
1

Requirements Engineering Through Viewpoints

Anthony Finkelstein, Steve Easterbrook1, Jeff Kramer & Bashar Nuseibeh
Imperial College

Department of Computing
180 Queen’s Gate, London SW7 2BZ

acwf@doc.ic.ac.uk

0 Abstract

This paper provides a short review of contributions to a better understanding of requirements
engineering arising from research at Imperial College. These contributions share a common
theme - a focus on “multiple perspectives” or viewpoints.

1 Theme

The development of most large and complex systems necessarily involves many people - each
with their own perspective on the system defined by their skills, responsibilities, knowledge
and expertise. This is particularly true where the system is a composite system, that is one
which deploys a variety of different technologies (software, hardware, mechanical and so on).
Inevitably, the different perspectives of those involved in the process intersect and overlap,
giving rise to a requirement for coordination. The intersections are, however, far from
obvious because the knowledge within each perspective is represented in different ways.
Further, because development may be carried out concurrently by those involved, different
perspectives may be at different stages of elaboration and may each be subject to different
development strategies.

The problem of how to guide and organise development in this setting - many actors, sundry
representation schemes, diverse domain knowledge, differing development strategies - we
term “the multiple perspective problem”. The multiple perspective problem is central to both
requirements expression and elicitation.

System specification from multiple perspectives using many different specification
languages has become an area of considerable interest. The integration of methods, notations
and tools has generally been addressed by the use of a common data model, usually supported
by a common, centralised database (Wasserman & Pircher 1987, Alderson 1991). Recent work
by Zave & Jackson (1992) proposes the composition of partial specifications as a conjunction of
their assertions in a form of classical logic. A set of partial specifications is then consistent if
and only if the conjunction of their assertions is satisfiable.

Other authors have also considered multi-perspective or multi-language specifications, in
Wileden et al. (1991) specification level interoperability between specifications or programs
written in different languages or running on different kinds of processors is described. The
interoperability described relies on remote procedure calls and ways that interoperating
programs manipulate shared typed data. Wile (1991) on the other hand uses a common
syntactic framework defined in terms of grammars and transformations between these
grammars. He highlights the difficulties of consistency checking in a multi-language
framework.

1 Steve Easterbrook is now at the School of Cognitive and Computing Sciences, University of Sussex



2

Traditionally, multiparadigm languages, which deploy a common multiparadigm base
language, have been used to combine many partial program fragments (Hailpern 1986), while
more recently the use of a single, common canonical representation for integrating so-called
“multi-view” systems has been proposed (Meyers & Reiss 1991).

Approaches based on facilitating negotiation and cooperation between participants in the
development process are another angle of attack on the multiple perspectives problem, these
can be combined with more conventional techniques for determining inconsistencies.

We have sought to address the multiple perspective problem in a number of research projects
aimed more generally at improving the state-of-the-art in requirements engineering.

These projects have:

developed formal representation schemes for requirements specification and built
development methods targeted on those schemes;

extended tool support for CORE, an established requirements engineering method;

outlined a formal model of the process of specification from multiple perspectives based
on an account of how “commitments” are established during requirements elicitation;

provided a scheme for organising the process of review and correction of complex
requirements specifications;

developed a framework and environment which supports the use of heterogeneous
representation schemes and partial views of complex domains;

developed a method for using collaborative exploration of multiple perspectives as a
means of resolving conflicts between views.

Below we briefly outline each project, give an account of its particular contribution to
addressing the multiple perspective problem and relate it to the other projects.

2 FOREST

2.1 Outline

The FOREST (Formal Requirements Specification Techniques) project has addressed the
problems of specifying the requirements for large scale real time embedded systems. In
particular it has developed a formal specification language, Modal Action Logic (M[A]L), and
a method, Structured Common Sense (SCS), to guide and organise the process by which a M[A]L
specification is constructed. Other contributions of the FOREST project in the area of
automated reasoning and tool support have been described in the literature. For a description of
the project reference should be made in the first instance to Goldsack & Finkelstein (1991).

M[A]L is based on the familiar (many sorted ) first order predicate logic, extended by a series
of layers, which are needed in order to describe the services provided by, and the constraints on
the behaviour of, a reactive system. The layers are: agent action modalities; deontic formulae;
action combinators; temporal interval logic.

SCS supports the construction of a formal requirements specification in M[A]L, guiding the
processes of elicitation and formalisation. It identifies the basic concepts underlying M[A]L



3

which must be elicited and the best order in which to elicit them. Techniques from a variety of
existing methods and some specially developed techniques targeted on M[A]L have been
assembled into an integrated method. The structure of SCS is similar to that of conventional
development methods. It consists of a number of distinct steps some of which are performed in
parallel and some sequentially. Progress through SCS is driven by a work plan. Each step has
associated with it intermediate graphic representations and heuristics.

FOREST was funded by the DTI under the Alvey Initiative and was a collaboration between
Imperial College, GEC & AEA Technology.

2.2 Multiple Perspectives

FOREST did not directly address the multiple perspective problem but had two features
relevant to it. M[A]L is based on agents which perform actions. Using M[A]L for requirements
specification led us to consider how we would go about identifying these agents. Simply
considering these as functional blocks in some envisaged system was inappropriate - it leads
to premature design decisions. We therefore chose to interpret M[A]L agents as “knowledge
sources” in elicitation. This interpretation is very similar to that adopted by the requirements
expression method CORE, also referred to below, and leads to requirements specifications for
which traceability back to originating statements and elicitation records are clear.

In building SCS we treated each intermediate representation as a “view” in the partial
specification sense of that term. Each representation was designed to elicit one of the elements
of M[A]L. Thus, for example, we used a data-flow table to help identify the actions performed by
agents. The transforms in the data-flow table were mapped to actions in a “rough-cut” M[A]L
specification and the data-flows themselves discarded. In certain cases the extra information
was held as a prompt to further steps in the method.

The work on FOREST lead us to examine how requirements specifications ought to be
structured and how methods should be constructed.

3 TARA

3.1 Outline

The particular objective of the TARA (Tool Assisted Requirements Analysis) project was to
examine three important extensions to current CASE technology in the area of requirements
analysis. We were interested in the role of automatically provided method guidance to support
the use of requirements analysis methods, the ability to use software tools to help clients and
analysts visualize the behaviour of the specified system by animation of the specification, and
the possibility of supporting the reuse of specification fragments or parts of existing
specifications in the composition of a new specification. The main application focus of our
work was the large class of systems which can be classed as "real-time information systems";
that is systems which must satisfy temporal constraints and are also data rich.

The intention was not to construct another diagram editor and requirements specification
technique. Hence we adopted as a base for this work an existing, widely used, requirements
analysis method - CORE (Systems Designers 1986) - and a CASE tool for diagram construction
and consistency checking - The Analyst (Stephens & Whitehead 1985).

The results of this work are detailed in Finkelstein & Kramer (1992). An earlier paper,
Kramer et al. (1988), provides an incomplete and preliminary view of the project. These
results include: a method guidance system for CORE integrated with The Analyst, giving



4

normative and remedial advice to method users; tool support for animation of CORE
transactions, The Animator, with full graphics support for the generation and manipulation of
transaction diagrams, Kramer & Ng (1988); a prototype tool - TRUE - to support Transaction
Reuse based on a model of reuse derived from artificial intelligence research on analogy,
Finkelstein (1987).

TARA was funded by the USAF Rome Air Development Centre and was a collaboration
between Imperial College and SD-Scicon.

3.2 Multiple Perspectives

The insights and experience derived from working on the TARA project have been
considerable and has directly influenced our work on multiple perspectives. This is a result
both of the specific contributions of the work and of the increased respect we have developed for
CORE as a method. In particular it has lead us to favour support for software development by
methods consisting of many, relatively simple, representations tightly coupled to each other by
large numbers of consistency checks. In this setting an explicit and enactable work plan
provides a means for both managing the enforcement of the consistency checks and managing
the consequences of redundancy.

Given a method with a work plan and with a rich collection of heuristics the method advice
must be delivered to the point at which the work - the construction of the specification - is
actually being carried out. The granularity of this method advice must be appropriate to the
tasks being performed. It is worth noting that we modelled CORE using M[A]L.

TARA also gave us a much better understanding of how people work with software
development methods. In particular we have come to realise that work is often left incomplete
and inconsistent, that users move rapidly between different representations changing their
minds frequently, and that analysis and validation are tightly interleaved with the
construction of the specification.

Support for reuse needs to be engineered into the representation schemes underlying a method
from the start. Without such support taking advantage of existing specifications will always be
difficult. The most sensible strategy in this setting is to provide a variety of powerful means of
viewing and understanding such specifications.

As mentioned, TARA provided us with considerable experience of and respect for CORE and
for CORE viewpoints as a means of domain decomposition. The CORE viewpoint, essentially
an agent or role, combines a domain structure with the distribution of authority for making
decisions about the specification. As such it provides a powerful means of structuring
requirements specification and organising requirements elicitation. However, CORE
viewpoints are required to be orthogonal, and the way in which information within a viewpoint
is provided is restricted. These limitations severely constrain the extent to which CORE or
similar methods support multiple perspectives.

4 IC-DC

4.1 Outline

The objective of the IC-DC project was to develop a formal understanding of specification from
multiple perspectives in order to both support the construction of formal specifications and
reason about the process of specification itself. To do so, it took what might be broadly termed



5

an AI approach - modelling the mechanisms which underlie the way people carry out the
complex task of specification.

We developed a model (IC-DC) based on how "commitments" are negotiated and established
as a specification is constructed. The model, which develops concepts taken from dialogue and
commitment logics, is described in full in Finkelstein & Fuks (1989).

In this model a specification consists of a set of statements. Each statement is an effective
restriction on the freedom of action on the part of the developer who must build a system that
satisfies the specification. By making a statement the specifier is, in effect, making a
"commitment" that is, holding him or herself out as liable for the consequences of that
statement. In this context specification is seen as a process by which commitments are
negotiated and established by the parties having responsibility for the description and
development of the system. This process takes the form of a dialogue or organised sequence of
locutions.

Dialogues have an "etiquette" which governs the legitimate shape of the interaction,
performing a locution will generally have an effect on the commitments of the participants,
these can be defined in dialogue and commitment rules. The form of reasoning permissible
within the dialogue can be defined syntactically.

We developed tools which animate, albeit in a simple minded way, the dialogue scheme. These
tools allow the user to develop simple dialogues and then replay them in whole or in part.

4.2 Multiple Perspectives

The IC-DC work directly contributed to research on multiple perspectives. It examined in some
detail the idea of independent agents (loosely coupled, locally managed objects) holding a
perspective and interacting with other independent agents. This work mapped out the links
between work on multiple perspectives in requirements engineering and the related fields of
computer-supported cooperative work and distributed artificial intelligence. In particular the
work established the importance of the high-level protocol that allow agents to interact. The
work demonstrated the contribution that logic might make in this area.

5 Fixing Specifications

5.1 Outline

The Fixing Specifications project used the IC-DC model to underpin support for a practical
problem in the review of large and complex specifications - marking errors and corrections. A
simple graphical notation, similar in spirit to typographical correction marks, was developed.
Errors and corrections could be marked on the specification text using this notation and the IC-
DC model was used to define how these marks should be removed and replaced by the corrected
or changed specification. This scheme provided a categorisation of common types of edits and
queries and thus gave a simple vehicle for communication between reviewer and author which
addresses corrections and annotations to specifications at the appropriate level and is
(notationally) consistent and well (formally) defined. A full account is given in Finkelstein
(1992).

5.2 Multiple Perspectives

The work on Fixing Specifications provided us with a better understanding of how a model
such as IC-DC could be applied. We were able to develop a method of formally annotating
specifications which was independent of the underlying representation scheme, and hence can



6

be used in documents consisting of heterogeneous representations, and which marked errors
and queries explicitly and by identifying potential conflicts support the resolution of
disagreements.

6 ViewPoints

6.1 Outline

The ViewPoints framework directly addresses the use of multiple perspectives in system
development. This work has been primarily, though not exclusively, carried out under the
aegis of the Software Engineering and Engineering Design (SEED) project in conjunction
with The City University. A good account of the work on ViewPoints is given in Finkelstein et
al. 1992.

The primary building blocks of the framework are “ViewPoints”. A ViewPoint can be thought
of as a combination of the idea of a “actor”, “knowledge source”, “role” or “agent” in the
development process and the idea of a “view” or “perspective” which an actor maintains. In
software terms it is a loosely coupled, locally managed, coarse-grained object which
encapsulates partial knowledge about the system and domain, specified in a particular,
suitable representation scheme, and partial knowledge of the process of development.

Each ViewPoint is composed of the following components, which we call slots:

a representation style, the scheme and notation by which the ViewPoint expresses what it
can see;

a domain, which defines that part of the “world” delineated in the style;

a specification, the statements expressed in the ViewPoint’s style describing particular
domains;

a work plan, describing the process by which the specification can be built;

a work record, an account of the history and current state of the development.

The development participant associated with any particular ViewPoint is known as the
ViewPoint “owner”. The owner is responsible for developing a ViewPoint specification using
the notation defined in the style slot, following the strategy defined by the work plan, for a
particular problem domain. A development history is maintained in the work record.

Many ViewPoints may employ the same development technique to produce different
specifications for different domains. We have therefore defined a reusable ViewPoint
Template in which only the style and work plan slots are elaborated. A single ViewPoint
template may then be instantiated more than once to yield different ViewPoints.

In general, a method is composed of a number of different development techniques. Each
technique has its own notation and rules about when and how to use that notation. Thus, in the
context of the ViewPoints framework, a method is a configuration (structured collection) of
ViewPoint templates, the templates corresponding to the method’s constituent development
techniques. A further phase of the FOREST project has used the ViewPoint framework to build
a version of SCS targeted on a substantially modified version of M[A]L which includes an
object-oriented structuring scheme.



7

A development is viewed as a configuration of ViewPoints instantiated from a method’s
ViewPoint templates.

Integration is achieved by checks maintained locally within each ViewPoint and enforced,
where it is required, by a model of the process of development. These checks define partial
consistency relations between the different representation schemes. Consistency is checked
incrementally between viewpoints at particular stages rather than being enforced as a matter
of course. Checks may be used to determine whether ViewPoints are consistent with each other
and as transformations to move information between viewpoints.

A prototype computer-based environment, called The Viewer, has been constructed to support
the framework, and several sample tools supporting individual ViewPoint templates have
been integrated into this environment (Nuseibeh & Finkelstein 1992).

6.2 Multiple Perspectives

The ViewPoint framework is the current focus of our work on multiple perspectives. It
combines ideas from all of the projects summarised above and has particular implications for
method and tool integration.

We are broadly satisfied that the work to date gives a coherent approach to the management of
multiple perspectives. It has enabled us to see more clearly the major technical problems that
must be tackled in order to provide appropriate automated support for deploying multiple
perspectives. Our attention is now focused on two closely related issues which we view as of
particular importance:

how the relations between different representation schemes should be expressed;

the mechanisms by which these relations are used as checks or transformations.

We have been able to distinguish and characterise these issues and have explored some
alternatives particularly in the development of a model of inter-ViewPoint communication.

An area which we regard as important and which we hope to be able to consider in more detail
is conflict resolution. Current progress in this area is described below.

7 Computer-Supported Negotiation

7.1 Outline

The Computer Supported Negotiation (CSN) model takes the ViewPoints framework as a basis,
and defines a process for resolving conflicts between ViewPoints. The project was carried out
as a PhD thesis, and is described fully in Easterbrook (1991). A shorter account of the conflict
resolution model can be found in Easterbrook (1993).

CSN assumes during the elicitation process, it is convenient to represent separately
contributions from different sources, ignoring conflicts between them. This offers two
advantages: individual contributions remain available for purposes of tracing the origin of
particular requirements; and it reduces the possibility that previously elicited, conflicting
perspectives might restrict and interfere with the elicitation process.

As a collection of disparate ViewPoints is gathered, CSN offers a tool-supported approach to
resolution of conflicts between them. No attempt has been made to automate the resolution



8

process, as in most cases a resolution requires new information, in addition to that already
represented in the ViewPoints. In fact, the process promises to be a cost-effective technique for
eliciting the hidden assumptions and contextual information associated with a ViewPoint: by
concentrating on the reasons underlying conflicts between ViewPoints, it prompts for most
important pieces of missing information.

Essentially, the approach combines methods drawn from organisational psychology with
cognitive modelling techniques, to produce a three-phase exploration process. The three phases
are exploration, generation and evaluation. In the exploration phase, the conflicting
ViewPoint specifications are displayed side-by-side, and their owners identify
correspondences between elements or groups of elements. Areas where there is no
correspondence, or only an approximate correspondence, are noted – these comprise the
components of the conflict. The generative phase elicits suggestions for integrating parts of the
conflicting ViewPoints, by considering the different ways in which they might be combined,
and the extent to which they interfere. The evaluative phase considers how these suggestions
might be combined, and the extent to which each of them addresses the original conflict.

7.2 Multiple Perspectives

This project addressed a crucial aspect of multiple perspectives: how to deal with
incompatibilities. Earlier approaches, based on consistency checking, tackled the types of
conflict that occur during incremental refinement of a single model. However, such
approaches were unsatisfactory for a proper treatment of multiple perspectives. In this project,
we concentrated on the types of conflict that were not amenable to automated resolution,
typically where two perspectives have evolved independently and have no common basis.

In many cases, no single resolution is possible, as the ViewPoints represent orthogonal views.
In such cases, the approach offers a means of exploring and mapping the conflict. The most
important outcome, therefore, is often not the resolution, but the understanding of the conflict
arrived at during the exploration process.

Note that the model does not address the detection of conflict, nor the connection between
inconsistencies which are detectable at the syntactic level, and conflicts. It is likely that
inconsistencies will often reveal the existence of conflicts, but this is certainly not always the
case. In software design, some requirements conflicts remain undetected until after the
software is implemented. Further work is needed on the detection of conflicts in the
ViewPoints framework, beyond the syntactic approaches currently available.

8 Summary

This paper has briefly reviewed contributions to a better understanding of requirements
engineering arising from research at Imperial College. These contributions share a common
theme - a focus on “multiple perspectives”. Copies of reports and papers can be obtained from
our ftp archive at doc.ic.ac.uk (directory: papers).

Acknowledgements

We would like to thank our colleagues and students some of whose work is reported above.

References



9

Alderson, A. (1991); Meta-CASE technology; European Symposium on Software Development
Environments and CASE Technology, Königswinter, June 1991, LNCS 509 (Endres and Weber
eds.), Springer-Verlag, pp 81-91.

Easterbrook, S. M. (1991) Elicitation of Requirements from Multiple Perspectives; PhD
Thesis; University of London.

Easterbrook, S. M. (1993) Resolving Requirements Conflicts with Computer-Supported
Negotiation; [To appear] Social and Technological Issues in Requirements Engineering;
Bickerton, M. & Jirotka, M. (eds.); Academic Press.

Finkelstein, A. (1987); Reuse of Formatted Specifications; IEE Software Engineering Journal;
3, 5, pp186-197.

Finkelstein, A. & Fuks H. (1989); Multi-Party Specification; Proc 5th International
Workshop on Software Specification & Design, pp 185-195; IEEE CS Press (also as Special
Issue of ACM Software Engineering Notes).

Finkelstein, A. & Kramer, J. (1992); TARA: Tool Assisted Requirements Analysis;
Loucopoulos P. & Zicari R; Conceptual Modelling, Databases & CASE: an integrated view of
information systems development; Wiley.

Finkelstein, A. (1992); Reviewing and Correcting Specifications; [To Appear] Computers &
Writing: issues and implementations ; Sharples, M. (Ed.); Kluwer.

Finkelstein, A.; Kramer, J.; Nuseibeh, B.; Finkelstein, L. & Goedicke, M. (1992);
Viewpoints: a framework for integrating multiple perspectives in system development;
International Journal of Software Engineering and Knowledge Engineering, 2, 1, pp31-58

Goldsack, S. & Finkelstein, A. (1991); Requirements Engineering for Real-Time Systems;
Software Engineering Journal; 6, 3, pp101-105.

Hailpern B (ed.) (1986); Special issue on multiparadigm languages and environments; IEEE
Software, 3(1), Special issue on multiparadigm languages and environments, 10-77, January
1986.

Kramer J. & Ng K. (1988); Animation of Requirements Specifications; Software - Practice
and Experience; 18, 8, pp749-774.

Kramer J., Ng K., Potts C. & Whitehead, K. (1988); Tool support for Requirements Analysis;
Software Engineering Journal; 3, 3, pp86-96.

Meyers S & Reiss S P (1991),A System for Multiparadigm Development of Software Systems”,
In Proceedings of Sixth International Workshop on Software Specification and Design, Como,
Italy, 202-209, 25-26th October 1991.

Nuseibeh, B. & Finkelstein, A. (1992); ViewPoints: a vehicle for method and tool integration;
Proceedings of International Workshop on Computer-Aided Software Engineering (CASE
‘92); Montreal, Canada, 6-10th July 1992.

Stephens M. & Whitehead K. (1985); The Analyst - a workstation for analysis and design;
Proc. 8th Int. Conf. Software Engineering; pp364-369; IEEE CS Press.

Systems Designers (1986); CORE - the manual; Internal Publication, SD-Scicon.



10

Wasserman A I & Pircher P A (1987); A Graphical, Extensible Integrated Environment for
Software Development; Proceedings of 2nd Symposium on Practical Software Development
Environments; SIGPlan Notices, 22, 1, pp131-142.

Wile D S (1991); Integrating Syntaxes and their Associated Semantics; USC/Information
Sciences Institute Technical Report, 1991.

Wileden J C, Wolf A L, Rosenblatt W R & Tarr P L (1991); Specification-level
interoperability; Communications of the ACM; 34, 5, pp72-87.

Zave P & Jackson M (1992); Conjunction as Composition; draft paper (to appear), 1992.


