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SYMMETRICALLY APPROXIMATELY CONTINUOUS
FUNCTIONS, CONSISTENT DENSITY THEOREMS,

AND FUBINI TYPE INEQUALITIES

P. D. HUMKE AND M. LACZKOVICH

Abstract. Using the continuum hypothesis, Sierpiński constructed a non-
measurable function f such that {h : f(x + h) 6= f(x − h)} is countable for
every x. Clearly, such a function is symmetrically approximately continuous
everywhere.

Here we to show that Sierpiński’s example cannot be constructed in ZFC.
Moreover, we show it is consistent with ZFC that if a function is symmetrically
approximately continuous almost everywhere, then it is measurable.

1. Introduction

The problem we address in this paper concerns the measurability of symmetri-
cally approximately continuous functions.

It is well known that every approximately continuous function is measurable; in
fact, a function is measurable if and only if it is approximately continuous almost
everywhere.

A real function f is called symmetrically continuous at the point x if

lim
h→0

[f(x+ h)− f(x− h)] = 0.

It was proved by I. N. Pesin [9] and, independently, by D. Preiss [10] (see also [12,
Theorem 2.26]) that if the function f is symmetrically continuous everywhere, then
f is measurable (even continuous almost everywhere). This result was improved by
J. Uher [13] who showed that if f is symmetrically continuous almost everywhere,
then f is necessarily continuous almost everywhere (and hence, measurable).

We call the function f symmetrically approximately continuous at the point x
if lim apph→0[f(x + h)− f(x − h)] = 0; that is, if there exists a measurable set H
having a density point at zero such that limh→0, h∈H [f(x + h) − f(x − h)] = 0.
Now the results above would suggest that if a function f is symmetrically approx-
imately continuous everywhere (or even almost everywhere), then f is necessarily
measurable. However, as Sierpiński showed in [11], this is not the case. Using
the continuum hypothesis, Sierpiński constructed a nonmeasurable function f such
that {h : f(x+ h) 6= f(x− h)} is countable for every x. Clearly, such a function is

Received by the editors March 10, 2003.
2000 Mathematics Subject Classification. Primary 03E35; Secondary 28A20, 26A03.
Key words and phrases. Fubini, symmetrically approximately continuous, covering number,

shrinking number.
The second author’s research was supported by the Hungarian National Foundation for Scien-

tific Research Grant No. T032042.

c©2004 American Mathematical Society

31



32 P. D. HUMKE AND M. LACZKOVICH

symmetrically approximately continuous (even symmetrically approximately differ-
entiable) everywhere. (For related results and problems also involving symmetric
approximate differentiability, see [1] and [12].)

Our aim is to show that Sierpiński’s example cannot be constructed in ZFC.
Moreover, it is consistent with ZFC that if a function is symmetrically approxi-
mately continuous almost everywhere, then it is measurable. What we actually
prove is that the inequality shr (N ) < cov (N ) implies our statement (Theorem
12). Then the consistency result follows from the consistency of shr (N ) < cov (N ),
which is well known (see [8] or [6]).

Every argument proving the continuity or measurability of a symmetrically (ap-
proximately) continuous function f must show that there is a large set on which
the oscillation of f is small. Usually this is done as follows: we fix an ε > 0 and
define S = {(x, x+ h) : |f(x+ h)− f(x− h)| < ε}. If f is symmetrically continuous
at x, then Sx = {y : (x, y) ∈ S} is a neighbourhood of x; if f is symmetrically
approximately continuous at x, then Sx has density 1 at x. Then we show that
there is a large set E such that any two points x, y ∈ E can be joined by a k-chain
in the following sense: there are points x = x0, x1, . . . , xk = y and p1, . . . , pk such
that xi−1 + xi = 2pi and (pi, xi−1) ∈ S for every i = 1, . . . , k. It is clear that the
existence of these k-chains implies that |f(x)− f(y)| < k · ε for every x, y ∈ E, and
thus the oscillation of f on E is at most 2k · ε. Each of the papers [9], [10], [13],
and [5] contains an argument of this kind. (See also [12], where these arguments
are discussed as ‘covering theorems’.) Our proof also follows this line: we show,
under shr (N ) < cov (N ), that if Sx has density 1 for almost every x, then there
is a measurable set F of positive measure such that every two points of F can be
joined by an 8-chain (Theorem 11). A similar but weaker statement was proved
by C. Freiling in a more general setting in [3].1 Freiling’s proof shows, also under
shr (N ) < cov (N ), that if Sx has density 1 for every x, then there is an interval I
such that every two points of I can be joined by a finite chain. However, his proof
yields no uniform bound on the lengths of the chains.

One of the tools of our proof is a consistent inequality between some iterated
integrals of bounded functions of two variables. Since these results might have some
interest in themselves, we separated them in Section 3.

2. Notation

We denote by N the ideal of null sets in R. We shall need the following classical
cardinal numbers connected to N .

non (N ) = min{|A| : A ⊂ R, A /∈ N};
cov (N ) = min{|F| : F ⊂ N &

⋃
F = R};

shr (N ) = min{κ : ∀A ⊂ R (A /∈ N =⇒ ∃B ⊂ A, |B| ≤ κ, B /∈ N )}.
In other words, shr (N ) is the smallest cardinal κ such that any subset A of R

not belonging to N contains a subset B such that |B| ≤ κ and B /∈ N .
The Lebesgue outer measure is denoted by λ∗. The Lebesgue inner measure of

a set A ⊂ R is defined as λ∗(A) = max{λ∗(H) : H ⊂ A is measurable}. As usual,
λ(A) means the measure of the Lebesgue measurable set, A.

1Freiling credits the techniques used to prove his theorem to Erdős, McGrotty, and Sierpiński.
See [3] for details.
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The upper and lower outer density of a set A ⊂ R at the point x are defined by

d
∗

(A, x) = lim sup
h→0+

λ∗(A ∩ [x− h, x+ h])/(2h)

and

d∗ (A, x) = lim inf
h→0+

λ∗(A ∩ [x− h, x+ h])/(2h).

If, in these definitions, the Lebesgue outer measure λ∗ is replaced by the Lebesgue
inner measure λ∗, then we obtain the upper and lower inner density of A ⊂ R,
denoted by d∗(A, x) and d∗(A, x). If d

∗
(A, x) = d∗ (A, x), then we say that A

has outer density at x, and define d∗ (A, x) as the common value of d
∗

(A, x) and
d∗ (A, x). We say that x is an outer density point of A if d∗ (A, x) = 1. If d∗(A, x) =
d∗(A, x) holds, then we say that A has inner density at x, and define d∗(A, x) as
the common value of d∗(A, x) and d∗(A, x). If d∗(A, x) = 1, then we say that x is
a density point of A.

If (X,Σ, µ) is a measure space, we shall denote by µ∗ the outer measure generated
by µ. That is, for each H ⊂ X, µ∗(H) = inf{µ(A) : H ⊂ A, A ∈ Σ}.

Let A ⊂ X be measurable. If f : A→ R, then we shall denote by
∫
A
f dµ(x) the

supremum of the integrals
∫
A g dµ(x), where g : A → R is an arbitrary summable

function such that g ≤ f everywhere on A. If there is no such g, then we put∫
A
f dµ(x) = −∞. The upper integral

∫
A
f dµ(x) is defined analogously.

The interval [0, 1] will be denoted by I. When integrating over I, we shall omit
the subscript I; that is,

∫
,
∫
,
∫

stand for
∫
I
,
∫
I
,
∫
I
.

Let Ω denote the measure space IN = I × I × . . . with the product measure ν.
The generic element of Ω will be denoted by y = (y1, y2, . . .), where each yi belongs
to I. Note that the measure space (Ω, ν) is isomorphic to (I, λ).

The characteristic function of a set H is denoted by χH . If H ⊂ X × Y , then
the sections of H are defined as Hx = {y ∈ Y : (x, y) ∈ H} and Hy = {x ∈ X :
(x, y) ∈ H} for every x ∈ X and y ∈ Y.

A set H ⊂ I × I is a Sierpiński set if λ(Hx) = 1 for every x ∈ I and λ(Hy) = 0
for every y ∈ I.

Finally, a set H ⊂ I× I is a weak Sierpiński set if λ(Hx) = 1 for every x ∈ I and

λ∗({y ∈ I : λ(Hy) = 0}) > 0.

3. Consistent Fubini type inequalities

By a Fubini type inequality we shall mean an inequality of the form

(1)
∫

1

(∫
2

f(x, y) dy
)
dx ≤

∫
3

(∫
4

f(x, y) dx
)
dy,

where each of the signs
∫
i

(i = 1, . . . , 4) stands for either
∫

or
∫
. There are 16

inequalities of this form. In this section our aim is to show that some of them
hold consistently for every bounded f : I2 → R. More precisely, we shall prove
that the following statement is consistent with ZFC: For every bounded function
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f : (I × I)→ R the following inequalities hold:∫ (∫
f(x, y) dy

)
dx ≤

∫ (∫
f(x, y) dx

)
dy,(2) ∫ (∫

f(x, y) dy
)
dx ≤

∫ (∫
f(x, y) dx

)
dy,(3)

and

(4)
∫ (∫

f(x, y) dy
)
dx ≤

∫ (∫
f(x, y) dx

)
dy.

Clearly, (2) is a consequence of each of (3) and (4). The consistency of (2) is closely
related to a theorem of C. Freiling [2] stating that the following two statements are
equivalent to each other:

(i)

(5)
∫ 1

0

(∫ 1

0

f(x, y) dy
)
dx =

∫ 1

0

(∫ 1

0

f(x, y) dx
)
dy

holds for every bounded function f : I2 → R for which the integrals involved
in (5) exist;

(ii) there is no Sierpiński set.

Now the argument proving Freiling’s theorem can be easily modified in order to
prove that (ii) is also equivalent to the statement that (2) holds for every bounded
f : I2 → R. Since the nonexistence of Sierpiński sets is consistent with ZFC (see,
e.g., [7]), it follows that (2) holds consistently for every bounded f.

We remark that no Fubini type inequality can be proved in ZFC. Indeed, if S is
a Sierpiński set and f = χS , then

1 =
∫ 1

0

(∫ 1

0

f(x, y) dy
)
dx >

∫ 1

0

(∫ 1

0

f(x, y) dx
)
dy = 0,

and thus ∫
1

(∫
2

f(x, y) dy
)
dx >

∫
3

(∫
4

f(x, y) dx
)
dy,

for every choice of
∫
i (i = 1, . . . , 4).

Before turning to the proof of the consistency of the stronger inequalities (3) and
(4) we show that apart from (2), (3), and (4) there are no other consistent Fubini
type inequalities.

It is well known that [0, 1] can be decomposed into continuum many pairwise
disjoint sets of outer measure 1. Let [0, 1] =

⋃
x∈[0,1]Hx be such a decomposition,

and put H = {(x, y) ∈ I2 : y ∈ Hx} and f = χH . Then λ∗(Hx) = 1 for every x ∈ I
and λ∗(Hy) = 0 (y ∈ I), as Hy is a singleton for every y ∈ I. Thus

∫ ∫
f dx dy = 0

and
∫ ∫

f dy dx = 1. Consequently, the inequality
∫ ∫

f dy dx >
∫ ∫

f dx dy holds for
some bounded f in ZFC. Then, a fortiori, neither of the following inequalities is
true for every bounded f :

(6)
∫ ∫

f dy dx ≤
∫

1

∫
2

f dx dy,

∫ ∫
f dy dx ≤

∫
1

∫
2

f dx dy,
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for any choice of
∫

1
and

∫
2
. This example shows that eight of the possible Fubini

type inequalities are false in ZFC. Moreover, we can find other false inequalities by
taking duals.

If a function f satisfies (1), then the function g(x, y) = −f(y, x) satisfies

(7)
∫ ′

3

(∫ ′
4

g(x, y) dy
)
dx ≤

∫ ′
1

(∫ ′
2

g(x, y) dx
)
dy,

where
∫ ′
i

=
∫

if
∫
i

=
∫

and
∫ ′
i

=
∫

if
∫
i

=
∫
. (That is, (7) is obtained from (1)

by switching its sides and by changing
∫

into
∫

and
∫

into
∫

in every occurrence.)
Let us call (7) the dual of (1). (Thus (4) is the dual of (3).) Clearly, if (1) holds
for every bounded f , then so does its dual. It is easy to check that the inequalities
(6) together with their duals exclude all but four Fubini type inequalities that can
be consistent with ZFC. The remaining inequalities are (2), (3), (4), and

(8)
∫ (∫

f(x, y) dy
)
dx ≤

∫ (∫
f(x, y) dx

)
dy.

We show that (8) is also false in ZFC. Let non (N ) = κ, and let A ⊂ I be a set such
that λ∗(A) > 0 and |A| = κ. Replacing A by I ∩

⋃
q∈Q(A+ q) if necessary, we may

assume that λ∗(A) = 1. Let A = {xα : α < κ} be an enumeration of A, and put

H = {(xα, xβ) : α < β < κ} ∪ (A× (I \A)).

If y = xβ ∈ A, then Hy = {xα : α < β}. Consequently, |Hy| < κ and λ∗(Hy) = 0
by the definition of κ. Since λ∗(A) = 1, this implies

∫ ∫
χH dx dy = 0. On the other

hand, if x = xα ∈ A, then I \ Hx = {xβ : β ≤ α}. Thus λ∗(I \ Hx) = 0 and
λ∗(Hx) = 1 for every x ∈ A. Therefore

∫ ∫
χH dy dx = 1 showing that (8) is not

satisfied by χH . Summing up: no Fubini type inequalities can be consistent with
ZFC apart from (2), (3), and (4). The rest of this section will be devoted to the
proof of consistency of these inequalities.

In the next three lemmas we assume that (X,Σ, µ) is a measure space, A ⊂ X
is measurable, and f : A→ R is arbitrary.

Lemma 1. If
∫
A
f dµ(x) is finite, then there is a summable function g : A → R

such that g ≤ f on A,
∫
A g dµ(x) =

∫
A
f dµ(x), and for every ε > 0, µ∗({x ∈ A :

f(x) < g(x) + ε}) = µ(A).

Proof. Let
∫
A
f dµ(x) = a, and choose summable functions gn such that gn ≤ f and∫

A
gndµ(x) > a−(1/n). Put g = limn max(g1, . . . , gn). Then g ≤ f, and it is easy to

see by the monotone convergence theorem that g is summable and
∫
A g dµ(x) = a.

Let ε > 0, and suppose that µ∗(B) < µ(A), where B = {x ∈ A : f(x) < g(x) + ε}.
Then there is a measurable set C ⊂ A of positive measure such that f ≥ g + ε on
C. Putting h = g+ ε ·χC , we find h ≤ f and

∫
A
h dµ(x) > a, which contradicts the

definition of a. �
Lemma 2. For every f : A→ R and g : A→ R we have

(1)
∫
A

(f + g) dµ(x) ≥
∫
A
f dµ(x) +

∫
A
g dµ(x) and

(2)
∫
A

(f + g) dµ(x) ≤
∫
A
f dµ(x) +

∫
A
g dµ(x),

whenever the right-hand sides make sense.

Proof. This follows directly from the definitions. �
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Lemma 3. For every sequence of nonnegative functions fn : A→ [0,∞] we have∫
A

lim inf
n

fn dµ(x) ≤ lim inf
n

∫
A

fn dµ(x).

Proof. By the dual of Lemma 1 there are measurable functions gn : A → [0,∞]
such that fn ≤ gn and

∫
A
fn dµ(x) =

∫
A
gn dµ(x) for every n (if

∫
A
fn dµ(x) =∞,

then we take gn ≡ ∞). Then by Fatou’s lemma we obtain∫
A

lim inf
n

fn dµ(x) ≤
∫
A

lim inf
n

gn dµ(x) =
∫
A

lim inf
n

gn dµ(x)

≤ lim inf
n

∫
A

gn dµ(x) = lim inf
n

∫
A

fn dµ(x). �

Theorem 4. For every probability space (X,Σ, µ) exactly one of the following
statements is true.

(i) There is a measurable set of positive measure A ⊂ X and a set S ⊂ A× I
such that λ(Sx) = 1 for every x ∈ A and λ∗({y ∈ I : µ∗(Sy) < µ(A)}) > 0.

(ii) For every function f : X × I → [0,∞] we have

(9)
∫
X

(∫
f(x, y) dy

)
dµ(x) ≤

∫ (∫
X

f(x, y)dµ(x)
)
dy.

Proof. Suppose (i), and put f = χS . Then the left-hand side of (9) equals µ(A).
Let Cn = {y ∈ I : µ∗(Sy) < µ(A)− 1

n}. If n is large enough, then λ∗(Cn) > 0, and
thus the right-hand side of (9) is at most

(1− λ∗(Cn)) · µ(A) + λ∗(Cn) · (µ(A) − (1/n)) < µ(A),

violating (ii).
Now suppose that (i) does not hold, and let f : X × I → [0,∞] be arbitrary. We

prove (9). Suppose it is not true; that is,

(10)
∫
X

(∫
f(x, y) dy

)
dµ(x) >

∫ (∫
X

f(x, y) dµ(x)
)
dy.

We shall construct two sets, A ⊂ X and S ⊂ A × I, satisfying the conditions of
(i). Since we assumed that (i) is false, this will complete the proof. We separate
this part of the argument in the next lemma stating slightly more than what we
actually need.

Lemma 5. Let f : X × I → [0,∞] and suppose that

(11)
∫
X

(∫
f(x, y) dy

)
dµ(x) > K ·

∫ (∫
X

f(x, y) dµ(x)
)
dy,

where K > 1. Then there is a measurable set of positive measure A ⊂ X and a
set S ⊂ A × I such that λ(Sx) = 1 for every x ∈ A and λ∗({y ∈ I : µ∗(Sy) <
µ(A)/K}) > 0.

Proof. Let M denote the right-hand side of (10), and for each x ∈ X put g(x) =∫
f(x, y) dy. Since

∫
X
g dµ(x) > K ·M, there is a summable function h : X → R

such that 0 ≤ h(x) ≤ g(x) for every x ∈ X, and
∫
X h dµ(x) > K · M. Since∫

X
h dµ(x) equals the supremum of the integrals of all step functions less than h,

we may assume that h itself is a step function; that is, h =
∑N

i=1 ciχAi , where
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c1, . . . , cN ≥ 0 and A1 ∪ . . . ∪ AN is a partition of X into measurable sets. Note
that

(12)
∫
f(x, y) dy = g(x) ≥ h(x) = ci for every x ∈ Ai (i = 1, . . . , N).

It is easy to check, using the measurability of the sets Ai, that

N∑
i=1

∫
Ai

f(x, y) dµ(x) =
∫
X

f(x, y) dµ(x)

for every y. Therefore, by Lemma 2 and by (11) we obtain

N∑
i=1

K ·
∫ (∫

Ai

f dµ(x)
)
dy ≤ K ·

∫ (∫
X

f dµ(x)
)
dy

= K ·M <

∫
X

h dµ(x) =
N∑
i=1

ciµ(Ai).

Hence there is an index j such that

(13) K ·
∫ (∫

Aj

f dµ(x)

)
dy < cjµ(Aj),

and since f ≥ 0, we have cj > 0 and µ(Aj) > 0. Furthermore, by replacing f by
f/cj, we may assume that cj = 1. Fix an ε > 0 such that

K ·
∫ (∫

Aj

f(x, y) dµ(x)

)
dy < (1− ε) · µ(Aj),

and define u : I → R by u(y) =
∫
Aj
f(x, y) dµ(x). By Lemma 1, there is a non-

negative summable function k : I → R such that K ·
∫
k dy < (1 − ε) · µ(Aj) and

λ∗(D) = 1, where D = {y ∈ I : u(y) < k(y) + (ε · µ(Aj))/K}.
Now we define F : Aj × Ω→ R by

F (x, y) = lim inf
n→∞

1
n
·
n∑
i=1

f(x, yi)

and put

U = {(x, y) ∈ Aj × Ω : F (x, y) ≥ 1}.
For every x ∈ Aj we have

∫
f(x, y) dy ≥ 1 by (12) and thus, by the strong law

of large numbers, F (x, y) ≥ 1 for a.e. y ∈ Ω. Therefore ν(Ux) = 1 (i.e. Ux is
measurable and of full measure in Ω) for every x ∈ Aj . Applying the strong law of
large numbers again, we find that the set

E =

{
y ∈ Ω : lim

n

1
n
·
n∑
i=1

k(yi) =
∫
k dy <

(1− ε) · µ(Aj)
K

}
is a set of full measure in Ω. Since D is of full outer measure in I, it follows from
[4, 254 L Theorem, p. 249] that DN = D ×D × . . . and hence, E ∩DN are of full
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outer measure in Ω. If y ∈ E ∩DN, then, by Lemmas 2 and 3, we have∫
Aj

F (x, y) dµ(x) =
∫
Aj

(
lim inf

n

1
n
·
n∑
i=1

f(x, yi)

)
dµ(x)

≤ lim inf
n

∫
Aj

(
1
n
·
n∑
i=1

f(x, yi)

)
dµ(x)

≤ lim inf
n

1
n
·
n∑
i=1

∫
Aj

f(x, yi) dµ(x)

≤ lim inf
n

1
n
·
n∑
i=1

(k(yi) + (ε/K) · µ(Aj))

< (1− ε) · (µ(Aj)/K) + (ε/K) · µ(Aj) = µ(Aj)/K.

Hence, for every y ∈ E ∩DN

µ∗(Uy) = µ∗({x ∈ Aj : F (x, y) ≥ 1}) < µ(Aj)/K.

That is, U has the desired property but in the space X × Ω.
It now follows from the fact that Ω is isomorphic to I that there is a set S ⊂ X×I

such that λ(Sx) = 1 for every x ∈ Aj , and µ∗(Sy) < µ(Aj)/K for every y belonging
to a set of positive outer measure. This then completes the proof of Lemma 5 and
hence the proof of Theorem 4. �

Theorem 6. The following statements are equivalent.

(i) There is no weak Sierpiński set.
(ii) For every nonnegative function f : (I × I)→ [0,∞] we have∫ (∫

f(x, y) dy
)
dx ≤

∫ (∫
f(x, y)dx

)
dy.

Proof. (ii)=⇒ (i): Obvious.
(i)=⇒ (ii): Suppose (ii) is not true. Then, by Theorem 4, there is a measurable

set of positive measure A ⊂ I and a set U ⊂ A × I such that λ(Ux) = 1 for every
x ∈ A and λ∗({y ∈ I : λ∗(Uy) < λ(A)}) > 0. Since the measure space A equipped
with the normalized measure λ/λ(A) is isomorphic to (I, λ), we can find a set
T ⊂ I × I such that λ(Tx) = 1 for every x ∈ I and λ∗({y ∈ I : λ∗(T y) < 1}) > 0.

Now we define S = {(x, y) ∈ I × I : (x+ r, y) ∈ T for every r ∈ [−x, 1− x]∩Q}.
Then λ(Sx) = 1 for every x ∈ I. Moreover, if λ∗(T y) < 1, then λ∗(I \ T y) > 0
so that I \ T y contains a measurable set of positive measure. Hence for each such
y, λ(Sy) = 0. Thus S is a weak Sierpiński set. This, however, contradicts our
assumption, which completes the proof. �

Corollary 7. It is consistent with ZFC that (2), (3), and (4) hold true for every
bounded f : I2 → R.

Proof. Since the nonexistence of weak Sierpiński sets is consistent with ZFC (see
[7]), it follows from the previous theorem that (3) holds consistently for every
bounded f. Then, by duality, the same is true for (4), while (2) is a consequence of
(3). �
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4. Consistent density theorems

Lemma 8. Let (X,Σ, µ) be a measure space. Then exactly one of the following
two statements holds.

(i) There exists a set F ⊂ X × [0, 1] such that λ(Fx) = 1 for every x ∈ X, and
λ∗({y ∈ [0, 1] : µ(F y) = 0}) > 0.

(ii) Whenever H ⊂ X × R is such that d∗(Hx, 0) = 1 for every x ∈ X, then
there is a δ > 0 such that

d∗({y ∈ R : µ∗(Hy) > δ}, 0) > 0.

Proof. Suppose F ⊂ X × [0, 1] is such that λ(Fx) = 1 for every x ∈ X, and
λ∗({y : µ(F y) = 0}) > 0. Let y0 ∈ (0, 1) be an outer density point of {y : µ(F y) =
0}, and put H = {(x, y− y0) : (x, y) ∈ F}. It is clear that H violates (ii), and thus
(i) =⇒ ¬(ii).

Next suppose that statement (ii) is false. We prove that in this case (i) must
hold. Let H ⊂ X × R be such that d∗(Hx, 0) = 1 for every x ∈ X, and let
d∗({y ∈ R : µ∗(Hy) > 1/n}, 0) = 0 for every n = 1, 2, . . . . Then we can select
0 < hn < 1/n such that

λ∗({y ∈ [0, hn] : µ∗(Hy) > 1/n}) < hn/2n.

Put Bn = {y ∈ [0, 1] : µ∗
(
Hhny) ≤ 1/n}

)
; then λ∗(Bn) > 1 − 2−n for every n.

Recall that Ω = I×I×. . . , and ν is the product measure on Ω. If B = B1×B2×. . .,
then it follows from [4, 254 L Theorem, p. 249] that

ν∗(B) =
∞∏
n=1

(
1− 1

2n

)
> 0.

We define fn : X × I → {0, 1} by

fn(x, y) =

{
1 if (x, hny) ∈ H,
0 otherwise,

and define Φ : X × Ω→ [0,+∞] by

Φ(x, y) = lim inf
n→∞

1
n
·
n∑
i=1

fi(x, yi).

Fix y ∈ B. Then for every n ∈ N, yn ∈ Bn and thus∫
fn(x, yn) dµ(x) = µ∗

(
Hhn·yn) ≤ 1

n
.

Therefore, by Lemmas 2 and 3, we have∫
Φ(x, y) dµ(x) ≤ lim inf

n→∞

1
n

n∑
i=1

∫
fi(x, yi) dµ(x)

≤ lim inf
n→∞

1
n

(
1 +

1
2

+ . . .+
1
n

)
= 0.

Thus, for every y ∈ B we have Φ(x, y) = 0 for µ-a.e. x ∈ X.
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On the other hand, for every x ∈ X we have Φ(x, y) = 1 for ν-a.e. y ∈ Ω. Indeed,
from d∗(Hx, 0) = 1 it follows that∫

fn(x, y) dy =
1
hn
· λ∗(Hx ∩ [0, hn])→ 1 (n→∞).

Thus by the strong law of large numbers we obtain that

lim
n→∞

f1(x, y1) + . . .+ fn(x, yn)
n

= 1

for ν-a.e. y ∈ Ω; that is, Φ(x, y) = 1 for ν-a.e. y. Now we put F = {(x, y) ∈
X × Ω : Φ(x, y) = 1}. Then ν(Ω \ Fx) = 0 for every x ∈ X, and µ∗(F y) = 0 for
every y ∈ B. Since ν∗(B) > 0, we obtain the statement of (i) with Ω in place of
I. As the measure spaces (Ω, ν) and (I, λ) are isomorphic, we find that (i) holds,
which completes the proof. �

Theorem 9. Suppose that there is no weak Sierpiński set. Then, whenever H ⊂
I × R is such that d∗(Hx, 0) = 1 for every x ∈ I, we have

(14) d∗ ({y : λ∗(Hy) > 1− δ} , 0) = 1

for every δ > 0.

Proof. Let H be as in the theorem, and let δ > 0 be arbitrary. Suppose (14) is
false. Then there is an ε > 0 and there is a sequence hn > 0 such that hn → 0 and

λ∗ ({y ∈ [0, hn] : λ∗(Hy) > 1− δ}) < (1− ε) · hn
for every n. Put Bn = {y ∈ I : λ∗

(
Hhny

)
≤ 1 − δ}; then λ∗(Bn) ≥ ε for every

n. We define the functions fn and Φ as in the proof of Lemma 8 (with I in place
of X). Then as in the proof of Lemma 8, it can be shown that for every x ∈ I,
we have Φ(x, y) = 1 for ν-a.e. y ∈ Ω. If there is no weak Sierpiński set, then, by
Theorem 6, we have

(15)
∫ (∫

Ω

Φ(x, y) dν(y)

)
dx ≤

∫
Ω

(∫
Φ(x, y) dx

)
dν(y).

Since Φ(x, y) = 1 for ν-a.e. y ∈ Ω, the left-hand side of (15) equals 1. Then the
right-hand side also equals 1, and thus we have

∫
Φ(x, y) dx = 1 for ν-a.e. y. Then,

by Lemma 3, we obtain

(16) 1 =
∫

Φ(x, y) dx ≤ lim inf
n→∞

1
n

n∑
i=1

∫
fi(x, yi) dx = lim inf

n→∞

1
n

n∑
i=1

λ∗
(
Hhiyi

)
for ν-a.e. y. Now we define bi = χBi , and set

(17) D = {y ∈ Ω : lim sup
n→∞

1
n

n∑
i=1

bi(yi) ≥ ε}.

We claim that ν∗(D) = 1. If the sets Bi were measurable, then this would follow
from the strong law of large numbers. In the general case we can argue as follows.
Let Mi be a measurable hull of Bi, and consider the measure spaces (Xi,Σi, λ),
where Xi = (I \Mi) ∪ Bi, and Σi is the σ-algebra of all sets of the form Xi ∩ A,
where A is Lebesgue measurable. Then Bi ∈ Σi. Let Ω1 = X1 ×X2 × . . . , and let
ν1 denote the product measure on Ω1. It is easy to check that ν∗(A) = ν1(A) for
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every ν1-measurable A ⊂ Ω1. Since, by the strong law of large numbers, ν1(D) = 1,
it follows that ν∗(D) = 1.

But if y ∈ Bi, then λ∗
(
Hhiy

)
≤ 1− δ, and therefore

(18) λ∗
(
Hhiy

)
≤ 1− δ · bi(y)

for every y ∈ I and i = 1, 2, . . . . Let y ∈ D be arbitrary. By (18) and (17) we have

lim inf
n→∞

1
n

n∑
i=1

λ∗
(
Hhiyi

)
≤
[

1− δ · lim sup
n→∞

1
n

n∑
i=1

bi(yi)

]
≤ 1− δ · ε.

Since ν∗(D) = 1, this contradicts the fact that (16) holds for ν-a.e. y, which
completes the proof. �

Theorem 10. Suppose shr (N ) < cov (N ). Let E1, E2 ⊂ R be measurable sets of
positive measure, and let H ⊂ E1 × E2 be such that λ∗(Hx) > 0 for every x ∈ E1.
Then there is a y ∈ E2 and there is a δ > 0 such that

(19) d∗ ({z ∈ E2 : λ∗(Hy ∩Hz) > δ} , y) > 0.

Proof. Let E1, E2, H be as in the theorem. We may assume, by deleting a set of
measure zero from E2, that E2 is nonempty and d-open; i.e. that every point of E2

is a density point of E2. Also, by taking a suitable subset of H, we may assume
that Hx is nonempty and d-open for every x ∈ E1. Suppose that the conclusion of
the theorem is not true; that is,

(20) d∗ ({z ∈ E2 : λ∗(Hy ∩Hz) > δ} , y) = 0

for every y ∈ E2 and δ > 0.
First we show that, for every y ∈ E2, H

y can be covered by shr (N )-many null
sets. This is obvious if λ∗(Hy) = 0. Let y ∈ E2 be fixed such that λ∗(Hy) > 0, and
put X = Hy. Since Hx is d-open for every x ∈ X, we have d(Hx, y) = 1 for every
x ∈ X.

We apply Lemma 8 to the measure space (X,λ∗|X) (the restriction of λ∗ to the
subsets of X) and for the set {(x, z) : x ∈ X, (x, z + y) ∈ H}. Since, by (20),
the statement (ii) of Lemma 8 is not true, we obtain a set F ⊂ X × I such that
λ(Fx) = 1 for every x ∈ X, and

λ∗ ({z ∈ I : λ∗(F z) = 0}) > 0.

It is the existence of such a set that implies that X can be covered by shr (N )-
many null sets. To see this, let A ⊂ {z ∈ I : λ∗(F z) = 0} be a set such that
|A| ≤ shr (N ) and λ∗(A) > 0. Then we claim that X =

⋃
z∈A F

z . Indeed, if x ∈ X ,
then λ(Fx) = 1 and since λ∗(A) > 0, Fx ∩ A 6= ∅. But if z ∈ Fx ∩ A, then x ∈ F z
so that x ∈

⋃
z∈A F

z.
Summing up, assuming the theorem is false, we have proved that for every y ∈

E2, Hy can be covered by shr (N )-many null sets. Now, define

K = {(x, y + r) : (x, y) ∈ H, r ∈ Q}.
Then Kx is a measurable set and of full measure for every x ∈ E1. Moreover, for
every y ∈ R, Ky is the union of countably many horizontal sections of H and so
for every y ∈ R, Ky can be covered by shr (N )-many null sets. Let B ⊂ R be a set
such that |B| ≤ shr (N ) and λ∗(B) > 0. Then E1 =

⋃
z∈BK

z, and since each Kz

can be covered by shr (N )-many null sets, the same is true for E1. It follows that R
can be covered by shr (N ) many null sets, since we can cover R by a null set and by
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countably many translated copies of E1. Thus we obtain cov (N ) ≤ shr (N ), which
contradicts our assumption. �

5. Symmetrically approximately continuous functions

Let S ⊂ R2 be arbitrary. We say that the points x, y ∈ R can be joined by a
k-chain using the centers p1, . . . , pk, if there are points x = x0, x1, . . . , xk = y such
that xi−1 + xi = 2pi and (pi, xi−1) ∈ S for every i = 1, . . . , k.

Theorem 11. Suppose shr (N ) < cov (N ). Let E ⊂ R be a measurable set of
positive measure, and let S ⊂ R2 be a set such that d∗(Sx, x) = 1 for a.e. x ∈ E.
Then there is a point x0 ∈ E and there is a measurable set F ⊂ E of positive
measure such that every point of F can be joined to x0 by a suitable 4-chain in E.

Proof. We may assume that E is a nonempty d-open subset of the interval
[

1
4 ,

1
2

]
.

We may also suppose that d∗(Sx, x) = 1 for a.e. x ∈ R. Indeed, let V denote the
d-interior of R \E, and replace S by the set S′ = (S ∩ (E×R))∪ (V ×V ). Suppose
we can prove that there is a point x0 ∈ E and a measurable set F ⊂ E of positive
measure such that every point of F can be joined to x0 by a suitable 4-chain using
S′ instead of S. Then, in every chain consisting of elements of E, the centers must
also belong to E since for p /∈ E, S′p ∩E = V ∩E = ∅. Therefore, if two points of E
can be connected by a chain in E using the set S′, then they also can be connected
using S. Taking a suitable subset of S we may also assume that S has the following
properties:

(i) for every x the section Sx is d-open;
(ii) for a.e. x the section Sx is nonempty;
(iii) for every x, if Sx 6= ∅, then d∗(Sx, x) = 1;
(iv) if x ∈ E, then Sx ⊂ E and if x /∈ E, then Sx ∩ E = ∅ ; and
(v) for every x, the section Sx is symmetric about x; that is, 2x− Sx = Sx.

By applying Theorem 10 for the set S ∩ (E × E) we obtain a point x0 ∈ E and
a δ > 0 such that

(21) d∗({y ∈ E : λ∗(Sx0 ∩ Sy ∩E) > δ}, x0) > 0.

Let T = {(x, y) : x ∈ I, (x, y + x) ∈ S}. Then Tx = Sx − x, and thus d∗(Tx, 0) = 1
for a.e. x ∈ I. Since shr (N ) < cov (N ) implies that there is no weak Sierpiński set,
we may apply Theorem 9 to obtain

(22) d∗({y ∈ R : λ∗(T y) > 1− δ}, 0) = 1.

It now follows from (21) and (22) that there is a measurable set F of positive
measure such that

F ⊂ E ∩ {y ∈[x0 − δ, x0 + δ] :

λ∗(Sx0 ∩ Sy ∩ E) > δ, λ∗
(
T (y−x0)/2

)
> 1− δ}.

(23)

(In fact, we can find such a measurable set F with d∗(F, x0) > 0.) We complete the
proof by showing that every point of F can be joined to x0 by a 4-chain.

Let y ∈ F be arbitrary. By (23), we have λ∗(Sx0 ∩Sy∩E) > δ. Let D denote the
set of outer density points of Sx0 ∩ Sy ∩ E. Then D is measurable and λ(D) > δ.
As E ⊂

[
1
4 ,

1
2

]
, it follows that x0 ∈

[
1
4 ,

1
2

]
and both Sx0 ∩ Sy ∩ E ⊂

[
1
4 ,

1
2

]
and D ⊂

[
1
4 ,

1
2

]
. Hence, 2D − x0 ⊂ I is measurable and λ(2D − x0) > 2δ.

Since T (y−x0)/2 ⊂ I, λ∗(T (y−x0)/2) > 1 − δ and |y − x0| ≤ δ, it follows that
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λ∗([2D − x0] ∩
[
T (y−x0)/2 + (y − x0)/2

]
) > 0. Fix an element q ∈ [2D − x0] ∩[

T (y−x0)/2 + (y − x0)/2
]
) such that Sq 6= ∅. We claim that the set

U = (Sx0 ∩ Sy) ∩ 1
2

[x0 + Sq] ∩
1
2
[
(2q + x0)− Sq−(y−x0)/2

]
is nonempty. Indeed, as q ∈ 2D − x0, then (q + x0)/2 is an outer density point of
Sx0 ∩ Sy. Since q is a density point of Sq, it follows that (q + x0)/2 is a density
point of 1

2 [x0 + Sq] . The condition q ∈ T (y−x0)/2 + (y − x0)/2 implies

(q − (y − x0)/2, (y − x0)/2) ∈ T and (q − (y − x0)/2, q) ∈ S;

that is, q ∈ Sq−(y−x0)/2. Therefore q is a density point of Sq−(y−x0)/2, and thus
(q + x0)/2 is a density point of 1

2

[
(2q + x0)− Sq−(y−x0)/2

]
. Therefore, (q + x0)/2

is an outer density point of U, and thus U 6= ∅. Let p ∈ U.
We claim that x0, 2p−x0, 2q− 2p+x0, 2p− y, y is a 4-chain, using the centers

p, q, q − (y − x0)/2, and p. All that we have to check is that the relations

x0 ∈ Sp, 2p− x0 ∈ Sq, 2q − 2p+ x0 ∈ Sq−(y−x0)/2, and 2p− y ∈ Sp
hold. The first three of these relations follow from p ∈ U (note that if p ∈ Sx0 ,
then x0 ∈ Sp). To see that 2p− y ∈ Sp it is enough to check that y ∈ Sp since Sp
is symmetric about p. But, p ∈ Sy so y ∈ Sp and this completes the proof. �

Theorem 12. Suppose shr (N ) < cov (N ). If E ⊂ R is measurable and f : E → R
is symmetrically approximatively continuous at a.e. point of E, then f is measur-
able.

Proof. It is enough to show that for every ε > 0 there is a partition E =
⋃∞
n=1En

such that each En is measurable, and for every n, the oscillation of f |En is at most
ε. By using a standard exhaustion argument, it is enough to prove that there exists
a measurable set F ⊂ E of positive measure such that the oscillation of f |F is at
most ε.

Since f is symmetrically approximatively continuous at a.e. point of E, for a.e.
x ∈ E there is a set Sx such that d∗(Sx, x) = 1, and |f(x + h) − f(x − h)| < ε/8
whenever x + h, x− h ∈ Sx. Put S = {(x, y) : y ∈ Sx}. By Theorem 11, there is a
point x0 ∈ E and a measurable set F ⊂ E of positive measure such that every point
of F can be joined to x0 by a suitable 4-chain. It is clear that if the points x0 and y
can be joined by a 4-chain, then |f(x0)−f(y)| < ε/2. Therefore |f(x0)−f(y)| < ε/2
holds for every y ∈ F, and thus the oscillation of f |F is at most ε. �
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1/C, 1117 Hungary – and – Department of Mathematics, University College London,

Gower Street, London, WC1E 6BT, England

E-mail address: laczk@cs.elte.hu

http://www.ams.org/mathscinet-getitem?mr=1358935
http://www.ams.org/mathscinet-getitem?mr=1358935
http://www.ams.org/mathscinet-getitem?mr=0227331
http://www.ams.org/mathscinet-getitem?mr=0227331
http://www.ams.org/mathscinet-getitem?mr=0306411
http://www.ams.org/mathscinet-getitem?mr=0306411
http://www.ams.org/mathscinet-getitem?mr=0414302
http://www.ams.org/mathscinet-getitem?mr=0414302
http://www.ams.org/mathscinet-getitem?mr=1289417
http://www.ams.org/mathscinet-getitem?mr=1289417
http://www.ams.org/mathscinet-getitem?mr=0814930
http://www.ams.org/mathscinet-getitem?mr=0814930

	1. Introduction
	2. Notation
	3. Consistent Fubini type inequalities
	4. Consistent density theorems
	5. Symmetrically approximately continuous functions
	References

