clas-
sical interatomic potentials, or quantum mechanical ab 
initio calculations [14] - so-called 'on-the-fly' DFT.  
MD is well suited to the study of diffusion in liquids, 
since the rates are rapid and the calculation timescales 
are short (order 10-11 s). In solids, we are faced with 
the twin problems of needing to simulate large super-
cells, possibly containing many hundreds of atoms, 
and extremely long - for MD - simulated timescales 
(order 10-7 s) for determination of slow diffusive proc-
esses. It is for this reason that computationally cheap 
classical MD studies of solid-state diffusion are pri-
marily carried out.  A number of researchers have em-
ployed classical MD to investigate self-diffusion in 
water-ice and clathrates and the diffusion of small 
molecules through the ice lattice [15-17].  However, 
interatomic potentials are notoriously difficult to trans-
fer from one structure to another, and only ab initio 
MD offers the certainty of obtaining reliable diffusion 
coefficients, despite the very considerable computa-
tional expense, since the dynamics naturally incorpo-

rate vibrational entropy and anharmonic effects.  The 
most popular implementation of ab initio MD is the 
Car-Parinello method [18], which nonetheless suffers 
from poor scaling (the size of the calculation scales as 
N3, where N is the number of atoms in the system), 
although more efficient algorithms - which scale line-
arly in N - are becoming available [19].  To date, ab 
initio MD studies of diffusion have been limited to 
liquids [20].  

Summary: The substantial experimental obstacles 
associated with the measurement of diffusion creep 
processes in water ice and related planetary hydrates, 
means that calculations are able to make a significant 
contribution to understanding the creep of solids under 
planetary conditions.  Some of the techniques de-
scribed here have already borne fruit in determining 
the rheology of terrestrial mantle minerals [e.g., 21], 
and we will make similar strides in advancing under-
standing of ice diffusion creep at a range of pressures 
and temperatures relevant to icy moon interiors. Ad-
vances in computer technology mean that the exten-
sion of ab initio MD to the study of diffusion in solids 
is becoming tractable, and offers the hope that diffu-
sion creep in ice can be determined in silico if not in 
the laboratory. 
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