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Abstract. We have calculated the absolute rate of diffusion for Mg'- and Fe3- ions in MgO 
using atomistic modelling. Our calculations use a shell model. incorporating tested inter- 
atomic potentials, and exploit recent advances in computer codes. The agreement is 
extremely good where experimental data are available for comparison. For Mg'- in MgO at 
1400°C we predict a pre-exponential factor of 32.9 THz using simple Vineyard theory 
(experiment 18 2 7 THz after correction for the important volume dependence of the 
activation energy) and an activation energy of 2.26 eV (experiment 2.3 0.2 eV). Close 
inspection of the energy changes for displacements from the saddle point normal to the jump 
path shows that within kTof the saddle point energy there are significant departures from 
the harmonic dependence required for validity of Vineyard theory. Corrections by both 
analytical methods and numerical integration improve agreement with experiment. pre- 
dicting23-25 THz overall. For Fe3- much slower diffusion is predicted even though the jump 
path bifurcates to give two saddle points. We do not predict the rapid Fe'- motion reported 
in aggregation experiments and conclude that other mechanisms are involved. 

We have also used the dynamical theory of Rice and Slater which gives similar. but by no 
means identical. predictions for the diffusion rates. 

1. Introduction 

Our paper is concerned with the calculation of diffusion rates in crystalline solids. Its 
aim is the prediction of absolute rates, not simply activation energies, by the best current 
methods and computer modelling. This aim reflects two recent developments in trans- 
port studies. The first is theoretical, and relates to the recent codes available for the 
prediction of harmonic vibrations of distorted crystals. This topic is described in 8 2. 
The second development is experimental. In diffusion studies of ceramics like MgO (see 
Wuensch 1982) there are no clear regimes identifiable as extrinsic and intrinsic. Thus, 
only with the recent mobility data (Sempolinski and Kingery 1980) can one obtain 
unambiguous jump frequency data to compare with our calculations. We have also been 
encouraged by the increased emphasis on absolute jump rates in a variety of ionic 
conductors. Sometimes unexpectedly high rates are reported (e.g. Almond and West 
1983), sometimes unexpectedly low rates (e.g. Huberman and Boyce 1978). In other 
cases, ionic diffusion is only one component of a solid state process (e.g. Weeks er a1 
1980) and knowledge of the jump frequency itself is of value. 

We calculate here jump frequencies for Mg" vacancies and for vacancy-substitu- 
tional Fe3' exchange in MgO. Much of the background to our work and some related 
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calculations are discussed in our previous paper (Sangster er a1 1984) which is extended 
in a number of respects in the present paper. 

2. Calculations of jump frequencies 

The prediction of jump frequencies involves three components. The first concerns the 
statistical mechanics relating the jump frequency to the energy surfaces (i.e. the total 
energy as a function of the ionic positions), the masses of the particles, and temperature. 
Here we shall follow mainly the formulation of Vineyard (1957) based on reaction rate 
theory, though we shall also cite results from the dynamical theory of Rice (1958) and 
Slater (1959). The second component concerns the calculation of the energy surfaces, 
achieved by standard methods. Since we are interested in jump frequencies, more 
detailed knowledge of the energy surface is required than for a mere estimate of 
activation energy. The third strand in the calculation is the harmonic lattice dynamics 
for various stages of the jump process. 

2.1. Reaction rate theory and dynamical theory 

Ip this section we discuss the relationship between energy surfaces, assumed known? 
and jump rates. We shall concentrate on the way the jump rates can be obtained in 
practice; the considerable points of principle are discussed elsewhere (Flynn 1972, 
Sangster et a1 1984). 

Reaction rate theory (Glasstone er al1941) makes direct use of equilibrium statistical 
mechanics. In his development of the theory for applications to solids, Vineyard (1957) 
adopts a many-body normal mode approach, and identifies crossings between equilib- 
rium configurations with the passage through zero of the coordinate of the normal mode 
which is unstable at the saddle point. Making the assumption that the energy for 
configurations around the saddle point may be adequately represented within the har- 
monic approximation, he arrives at the following expression for the pre-exponential 
frequency factor: 

3N 3 N -  1 

The numerator is the product of the normal mode frequencies, v,, at the equilibrium 
configuration, and the denominator is the product of the frequencies, v:, of the stable 
normal modes at the saddle point configuration; Nis the number of atoms in the crystal. 

We shall use (1) directly, using frequencies calculated by the methods of § 2.3. 
However, we shall also need a simple generalisation of (1) since the harmonic expansion 
is not sufficient in certain cases. The harmonic expansion is exploited by Vineyard in 
two separate ways. The first is to factorise integrals I s  at the saddle point and ZA at the 
equilibrium configuration into products of simpler integrals, one for each mode. The 
second use is to ensure that these simpler component integrals all have an exactly soluble 
form, specifically 

I(') = 1-1 dx, exp( - G q , / k T )  

where Gq, is the energy change due to a displacement x ,  from the relevant minimum; for 
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a harmonic system, 6qI is proportional toxf. In § 2.2 we present calculations of energy 
surfaces around the saddle points and find that 6q, is significantly non-harmonic while 
within kTof the saddle point energy. In § 3.3 we shall estimate (by numerical integration) 
the correction factor to the saddle point integral for Mg in MgO which arises from the 
hardening of the potential with increasing displacement from the saddle point. It may 
be helpful to consider an extreme example analytically. Suppose that for one coordinate 
there are infinite barriers at x = +X. the potential behaving harmonically for 1x1 s X 
and all other coordinates being harmonic. There is then a correction factor 
erf[(&14dX'/kT)'/2] to the Vineyard result, where 1MdX' is just the strain energy at 
x = 2 X .  At 1400 "C, k T  is 0.1441 eV; for a strain energy of 0.1 eV. the Vineyard 
prediction is reduced by a factor 0.76. 

In the dynamical theory of Slater (1958) and Rice (1959) the jump rate is determined 
by motion in a reaction coordinate. The simplest choice of reaction coordinate involves 
only motion of the diffusing atom from its normal site towards the saddle point. More 
realistic choices involve accompanying adjustments of the positions and polarisations of 
nearby ions. In each of these situations, the jump rate can be estimated from the v, of 
(1) or from the energy surfaces near the equilibrium sites. One of our examples 
(MgO : Fe3+) presents problems of principle, however, since the jump path bifurcates 
near the saddle point. There are thus ambiguities in choosing the reaction coordinate. 
for the paths which, when extrapolated, take the diffusing particle to the saddle point 
are not the lowest-energy paths near the equilibrium geometry. 

2 .2 .  Energy surfaces 

We have investigated cation vacancy jump rates in pure MgO and in MgO doped with 
Fe3-. In the former case the vacancy jump can be considered as an interchange of a 
vacant site on the cation sublattice and a nearest-neighbour Mg" ion, with a saddle 
point configuration consisting of two adjacent vacant sites and an interstitial Mg" ion 
equidistant from the vacancies. In the MgO : Fe3' case we consider the jump when the 
mobile nearest neighbour is one of the Fe3' impurities. 

Figure 1 shows energy contours for fully relaxed configurations with the jumping ion 
at positions in the bisecting plane normal to the line joining initial and final sites (taken 
as (110)). These results were calculated with interionic potentials obtained earlier by us 
(Sangster and Stoneham 1981) using the HADES (Norgett 1974. 1977) package to min- 
imise the configuration energy subject to the constraint of holding the jumping ion at 
chosen positions in the plane. It can be seen that for the Mg" ion jump (figure l a )  the 
saddle point is at the midpoint of the line between the vacant sites, i.e. at the point of 
minimum energy in the plane shown in the plot. The activation energy for the jump, 
that is the difference in energy between this saddle point configuration and the isolated 
vacancy configuration, is calculated as 2 . 2  eV when we use the room-temperature lattice 
parameter for MgO (a0 = 2.106 A) and 1.9 eV when we take a0 = 2.148 A, estimated 
from the experimental lattice expansion to correspond to a temperature of 1400 "C. The 
difference in activation energies may be re-expressed as an activation volume Q, which 
can be estimated (Gillan 1981) from Q = - i K a ,  (AEactlVatlon/Aa) with K the model 
isothermal compressibility (4.36 X lo-" Pa-' from the elastic constants quoted by 
Sangster and Stoneham (1981)). We obtain R =0.37a8. Sempolinski and Kingery (1980) 
have estimated the mobility of Mg" vacancies in MgO from their measurements of the 
temperature dependence of the ionic conductivity. The value for the activation energy 
given by Sempolinski and Kingery from their measurements in the temperature range 

C36F 
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Figure 1. Energy contours in the saddle point planes for (a) Mg” diffusion in MgO and ( b )  
Fe3’ diffusion in MgO. The jump direction is normal to the page ((110)) and the two oxygen 
ions straddling the jump path are along the (170) direction. Energies are plotted at 0.1 e V  
intervals and are relative to the saddle point energy. The energy at a point in the plane is 
found by constraining the diffusing ion at the point and allowing full relaxation of neigh- 
bouring ions, 

12OC-1600 “C is 2.3 ‘-c 0.2 eV, close to our predictions extrapolated to low temperature. 
We shall discuss the significance of this later. 

The higher curvature in the (1TO) direction is to be expected from the proximity of 
02- neighbours. In the (001) direction the curvature i s  low and, when the Mg” ion is 
replaced by an Fe3’ ion (figure lb) ,  the central position becomes a maximum for the 
(001) direction. Bifurcated minimum-energy jump paths result with the saddle points 
displaced from the central position by ?0.238ao along the (001) direction. Our calcula- 
tions give the activation energy for the Fe3+ ion jump as 2.7 eV, with the energy of the 
saddle point configurations 0.48 eV below that of the symmetric (midpoint) configura- 
tion. For the Fe3’ jump there are no results similar to those for Mg” for comparison 
with our calculations although MgO : Fe3+ was studied in the above work by Sempolinski 
and Kingery and the formation energies of Fe3*-vacancy pair configurations in MgO 
have been examined by Gourdin er a1 (1979). The review by Wuensch (1983) quotes 
activation energies of around 1.8 eV for Fe (arguably Fe2+ not Fe3*) in MgO. The value 
for the activation energy found from tracer diffusion experiments by Blank and Pask 
(1969) is 3.2 eV. The agreement between this value and our calculated energy difference 
of 3.18 eV between the equilibrium and midpoint configurations is almost certainly 
coincidental. 
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2.3. Harmonic frequencies 

2.3.1. Estimate from energy surfaces using the dynamical theory. In the dynamical theory 
the motion of the diffusing ion is described by a reaction coordinate, not a normal mode. 
The pre-exponential frequency factor, often described as the attempt frequency, is 
proportional to the square root of the curvature of the energy surface at the equilibrium 
configuration in the direction of the reaction coordinate. Both this curvature and the 
effective mass associated with the reaction coordinate depend on whether only the shells 
(electronic polarisation alone) or both shells and cores (ionic and electronic polarisation) 
are able to follow the motion of the diffusing ion. Results for the effective frequencies 
for dynamical theory in these two limits are given in table 1. In all cases we have taken 
the mass associated with the reaction coordinate to be that of only the diffusing ion: for 
the results which include core relaxations the effective mass should be increased and 
consequently the effective frequency reduced. It is assumed that the motion is directly 
towards the final site and the results do not include the factor 2 for Fe3+ or any other 
aspect of the bifurcation in that case. 

Table 1. Estimates of effective frequencies (THz) for the dynamical theory. These values 
are obtained from curvatures of energy surfaces assuming the mass associated with the 
reaction coordinate to be that of the diffusing ion alone. 

Diffusing Allowing relaxation Allowing shell 
ion of shells and cores relaxations only 

Mg2- 8.24 
Ca2* 6.14 
Mni- 5.65 
Fe2’ 5 .55  
Fe3+ 5.92 
CO2* 5.78 
Ni2- 5.72 

10.70 
8.64 
7.12 
6.98 
8.48 
7.39 
7.15 

The results show two significant features. First, the dynamical theory gives rather 
low frequencies, well below the value 15.2 THz ((3/5)’”mebye; see Flynn (1972)) often 
suggested. This discrepancy is enhanced if we allow for the increase in effective mass 
associated with motion of neighbouring ions. Secondly, the relative frequencies decrease 
in order Mg2’ > Ca2+ > Fe3+ > (Mn”, Fe2+, Co2+, Ni2+), with these divalent transition 
metals having essentially the same frequencies. Wuensch’s (1983) review of experi- 
mental diffusion data also suggests that Mg2+ has a higher frequency than CaZ+: it is 
hard to draw specific conclusions about the other cases. Since there are ambiguities in 
the precise application of the dynamical theory (both concerning the relaxation of other 
ion cores and in relation to bifurcating paths) we feel that it is mainly of qualitative value 
where its advantage is relative simplicity. 

2.3.2. Supercell methods. Recently some solutions to problems involving the dynamics 
of defects in crystals have been found by using the ‘supercell’ method rather than the 
more usual Green function techniques. In the supercell method a large periodically 
repeated unit cell containing the defects under consideration (e.g. impurities, vacancies, 
interstitials, etc) and with neighbouring atoms polarised and relaxed to equilibrium is 
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set up. With the computational power now readily available it is then a straightforward 
matter to calculate from interaction potential models the eigenfrequencies and vectors 
for normal modes of the system, since translational symmetry is restored and the usual 
methods for perfect lattices can be applied, albeit with the large number of atoms in the 
unit cell. The relaxations of neighbouring atoms, including their polarisations, must first 
be calculated from the same interaction potential models and for this two fairly standard 
procedures are possible: either the defect system can be embedded in an infinite and 
otherwise perfect crystal and the relaxations calculated using programmes such as HADES 
or, more consistently, relaxations in the periodic structure can be calculated with codes 
such as PLUTO (Catlow and Norgett 1976). An inconvenience of the former method is 
that some adjustments to the positions and polarisations of atoms on or near cell 
boundaries are required to enforce periodicity. 

Applications of the supercell method include calculations of vibrational entropies of 
defects in crystals (Harding and Stoneham 1980, Sangster et a1 1984), an investigation 
of electron-hole excitation in U02 (Harding et a1 1980) and a study of the infrared 
absorption due to off-centre Li in KCl (Sangster and Stoneham 1982). These problems 
can of course be tackled by Green function methods: see Jacobs and Gillan (1983) for 
a discussion of the Green function method applied to vibrational entropy problems. In 
such Green function approaches force constant changes must be calculated from the 
model potentials in a manner which is consistent with the type of Green functions used. 
Almost invariably these functions relate to ionic core displacements, with polarisation 
terms, such as shell displacements in the shell model, having been eliminated using the 
adiabatic approximation. This being the case, the corresponding effective force constant 
changes must be calculated under the same approximation. As Sangster and Rowell 
(1982,1983) have shown, such calculations can be performed routinely, but their results 
indicate that the defect space often has to be extended to quite distant neighbours of the 
foreign ions and defects. Furthermore, in cases such as off-centre Li in KC1 mentioned 
above, the lower point group symmetry leads to a considerable increase in the number 
of Green function terms required. Both these considerations reduce the attractions of 
the Green function approach. Furthermore, if the defect carries a net charge it is not 
clear how the usual formalism for changes of mass and force constant should be extended. 
Finally, there is an inherent inconsistency in treating the dynamics of the host crystal 
with a polarisable-ion model (such as the shell model) and then expressing a defect 
problem in terms of only ion Green functions. (There have been a few attempts at 
treating the defect consistently, notably by Page and Strauch (1967) who have included 
core-core, core-shell and shell-shell Green functions in their analysis of the infrared 
absorption due to U-centres in alkali halides, but such treatments are exceptional.) 
Thus, while the existence of standard packages and sufficient computational power to 
implement these may appear a poor reason for taking the apparently retrogressive step 
of rejecting the elegance of Green function methods, it does appear worthwhile to 
exploit the alternative direct methods, such as the supercell method, which treat the 
dynamics of defective lattices on the same footing as that of perfect host lattices. 

The main technical problem with the supercell method is that of storage for the large 
matrices required. In the previous work referred to above an existing lattice dynamics 
package was used and this meant that, with a restriction to 1.5 Mbyte of store, only cells 
containing up to 24 atoms could be considered. At this level the artificially imposed 
periodicity of the defect structure is likely to produce spurious effects. Along with D K 
Rowell we have now produced a version of the program which, without degrading the 
efficiency, reduces the storage requirements by a factor of around five. Supercell cal- 
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culations with up to about 100 atoms per cell become feasible; our results reported in 
the next section are for calculations with 64 atomic sites per cell. 

3. Predictions of absolute rates 

3.1. Results of Vineyard theory 

In this section we discuss the results of our calculations using reaction rate theory. We 
have estimated the ratio of products in equation (1) for the two cases under consideration 
by calculating the normal mode frequencies for 63-atom supercells in relaxed equilibrium 
and saddle point configurations. For the saddle point configurations we obtain one 
imaginary frequency as required. We carried through the calculations using only one 
q-vector in each case, taking a vector just sufficiently displaced from the Brillouin zone 
centre to give Lyddane-Sachs-Teller splittings. This simplifying approximation, which 
has been used and checked in analogous electronic calculations (see, for example, 
Evarestov and Lovchikov 1979), relies on the effective averaging over the zone which 
results from the folding back of the phonon branches in the reciprocal lattice of the 
supercell. Substitution of the calculated frequencies gives 

vo = 32.91 THz for the Mg" jump 

and 

vo = 1.21 THz for the Fe3+ jump. 

Since in the case of the Fe3* jump there is a pair of saddle points, the second frequency 
should be doubled for use in expressions for jump rates. 

Compared with typical lattice frequencies (G20 THz for MgO) the Vineyard expres- 
sion gives an anomalously high frequency in the first case and an anomalously low 
frequency in the second. It is easy to see that the form of equation (1) can give rise to 
either type of 'anomaly'; all that is involved is the ratio of curvatures at the equilibrium 
and saddle points. For the Mg2+ jump the ratio of the curvatures along the (001) direction 
for the energy surfaces (figure l ( a )  and a corresponding surface around the equilibrium 
configuration) is (3.6)2and hence, if we associate the same mass with (001) displacements 
from both equilibrium and saddle point configurations, the frequency ratio is 3.6. 'As 
confirmation, examination of our sample of normal mode frequencies shows that the 
high value for vo arises principally from a low-frequency (2.04 THz) mode at the saddle 
point. The eigenvector for this mode is dominated by the (001) displacement of the 
jumping Mg2+ ion. 

3.2. Experimental results for MgZ+motion 

Jump frequencies are generally expressed as 

r = roexp(-EA/kT) 

where EA is the activation energy for the jump process and where evaluation of the 
premultiplying factor To is required if absolute rates are to be determined. Sempolinski 
and Kingery (1980) deduce from their measurements that the mobility for vacancy 
motion in MgO is 

p = (8800/T) exp(-2.2eV/kT) cm2V-'s-' (3) 
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The mobility is related to the jump frequency r for a specific jump (see, for example, 
Lidiard 1957) by 

1-1 = 4rNa2e/kT (4) 
where N is the number of equivalent jumps of length a. In our case N = 12 and a = 
V%o, Thus from the experimental results we obtain for a specific jump To = 
210 -+ 80 THz, where the uncertainty corresponds with Sempolinski and Kingery's 
quoted error in the diffusion constant (which is related to the mobility through the 
Nernst-Einstein relation). In our earlier paper (Sangster et a1 1984) the factor N in 
equation (4) was incorrectly omitted in our analysis. 

An immediate cause for concern with this estimate is that it is an order of magnitude 
larger than the maximum lattice frequency in MgO (around 20 THz). Intuitively one 
might expect this host frequency to give a rough upper bound to the pre-exponential 
frequency factor. We believe that the interpretation of the experiments must be modified 
to take account of the fact that the activation energy is not independent of temperature 
as implied by the form of equation (2). Our calculated values of the activation energy 
for lattice parameters corresponding to room temperature and 1400 "C differed by 
0.3 eV. If we assume a linear variation with temperature, 

E A ( T )  = EA(0) - akT,  

r = v0 exp(a) exp( - E A ( 0 ) / k T ) .  

( 5 )  

we have E A ( 0 )  = 2.26 eV and (Y = 2.46. Equation (2) may then be written as 

(6) 

The coefficient a i s  of course directly related to the activation volume discussed in § 2.2. 
What is measured is To = vo exp(a) but the various theories of jump diffusion give 
expressions for m. For comparison the experimental estimate must therefore be multi- 
plied by a factor exp( - &), i.e. from experiment ~0 = 18 ? 7 THz. With this reinterpre- 
tation, the relevant part of the pre-exponential frequency factor is close to the maximum 
lattice frequency. It is interesting to note that after this adjustment the experimental 
estimate is in fair agreement with the estimate of (3/5)'/*q, = 15.2THz (taking the 
Debye temperature for MgO to be 941 K) given by the usual continuum approximation 
for the dynamical theory (see Flynn 1972). The significant discrepancy between the 
results of atomistic dynamical theory (§ 2.3.1) and the continuum case has already been 
pointed out. However, the agreement between experiment (18 2 7 THz) and Vineyard 
theory (32.9 THz) can be considered extremely good, since both pre-exponential factor 
and activation energy are predicted quantities. Our value of 32.9 THz for vo calculated 
from Vineyard theory was obtained from frequencies of the lattice at room temperature. 
These will also be temperature dependent. With a Griineisen parameter of unity the 
expansion of MgO between room temperature and 1400 "C would decrease frequencies 
by 6%.  In line with this some detailed calculations which we have made for normal site 
frequencies show changes of only afew per cent. Therefore we expect the effect produced 
by any temperature dependence of vo to be far less than that of the factor exp( a) (= 11.7) 
from the temperature dependence of EA. If m is decreased then the agreement between 
theory and experiment will be improved. We shall see (0 3.3) that the agreement is 
improved further by going beyond the purely harmonic formulation along the lines 
discussed in § 2.1. 

As a footnote, we would point out that the value which we have assigned to the factor 
exp(a) in equation (5) (and which was crucially involved in the reinterpretation of the 
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Sempolinski and Kingery (1980) experiments) is open to criticism. A cardinal rule in 
model calculations such as ours is that all parameters must be determined consistently 
within the framework of the model. We have violated this by making use of the experi- 
mental lattice expansion. We have, however, also estimated the model lattice expansion 
by the standard method of finding the temperature at which the elastic pressure for a 
given expansion is balanced by the volume derivative of the vibrational free energy. The 
expression for the latter involves mode Gruneisen parameters, and these we have 
approximated by differencing mode frequencies for the expanded and T = 0 "C lattices 
for a small sample of modes. We find that for a linear expansion from a0 = 2.106 8, to 
a0 = 2.148 8, (being experimental values at 0 "C and 1400 "C respectively) the tem- 
perature of our model system must be raised from 0°C to about 2250°C. Our 
overestimate reflects the errors in the elastic constants determined in our potential 
model (Sangster and Stoneham 1981). This implies that the coefficient (Y should be 
reduced from 2.46 to 1.53 and the value for yo deduced from experiment would then 
be 45 i 17 THz. 

3.3. Corrections to Vineyard theory 

For the Vineyard theory to be valid the energy surface must be strictly harmonic over an 
energy spread of the order of k T  (0.1441 eV for T = 1400 "C). In figure 2 we show our 
calculated energy changes for displacements of the Mg2' ion along the (001) directions 
from the saddle point. The full line represents a polynomial (in the square of the 
displacement) fitted to our calculations and the broken line is the harmonic term. Neglect 
of the quartic and higher terms results in a flatter energy surface, and hence the Vineyard 
theory will overestimate the pre-exponential frequency factor. 

If we assume that the only significant departures from harmonicity are those along 
the (001) directions then the reduction factor which should be applied to the saddle point 
integral (and hence the pre-exponential frequency factor) is 

1'" exp( - E ( z ) / k T )  d z / / =  exp( - E ' ( z ) / k T )  dz 
0 0 

where E ( z )  are our calculated energies and E ' ( z )  are the harmonic parts. The upper 
limit of the integral in the numerator cannot be taken outside the range for which we 
have carried out calculations and should be sufficiently large that further increases do 
not significantly increase the integral. We have fitted our calculated energies to a cubic 

1400 '0 

Figure 2. Energy changes for displacements of an Mg2- ion from the saddle point along the 
(001) direction. The full line is a polynomial fitted to our calculations; the broken line is the 
harmonic term. 
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polynomial in z2 and have taken zo such that E(z0)  = 6 kT.  Increasing the limit to 8 kT 
produces no significant change. (If the integral in the numerator is similarly truncated 
at zo with E(z0) = 6 kT the value is reduced by a factor of e r f (d6)  = 0.9995). Our 
estimate of the reduction factor using numerical integration for the numerator is 0.70. 
The ratio of two-dimensional integrals over the plane shown in figure l(a) (estimated in 
the same way) is 0.72 which shows that, as is to be expected, the dominant factor arises 
from the 'soft' direction. 

We have not considered the analogous correction factor which should be applied at 
the equilibrium site. (Since, unlike the saddle point, the equilibrium site does not have 
inversion symmetry, the polynomial expansion of the energy surface will now include 
odd powers of the displacement from the site.) This factor could of course be either 
greater or less than unity. If it is ignored the saddle point correction reduces our 
calculated value of the pre-exponential frequency factor (32.9 THz) to 23 THz, i.e. 
within the range deduced from experiment (18 -+ 7 THz). 

A further reason for our calculated value being slightly too high comes from the 
assumption of the Vineyard theory that each arrival at the saddle point plane is counted 
as a crossing, the possibility of a return to the starting configuration being ignored. The 
question of these 'spurious crossings' has been considered by McCombie and Sachdev 
(1975) for idealised extremes and more recently by Jacucci er a1 (1984) for more realistic 
models. The latter conclude that the return jump fraction is unlikely to exceed 10%. 

Our final conclusion is that, by direct calculation using appropriately extended 
Vineyard theory, agreement with experiment for jump rates can be achieved to an 
accuracy comparable with experimental accuracy. 

3.4 .  Experiment and Fe3+ motion 

For the Fe3+ ion, jump our calculations based on Vineyard theory gave a low pre- 
exponential frequency factor. Together with the relatively high activation energy for 
this jump (2.7 eV), this implies alow mobility for the Fe3+ inpurities. In our earlier paper 
(Sangster et a1 1984) we have calculated formation energies for various vacancy-Fe3+ 
pair configurations and activation energies for jumps between them. Several of these 
energies confirm the view that the Fe3' impurities are unlikely to be mobile: 

(a) The pair with (100) orientation, that is with the vacancy and Fe3+ ion as second 
neighbours on the cation sublattice, has a binding energy of 0.88 eV and is more stable 
by 0.27 eV than the (110) pair orientation which is the initial configuration for the jump 
we have considered. This is in agreement with the energy difference of 0.28 eV found by 
Gourdin and Kingery (1979). In other words a configuration with a cation vacancy 
immediately adjacent to an Fe3+ impurity is less favoured than at the second neighbour 
site. 

( b )  If a vacancy is found adjacent to an Fe3' impurity, then Mg2'-vacancy inter- 
changes are more likely than the Fe3+-vacancy interchange. This is partly a matter of 
lattice geometry, for even in the (110) pair the Fe3+ is only one of the twelve cation 
neighbours, and partly a matter of energetics, for the activation energies for Mg2' ion 
jumps are appreciably smaller than the 2.7 eV required for the Fe3+ jump. The formal 
theory has been given by Lidiard (1955) (see also Flynn 1972, PO 6.3,6.4). In figure 3 the 
four distinct classes into which the Mg2+ ions divide are shown, with the jumps identified 
to correspond to Lidiard's notation. The activation energy for a jump of an Mg2+ ion of 
the first class is 2.365 eV. Such a jump leaves another (110) vacancy-Fe3+ pair. A jump 
of an ion of the second class requires an activation energy of 1.96 eV and results in a 
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Fe 

Figure 3. Symmetry classes of Mg'- near neighbours of an Fe3'-vacancy dimer in MgO. The 
jump frequencies in the model of Lidiard (1955) can be identified with jumps of ions from 
specific classes into the vacancy. namely class 1 = w,, classes 2 ,  3. 4 (all equivalent in the 
so-called five-frequency model) = w!: the Fe'- jump w?. 

(100) dimer. We have not calculated the activation energies for the other two classes, 
but these will probably lie close to the 2.2 eV required for an Mg2+ ion jump in the 
absence of Fe3'. From the activation energies alone we conclude that there is a low 
probability that a vacancy with a nearest-neighbour Fe3+ will exchange sites with the 
Fe3' rather than Mg2+ (i.e. wl, w3 * w2 in Lidiard's notation). In this limit, the Fe3+ 
diffusion constant is simply proportional to the fraction pllo of all Fe3- present as (1 10) 
pairs and to the Fe3+-vacancy site exchange frequency w2, i.e. D(Fe3') ispllo w2 a2/3 ,  
with a the Mg-0 spacing. The atomic fraction of (110) pairs is related to the total atomic 
fraction of iron in a complex way, since there is quite a variety of possible complexes and 
charge states. Representative values based on experiment are given in figures 8(a. b )  of 
Gourdin et a1 (1979) andpllo lies in the range 0.05 to 0.1. 

Experimentally, there are several sets of diffusion data for Fe in MgO (see Blank 
and Pask 1969). However, these present problems in estimating jump frequencies. On 
the one hand, Fe is present both as Fe2+ and Fe3', and assigning the motion to one state 
or the other cannot be done without ambiguity. On the other hand, the diffusion constant 
involves a vacancy concentration, and the levels of intrinsic vacancies and of extrinsic 
vacancies due both to Fe and to inadvertent impurities are not known. If we use 0.05 for 
pll0 and 2 X 1.21 X exp(-2.7 eV/kT) THz for w2 (from Q 3.1 here) we obtain a pre- 
exponential factor DO of 1.8 X lo-' cm2 s-', corresponding to a diffusion constant D of 
only 1.3 x cm2 s-' at 1400 "C. The full temperature dependence of D will of course 
include both the 2.7 eV activation energy and the temperature dependence of pllo. We 
conclude that isolated Fe3+ contributes negligibly to the observed iron diffusion in MgO, 
Results are available from other types of experiment, e.g. from aggregation studies 
(Weeks et a1 1980). However, the relative immobility of Fe3+ ions which we predict 
contrasts with the conclusions which Weeks et a1 draw from their spin resonance study 
of the distribution of Fe3+ in doped MgO. Their results are also not in agreement with 
diffusion rates found in tracer experiments reviewed by Wuensch (1982). It seems 
probable that the rapid diffusion required to explain the Fe3+ aggregation found by 
Weeks et a1 arises from an alternative mechanism such as grain boundary diffusion. 
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4. Conclusions 

Our major conclusion is that successful calculations of absolute diffusion rates are 
possible with the present generation of computer codes and interatomic potentials. In 
any such calculations it is important to recognise that quoted experimental pre-expo- 
nential factors include afactor (exp( a) of equation (6)) reflecting thechange of activation 
energy with thermal expansion. Furthermore, the normal Vineyard results may need to 
be modified especially whenever the energy surface near the saddle point (or the 
equilibrium configuration) is relatively flat. 
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