LDTA’02 Preliminary Version

Aspect and XML-oriented Semantic
Framework Generator: SmartTools

Didier Parigot, Carine Courbis, Pascal Degenne, Alexandre Fau
Claude Pasquier, Joél Fillon, Christophe Held, Isabelle Attali

INRIA Sophia-Antipolis - OASIS project
2004, route des Lucioles - BP 93
06902 Sophia-Antipolis cedex, France
First.Last@sophia.inria.fr

Abstract

SmartTools is a semantic framework generator, based on XML and object tech-
nologies. Thanks to a process of automatic generation from specifications, Smart-
Tools makes it possible to quickly develop environments dedicated to domain-specific
and programming languages. Some of these specifications (XML, DTD, Schemas,
XSLT) are issued from the W3C which is an important source of varied emerging
domain-specific languages. SmartTools uses object technologies such as visitor pat-
terns and aspect-oriented programming. It provides code generation adapted to the
usage of those technologies to support the development of semantic analyses. In this
way, we obtain at minimal cost the design and implementation of a modular devel-
opment platform which is open, interactive, uniform, and most important prone to
evolution.

Key words: software generation, development environment,
semantic analyses, aspect-oriented programming, visitor pattern,
program transformation, XML, XSLT.

1 Introduction

With new technologies related to data processing for Internet applications, the
concept of language is more and more used to structure information. There-
fore, the World Wide Web Consortium (W3C) has introduced new formalisms
such as DTDs (Data Type Definitions) or Schemas that popularize the concept
of abstract syntax, the basic component to manipulate any program. Addi-
tionally, the software quality and the development speed are of major concern
in this particular application area. That justifies the creation of a software
generator strongly based on XML (eXtensible Markup Language) and object
technologies, named SmartTools.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

SMARTTOOLS

The main goal of this software generator is to help designers of domain-
specific or programming languages. No more than one specification (e.g. a
DTD) is needed to quickly produce a dedicated development environment.
Both the target environment and the SmartTools framework must fulfill the
following requirements:

* easy to use with a minimal knowledge and based on well-known techniques
or standard specifications,

* modular and flexible implementation based on re-usable and generic com-
ponents, and on a distributed software architecture,

o user-friendly thanks to a Graphic User Interface (GUI) that offers multi-
views and an interactive environment,

» open thanks to a standard data exchange format used to communicate with
its components and other external applications.

To ease the development of semantic analyses, several techniques have been
introduced into SmartTools. First, the solution of visitor design pattern [§|
was largely automated with the generation of Java source code from abstract
syntax definitions. Second, the aspect-oriented programming was added to
obtain more re-usable semantic components. This new functionality does not
require any program transformation. Thus, the addition of aspects on a visitor
can be completely dynamic (without recompilation). Section 2 presents these
semantic tools.

To meet with the architecture requirements, the modular software architec-
ture was built around a central software component: the message controller.
SmartTools is made of several independent software components that com-
municate with each other by exchanging asynchronous messages. The XML
technologies are used to encode these messages. In Section 3, the modular
architecture of SmartTools is described.

Concerning the interactive requirements, SmartTools has an extensible and
modular GUI with a set of pretty-printers or viewers strongly based on XML
technologies. For data integration and to be open to new application fields,
the XML format is used for all data exchange between components and as an
description language for new applications. These interactive functionalities
are presented in Section 4.

About the re-usability requirement, SmartTools uses and provides sev-
eral advanced software technologies stemming from various research works
[2,4,10,11,15,22] but homogeneously gathered together. In fact, web applica-
tions and the emergence of XML technologies are assets for a large diffusion
and new application fields for this software generator.

SMARTTOOLS

2 Semantic Tools

Internally, SmartTools uses extended and strongly typed abstract syntax (AST)
definitions for all its tools. The important notions of these definitions are: op-
erators and types. The operators are gathered into named sets: types. The
sons of operators are typed and named. Figure 1 shows the definition of our
toy language: tiny '. For example, the affect operator belongs to the State-
ment type and has two sons: the first one is of type Var and the second one
of type Exp.

Formalismof tiny is
Root is %lop;

Top = program(Decl s declarationList, Statenents statements);
Decls = decl s(Decl [] declarationList);

Decl = i nt Decl (Var variable), bool eanDecl (Var variable);
Statenments = statenments(Statenent[] statenmentList);

Statenment = af fect (Var variable, Exp value),

whi | e(Condi ti onExp cond, Statements statenents),
i f(ConditionExp cond, Statenents statenentsThen,
Statenments statenentsEl se);
ConditionOp = equal (ArithrmeticExp left, ArithmeticExp right),
not Equal (ArithmeticExp left, ArithmeticExp right);
Condi ti onExp = %ConditionOp, true(), false(), var;
ArithmeticOp = plus(ArithnmeticExp left, ArithneticExp right),
m nus(ArithneticExp left, ArithmeticExp right),
mul t (ArithneticExp left, ArithmeticExp right),
div(ArithrmeticExp left, ArithneticExp right);
ArithneticExp = %ArithneticOp, int as STRING var as STRING
Exp = %ArithmeticOp, %ConditionOp, var, int, true, false;
Var = var;
End

Fig. 1. the AST definition of tiny

From any AST definition, SmartTools can automatically generate a struc-
tured editor specific to the language. To facilitate the editing (to copy-paste
nodes), it is useful to make the type inclusion? possible.

We want, as much as possible, to use existing software components stem-
ming from the W3C standards, such as the DOM (Document Object Model)
API to handle XML documents. But, this latter API does not consider
strongly typed structures. To manipulate strongly typed trees, we have ex-
tended it with the notions of fixed node, listed node and typed node (c.f.
Figure 2). In this way, the tree consistency is guaranteed by the Java type-
checker at its construction. For each operator, SmartTools automatically gen-
erates one class and the associated interface (Figure 3 shows the interface
generated for the affect operator), and one interface by type. These classes
contain the getters and setters needed to handle the sons (e.g. getValueNode,
setValueNode).

It is important that the language designers can define their languages (ab-
stract syntax) by using standard formats (DTD or Schema) proposed by the
W3C and not necessarily with the internal AST definition format of Smart-
Tools. Therefore, we have implemented conversion tools with some restric-
tions. For example, the notion of type does not explicitly exist within the

I used all along this article
2 marked with the % sign in Figure 1

DO W N

SMARTTOOLS

| org.w3c.dZ{n.Element] DOM

or g.apache.xer ces.dom.ElementI mpl |

[fr.smarttools.tree.UntypedNode]

e ! [fr.smarttools.tree.UntypedNodel mpl]

i [fr.smarttools.tree.FixedNode]

SmartTo:pIs

tiny.ast.StatementType |[tiny.ast. AffectNode |
AN A

tiny.ast.AffectNodel mpl

Tiny +oetVariableNode(): tiny.as.VarType
+setVariableNode(tree:tiny.ast.VarType):void|

+getValueNode():tiny.ast. ExpType

+setValueNode(treeitiny.ast.ExpType):void

Fig. 2. Class hierarchy for the affect operator

package tiny.ast;

public interface AffectNode extends StatenentType {
public tiny.ast.VarType getVari abl eNode();
public void setVariabl eNode(tiny.ast.VarType tree);
public tiny.ast.ExpType getVal ueNode();
public void setVal ueNode(tiny.ast.ExpType tree);

Fig. 3. Generated affect operator interface: AffectNode

DTD format i.e. the elements (seen as operators) do not belong to named
sets. As this notion was essential, we had to define a type inference mech-
anism to convert DTDs. Additionally, the right part of element definitions
should only contain parameter entity references to indicate the types of the
sons (e.g. the line 6 of Figure 4 shows a DTD-equivalent definition of the
affect operator). Unfortunately, few DTDs are written in this way. To be
able to accept as many DTDs as possible, a more complex type analysis (type
inference) was carried out.

<I ENTI TY % Top ' prograni >
<IENTITY % Statenents 'statenments’ >

<IENTITY % Statenent 'if|while|affect’>

<! ELEMENT program ((%ecls;), (%Statenents;))>
<! ELEMENT statements (%Statenent;)*>

<! ELEMENT affect ((%var;), (%&xp;))>

Fig. 4. Part of the generated DTD of tiny

Moreover, we have implemented generators that produce a parser and the
associated pretty-printer to manipulate programs with a more readable for-
mat than the XML one. For this purpose, the designer has to provide extra
attributes information on each element (or operator) definition (see attributes
in Figure 5). This possibility is useful for designers that do not have expertise
on how to write a parser and makes sense only for small and unambiguous
languages.

Figure 6 shows all the specifications that can be generated from an AST
specification:

SMARTTOOLS

affect (Var variable, Exp val ue)
with attributes {fixed String S1 = "=",
fixed String styleSl = "kw',
fixed String AO=";",
fixed String styleAO = "kw'}

Fig. 5. Extra data of the affect operator useful for generating a parser and the
associated pretty-printer

o the API of the language (i.e. one class and the associated interface by
operator, and one interface by type),

* the basic visitors useful for creating semantic analyses,

* a parser for the language (if extra syntactic sugars are provided as operator
attributes in the language definition),

* a pretty-printer to unparse ASTs according to these extra syntactic sugars,

¢ a minimal resource file that contains useful information for the structured
editor and the parser,

e the DTD or the Schema.

APl of Tiny f
Af f ect Node. j ava Gl vy Gl
Af f ect Nodel npl . j ava
St at enent Type. j ava

API @
Gener at or

tiny. ast

or
tiny.xsd

Par ser A
@

Ti nyPar ser. j ava

Ti nyLexer.java

Ti nyPar ser TokenTypes. j ava
Ti nyPar ser TokenTypes. t xt

Pretty

Pri nt er

Gener at or

Abstract TinyVisitor.java

Traversal TinyVisitor.javal Resour ce

Gener at or

Visitor -
DTD tiny.dtd
or Schema
Gener at or
TypeChecker . xpr o tiny.xsd

Abstract TypeChecker TinyVisitor.java
Traver sal TypeChecker TinyVisitor.jav

Fig. 6. All the specifications generated from an AST

For example, thanks to these tool generators, the tiny environment was
automatically generated only from one AST specification (see Figure 1 page
3), one xprofile specification (see Figure 7) , and the type-checker visitor (100
Java lines).

Semantics

This sub-section presents ways to write analyses (e.g. a type-checker, an
evaluator or a compiler) on programs by using the visitor design pattern. If
the reader wants to have more details and explanations on this well-known
methodology, he can refer to [8,20,21]. For instance, we present three ex-
tensions of the visitor pattern technique: v1 using reflexivity mechanism with
profiled visits and tree traversal possibilities, v2 adding simple aspect-oriented

5

OO U AW =

SMARTTOOLS

programming, v3 splitting the tree traversal (visit method calls) and the se-
mantic actions by using more complex aspects.

Reflezive visitors (vl)

To make the development of visitors based on the AST definitions easier,
SmartTools automatically generates two visitor classes: AbstractVisitor and
TraversalVisitor. The abstract visitor declares all the visit methods (one by
operator). The TraversalVisitor inherits from the AbstractVisitor and imple-
ments all the visit methods in order to perform a depth-first tree traversal.
This visitor can be extended and its visit methods refined (overridden) to
specify an analysis.

Thanks to the xprofile specification language of SmartTools, it is possible
to specify the visit signatures i.e. to generate visits with different names,
return types, and parameters. The granularity of this personalization is at
the (AST) type level. Figure 7 presents the xprofile specification of a type-
checker for tiny. From this specification, the system automatically generates
the two correctly-typed visitors (AbstractVisitor and TraversalVisitor). Only
useful visit methods have to be overridden to implement the type-checker (see
Figure 8 for the affect operator). The advantage of using profiled visits is to
avoid casts and obtain more readable visitor programs.

XProfile TypeChecker;
Formal i smtiny;
inmport tiny.visitors. TinyEnv;

Profiles

Obj ect check(%op, TinyEnv env);

Obj ect check(%Decls, TinyEnv env);

Obj ect check(%Decl, TinyEnv env);

Obj ect check(%St atements, TinyEnv env);
bj ect check(%st atement, TinyEnv env);
String check(%Exp, TinyEnv env);

String check(%ArithmeticOp, TinyEnv env);
String check(%ConditionQp, TinyEnv env);
String check(%Arithmeti cExp, TinyEnv env);
String check(%Conditi onExp, TinyEnv env);
String check(%ar, TinyEnv env);

Strategy TOPDOWN;

Fig. 7. Visit signatures of a type-checker for tiny

public Object check(AffectNode node, TinyEnv env) throws VisitorException {
String varName = node. get Vari abl eNode() . get Val ue();
String typeLeft = env.get Type(varNane);
String typeRight = check(node. getVal ueNode(), env); //visit the val ue node

if (typeLeft == null)
errors.setError(node, "This variable " + varNanme + " was not declared");
el se {
if (!typeRight.equal s(TinyEnv. ERROR) && (!typelLeft.equal s(typeRight)))
errors.setError(node, "lInconpatible types: " + varName + " is a" +
typeLeft. equal s(Ti nyEnv. INT)?"int":"bool ") +" variable");

return null;

Fig. 8. Affect visit of the type-checker

6

SMARTTOOLS

With the xprofile language, it is also possible to specify the tree traversal
(from the starting node to the destination node(s)) of a visitor. Thus, only the
nodes on the path are visited instead of all the nodes of the tree. It reduces
the visitor runtime on sizeable trees and above all the size of the generated
visitors. A dependence graph analysis on the AST definition is performed
to generate the corresponding abstract and traversal visitors with the ’right’
visits according to the given path. For example with the traversal specified
on Figure 9, only the visits of the while and affect operators and the visits
of the operators contained between the root (TOP) and these operators (i.e
program, statements and if according to the AST definition of Figure 1 page
3) will be called.

Traversal Test:
%op -> while, affect;

Fig. 9. Traversal specification from the root (TOP) to while and affect

In SmartTools, we use the Java reflexivity mechanism to implement the
visitor technique and not the classical solution of a specific method, usually
denoted accept, defined on each operator®. Indeed, the introduction of a
visitor profile prohibits from using this classical solution (accept method). A
generic method (named invokeVisit) is executed when any visit method is
called. The goal of this generic method is to invoke the ’right’ visit method
(with a strongly-typed node) by using reflexivity.

The use of reflexivity is runtime-expensive. To accelerate the invoke pro-
cess, an indirection table is statically produced at compilation-time when the
abstract visitor is generated. This table contains for each pair (operator, type)
the Java reference to the visit java.lang.reflect. Method object to call. With
this table, it is also possible to change the visit method name and to have
different arguments. This solution is a simplification of the multi-method ap-
proach that dynamically performs the search of the best method to apply. We
have compared these two approaches by using a Java multi-method implemen-
tation [7]. The performances are equivalent, but our approach is much easier
to realize.

Visitors with Aspect (v2)

The reflexivity mechanism used to implement the visitor pattern technique
makes the execution of additional code before or after the visit calls possible.
In this way, a concept of aspect-oriented programming [12,14] specific for
our visitors can be added without modifying the source code, unlike the first
versions of AspectJ [1,13]. An aspect can be defined just by implementing the
Aspect interface and then recorded (see methods on Figure 10) on any visitor.

3 SmartTools can also help designers to develop this kind of efficient visitors. But, their
codes are less readable (more casts, no aspect, no tree traversal choice, etc) than the v1 or
v2 visitors . Therefore, we do not describe them in this article.

7

SMARTTOOLS

For example, if the aspect of Figure 11 is recorded on a visitor, it will trace
out all the called visits.

Visitorimpl

+vi si t (node: Node, par ans: Obj ect): bj ect

#i nvokeVi sit (params: Cbject[]): Object

+addAspect (aspect: Aspect): void

+r enpveAspect (aspect : Aspect): void

+addAspect OnQper at or (op: Oper at or, aspect : Aspect): void

+r enbveAspect OnOper at or (op: Oper at or, aspect : Aspect): void
+addAspect OnType(type: Type, aspect: Aspect): voi d

+r enbveAspect OnType(type: Type, aspect: Aspect): void

Fig. 10. Visitor with aspect (v2) API

package fr.smarttool s. debug;
inport fr.smarttools.tree.visitorpattern. Aspect;
inport fr.smarttools.tree. Type;

public class TraceAspect inplenents Aspect {
public void before(Type t, Object[] paranm {
Systemout.println (“Start visit on " + paranf{0].getCl ass());

}

public void after(Type t, Qbject[] param {
Systemout.println ("End visit on " + paranf0].getd ass());

}

}

Fig. 11. Aspect that traces out the visit methods

Several aspects can be connected on a visitor. They are executed in se-
quence (according to the registration order). This connection (as well as the
disconnection) can be done at runtime. The behavior of a visitor can thus be
modified dynamically by addition or withdrawal of these aspects. For exam-
ple, a graphical debug mode for the visitors with a step-by-step execution was
specified as an aspect regardless of any visitor. To add these aspects on the
v1 visitors, the generic method (invokeVisit) was extended.

Visitor with Tree Traversal and complex Aspects (v3)

With the concept of aspect-oriented programming, it is possible to split the
tree traversal (visit method calls) and the semantic processing (semantic ac-
tions). Let us suppose that the visit code of the affect(Var, Exp) operator has
this shape:

visit(AffectNode node ...) {
codeBefore
visit of the first son
codeBet weenl_2
visit of the second son
codeAf ter

One can observe that the semantic part (i.e all except the recursive calls)
is divided into N sons + 1 pieces of code. These N-+1 pieces can be treated like
aspects with new points of anchoring, i.e before, between and after the visit
method calls of the sons. We have defined a new visitor (named v3 visitor)
that takes as arguments a tree traversal and one or more semantic actions
(i.e. in the form of aspects) as shown on Figure 12. This visitor can call these
aspects on these new points of anchoring. Therefore, these aspects must have
for each operator, in addition to the traditional before and after methods, the

8

OO0 DU W =

SMARTTOOLS

betweeni_i+1 methods (code to be executed between the i'" and i+1" sons).
This new visitor can connect one or more aspects described in the v2 visitors.
Figure 13 shows the type-checker semantics associated with the affect operator
using this new form of aspect. There is no more recursive call unlike the v1
(see Figure 8 page 6 line 4) or v2 visitors but it is necessary to use stacks (see
Figure 13 lines 5 and 6) to transmit the visit results of the sons.

Semanticl

+before(): Onject
+after(): Object
<+bet weenN_M): Obj ect

TreeTraversal

+t raver se(node: Node) : voi d
+backward(): void
+forward(): void
+i gnore(): void
+j unpTo(): void

before, after, betwe

C SemanticN

+after(): Object
+before(): Object
+bet weenN_M): Obj ect

ci\rent, visit, before, after

ignore, backward, forward, jumpJo

ignore, backward, forward, jumpTo

VisitorAspect

+current(): void

+visit(): Object
+i nvokeVisit(): Object
+backward(): void

+f orward(): void

+i gnore(): void

+ unmpTo(): void

+bet ween(): Obj ect

+before(): void

+after(): void

+addAspect (): void

+r emoveAspect (): void
+addAspect OnOperator (): void
+addAspect OnType(): void

Fig. 12. v3 visitor

public void before(Affect Node node, Object param {}
public void betweenl_2(AffectNode node, Object paranm {}
public void after(AffectNode node, Cbject param {
String varName = node. get Vari abl eNode() . get Val ue();
String typeRight = (String)typeStack. pop();
String typeLeft = (String)typeStack. pop();

sane if code than Figure 8 (lines 6 to 12)

Fig. 13. Type-checker of the affect operator

The type-checker of tiny was extended with an initialization check on vari-
ables (see Figure 14) only by composing the two aspects (see Figure 15). The
main interest of this programming style is to make the extension of analyses
possible without modification only by adding new aspects. In this way, anal-
yses are modular and re-usable. However, these analyses are more complex
to program because of the splitting of the semantics and the tree traversal
(compare Figures 13 and 8 page 6). Currently, we study how to share data
between semantics, problems linked to the common tree traversal (e.g. what
to do if one semantics wants to loop on a node and not the others?) ; we
also study mechanisms to ease the programming of these aspects by hiding
the stack management.

For the v3 visitor (see Figure 12), there is also a generic method that
manages the next node to visit according to the current position, the tree
traversal and some special traversal instructions. This method also copes with

9

SMARTTOOLS

public void before(Affect Node node, Object param) {unplugVariabl eCheck

public void visitl(AffectNode node, Object param) {unplugVariabl eCheck

public void after(AffectNode node, Object param {
env.setlnitialized(node. getVariabl eNode(). getVal ue());

}

true;}
fal se;}

Fig. 14. Initialization check for the affect operator (v3 visitor)

TypeChecker Vi sitor typeCheck = new TypeCheckerVisitor();
Ti nyEnv env = typeCheck. get Env();
I ni t Var Checker Vi si tor initVarCheck = new I nitVar CheckerVisitor(env);
new Visitor(new LeftToRi ght TreeTraversal (),
new Semantics[]{typeCheck, initVarCheck}).start(tree, null);

Fig. 15. Composition of two aspects

the search of the next method to call and the invocation of the v2 aspects on
these visits.

3 Architecture

SmartTools is composed of independent software modules that communicate
with each other by exchanging asynchronous messages. These messages are
typed and can be considered as events. Each module registers itself on a cen-
tral software component, the message controller (c.f. Figure 16), to listen to
some specific types of messages. It can react to them by possibly posting new
messages. The controller is responsible for managing the flow of messages and
delivering them to their specific destination(s). The components of Smart-
Tools are thus event-driven. This section presents the different modules of
SmartTools and describes the behavior of the message controller.

Docunent 2 . View2 / Docl
Graphic
Interface

l

Message control | er

| Docunent manager | | Par ser manager | | Base |

Fig. 16. Architecture of SmartTools

The main software modules of SmartTools are the following:

e Each document contains an AST. In Figure 16, Document 1 and Document
2 contain the ASTs on which the user is working. Document GI is a special
one. It contains the AST describing the structure of the GUI (e.g. the AST
of the Figure 23 page 16).

* The user interface module manages the views, the menus and the toolbar
of SmartTools.

10

SMARTTOOLS

* Each view is an independent module showing the content of a document in a
format depending on the type of the view. For example, some views display
the tree in colored-syntax text format, others as a graphical representation.

* The parser manager chooses the right parser to use for a file. Then, it runs
the parser and builds the corresponding AST. The document manager
uses this tree to build a document module and connects it to the message
controller.

e The base is a module that contains definitions of resources used in Smart-
Tools: colors, styles, fonts, menus, toolbars, actions, etc.

Of course, new types of modules can register themselves on the message con-
troller. That is one of the ways to extend the features of SmartTools for a
specific purpose or to embed SmartTools in another environment.

When a module needs to communicate with another module, it creates a
message and posts it on the message controller. Then, the message controller
broadcasts this message to the appropriate listeners (modules) that will react
to it. Thus, modules that want to receive special types of messages from the
message controller have to become listeners of these types of messages. They
have to implement the MsgListener interface and provide a receive(xxxMsg)
method for every type of supported message. Then, they have to register on
the message controller (see code just below) and obtain their unique module
identifier from it.

i dDoc= msgController.register(this);

XxxMsg in the receive method stands for the class of the expected message.
Messages are typed objects i.e there is one specific class for every type of
message. Their common behavior is held in one abstract class that is the
super class of all the messages. New kinds of messages can be created by
extending that common class or any other existing message class.

In the following example, the module expects to receive SelectMsg, Close-
DocMsg and CutMsg messages sent to the module identified by idDoc and

coming from an anonymous sender.

nsgControl | er. addMsgLi st ener (" Sel ect Msg", idDoc, Msg. ANONYMOUS);
nsgControl | er. addMsgLi st ener (" C oseDocMsg", idDoc, Msg. ANONYMOUS);
nsgControl | er. addMsgLi st ener (" Cut Msg", idDoc, Msg. ANONYMOUS) ;

Documents (i.e ASTs) and views are independently registered on the mes-
sage controller. A document does not need to know how many views are
related to it. When a modification is made, the document posts a modifica-
tion message. The type of that message indicates which modification has been
done and the message body contains the path of the modified node (from the
root of the tree). For some kinds of messages, the change is also specified.
Such messages will be sent only to the views that are registered to receive
these modification messages coming from this document. Other modules will
not receive them.

The message controller has a built-in message filtering capability. It is
possible to write filters that watch or influence the flow of input and output

11

SMARTTOOLS

messages on the controller. That filtering capability has been successfully used
for several specific needs: benchmarking, debugging, undoing user actions, and
automatically translating messages into another format (SOAP messages).

The architecture of SmartTools is designed to ease connection with other
development environments or tools. Some experiments [23] are in progress to
provide several features of SmartTools as Web services and to use them from
a client tool running on a .NET platform.

4 Graphical User Interface

SmartTools has a GUI (c.f Figure 17) based on the document /views concept
i.e. the user interface is the framework in which views on a document (AST)
can be displayed and manipulated. For each open document, it is possible
to build and display one or more views showing different aspects of the tree
according to different formats. XML technologies are extensively used to build
this GUI and the different views.

=1olx
File Edt Display View Visitor Resources Exp
FHEHEEEEEE
infiniteMultiplication,exp |
] =
Beans view [CiNavigate | @ = O scron ® scene ' fpeans views v Nawigate. | e © seron @ scene ! lopym s vz
G‘L[uef) = operator is,
int 4 = 2" =y var (var)
int 1= 1 </booleanDecl>
’
: ¢ <j >
boolean isInfinite = true; intDecl
int res - <var >res </var>
,
while (isInfinite) { <none/>
res = i*t; </intDecl>
i . o=
print £ & ™ & 1 & "=" & res; </decls> =
= 4 {IDebug
Beans view? ® Scroll) Scene oo vi Neigate | 4 o
Hisnfinite (var) [J [A J J isation :[100] 12 Stop on Breakpoints
""" .
B rres) = =
EE (intpecl) ‘”‘DE‘_1 _P—Eﬁ" Go stop Step Abort
Hres (var) 7 decls =
B (mons) — isinfinite { -5
B s tatamants) R =N Variable names. | Types | walues
BB (whiie) — true et L
EHisTnfinite (vaz) - { [I;‘{.
] mpes I = &
B (decls) —none =l
: Visit method on
’— ieinfinite “[,{' | Type: var Operator: exp.astVarTree -

Fig. 17. An example of Graphical User Interface

A view on a document is built by applying a transformation to its AST.
We have experimented with two different approaches to perform tree transfor-
mations and build graphical views. The first approach was to write a visitor
that transforms the tree and directly builds the hierarchy of graphical com-
ponents. That was fast and efficient but required to recompile every time a
change was done in the transformation. The second technique was to specify a
tree transformation using XSLT to produce a BML (Bean Markup Language)
description of graphical components to create. The BML result is then inter-
preted (see Figure 18) to build the actual view . Even though there is a loss of

12

SMARTTOOLS

efficiency when using XSLT and BML engines, the technique has proved to be
easier to learn, more open to new view designs, and well-adapted for sending
views through networks.

Syntax tree Base

X | | 4

XSLT
Transf ormati on

BM. descri ption
of enbedded
graphi ¢ conponents

BML
Interpreter

G aphi ¢ conponents of
the viewwth style
properties

Style
definitions

Fig. 18. Schema of graphical view construction

Xpp language

A higher-level transformation language, called Xpp, has been defined on top
of XSLT to specify the pretty-printing of XML documents. Its features are
similar to those of XSLT but it is much more concise, more readable and it
can perform transformations only on subtrees for incremental purposes. Xpp
consists of a set of rule definitions (see Figure 19) which match patterns with
explicit variables for subtrees. These variables are used in the right part for
recursive calls.

Rul es
formalismtiny

affect(x, y) -> h(x, label ("="), y, label (";"));
plus(x, y) -> h(x, label ("+"), y);

Fig. 19. A part of the Xpp specification

We have defined formatting functions (horizontal or vertical alignment,
indentation, etc.) that designers may use to write their pretty-printers in the
right part of the rules. When Xpp specifications are translated into XSLT
stylesheets (see Figure 20), the designers only need to indicate the expected
output format (either BML, HTML or text at the moment) useful for the
system to choose the right implementation of the formatting functions (see
Figure 21).

13

SMARTTOOLS

<alias:tenplate match="plus[*[1]][*[2]][count(*)=2]">
<alias:variable name="left" select="./*[1]"/>
<al i as:variable nane="right" select="./*[2]"/>
<bean class="fr.smarttool s. vi ew. GNodeCont ai ner ">
<property name="| ayout">
<bean class="fr.smarttool s. vi ew. HFl owLayout "/ >
</ property>
<add>
<alias:apply-tenplates select="%left"/>
</ add>
<add>
<bean class="fr.smarttool s. vi ew. FlJLabel ">
<ar gs>
<string>+</string>
</ args>
</ bean>
</ add>
<add>
<al i as: appl y-tenpl ates sel ect="$right"/>
</ add>
</ bean>
</alias:tenpl ate>

Fig. 20. XSLT program for the plus operator
XSLT XSL styl esheet
transf ormati on for BM. out put
- - XSLT XSL styl esheet
Xpp file Parsing (jﬁiiitlt) 1 '(transfornation)' for HTM. out put

Typed XM tree

XSLT XSL styl esheet
transfornation for text output

Fig. 21. From Xpp to XSLT

The plus(x,y) -> h(x,label(’+’),y); Xpp rule specifies that the left
and right subtrees for each plus operator will be horizontally aligned and
separated by the + sign. The h and label formatting functions are defined
in all the available output formats. Xpp can be extended by adding new
formatting functions defined for every available output format.

Mapping between logical and graphical views

For BML output, every transformation rule specifies how to build a hierarchy
of graphical components. Some of these components are associated with nodes
of the tree and are marked so. Others are only syntactic sugars and are
just ordinary graphical objects (not marked). This marking technique is a
convenient way to be able to match any graphical object with its corresponding
node in the document tree. When a part of the document tree is modified, an
update message is sent to the views of that document. The update message
contains the path of the modified subtree and the new subtree. Transformation
rules are applied to that new subtree to create a local hierarchy of graphical
components: a graphical subtree. The path contained in the update message
is interpreted thanks to the marked components and the obsolete graphical
subtree is found. It is then replaced by the new one to reflect the document

14

SMARTTOOLS

tree modification.

The Base module

Definitions of style (fonts, colors, etc.) are stored in separate XML resource
files that are managed by the Base module. When a view (or any other mod-
ule) needs style information, the Base module uses visitors to find appropriate
information in the resources (represented as ASTs). There are three successive
search levels: first on a general resource tree, then on the current language-
specific resource tree, and finally on the active view-specific resource tree. At
every step, the result is overloaded by the newly found information.

GUI description language

A special XML language of SmartTools, called Imltree, was designed to de-
scribe the structure of the user interface. From such a description, SmartTools
builds its user interface by transforming this description with the XSLT en-
gine. The GUI is thus only a view of this description. Figure 22 shows such
a description, Figure 23 the schematic graph of its AST, and Figure 17 (page
12) the resulting GUL

<?xm version="1.0" encodi ng="1SO 8859-1"?>
<! DOCTYPE | ayout SYSTEM "|ni.dtd" >
<l ayout >
<frane title="Smarttools V3">
<set title="InfiniteMltiplication.exp">
<split position="50" orientation="1">
<view title="Beans view' Type="Bm View' style="default.xsl" />
<split position="70" orientation="1">
<view title="Beans viewd" Type="Bm View' style="xnl.xsl" />
<view title="EditionStruct" Type="StructEditionView'
styl e="edstruct.xsl"/>
</split>
</split>
<split position="25" orientation="1">
<view title="Beans view2" Type="BnlView' style="generic.xsl" />
<split position="60" orientation="1">
<view title="GIree" Type="GreeView' style="" />
<view title="Debug Type="DebugView' style="" />
</split>
</split>
</ set>
</frame>
</l ayout >

Fig. 22. Lmltree specification of the GUI of Figure 17 page 12

5 Applications

SmartTools has been used to develop or quickly prototype various environ-
ments of several domain-specific languages. Its first applications were dedi-
cated to the languages used by the system itself; it is bootstrapped. For in-
stance, specific environments were created to edit the resources, to manipulate
AST definitions or visit method profiles. Much more complex and powerful
environments can be created with additional work.

15

SMARTTOOLS

et
hori zont al
split

vertical
split

vertical
split

B Vi ew verti cal Bl Vi ew verti cal
"Beans view' split " Beans vi ew2" split
Bni Vi ew Struct Edi tionVi ew GreeView DebugVi ew
" Beans vi ew3" "EditionStruct” " GIree” " Debug”

Fig. 23. Schematic graph of the AST in Figure 22

An integrated environment for Java [5] was developed * . Figure 24 displays
a source file (.java) and its associated class file (.class) on different formats
(i.e. using different pretty-printers) as shown on Figure 25. These two docu-
ments are linked, thus the selection in one document is communicated to the
other. The main tools of this environment are a bytecode type-checker and a
bytecode simulator. All these tools use the visitor pattern technique and can
be dynamically extended (e.g. with tracing or debugging features) simply by
connecting aspects.

_=lal x|

T e
ECBCEEEEE
Simplejava | Simple class
packages {iclasses {methods Ymstructions
java/lang SuperSimple <init> = dup
test util start invokespecial <init> |
Simple inc astore 1 L
inc aload 1
inc iload 0
inc invokevirtual inc
test ietara 0
cans e evotor
package test ; e

oo || Steo || meset || Tougemreamont
class Simple extends SuperSimple
{ ~
private static int data = 12; epeasten -od
B public static void start ()
{ Evaaiors sato
for (inti=0;i < 3;i++) Frame Localvriables
{
Utilu = new Util ();
i=u.inc (i);

Fig. 24. GUI of the Java environment

As the SmartTools architecture was designed to easily plug new compo-
nents, servlets can quickly be registered on the message controller. In this
way, we have experimented with a distributed version of SmartTools to edit
programs on any applet-compatible Web browser thanks to a Java applet.
This applet was designed to visualize components expressed in BML and to
handle user interactions. It uses the HTTP protocol to communicate with
SmartTools through a servlet. A generalization of this experiment (Figure 26)
was also performed using Web Services (i.e. units providing data and services

4 Tts parser was not generated as the Java language is complex

16

SMARTTOOLS

val uat or
visitor

<7

N .

L ‘
d asses Met hods I nst
vi ew vi ew

ructions
Vi ew

Fig. 25. The different views of the Figure 24

to other applications). In this manner, applications can access to these Web
services via standard Web protocols and data formats (e.g. XML, SOAP)
without worrying about how the service is implemented.

SmartTools

BUS
IEW XSLT SERVLET XSLT WEB SERVICE
(XSLT transformati on) (XSLT transformati on) WSDL
BM. docurent BM. docurnent

BM. pl ayer

graphi cal view

HTTP SOAP
APPLET
CLIENT C#
graphi cal view .net

Fig. 26. How to access to SmartTools

6 Related Work

There are many equivalent or comparable systems [2,4,11,15]. The main differ-
ence is that SmartTools strongly uses XML and object-oriented technologies.
In this way, our system is open and can take advantage of any further devel-
opment made around Java and XML technologies. It harmoniously integrates
different tools and techniques (e.g. visitor design pattern, aspect) thanks to
its modular architecture and has generic visualization tools.

Our visitor approach is strongly based on this research work [20] and very
close to other developments [9,16,18]. We essentially use a simplified version
of the multi-methods [7,19] instead of using accept methods. In this way, it is
possible:

* to obtain much more readable visitor programs (i.e. without cast) thanks
to the xprofile specifications,

e to get a simple kind of adaptative programming [12,17] dedicated to our
applications thanks to the tree traversal specification,

17

SMARTTOOLS

* to introduce an aspect-oriented programming on the top of the visitor de-
sign pattern. Our approach is comparable with a more general one [1].
In SmartTools, aspects can be dynamically connected to visitors and no
transformation is needed unlike [9].

For the modular architecture, we designed a message controller similar to
the Toolbus® [3| but it is restricted to our needs. That was quite an easy
and straightforward solution. We plan to study component technologies (such
as EJB, CORBA, Web Services, ObjectWeb etc.) to improve the flexibility
of the next architecture version. For data integration®, we use XML and for
control integration a multicasting approach. With a minimal development
effort, using existing software components (RMI API) or standard protocols
(SOAP protocol), we have obtained a system where it is easy to:

* plug in new components,

e build a distributed environment in connection with a Web browser or the
NET platform,

o transform it into a distributed version using ProActive [6].

For interactive requirements, our approach is different as we use XML tech-
nologies. Moreover, we apply the same transformation model for the document
as well as for the GUI; that is quite an original way of building GUIs. This
approach makes the export of views possible through the networks (thanks to
XML serialization).

The usage of W3C specifications as a source format to generate tools is a
great asset for SmartTools. Languages designers and end-users can directly
take advantage of the non proprietary formats provided but also use other
W3C technologies inside SmartTools. In a Web application context, this prop-
erty is important for applications interoperability.

7 Conclusions

We have presented a software generator which produces programming envi-
ronments strongly based on XML and object-oriented technologies. The most
important contribution of this approach is to propose at the same time and
with a uniform way, a set of advanced programming features, integrated into
a modular architecture, with extensible graphical viewing engines and open
to XML. We have chosen to use non-proprietary APIs to be open and to take
advantage of future or external developments around W3C specifications. On
the semantic level, we present a dedicated aspect-oriented programming ap-
proach associated with the visitor design pattern compliant with the DOM
specifications. We expect a large set of domain-specific languages to be based

5 The Toolbus uses more sophisticated notions: ATerms to handle trees and a coordination
language to connect composants
6 The terms data integration and control integration are explained in [3]

18

SMARTTOOLS

on the W3C specifications. The users (and designers) of such languages are
not supposed to be experts of language theories. Therefore, we propose a
semantic framework easy to use and requiring a minimal knowledge. Domain-
specific languages represent a large potential of applications in various fields
and will certainly introduce new open problems.

References

[1] Aspect - Aspect-Oriented ~ Programming (AOP) for Java.
http://www.aspectj.org.

[2] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: A Tool Suite for Building
GenVoca Generators. In 5th International Conference in Software Reuse, June
1998.

[3] J. Bergstra and P. Klint. The discrete time ToolBus — a software coordination
architecture. Science of Computer Programming, 31(2-3):205-229, July 1998.

[4] P. Borras, D. Clement, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and
V. Pascual. CENTAUR: the system. In P. Henderson, editor, Proceedings of
the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments, volume 24 of SIGPLAN, pages 14-24. Feb.
1988.

[5] D. Caromel, L. Henrio, and B. Serpette. Context Inference for Static Analysis of
Java Card Sharing. In I. Attali and T. Jensen, editors, Smart Card Programming
and Security, volume 2140 of Lect. Notes in Comp. Sci., Cannes (France),
September 2001. Springer-Verlag.

[6] D. Caromel, W. Klauser, and J. Vayssiere. Towards Seamless Computing
and Metacomputing in Java. In G. C. Fox, editor, Concurrency Practice and
Ezperience, volume 10 of Wiley and Sons, Ltd, pages 1043-1061, Sept. 1998.

[7] R. Forax, E. Duris, and G. Roussel. Java Multi-Method Framework. In
International Conference on Technology of Object-Oriented Languages and
Systems (TOOLS’00), Nov. 2000.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison
Wesley, Reading, MA, 1995.

[9] G. Hedin and E. Magnusson. JastAdd—a Java-based system for implementing
front ends. In M. van den Brand and D. Parigot, editors, Electronic Notes in
Theoretical Computer Science, volume 44. Elsevier Science Publishers, 2001.

[10] M. Jourdan, D. Parigot, C. Julié, O. Durin, and C. Le Bellec. Design,
Implementation and Evaluation of the FNC-2 Attribute Grammar System. In

Conf. on Programming Languages Design and Implementation, pages 209-222,
White Plains, NY, June 1990. Published as ACM SIGPLAN Notices, 25(6).

19

SMARTTOOLS

[11] U. Kastens, P. Pfahler, and M. Jung. The Eli system. In K. Koskimies,
editor, Compiler Construction CC’98, volume 1383 of Lect. Notes in Comp.
Sci., portugal, Apr. 1998. Springer-Verlag. Tool demonstration.

[12] G. Kiczales. Aspect-Oriented Programming: A Position Paper From the
XEROX PARC Aspect-Oriented Programming Project. In M. Muehlhauser,
editor, Special Issues in Object-Oriented Programming. 1996.

[13] G. Kiczales, J. Hugunin, M. Kersten, J. Lamping, C. Lopes, and W. G. Griswold.
Semantics-Based Crosscutting in AspectJ. In Workshop on Multi-Dimensional
Separation of Concerns in Software Engineering (ICSE 2000), 2000.

[14] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-Oriented Programming. In M. Aksit and
S. Matsuoka, editors, ECOOP ’97 — Object-Oriented Programming 11th
European Conference, Jyviskyld, Finland, volume 1241 of Lecture Notes in
Computer Science, pages 220-242. Springer-Verlag, New York, NY, June 1997.

[15] P. Klint. A Meta-Environment for Generating Programming environments.
ACM Transactions on Software Engineering Methodology, 2(2):176-201, 1993.

[16] T. Kuipers and J. Visser. Object-oriented Tree Traversal with JJForester. In
M. van den Brand and D. Parigot, editors, FElectronic Notes in Theoretical
Computer Science, volume 44. Elsevier Science Publishers, 2001.

[17] K. J. Lieberherr and D. Orleans. Preventive Program Maintenance in
Demeter/Java. In Proceedings of the 19th International Conference on Software
Engineering, pages 604-605. ACM Press, May 1997.

[18] E. V. Merijn de Jonge and J. Visser. XT: a bundle of program transformation
tools. In M. van den Brand and D. Parigot, editors, Electronic Notes in
Theoretical Computer Science, volume 44. Elsevier Science Publishers, 2001.

[19] T. Millstein and C. Chambers. Modular statically typed multimethods. In
R. Guerraoui, editor, Proceedings ECOOP’99, LCNS 1628, pages 279-303,
Lisbon, Portugal, June 1999. Springer-Verlag.

[20] J. Palsberg and C. B. Jay. The Essence of the Visitor Pattern. In COMPSAC’98,
22nd Annual International Computer Software and Applications Conference,
Vienna, Austria, Aug. 1998.

[21] J. Palsberg, B. Patt-Shamir, and K. Lieberherr. A New Approach to Compiling
Adaptive Programs. In H. R. Nielson, editor, European Symposium on
Programming, pages 280-295, Linkoping, Sweden, 1996. Springer Verlag.

[22] T. Reps and T. Teitelbaum. The Synthesizer Generator. In ACM
SIGSOFT/SIGPLAN Symp. on Practical Software Development Environments,
pages 42-48. ACM press, Pittsburgh, PA, Apr. 1984. Joint issue with Software
Eng. Notes 9, 3.Published as ACM SIGPLAN Notices, volume 19, number 5.

[23] J. G. Variamparambil. Getting SmartTools and VisualStudio.NET to talk
to each other using SOAP and web services. Technical report, INRIA, 2001.
http://www-sop.inria.fr /oasis/Smart Tools /publications/Joseph /report.ps.

20

