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ABSTRACT

The study of photoionized environments is fundamental teyrastrophysical prob-
lems. Up to the present most photoionization codes have ncalg solved the equations
of radiative transfer by making the extreme simplifyinguaagption of spherical symmetry.
Unfortunately very few real astronomical nebulae satikfg tequirement. To remedy these
shortcomings, a self-consistent, three-dimensionahta@i transfer code has been developed
using Monte Carlo techniques. The code, Mocassin, is dedi¢m build realistic models of
photoionized nebulae having arbitrary geometry and dgdsstributions, with both the stel-
lar and diffuse radiation fields treated self-consistertiyaddition, the code is capable of
treating ones or more exciting stars located at non-celotations.

The gaseous region is approximated by a cuboidal Cartesidognposed of numerous
cells. The physical conditions within each grid cell areedetined by solving the thermal
equilibrium and ionization balance equations. This reggia knowledge of the local primary
and secondary radiation fields, which are calculated swibistently by locally simulating
the individual processes of ionization and recombinafidre structure and the computational
methods used in the Mocassin code are described in this.paper

Mocassin has been benchmarked against established oeasional spherically sym-
metric codes for a number of standard cases, as defined bye#iegton/Meudon photoion-
ization workshops_(Pequigniot 1986; Ferland et al. 19%%siuRinot et &l 2001). The results
obtained for the benchmark cases are satisfactory and eserged in this paper. A perfor-
mance analysis has also been carried out and is discussd her
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1 INTRODUCTION more ions in calculations. Mend®za (1983) presented a dampi
tion of radiative and collisional data for collisionally @ted ul-
traviolet, optical and infrared lines which was widely atiph
with some of these data still in use today, though most haea be
seperceded by more recent calculations such as the R-roaltix-
lations of the Iron Projecl (Hummer et al. 1993) and the Blfa
group (e.g..Mclaughlin & Bell_1998;_Ramsbottom et al. 1998).
Currently, radiative and dielectronic recombination satee still
highly uncertain or unavailable for some ions; recent éffdo
improve the situation have been reviewed by _Nahar & Pradhan
(1999) and_Nahan (2000). Most photoionization models idelu
temperature-dependent analytical fits to these recombmedtes,
such as those of Aldrovandi & Péquignat (1973) for radmtiv
and high temperature dielectronic recombination, and ethafs
Nussbaumer & Storky (1983) for low temperature dielectroai
combination.

Amongst the first numerical models for photoionized gasemis

ulae were those calculated by Flower (1968). Harringtor6§)9
and|Ruhin I(1968). These early models included the basic-phys
ical processes of ionization and recombination of hydroged
helium, thermal balance and escape of the emitted photons fr
the nebula. However, the lack of reliable atomic data hgavil
limited the success of these models, as well as the fact that
a number of important physical processes, such as charge ex-
change and dielectronic recombination_(Aldrovandi & Haoat
1973;IPéquignot et Fl. 1978; Stdiey 1981), were not aceadufar

at the time. The evolution of photoionization modelling lyasme
hand in hand with advances made in atomic physics and compute
technology. The application of photoionization models twider
range of ions has been aided by the photoionization cragoee
calculations by Reilman & Mansoh (1979), and, more recetitly
Opacity Projectl(Hummer etial. 1993). Compilations basethen Available computer power has increased enormously since
latter’s data (e.g._Verner & Yakovlev 1995), have made fdssi  the dawn of photoionization modelling. This has allowed enor
the inclusion of accurate photoionization cross-sectionsnany complex models to be built, including more ions, more fregye
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points, more lines and more atomic levels. Neverthelessfith-
damental assumption of spherical symmetry has always been r
tained. However, a glance at an image of any Galactic fe¢gion
will immediately demonstrate that these objects are ne&hber-
ically symmetric nor homogeneous. In addition, they usuladive
multiple exciting stars located at non-central positiaomshie neb-
ula. By contrast, planetary nebulae (PNe) have only a single-
trally located, exciting star. However, even for PNe, sptatisym-
metry is not a realistic assumption, as demonstrated byredse
tions with instruments such as the Hubble Space Telescdpehw
reveal an overwhelming variety in the shapes of planetabyliae.
These objects are very rarely circular in projection; a mesgudy
inferred that about 50% of all known planetary nebulae aredo-
centricity ellipticals, while only about 10% are circular projec-
tion, with the remainder having more extreme elliptical grdbar
geometries/(Soker 1997, 2001). Some objects, for examelvi
young planetary nebulae He 2-47 and PN M1-37, (also dubkeed th
starfish twins|Sahai 2000), show even more complicated geome-
tries, with multiple lobes. Other PNe have FLIERs (fast, ionw-
ization emitting regions; Balick et El. 1993, 1094, 1998REI'S
(bipolar, rotating, episodic jets; elg. Lopez ei al. 1988sae, jets,
knots, filaments, tails or multiple envelopes. (see k.ginBto
2000; Corradi et al. 1999; GassSegura 1997).

To our knowledge, only two three-dimensional photoioniza-
tion codes have been develped so far, ong by Baesgehlet @) (19
and the other by Gruenwald, Viegas & de Broguiere (1997). The
first code used a fixed number of equally sized cells and thben-
spot approximation for the diffuse radiation field, with pthe six
more abundant chemical elements being taken into accotet. T
work by|Gruenwald et all (1997) improves on this by allowing a
more flexible spatial grid and by using an iterative techaidor
the determination of the diffuse field and also by includinglve
chemical elements in the simulations.

Since most existing one-dimensional photoionization sode
are based on the numerical solution of the equations of treelia
transfer assuming spherical symmetry, their expansiohreetdi-
mensions can be either very difficult or impractical, resgltin
very large codes. The Monte Carlo approach to transfer pnobl
provides a geometry-independent technique which can aahdl
radiation transport problem self-consistently. With thismind,
the Mocassin code (MOnte CArlo SimulationS of lonised Nebu-
lae) was developed, in order to provide a three-dimensiomal-
elling tool capable of dealing with asymmetric and/or inloge-
neous nebulae, as well as, if required, multiple, non-edigitio-
cated exciting stars.

Section® contains a description of the general Mocassin ar-
chitecture and of some of the main computational methodd use
in the code. The code has been benchmarked against establish
spherically symmetric one-dimensional photoionizatiodes for
a set of standard nebulae and in Secfibn 3 we present thesresul
of this benchmarking, together with a performance analyktee
codes. In sectiofl 4 we discuss the results of the benchngpakid
present some general guidelines on how to run the code efficie

2 DESCRIPTION OF THE MONTE CARLO CODE
2.1 Background

The Monte Carlo method has been widely applied to a variety of
astrophysical problems, such as the penetration of uttietvra-
diation into the interiors of uniform or lumpy, interstellalouds

(Elannery et al. 1980; Boidsé 1990), resonance-likeesdagtin ac-
cretion disc windsl(Knigge et El. 1995) and polarization méy
the circumstellar envelopes of protostars (Fischerlet@®4) In
the examples described above the absorption and scattaréefg
ficients are not coupled to the radiation field and, thereftivese
problems do not require solution by iteration.

However, Monte Carlo techniques have also been used for
dust radiative equilibrium calculations for some time, seg.
Lefevre et al. 1(1982)| Lefevre etlal._(1983) and, more rdgent
Wolf et all (1999). These authors use a technique in whidtaste
and diffuse photon packets are emitted separately; the euotb
diffuse photon packets (i.e. packets emitted by the dusigier-
mined by the dust grain temperature, which in turn is deteeachi
by the balance between the number of absorbed and emittéoipho
packets. An initial guess for the dust grain temperatureasiged
by the number of packets absorbed, and the iteration cagion-
til the grain temperatures converge. Using this method tbkas
luminosity is not automatically conserved during the MoGgelo
simulation; only after the grain temperatures have reacioeser-
gence is the stellar luminosity approximately conservdte gon-
vergence of such codes is often very slow and requires alhange
ber of iterations and simulation quanta in order to reachebaired
accuracy.

Bjorkman & Wood (2001) have described a general radiative
equilibrium and temperature correction procedure for nddante
Carlo radiative transfer codes having sources of temperatu
independent opacity, such as dust. Their technique male®sfus
information naturally given by the Monte Carlo method, whiby
tracking every photon/energy packet, makes it easy to mater
where in the simulation grid energy is being absorbed. When e
ergy is deposited at a given location, following a packeltsaap-
tion, the local medium is heated. Whenever this occurs the ne
local temperataure is calculated and the packet is themitegl
accordingly. The packets are followed in their path throtighre-
gion, as they undergo scatterings and absorptions folldvyee-
emissions, with the temperatures being updated after eamit,e
until the packets reach the edge of the nebula and escagfnityin
hence contributing to the emergent spectrum. Once all #itast
photon packets have escaped, the resulting envelope tetaper
and the emergent spectrum are correct without the need dtiany
ther iterations.

A great limitation of Bjorkman & Wood’s method is that it
cannot be applied to situations where the opacities aredetyre-
dependent, as is the case in photoionized nebulae. Theteare
reasons for the failure of this method when the opacity ganiith
the local temperature: firstly, the number of photon paclkdts
sorbed by the cell prior to a temperature update would beito
small or too large, and, secondly, a change in temperatutédwo
also imply a change of the interaction locations of previpask-
ets, signifying that the paths of the previous photon packkbuld
have been different. While, it is clear that, when dealinthyho-
toionised gas, Bjorkman & Wood's technique is not applieabl
their work is nevertheless very enlightening and shouldakert
into account for further developments of the Mocassin caden
a treatment for dust grains will be introduced.

A recent example of the application of the Monte Carlo tech-
nigue to problems requiring solution by iteration is the koff
Lucy (1999), who obtained the temperature stratificatiahemer-
gent spectrum of a non-grey spherically symmetric extersded
lar atmosphere in LTE. His results show very good agreeméht w
the predictions of Caslor (1974), hence demonstrating alidity
of the Monte Carlo techniques applied, some of which were als



used in the development of Mocassin. The current work folives
approach described hy Liicy (1999) and also applied in the one
dimensional code developed by Och, Lucy & Rosa (1998). They
employed a different Monte Carlo treatment of the radiatia@s-
fer in order to iteratively determine the temperature amisation
stratification for a spherically symmetric photoionisedula of
uniform density. Some of the techniques that they used a@ al
described in detail by Lukty (1990, 2001, 2002). The basizeph

is that, when calculating radiative equilibrium temperas, con-
servation of stellar luminosity is more important than thegails

of the spectral energy distribution. With this in mind consdion

of stellar luminosity is enforced by using energy packetsaf-
stant net energy throughout the simulations. Moreoveatalbrbed
packets are re-emitted immediately after every absorpti@nt.
The frequencies of the re-emitted energy packets are dieiedm
by the local gas emissivities. Although the frequency dhation

of the re-emitted packets will not be correct until the nebtiém-
peratures have converged, this method naturally enfoexative
equlibrium at each point in the nebula and so naturally plesi
conservation of energy. This not only results in a simplefecbut
also makes the convergence of the gas temperatures easgsr (L
1999,12001). Energy packets will be discussed in more ditail
section[ZP.

2.2 Energy Packets

The main principle of our treatment of a photoionized nelmala-
sists of locally simulating the individual processes ofization and
recombination. The radiation field is therefore expressei@ims
of energy packets(v), which are the calculation quantgv) is a
packet consisting of photons of frequency such that

@)

In addition, we take all packets to have constant eneggylhere
are several reasons for choosing to work with monochromiatic
divisible packets of radiant energy instead of photonsstFif all,
energy packets are more computationally economic and,sitsme
they all have the same energy, then those packets emitthd in-t
frared will contain a larger number of photons which, as aseen
guence, will not have to be followed individually_(Abbott &uky
198%5). Note that all energy packets are followed until theyape
the nebula, including infrared energy packets. This is iteorto
allow the introduction of dust particles into the radiativansfer
treatment of Mocassin, which is planned for the near futAiso,
as the total stellar luminosity;., is evenly split amongst the stellar
energy packets, the energy carried by a single packet inirtfee t
interval A ¢, which represents the duration of the Monte Carlo ex-
periment, is given by

L.

€0
N T A @)
where N is the number of energy packets used in the simulation
(Och et al. 1998). Most importantly, the use of constant gner
packets is a natural way of imposing strict energy consienvait
any point in the nebula (Lucdy 1999). So, when a packet of radia
energye(va) = & is absorbed, itis immediately re-emitted with a
frequencyv., which is determined according to a frequency distri-
bution set by the gas emissivity of the current cell. The paeknit-

e(v) = nhv
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2.3 Initiation

In our modelling the gaseous region is approximated by aethre
dimensional Cartesian grid, where the ionising source can b
placed at the centre of the grid or anywhere else in the ghés T
feature is very useful when dealing with axisymmetric nabul
since, by placing the source in a corner of the grid, we nedyl on
consider one eighth of the nebula, which can then be recarestt

in full at the end of the simulation. This allows the runnirfgrood-
els with much higher spatial resolution than those whichldde
possible if a full nebula had to be considered, by puttingsthece

in the centre and, therefore, not making use of any symmetny-p
erties of the object. Switches built inside the code alloe tiser
to specify whether the nebula has some degree of symmetryfand
so, whether the symmetry is to be used.

Inside each grid cell all nebular properties, such as thesmas
density of the gasy; the electron temperature and density,and
N.; and the frequency dependent gas opacity and emissiyty,
andj,, are constant by definition. Thermal balance and ionisation
equlibrium are imposed in each grid cell in order to obtaaphys-
ical conditions in the local gas.

The energy packets are created at the position of the ionis-
ing source and they all carry the same energyas discussed in
the previous section. The frequeney, of each individual packet
emitted is derived from the input spectrum of the ionisingrse
according to the probability density function

(v) = F,dv . F,dv
P ey T T/ (4n )

Ymin

(©)

whereF,, is the stellar flux andR. is the stellar radius. This is then
the probability of an energy packet being emitted with a diesecy
lying in the interval(v, v + dv). The upper and lower integration
limits, vmin andvma. , have to be chosen properly, depending on
the input spectrum, in order to ensure that the bulk of théarad
tion is included in the frequency range. As the source emitsgy
isotropically, the direction of travel of every energy packmitted

is chosen randomly. This is done by choosing two random num-
bers,«a and 3, in the interval[0, 1], and calculating the following
guantities:

w = 2a-—1

t = 1—w?

0 = w(26-1)

u = tcosf

v tsind 4)

The random unit vector in Cartesian coordinates is thew, w)
(Harries & Howartn 1997).

24 Trajectories

Once a stellar packet is created at the source and launched in
the nebula, its trajectory must be computed as it underdossp-
tions followed by re-emissions due to bound-free and free-pro-
cesses. The trajectory ends when the packet reaches thefdatige
nebula, where it escapes to infinity and contributes to thergemt
spectrum.

There are two methods to track the packets and determine the
locations of the absorption events. Consider a packet gtifrecy

ted,e(v.), will then have the same energy as the absorbed packet, v, emitted in the directiorii. The first of these methods consists

£(va), meaning that only the numbet, of photons contained in
the packet is changed.

of calculating the run of optical depth,.,, at the energy packets’
frequencyy,,, from the location at which the packet is emitted to
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the edge of the ionised region along the direction of traelhe energy packets (i.e. those packets re-emitted immediaftdy an
probability of absorption along that path is then given by absorption event) needs to be determined. Since absorotibne-
(1) = &7 ®) emission are two independent events, the diffuse packetsrait-

P{Tp) =€ ted isotropically and therefore their direction of travelahosen
and the normalised cumulative probability function is giley randomly using equatiofid 4

Tup(l) e*‘r,,p d’T
P(l) = % .

IS e rdr, 25 TheMean Intensity

= 1-e 0 (6) The success of a Monte Carlo model often relies on the careful

choice of appropriatestimators Monte Carlo estimators provide
the means to relate the quantities wleserveduring our Monte
Carlo experiment to the physical quantities we want to deiee.
In a photoionization model, a measure of the radiation fisld i
needed, namely the mean intensity,

In the work of Och et &l (1998), the Monte Carlo estimator of
J, is constructed by using the definition of the specific intsnsi
1., in spherical coordinatesy,(#), as a starting point:

AE=1,(r0)AA|cost | AvAwAtL 9)

wherer,,, (1) is the optical depth to the absorption event drigl

the path length. The position at which the energy packet bvéll
absorbed will then be determined by choosing a random number
in the interval[0, 1] and comparing it againg®(l). In reality, it

is more convenient to use the inverse approach, where tiheabpt
depth from the energy packet source to the event can be derive
from the inverse of equatidd 5

7oy (1) = —In(1 — Un) @

whereUF is a random number in the intervl, 1]. Oncer,, (1) .
has been calculated then the path length can be directlyederi whereA A is the reference surface elemehts the angle between
(Harries & HowartH 1997). the direction of light propagation and the normal to theatei\ A

The second method was suggestefl by I [icy {1999) and it con- @ndA w is the solid angle. The mean intensity can then be obtained
sists of testing whether an absorption event occurs, onlebgel  from this by calculating the zero order momentlof which gives

cell basis. In other words, assume that, within each unifoeth Ny

the random path of a packet between events is given by eqlidtio A, (r) = / I,dw= AE Z 1 1 1 (10)
which corresponds to a physical displacemérgjven by Q At P costi AA Av

Top = Kupl (8) by comparison with equatid 9. The sum is over all packé&tsvith

frequency lying in the intervdly, v+d v), crossingA A at an angle

0. As discussed aboveé\ E /At represents the energy carried by a
single packet in the time interval ¢, sinceA E = ¢, which is
given by equatiofl]l2. Equati¢nll0 then provides a relatiowbet
the Monte Carloobservableqi.e. the number of energy packets
with frequency lying in the intervalv, v + dv), crossingA A at
anglef and the mean intensity of the radiation field, which is the
required physical quantity.

The use of Och et al.’s estimators fdy, however, becomes
problematic in the non-spherically symmetric case, sihea¢fer-
ence surface for the volume elements in an arbitrary twohiaet
dimensional coordinate system might not be unique or asoobvi
as in the one-dimensional case. In our work, a more general ex
pression for the estimator of, is sought, and, therefore, following
Lucy’s argumenti(Lucy 1999), an estimator f@y is constructed
starting from the result that the energy density of the raaticfield
in the frequency intervalv, v + dv) is 4w J,dv/c. At any given
time, a packet contributes energi) = ¢ to the volume element
which contains it. Lef be a packet’s path length between succes-
siveeventswhere the crossing of cell boundaries is also considered
an event; the contribution to the time averaged energy obofea
volume element, due to theragments of trajectory, ispd t/At,
whered t = [/c. From this argument it follows that the estimator
for the volume element’s energy density can be written as

wherex, andp are the frequency dependent absorption coefficients
and the density of the current cell respectively. The metineah
consists of checking whether the displacemeitt large enough

to carry the packet out of its current cell. If this is the cabe
packet is moved along its direction of travé|,up to the boundary
with the adjacent cell, where a new value fox, is cast, giving a
newr,,, and any further movement of the packet in this new cell
is to be followed. Alternatively, if the displacemehts not large
enough to carry the energy packet across the next boundhery, t
packet will be absorbed and then re-emitted at the end-pbithie
displacement. Lucy also clarifies in his paper that the sieleof a
new value ofr,,, at the crossing of a boundary does not introduce
a bias since a photon always has an expected path lengtmixits
event corresponding ta, = 1, regardless of the distance it might
already have travelled.

In this work both methods were implemented in the code, in
turn, in order to test their respective performances. Therfiethod
proved to be much more computationally expensive then tbe se
ond. This is due to the fact that, in order to track down the-pos
tion at which an energy packet is absorbed, using our knayeled
of 7, (1), an array searching routine has to be used to locate the
index of 7, (1) within the array of optical depths calculated from
the packet’s source to the edge of the nebula. Although taelke
ing procedure employs a bisection technique, which malasté
efficient, the large number of calls to it, due to the large harof 4 J, dv g 1 l
energy packet interactions within a simulation, means tieatrly c AtV c (11)
60% of the run time is spent carrying out these searches. dde s dv
ond method does not require any calls to the array searching r  whereV is the volume of the current grid cell and the summation
tine, as the packets are followed step by step through thelaeb is over all the fragments of trajectotly,in V, for packets with fre-

and this results in the run time being considerably redudée. quencies lying in the intervdl, v+d v). Again, a relation between
current version of Mocassin therefore uses Lucy’s appoattack Monte Carlo observables (i.e. the flight segmefjtand the mean
the energy packets throughout the nebula. intensity of the radiation field/,, has been obtained. Moreover,

Finally, the direction of travel of the newly emitted diffus equation Il is completely independent of the coordinatéesys



used and, indeed, of the shapes of the volume elem&ntén-
other important aspect of this approach is that all packassipg
through a given grid cell contribute to the local radiatiaidieven
without being absorbed; this means that equdfidn 11 reastsa-
tors of the radiation field even in the extremely opticallintbase
when all packets pass through the nebula without any atieorpt
events. From this argument it follows that this technigueves a
much better sampling and, hence, in general, much less neisy
sults compared to other techniques based on estimatorshichw
only packetsabsorbedwithin a given volume element count.

2.6 Gasemissivity and the diffusion of energy packets

As we have already discussed in previous sections, aftenengy
packet is absorbed, a new packet is re-emitted from the sacae |
tion in a random direction. The frequency of the re-emittadiet

is calculated by sampling the spectral distribution of thiltlo-

cal emissivity,j°¢. In order to satisfy the thermal balance implied
by the Monte Carlo model, all major emission processes have t
be taken into account, including the complete non-ioniziegu-

lar continuum and line emission, since they are part of thegn
budget. The non-ionizing radiation generated in the netsubes-
sumed to escape without further interaction and consstiteob-
servable spectrurwhich can then be compared with observations.
The following paragraphs are concerned with the descrigifdhe
individual contributions to the total emissivity.

The continuum emission due toiHHe 1, Hell and to heavier
ions is included. The H continuum can be divided into the Ly-
man continuum, which is capable of ionizing H, and the Bajmer
Paschen, etc. continua, which are not capable of ionizinghé.
emissivity in the Lyman continuum is calculated directlprfr a
combination of the Saha and Milne relations:

h? w; h?

62 Wi+41 27ka‘Tc

o = )3/2% (Xi)efh(ufuo)/kTCXiJﬁlNc (12)
wherew; andw;1 are the ground state statistical weight of the ions
involved, X! is the abundance of the recombining ian,(X")

is the photoionization cross section amglis the photoionization
threshold. The emissivity of the other series continua atained
by interpolation of published data (Ferland 1980). A sim#éa-
proach is used for the He and the Hell continua, where for
frequencies greater than 1.8 Ryd and 4.0 Ryd, respectieglg-
tion[Id is used, and the emissivities at lower frequenciesoar
tained by interpolation of the data published by Brown & Matt/s
(1970) for the He series and by Ferland (1980) for the Hese-
ries. The continuum emissivity of heavy elements is alsoutated
using equatiofi12. In the hydrogenic case (i.e.&hd Hell), the
two-photon continuum is calculated using the formalisncdesd
byINussbaumer & Schmuitz (1984); the data of Drakelet al. (1969
are used for He. Recombination lines between lower levels n=2
through 8 and upper levels n=3 through 15, for,tdnd lower lev-
els n=2 through 16 and upper levels n=3 through 30 foniHare
calculated as a function of temperature according to the Batata
published by_Storey & Hummiel (1995). The Heecombination
lines are calculated as a function of temperature using ate af
Benjamin et al.L(1999). In general, He | singlet lines follGase B
whereas triplet lines follow Case A (as there is no n = 1 lewettie
triplets). Transitions to the'B ground state of Heproduce lines
which are capable of ionizing H and low ionization stagesighéar
elements. In particular, the emissivities of the Heyman lines
from n=2 through n=5_(Brocklehurst 1972) and the intercarabi
tion lines corresponding to the transitioss21'S and 2P-1'S are
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estimated as a function of temperature using the data_of iR®bb
(1968). The contributions due to these lines to the totalgyneis-
tribution, from which the probability density functionseaderived,
are added into the respective energy bins. SimilarlyjiHgyman
lines can ionize both neutral hydrogen and neutral heliswaell

as some of the low ions of heavier elements. Therefore thesimi
ities of Hell Lyman lines with upper levels from n=2 through n=5
(fits tolStorey & Hummeér 1995) are also estimated as a function
of temperature and their contributions to the total eneiigjribu-
tion added into the respective frequency bin, as for the hfees.
This method is based on the fact that all emission profilesare
rently treated ag functions and the line opacity is assumed to be
zero; and the absorption of energy packets is only due tocthién:
uum opacity. Finally, the emissivities of the collisionialds of the
heavier ions are calculated. This is done by using matrigrision
procedures in order to calculate the level populations efitims.
Appendix 1 contains references for the atomic data usedaich e
ion.

The energy distribution is derived from the total emisgivit
summing over all the contributions in a particular frequent
terval. The non-ionizing line emission is treated sepéyasince,
whenever such line packets are created, they escape withther
interaction’.

Once the line and continuum emissivities have been calcu-
lated, the probability that the absorption of an ionizingergy
packet will be followed by the emission of a non-ionizing keic
is given by:

S dke + Jo asdy
Zi .7;(1 + ZleeI + ZleeH + J"OIJmam jﬁdU

wherevmax is the higher limit of the frequency grid; tb‘éki are the
emissivities of the non-ionizing recombination lines dfsgecies
considered;j; is the frequency dependent continuum emissivity;
jher and j4.p; are the contributions due to those recombination
lines of Hel and Hell which are capable of ionizing neutral hy-
drogen and neutral helium. The choice between the re-emisdi
an ionizing photon or a non-ionizing one is made at this piint
the code.

If an ionizing energy packet is to be re-emitted, then the new
frequency will be calculated according to the normalisechgia-
tive probability density function for the ionizing radiati, given

by

Pese =

(13)

) f,; jordv' + Zjﬁcl + ZjIL{CII
pP\V) = o - -
fyH 35V 437 Jirer + D Jhent
where, as usual, the contributions due to thelt@d Hel lines
are added in the corresponding frequency bins. If a norziogi
energy packet is to be re-emitted, then its frequency mudeter-

mined from the probability density function for non-ionigi radia-
tive energy, which is analogous to equafiah 14.

(14)

2.7 Thelterative Procedure

An initial guess of the physical conditions in the nebuldicsuch
as the ionization structure, electron temperature andreleden-

1 Resonance lines longward of 947e.g. Civ AX1548, 1550) may, in fact,
diffuse out of the nebula via resonant scattering and may ladsabsorbed
by dust during such diffusion. A treatment of dust graind b included
in future developments of the Mocassin code, and such sffealy then be
accounted for.
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sity, needs to be specified before the simulation can begoteP
dures in Mocassin have been constructed such that only &l ini
guess at the electron temperature (which is initially sat¢onstant
value throughout the nebula) must be included in the inpautifilo-
cassin can then guess an initial ionization structure amacéd, the
electron density. However, if the output of a one dimendioradel
(or a combination of more than one of them) is available glze
also procedures built into Mocassin to map these onto theethr
dimensional Cartesian grid, by using simple interpolatimutines.
A one-dimensional mode option was implemented in Mocassin f
this purpose. Several tests have shown that while the clobitte
initial conditions has, of course, no influence on the finalteof
the simulation, it can, however, have an inpact on the nurober
iterations required to reach convergence. It is hard to tifyathe
number of iterations required for convergence by each naetimo
particular, it depends strongly on the initial temperaiaput used
in the first method, and, when applying the second methochen t
deviation of the actual three-dimensional geometry fromgim-
plified one-dimensional model used. However, with suffitiem
ergy packets, the benchmark models described here shotudybe
converged in approximately fifteen to twenty iterations.trategy
to speed up the simulations is described in Section 3.1.

Once the initial conditions are specified, the frequencyedep
dent total emissivities are calculated in each grid cellrideo to
set up the probability density functions for re-emittediasidn,
which are used for the determination of the frequency distion
of the re-emitted energy-packets during the Monte CarlaiEm
tion. The energy packets are then fired through the grid agid th
trajectories computed. Once all the energy packet trajestbave
been computed, the Monte Carlo estimators for the mean-inten
sity of the stellar and the diffuse radiation fields can beatad,
as described in Sectid?.5. The ionization fraction andetee-
tron temperatures and densities must now be updated to be sel
consistent with the current estimates of the radiation faldach
grid point. This means solving the local ionization balaand ther-
mal equilibrium equations simultaneously. The entire pthoe is
repeated until convergenge is achieved. The convergeitegian
that is used in this work is based on the change of the local hy-
drogen ionization structure between successive itergtionsome
cases, however, this is not a suitable convergence critéeig. in
hydrogen-deficient environments), for this reason, othigria are
also implemented in the code (e.g. based on the change dof-the |
cal helium ionization structure, or of the local electromperature
between successive iterations), and these can be easityextby
using the appropriate switches in the input file.

2.8 Comparison of the Model with Observations

When the model has converged to its final solution, the ouspeit-
trum can be computed and compared with the results obtaioed f
other models or with observational data. The total lumityosf
the nebula emitted in various emission lines longward oflie
man limit can be obtained by using two methods. The first mistho
which is only available to Monte Carlo codes, consists of isimg

up the number of energy packets in the given liNg,,., over the
grid cells. Hence, the power emitted in the line is given by

imaz Jmaz Kmax

€0

Lline = E Z Z Z Nline(xiyyjyzk) (15)
i=1 j=1 k=1
where 22 is given by equatiofil2. The second method consists of

using the values of the local electron temperature and iaim-

dances given by the final converged model solution to obtaén t
line emissivities for each grid cell. The luminosity of thetwila in
any given line can then be calculated easily by summing ttis-em
sivity of the required line over the volume of the nebula.

A comparison of the results obtained using the two methods
described above, provides an indication of the level of sy
achieved during the simulation, as the two methods will gioe-
sistent results only if enough energy packets have beenogésid
good statistics for every line. In general, the second nk{far-
mal solution) yields the most accurate results, partityfar weak
lines, which may emit relatively few photons. For the benahm
cases presented here, reasonable accuracy was deemeel hebav
achieved when the fluxes of the strongest transitions odadaising
the pure Monte Carlo method were within 10% of those obtained
using the formal solution. Both methods can also be usedlto ca
culate line of sight results and to simulate long-slit okiagons.
However, just as for the calculation of the integrated gpect the
formal solution method is to be preferred, as it yields thesnaa-
curate results, particularly for the weaker lines.

In addition to the integrated emergent spectrum, otherulisef
comparisons with the observations can be carried out, egqted
images of the final model nebula in a given line or at a giver con
tinuum frequency can be produced for arbitrary viewing asgl
These can be compared directly with nebular images obtamed
an appropriate filter. Mocassin computes and stores theiqathys
properties of the nebula, as well as the emissivities of te a
each grid point; these can be fed into IDL plotting routine®i-
der to produce maps (Morisset et al., 2000). Also, by assgirain
velocity field, line spectral profiles can be produced, thgetvith
position-velocity diagrams. These can be compared witlervbs
tions, if available, to deduce spatio-kinematic inforroatabout the
object being studied. More information about the origitill rou-
tines is given by Morisset etial. (2000) and Monteiro &tlabO®).
Details of the actual application to Mocassin’s grid files avail-
able in a companion paper on the modelling of the planetdoulae
NGC 3918I(Ercolano et Hl. 2002, Paper

At the end of each Monte Carlo iteration the physical quan-
tities which characterise the grid are written out to digo ithree
files, namelygrid1.out grid2.outandgrid3.out The first file con-
tains the local electron temperature and density as wehagas
density at each grid cell, the second the ionization streadfi the
nebula and the third a number of model parameters, inclutieg
number of energy packet to be used in the simulation. These fil
are used in conjuction withwarm startdriver, which allows an in-
terrupted simulation to be resumed from the end of the lasit®o
Carlo simulation. This means that once a simulation has meen
rupted the number of energy packets used (and indeed othd®imo
parameters, if required) can be adjusted, before the siionl&s
restarted, by modifying the filgrid3.out This feature can be used
to speed up the simulations by using the following approdtie
first few iterations are run using a lower number of energyketc
than actually needed; so, for example, if the optimum nuroben-
ergy packets for a given model is,ahen the first few iterations
can be carried out using only 1@ackets, hence reducing the run
time for these by a factor of ten. This will result in about 56296
of the grid cells converging; in general, the inner cellsvesge
more quickly, due to the larger number of sampling unitslatéé
there (due mainly to geometrical dilution and to the repssitgy
of energy packets to non-ionizing energy packets). At thiafthe
simulation is interrupted and then resumed, after havijgsaed
the number of energy packets to the final required value 0%,
in the previous example). Final convergence will then beexehl,



in most cases, within four or five further iterations. Theuathum-
ber of iterations required depends on the number of enercieta
used: the larger the number of sampling quanta availablecit e
cell, the quicker the cells will converge to a solution. Thernbers
guoted above, however, also depend on each particular mgeel
ometry and optical thickness.

2.9 General Architecture

The Mocassin code was written using the Fortran 90 progragmi
language. The code was developed and run initially on a Com-
paq(Dec) XP1000 with a 500 MHz CPU and 1 Gb of memory and
a preliminary serial version of the code still exists. A yuflaral-

lel version of the code has since been developed using Nultip
Processes Interface (MPI) routines and it currently runs @il-

icon Graphics Origin 2000 machine with 24 processors and 6 Gb
of memory and a SUN Microsystems Sunfire V880 machine with
16 processors and 64 Gb of memory. Monte Carlo simulatioms ar
by their nature, very parallelizable problems and, indééatassin

can achieve a lineapeed-upi.e. a speed-up that is directly pro-
portional to the number of processors used. A detailed g&or

of all the Mocassin modules, input commands and output fies i
given by Ercolana (2002, PhD Thesis). A copy of the code id-ava
able from the author (be@star.ucl.ac.uk) together withréfevant
thesis chapters.

3 APPLICATION TO BENCHMARK CASES

Numerical simulations of photoionized nebulae are very mem
and a number of factors, such as numerical approximatiothgign
sumptions, and the complexity of the calculation itselffaduce

a degree of uncertainty into the results. For this reasais, iih-
portant for modelers to have certain standards of compariso
order to identify problems in their codes and to reach an aakeq
degree of accuracy in their calculation. A series of meetiage
been held, beginning in Meudon, France, in 1985 (Peqult®ads)
and in Lexington, Kentucky, firstin 1995 (Ferland et al. 1p86d
again in 2000/ (Péquignot etlal. 2001), in order to define aobet
benchmark cases which could be used by all photoionizatiod m
elers to test their codes against. The benchmarks whiclitedsu
from these meetings include H regions, planetary nebulae, nar-
row line regions (NLRs) of AGNs and X-ray slabs. Mocassingloe
not have, at present, the capability to treat NLRs and X-lalyss
as some relevant physical processes, such as Comptonghaatin
inner shell ionization, are not yet included. For this reasmly the

H 11 region and planetary nebula benchmarks are performedsn thi
work. The expansion of the code to include high energy pseEes
is planned in the future.

Results from several other codes are available for congaris
these are all one-dimensional codes and, apart from diffeein
the atomic data used by each of them, their main differeriees |
in the treatment of the diffuse radiation field transfer. Aebde-
scription of each of these codes is givenLby Ferlandlel aP&{19
Although the majority of these codes have evolved somewheg¢s
the 1995 Lexington meeting, mostly via the updating of tloerat
data sets and the inclusion of more and specialised physioal
cesses, their basic structures have stayed the same. Hrecaeles
included for comparison are G. Ferlan@®udy(GF), J.P Harring-
ton’s code (PH), D. PéquignotNebu (DP), T. Kallman'sXStar
(TK), H. Netzer'slon (HN), R. Sutherland’sMappings(RS) and
R. Rubin’sNebula(RR). Only two of these codes, the Harrington

Mocassin

Table 1. Lexington 2000 benchmark model input parameters.

Parameter HIl40 HI20 PN150 PN75
L(BB)/10%7(%£Z) 308.2 6005 3.607 1913
T(BB)/16°K 40 20 150 75
R;,/10'7cm 30 30 1 15
nplem=3 100 100 3000 500
He/H 0.10 0.10 0.10 0.10
C/Hx 10° 22. 22. 30. 20.
N/Hx 10° 4. 4. 10. 6.
O/Hx 10° 33. 33. 60. 30.
Ne/Hx 10° 5. 5. 15. 6.
Mg/Hx 10° - - 3. 1.
Si/Hx 10° - - 3. 1.
S/Hx 10° 0.9 0.9 1.5 1.

Elemental abundances are by number with respect to H.

code and Rubin’slebula treat the diffuse radiative transfer exactly.
The others use some versions of thward-only approximatioof
varying sophistication. In this approximation all diffuseliation is
assumed to be emitted isotropically into the outward hatffce.
The predicted line fluxes from each code for each benchmark
case are listed in Tablg} 4[fb 7, together with the volumeagesl
mean electron temperature, weighted by the proton andrefect
densities,Np, Ne, <T[Np,Ne] >, the electron temperature at the
inner edge of the nebula,J..-, and the mean ratio of fractional

He' to fractional H, <<’§Ie++>> , Which represents the fraction of

helium in the H region that is singly ionized<T[Nz+,Ne] >
and <Z<> are calculated according to the following equations

PATEN

(Ferland et &l. 1995)

[ NeN,T. dV
< T[Ny, Ne] >= " (16)
[ NeNy dV
and
+ NeNyer dV
<He™ > n(H) S/ Het 17)

< H+> = n(He) fNCNp dv

where N, and N, are the local electron and proton densities,
respectivelyNy,+ is the density of H&, andn(H) andn(He) are
the total hydrogen and helium densities.

Table1 lists the input parameters for all the benchmark fsode
dicussed here. All the benchmark cases listed in Tdble 1 vadre
culated using both the three-dimensional and the one-diioeal
mode of Mocassin and both sets of results are included here fo
comparison. It is clear from Tabl€$ 4[b 7 that the resultshef t
three-dimensional and one-dimensional modes of Mocassn a
consistent with each other. The small differences that d&t ean
be entirely attributed to the coarseness of the grids usethé
three-dimensional calculations. The aim of the benchmagrkie-
scribed in this work is to assess the reliability of Mocagsirits
fully three-dimensionaiode, for this reason the one-dimensional
mode results will not be included in the following perfornsan
analysis; moreover the inclusion of two sets of results frehat
is, essentially, the same code would introduce a bias in #ian
and isolation factors calculations described below. Bl avoid
any confusion, any mention of Mocassin throughout the retti®
paper refers to the fully three-dimensional version of thee; un-
less otherwisestated.

Figuredd and2 show the electron temperatures (top panels)
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and the fractional ionic abundances of oxygen (middle sraeid Table 2. Summary of the number of energy packets needed-f56% and
carbon (bottom panels) for the four benchmark cases arthlyée > 95% convergence (see text for explanation) for each of tinehraark
ionic abundances in every cell in the ionized region aretgdbt cases

against radial distance from the star. These plots aredistieg not
only because they provide a clear picture of the overall tatpre

and ionization structure of each model, but also because fhe Case Tedge Mg XMy XNz Npackets
scatter of the data points one can estimate the accuracy difi HO He”  Hef >50%  >95%
results. (Note that such plots are only meaningful in theesiphlly HI40 479 115 177.8 1813x13 510° 510°
symmetric case.) HI20 295 113 912 1813x13 510 5107
Four benchmark model nebulae were computed, two itd- PN150 34.0 6.87 579  1313x13 310° 3.10°
gions and two planetary nebulae. These benchmarks wegnéesi PN75 116 0.24 315 3813x13  410°  4.10°

to be uncomplicated yet to test different aspects of the ttinde
(se€e_Ferland et El. 1995). The nebulae are homogeneoussityden
and, for simplicity, blackbodies are used as the ionizingrees
instead of model stellar atmopheres.

Following the analysis of Péquignot (see_Péquignotlet al.
2001), isolation factors; f’'s, were computed for each predicted
guantity in each case study. These are defined as the ratie of t

Table 3. Deviation of the Monte Carlo method from the formal solutfon
the prediction of some significant line fluxes in the benchnmaodels.

. i . Line HI40  HI20 PN150 PN75
largest to the penultimate largest value of a given outpantjty
or the ratio of the penultimate smallest value to the smialiaisie. H3 . 27%  9.5% 58%  2.8%
These ratios are computed with the intention to identifyriye He15876A  52%  6.3% 0.96% 4.5%
values. A large f can be attributed to a number of factors, but of- [NN]6584A  7.6%  49%  85%  4.8%
ten these can be attributed to a difference in the atomic wised [On]S007A ~ 3.1%  12.0%  4.0%  11%

A 0 0 0 0
by each modeler. A list of the number éf’s larger than 1.01, [Sm]9532A  5.8%  5.0% 20%  2.0%

1.03, 1.10, 1.30 and 2.00 is given in Table 8, for each bendhma
After analysing the benchmark results obtained by all theleho

ers who participated in the Lexington workshop, Péguigiatl. required to achieve a given degree of convergence. Thendaso
(2001) suggested that an isolation factor larger than k3dica- this effect is that in a softer radiation field case the nundfem-

tive of a significant departure and a possible problem. Adamgm- ergy packets emitted at wavelengths shorter than the Lyinan |
ber of occurences aff’s > 1.30 should either have an acceptable  will be less than in the case of a harder radiation field. Adarg
explanation or lead to corrections to the code. total number of energy packets then needs to be used in arder t

The number of results not predicted by any given code iddiste obtain a number of ionizing photons adequate to properlypgam
in theNo predrow of Table[Bl Péquignot etlal. (2001) also noted, in the nebula. The aim of Tabl# 2 is merely to provide some génera
the proceedings of the November 2000 Lexington meetingitiea guidelines for selecting the appropriate number of eneapkets
lack of a prediction for a particular observable may simpljact a for a particular simulation; however, as stated beforepfftenum
lack of interest by the modeller in it; on the other hand, adient number should be determined for each given model, partiguta
occurence oNo predmay also indicate limitations in the predictive  non-spherically symmetric cases.
power of a given code.

As argued by Péquignot etlal. (2001), a large error can be in-
troduced when the average over a small sample containingna nu 3.2 Benchmark Results
ber of aberrant values is taken. In order to minimise thisreme-
dian values are calculated instead of averages and thesggvare
for each observable listed in Tablds 430 7, in the columnllede
Med The medians are calculated to the precision shown in TEbles
to[d. Tabld® lists the number of median values scored by eadé ¢
for each benchmark, i.e. the number of times the code waddbke ¢
est to the median value. When a median value is shared by two or
more codes the score is given to each one, therefore the stima of
median values scored by all the codes is higher than the nuofbe
observables (the column labell&dtal in Table[3).

The Lexington/Meudon Standard # region model (HII40) was
the first benchmark to be run and some very preliminary result
have already been presented, at the November 2000 Lexington
meeting [(Ercolan@®_2001; Péguignot etlal. 2001). Howeverse
results were produced when Mocassin was still under dexedop
and should therefore only be considered asapshobf the code
at that particular stage. The code has evolved considesihte
the November 2000 Lexington meeting and the newer residts ar
presented in this section (see TdHle 4).

Table[3 shows the results of a comparison between the line
fluxes obtained by Mocassin using the formal solution me i

31 Sampling Requirements those obtained using the Monte Carlo method (see Sdcirid?.8
) _ o some of the more significant lines in the benchmark casescléear
Tablef2 lists the optical depths at the ionization thresffi@duen- that the results shown agree well; however, as expectegbrldis-

cies for H, He” and He', at the outer edge of the grids, for the four  crepancies were found for the weaker lines, whose lower easb
benchmark models analyzed here. For each model, the nurhber o of energy packets yield lower accuracy statistics.

grid points is also given (column 5), together with the numtie

energy packets use@V,ackets, according to the two-step stategy
described above, first to achieve convergence in 50%-60%eof t
total number of grid cells® 50%, column 6) and then to achieve
total convergencex 95%, column 7). TablEl2 shows that the softer Mocassin scored eigfitts > 1.01 for the HI140 benchmark model
the ionizing radiation field, the larger the number of engrggkets (Table[®); only three of these, however, had values greatan t

3.2.1 The HII40 benchmark
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Table 4. Lexington 2000 Standard H region (H1140) benchmark case reults.

Line Median GF  HN DP TK PH RS RR BE

3D 1D
HBI1037 ergls 205 206 202 202 210 205 207 205 202 210
HE 4861 - 100 100 1.00 100 1.00 1.00 1.00 1.00 1.00
He5876 0.116 0119 0112 0.113 0.116 0.118 0.116 - 0.114 0.112
Ci1] 2325+ 0.144 0157 0.141 0139 0.110 0.166 0.096 0.178 0.1481260
C111335 0.082 0100 0.078 0.094 0.004 0.085 0.010 - 0.082 0.084
C 111] 1907+1909 0.070 0.071 0.076 0.069 0.091 0.060 0.066 0.074410. 0.041
[N 1] 122um 0.034 0.027 0.037 0.034 - 0.032 0035 0.030 0.036 0.034
[N 11] 6584+6548 0.730 0669 0.817 0725 0.69 0736 0.723 0.807 520.80.786
[N 115755 0054 .0050 .0054 .0050 - 0064 .0050 .0068 .0061 .0054
[N 11]57.3um 0.292 0306 0261 0.311 - 0.292 0273 0301 0.223 0.229
[0 1] 6300+6363 .0086 .0094 .0086 .0088 .012 .0059 .0070 - .0065080.0
[0 11] 7320+7330 0.029 0.029 0.030 0.031 0.023 0.032 0.024 0.0380250. 0.022
[O11] 3726+3729 203 194 217 212 16 219 188 226 192 175
[O11]51.8um 1.06 123 1.04 103 099 109 1.06 108 1.06 1.09
[O11]88.3um 122 112 1.06 123 118 125 123 125 122 126
[O 111] 5007+4959 218 221 238 220 327 193 217 208 164 170
[O11] 4363 0037 .0035 .0046 .0041 .0070 .0032 .0040 .0035 .002D23.0
[O1v] 25.9um 0010 .0010 .0010 .0010 .0013 .0013 .0010 - .0010  .0010
[Nen]12.8um 0.195 0.177 0.195 0.192 - 0.181 0217 0196 0.212 0.209
[Nei] 15.5um 0.322 0294 0264 0270 035 0429 0350 0417 0.267 0.269
[Ne 1] 3869+3968 0.085 0.084 0.087 0.071 0.092 0.087 0.083 0.0860530. 0.055
[S11] 6716+6731 0.147 0137 0.166 0.153 0.315 0.155 0.133 0.130410. 0.138
[S11] 4068+4076 0080 .0093 .0090 .0100 .026 .0070 .005 .0060 0.0080057
[S111]18.7 um 0.577 0627 0750 0.726 0.535 0.556 0.567 0.580 0.574 0.569
[S111]33.6pm 0937 124 143 136 0.86 0.892 0.910 0.936 0.938 0.932
[S111] 9532+9069 122 113 119 116 125 123 125 128 121  1.19
[S1v] 10.5um 0359 0176 0152 0185 056 0416 0388 0330 0.533 0.539
10 x A(BC 3645)/4 5.00 4.88 - 4.95 - 500 5.70 - 5.47  5.45
Tinner! K 7653 7719 7668 7663 8318 7440 7644 7399 7370 7480
<T[NpNg] >/K 8026 7940 7936 8082 8199 8030 8022 8060 7720 7722
Rout/10Y9cm 1.46 146 146 146 145 146 147 146 146  1.49

<Het >/ <HT > 0.767 0.787 0.727 0754 0.77 0.764 0.804 0.829 0.715 0.686

GF: G. Ferland’Cloudy, PH: J.P Harrington code; DP: D. Péquigndtieby TK: T. Kallman’s XStar, HN: H. Netzer's
lon; RS: R. Sutherland'#appings RR: R. Rubin’sNebula BE: B. Ercolano’s Mocassin.

1.3. Amongst theseif’s > 1.10 are obtained for th¢O 1] 3.2.3 The PN150 benchmark
5007+4959 if = 1.18) and for[O 1] 4363 {f = 1.45); the ra-
tio of these lines is often used as a temperature diagncsie, (
for example| Osterbrodk 1989, pages 119-125). Mocassitigise
Iases0Hirs007 = 745 4, this value is higher than the value obtained

by tjrfél‘%g%her codes, in fact median value obtained for the wfti model was very good (Tablg 8), obtaining only &, with none
these line fluxes by the other codes is equal to 589.2. Thidlis f of those being higher than 1.3 and only one slightly highenth
consistent with Mocassin predicting a slightly lower temgtere 1.1 (C 11 A1335, if = 1.13). As has already been discussed by
(if = 1.027) for this benchmark than do the other codes. Péaquignot et Al[(20D1), there seems to be a dichotomy kettire
Finally, the number of median values obtained for this bench GF, HN and DP models (and, now, also the BE model) on the one
mark case is ten, which compares very well with the other gode hand, and the TK, PH and RS models on the other. The former
median scores, ranging from three to ten (see Table 9). group obtained very feif’s largest than 1.1, indicative of a tighter
agreement. This coherence can probably be attributed toda o
cent updating of atomic data and a more careful treatmertieof t

The optically thick high-excitation planetary nebula (P91 is
the most demanding of the benchmark cases in terms of physi-
cal processes and atomic data required. Mocassin’s scothi$o

3.2.2 The HII20 benchmark diffuse radiation field transfer. These four codes also inbtha
. . o . larger H3 flux for this model, which can probably be ascribed to

(H1120) benchmark model. None of these, however, has a value nhere with a fully iterative spherically symmetric radiatitransfer

perature, weighted by, ., predicted by Mocassin for this model  pe the reason for the relatively larger numbeifisfscored by the
is also slightly lowerif = 1.034) than the other models’ predictions.  pH code for this model.

Five median values were obtained by Mocassin for this bench-
mark case, while the other codes scored between three amhele The score for median values obtained by Mocassin for the
(see Tabl€lo). PN150 optically thick planetary nebula is extremely godatam-
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Figure 1. Electron temperature (top panels) and the fractional iabimdances of oxygen (middle panels) and carbon (bottoelg)aas a function of nebular
radius, for the Hi region benchmark cases HI140 (left-hand panels) and Hiigbtthand panels).
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Figure 2. Electron tempearture (top panels) and the fractional iabimdances of oxygen (middle panels) and carbon (bottoelg)aas a function of nebular
radius, for the planetary nebula benchmark cases PN15h@efl panels) and PN75 (right-hand panels).
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Table 5. Lexington 2000 low excitation Hi region (HII20) Benchmark case results.

Line Med GF  HN DP  TK PH RS RR BE

3D 1D
HBI10% erg/s 491 4585 485 483 49 493 504 489 497 509
Hg 4861 - 100 100 100 100 1.00 1.00 1.00 1.00 1.00
He 5876 .0074 .0072 0.008 .0073 0.008 .0074 .0110 - 0065 .0074
Ci1] 2325+ 0.046 0.054 0.047 0.046 0.040 0.060 0.038 0.063 0.040310
[N 1] 122um 0.071 0.068 - 0.072 0.007 0.072 0.071 0.071 0.071 0.070
[N 11] 6584+6548 0.823 0745 0.786 0.785 0.925 0.843 0.803 0.918460. 0.771
[N 115755 0028 .0028 .0024 .0023 .0029 .0033 .0030 .0033 .002821.0
[N 11]57.3um .0030 .0040 .0030 .0032 .0047 .0031 .0020 .0022 .0019 .0032
[0 1] 6300+6363 0060 .0080 .0060 .0063 .0059 .0047 .0050 - .008@015.
[0 11] 7320+7330 .0086 .0087 .0085 .0089 .0037 .0103 .0080 .010(64.0 .0051
[O11] 3726+3729 1.09 101 113 110 1.04 122 108 117 0.909 0.801
[O11]51.8um 0012 .0014 .0012 .0012 .0016 .0013 .0010 .0008 .0010 .0011
[O111]88.3um 0014 .0016 .0014 .0014 .0024 .0014 .0010 .0009 .0012 .0013
[O 111] 5007+4959 0014 .0021 .0016 .0015 .0024 .0014 .0010 .001®M11.0 .0012
[Nen]12.8um 0.273 0.264 0267 0276 027 0271 0286 0290 0295 0.296
[S11] 6716+6731 0.489 0499 0473 0459 1.02 0555 0.435 0.492 860.40.345
[S11] 4068+4076 0.017 0022 0017 0.020 0.052 0.017 0.012 0.019130. .0082
[S111]18.7um 0.386 0.445 0460 0441 034 0.365 0398 0374 0371 0.413
[S111]33.6pm 0.658 0912 0928 0845 058 0.601 0655 0622 0630 0.702
[S111] 9532+9069 0.537 0501 0.480 0.465 056 0549 0.604 0.551 260.5.582
10° x A(BC 3645)4 557 554 - 5.62 - 557 550 - 6.18 6.15
Tioner! K 6765 7224 6815 6789 6607 6742 6900 6708 6562 6662
<T[NpNg] >/K 6662 6680 6650 6626 6662 6749 6663 6679 6402 6287
Rout/108cm 889 889 883 88 87 895 901 892 889 892
<Het > /<Ht> 0048 0048 0051 0049 0048 0044 0077 0.034 0041 0.048

GF: G. Ferland’<Cloudy, PH: J.P Harrington code; DP: D. Péquigndfsby TK: T. Kallman’s XStar, HN: H. Netzer's
lon; RS: R. Sutherland'#appings RR: R. Rubin’sNebulg BE: B. Ercolano’s Mocassin.

ing the highest value of fifteen medians, above the other <ode
which obtained between two and thirteen (see Table 9).

3.2.4 The PN75 benchmark

The optically thin planetary nebula (PN75) benchmark migiebt
aradiation bounded case, but a matter bounded one andt,ithiac
outer radius is given as an input parameter to all codes aed &k
7.5 x 10'° em. For this reason, for this particular model there is not
a straightforwaraonservation laviior the absolute flux of 3. This
can be used to explain, in part at least, the relatively poores of
the GF code for lovif’s (Table[B), since, for one reason or another,
its predicted K flux deviated somewhat from the median value,
thus shifting all the other line intensities, given iBHinits. The
PH code also obtained andlux which deviated from the median
value; in this case, however, the number of tdtalstayed low (=5)
and noif > 1.30 was obtained. Mocassin, however, obtained a low
number ofif's for this relatively difficult case, scoring nirigs in
total, with none of those having a value greater than 1.30.
Mocassin obtained a score of thirteen median values for this
benchmark case, which compares well with the scores olotdine
the other codes for this benchmark, ranging from eight tbteign
median values.

4 DISCUSSION

The overall performance of Mocassin for the four benchmarks
very satisfactory, as shown by Talple 8. The results obtafrud

the one-dimensional mode of Mocassin are, in general, ngeod
agreement with those obtained using the fully three-dinogwas
Mocassin models. One noticable difference, common to ali fo
benchmarks, is that the kinetic temperature at the illutethan-
ner edge of the nebula,;I,..-, is higher for the one-dimensional
Mocassin results and closer to the values obtained by tle otie-
dimensional codes included in the comparison. This is aioolsv
effect caused by the coarseness of the three-dimensiadasigrce
all the physical properties of the gas are constant withah eal-
ume element, then the electron temperature of a given cklbevi
mainly representative of the kinetic temperature at itareefrrom
this, it naturally follows that the coarser the grid is, ahd targer
the cells, then the further the kinetic temperature at three of
the cells adjacent to the inner radius will be from the trueeat
the inner radius.

The electron temperatures, T'[NpNe] > and Tinner, pre-
dicted by Mocassin for the Lexington benchmark models témnd,
particular in the Hil region cases, towards the lower limit of the
scatter. In the case ..., this seems to be a characteristic of all
codes using an exact treatment for the radiative transfendied
by IPéquignot et all (2001), the kinetic temperatures ¢atled by
codes with exact transfer tend to be lower in the innermogra
of the nebula, as the ionizing radiation field there is sof@ly
two codes in the Lexington benchmarks treated the raditrwes-
fer exactly, namely Rubin’slebula(RR) and the Harrington code
(PH) and, in fact, Mocassin’s results for the kinetic tenapares
generally agree better with those two codes’ predictioms.tRe
standard Hi region benchmark (HI140), Mocassin’s kinetic tem-
perature at the inner edge of the nebulg,.I-, agrees extremely
well with the predictions of the RR and PH codes. Similar ltssu
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Table 6. Lexington 2000 thick planetary nebula (PN150) benchmasie casults.

Line Med GF HN DP TK PH RS BE

3-D 1-D
Hp/10% ergls 279 2.86 2.83 2.84 2.47 2.68 2.64 2.79 2.89
Hp 4861 - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
He 5876 0.104 0.110 0.129 0.118 0.096 0.096 0.095 0.104 1.06
He 11 4686 0.328 0.324 0.304 0.305 0.341 0.333 - 0.333  0.320
C 1] 2325+ 0.293 0277 0.277 0.293 0.346 0450 0.141 0.339 0.330
Cn 1335 0.119 0.121 0.116 0.130 - 0.119 - 0.103  0.104
C 1] 1907+1909 0.174  1.68 1.74 1.86 1.69 1.74 1.89 1.72 1.71
C1v 1549+ 216 214 2.43 216 0154  2.09 3.12 2.71 2.65
[N 1] 5200+5198 0.012 0.013 0.022 0.010 - 0.020 0.005 .0067 0.012
[N 1] 6584+6548 117 115 1.16 1.18 1.01 1.35 1.17 1.43 1.37
[N 11] 5755 0.017 0.017 0.016 0.017 0.020 0.023 0.016 0.022 .0021
N 1] 1749+ 0.111 0.106 0.109 0.132 0.184 0.139 0.091 0.111 0.110
[N 11]57.3um 0129 0.129 0.133 0.134 012 0135 0.126 0.120 0.122
N Iv] 1487+ 0.168 0.199 0.178 0.192 0.154 0.141 0.168 0.162 0.159
N v 1240+ 0.147 0.147 0.159 0.154 0.055 0.107 0.248 0.147 0.145
[01] 63.1um 0.020 0.024 0.017 0.025 - .0072 0.049 0.010 0.011
[01] 6300+6363 0.135 0.144 0.126 0.135 0.245 0.104 0.101  0.1631530.
[0 1] 3726+3729 211  2.03 1.96 2.32 2.11 2.66 1.75 2.24 2.25
[O11]51.8um 139 1.30 1.45 142 0.954  1.39 1.28 1.50 1.52
[O11]88.3um 0.274 0261 0.292 0.291 027 0274 0.252 0.296 0.299
[0 111] 5007+4959 21.4 214 22.2 21.1 26.0 20.8 16.8  22.63 22.52
[O11] 4363 0.155 0.152 0.151 0.156 0.249 0.155 0.109 0.169 0.166
[01v] 25.9um 378 3.45 3.16 3.78 3.95 4.20 4.05 3.68 3.60
O Iv] 1403+ 230 0.183 0.236 0.324 0.357 0.225 - 0.203  0.201
Ov] 1218+ 0.169 0.165 0.189 0.170 0.142 0.097 0.213 0.169 0.168
OvI 1034+ 0.025 0.028 0.026 0.022 0.026 0.014 - 0.025 0.026
[Nen]12.8um 0.030 0.028 0.032 0.030 0.020 0.027 0.043 0.030 0.031
[Nen]15.5um 197 1.88 1.97 1.92 1.73 2.76 2.71 2.02 2.03
[Ne111] 3869+3968 2.63 2.64 2.32 2.25 2.86 3.04 2.56 2.63 2.61
[Ne1v] 2423+ 0.723 0.707 0712 0.785 1.13 0723 0.832 0.749 0.741
[Ne V] 3426+3346 0.692 0.721 0.706 0.661 1.07 0583 0.591 0.692 870.6
[Nev] 24.2um 0980 0997 098 0928 196 0936 0195 1.007 0.997
[Nevi] 7.63um 0.076 0.107 0.075 0.077 0.692 0.011 - 0.050  0.051
Mg 1l 2798+ 1.22 222 2.10 1.22 0.023 0555 0.863 232 2.32
[Mg 1v] 4.49um 0.111 0121 0111 0.107 0.13 0.042 0.115 0.111 0.109
[Mg v] 5.61um 0.144 0.070 0.132 0.162 0.18 0.066 - 0.156  0.156
[Sin]34.8um 0.168 0.155 0.168 0.159 0.263 0.253 0.130 0.250 0.263
Sin] 2335+ 0.159 0.160 0.155 0.158  0.20 - 0.127 0.160 0.164
Sini] 1892+ 0.382 0.446 0547 0475 0.321 0.382 0.083 0.325 0.316
Siv 1397+ 0.172 0.183 0.218 0.169 0.015 0.172 0.122 0.214 0.207
[S11]6716+6731 0.370 0359 0.37 0.399 0415 0451 0.322 0.357 700.3
[S11] 4069+4076 0.077 0.073 0.078 0.086 0.19 0.077 0.050 0.064 630.0
[S11]18.7um 0578 0.713 0.788 0.728 0.15 0.488 0.578 0.495 0.505
[Sin]33.6um 0.240 0281 0.289 0.268 0.06 0.206 0.240 0.210 0.214
[S111] 9532+9069 1.96 207 2.07 1.96 0.61 1.90 2.04 1.89 1.92
[S1v] 10.5um 222 2.09 1.65 1.76 2.59 2.22 2.25 2.25 2.22
Tinner! K 18100 18120 17950 18100 19050 17360 19100 16670 17703
<T[NpNe] >/K 12110 12080 13410 12060 13420 12110 11890 12150 12108
Rout/10'7cm 4.04 4.04 3.90 411 4.07 4.04 3.98 4.11 4.19

<Het > /<Ht > 0704 0702 0.726 0714 079 0696 0.652 0.702 0.711

GF: G. Ferland’Cloudy, PH: J.P Harrington code; DP: D. Péquigndfeby TK: T. Kallman’s XStar, HN: H.
Netzer'slon; RS: R. Sutherland'#1appings BE: B. Ercolano’s Mocassin.

are obtained for the low excitation Hregion benchmark (HI120), Unfortunately, R. Rubin’s codeNebulg was not designed
where, again, Mocassin’s;I.. agrees with the results of PHand to treat planetary nebulae and, therefore, the only exaet on
RR. In both HiI regions benchmark cases, however, Mocassin pre- dimensional radiative transfer code available for theazty thick
dicted a value which was about 250 K lower than the median for planetary nebula (PN150) and the optically thin planetariguta

< T|NpNe] >, obtaining anif = 1.027 for the HIl140 case and  (PN75) benchmarks is the Harrington code (PH). For PN150, Mo
if = 1.034 for the HII20 case. The cause of this small discregpanc cassin’s T, iS in reasonable agreement with PH’s prediction,
is not clear to us. particularly if the prediction from the one-dimensional déssin
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Table 7. Lexington 2000 optically thin planetary ne

bula (PN75) benark case results.

Line Med GF HN DP PH RS BE

3-D 1-D
Hp/10% ergls 571  6.08 5.56 5.74 5.96 5.69 5.65 5.63
Hp 4861 - 1.00 1.00 1.00 1.00 1.00 1.00 1.00
He 15876 0131 0.130 0.144 0.132 0126 0125 0.132 0.132
He 1l 4686 0.087 0.085 0.089 0.087 0.087 - 0.093  0.094
C 1] 2325+ 0.039 0.023 0.047 0.040 0.044 0.034 0.038 0.043
C11 1335 0.089 0.096 0.089 0.101 0.085 - 0.086  0.085
C111]1907+1909 0.790 0584 096 0.882 0602 1.00 0.698 0.709
C v 1549+ 0.354 0.298 0480 0.393 0.291 0.315 0.414 0.463
[N 1] 6584+6548 0.098 0.069 0.097 0.089 0.108 0.119 0.100 0.087
[N 11] 5755 .0012 - .0011 .0012 .0013 .0020 .0011  .0010
N 1] 1749+ 0.043 0.029 0.059 0.056 0.038 0.048 0.038 0.039
[N 11]57.3um 0.397 0.371 0.405 0.404 0.390 0.405 0.336 0.334
N Iv] 1487+ 0.018 0.019 0.024 0.020 0.012 0.011 0.017 0.020
[0 1] 3726+3729 0.262 0.178 0.262 0.266 0.262 0.311 0.234  0.205
[0 111] 5007+4959 11.35 10.1 13.2 11.7 10.1 11.8 11.0 11.1
[O11]4363 0.060 0.046 0.077 0.066 0.048 0.065 0.056 0.057
[O11]51.8um 1.98 1.94 2.09 1.94 1.95 2.02 2.07 2.07
[O11]88.3um 1.12 098  1.13 1.12 1.07 1.12 1.14 1.14
[O1v] 25.9um 0.814 0.767 0741 0.859 0.821 0.807 0.894 0.942
O Iv] 1403+ 0.013 0.009 0.015 0.014  .093 - 0.013  0.015
[Nen]12.8um 0.012 0.012 0.012 0.012 0.012 0.017 0.013 0.012
[Ne1n]15.5um 0.948 0.883 095 0902 1.32 1.35 0.946  0.949
[Ne11] 3869+3968 0.872 0.784 0948 0.818 0.919 1.10 0.826 0.838
[Ne1v] 2423+ 0.030 0.028 0.032 0.036 0.027 0.020 0.034 0.039
Mg 1l 2798+ 0.102 0.086 0.14 0.111 0071 0.093 0.114 0.106
[Mg 1v] 4.49um .0062 .0021 .006 .0075 .0065 .0050 .0068  .0072
[Sin]34.8um 0.029 0.025 0.034 0.025 0.060 0.004 0.061 0.052
Sin] 2335+ .0057 .0037 .0078 .0054 - .0010 .0062  .0052
Sini] 1892+ 0.104 0.087 0.16 0.136 0.101 0.019 0.107 0.110
Silv 1397+ 0.017 0.017 0.023 0.018 0.013 0.023 0.016 0.018
[S11] 6716+6731 .0020 0.023 0.036 0029 0.013 0.016 0.017 0.013
[S11] 4069+4076 .0017 .0022 .0034 .0030 .0013 .0010 .0012  .0010
[S11]18.7um 0.486 0.619 0715 0.631 0.316 0.357 0.285 0.266
[Sin]33.6um 0.533 0.702 0.768 0.684 0.339 0.383 0.306 0.285
[S111] 9532+9069 1.20 131 1.51 133 0915 1.09 0.831 0.777
[S1v] 10.5um 1.94 171 1.57 1.72 2.17 2.33 2.79 2.87
103 x A(BC 3645)A 435 425 - 4.25 4.35 4.90 4.54 4.56
Tinner! K 14300 14450 14640 14680 14150 13620 14100 14990
<T[NpNe] >/K 10425 9885 11260 10510 10340 10510 10220 10263
Rout/10'7cm - 750 7.50 7.50 7.50 7.50 7.50 7.50
<Het > / <HT > 0913 0.912 092 0914 0.920 0913 0.911 0.908
7(1Ryd) 1.47 1.35 1.64 1.61 1.47 - 1.15 1.29

GF: G. Ferland'SCloudy; PH: J.P Harrington code;

DP: D. Péquigndiieby HN: H. Netzer'slon;

RS: R. Sutherland'Mappings BE: B. Ercolano’s Mocassin.

run is considered, since, as discussed earlier, this repiea mea-
surement of the temperature taken closer to the inner edgeeof
nebula. The Mocassin result fer T[N, Ne] > is within the scat-
ter and, in particular, BE and PH agree very well for this obse
able. Note that only HN and TK obtain higher temperaturestfier
model; moreover, the TK computation was carried out withw ne
code, still under development, primarily designed for X-saud-
ies. That code could not treat the diffuse radiation fielddlag to
problems for the hard radiation field cases, such as PN1Ball§i
for the PN75 benchmark planetary nebula, Mocassins.& is
within the scatter (the prediction from the one-dimensianadel
is actually at the higher limit of it) and in reasonable agneat
with PH’s prediction; the result fox. T[N, N.] > is also within
the scatter and is in very good agreement with the prediaifon

the PH code. Once again, only HN predicts a higher value fer th
quantity, while TK’s results for this model are not avaikabl

The models presented in this chapter were all run using a
13x13x13 grid and, since they are all spherically symmetric, the
ionizing source was placed in a corner of the grid. The nurober
energy packets used to sample the grids and bring them t@conv
gence varied from three to five million. As has already been di
cussed, the accuracy of the results depends both on thelsazati-
pling (i.e. the number of grid cells) and on the number of gper
packets used. It is clear, however, that the latter alsordpen the
number of points to be sampled, so if, for example, in a given s
ulation the number of grid cells is increased framxmn, xn. to
ny xny, Xn’, then the number of energy packets used must also be



Table 8. Summary of isolation factors f’s, for the benchmark cases

Case GF DP TK PH

HIl40
>1.01
> 1.03
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> 2.00
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Table 9. Summary of median values for the benchmark cases

Case Total GF HN DP RS RR BE

H1140
HI120

31
24

10 10

11

Subtot HII 12 15 17 20 15 15

PN150
PN75

49
40

11 12

19

13
16

15

10 13 13

Subtot PN 20 19 31 29 17 28

. n' xn!
increased fromMVyackets 10 Nackets = W - Npackets-

However for these relatively simple cases the three-diilnaak
grid specified above was found to be sufficient to producepece
able results. In fact, since the benchmark models are athigri
symmetric then, although the number of sampling points glon
each orthogonal axis is only 13, this is the equivalent of a-on
dimensional code with 273 radial points, which is the numtifer
different values of- given by all the (x,y,z) combinations. This is
clearly demonstated in figur€ 1[b 2, where the number of data
points and the spacing between them shows that the spatial sa
pling is indeed appropriate. The plots also show that thebarm
of energy packets used in the simulations was sufficientesine

’
Xn,
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scatter of the ordinate values for a givenwhich is essentially a
measure of the error bars, is very small. The largest scatisr
obtained in the plots for the HII20 benchmark (Figlie 1)s tisia
very softionizing radiation field case and a larger numbemnafrgy
packets is probably required in order to reduce the scatimns
and increase the accuracy of the results. For the purpodeisof t
benchmark exercise, however, the accuracy achieved f@OH$
sufficient to produce satisfactory results.

5 CONCLUSIONS

A fully three-dimensional photoionization code, Mocassitas
been developed for the modelling of photoionised nebulaigu
Monte Carlo techniques. The stellar and diffuse radiatielu$i are
treated self-consistently; moreover, Mocassin is corepteinde-
pendent of the assumed nebular geometry and is therefakfite
the study of aspherical and/or inhomogeneous nebulae bolae
having one or more exciting stars at non-central locations.

The code has been successfully benchmarked against estab-
lished one-dimensional photoinization codes for standatueri-
cally symmetric model nebulae (see Péquignot 1086; Feeaal.
1995; Péquignot et El. 2001).

Mocassin is now ready for the application to real astronainic
nebulae and it should provide an important tool for the aoiesion
of realistic nebular models. A companion paper_(Ercolaralet
2002, Paperi) will present detailed results from the modelling
of the non-spherically symmetric PN NGC 3918. Resources per
mitting, it is intended to make the Mocassin source codeiplybl
available in the near future.
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Appendix A: Atomic Data References
Free-bound emission for hydrogenic ions i(ind Helr): [Eerlank
(1980)
Free-bound emission for HeBrown & Matthews [(1970)
Two-photon emission for hydrogenic ions (Hand He):
INussbaumer & Schmiitz (1984)
Two-photon emission for He m.mm
Free-free emission for interaction between ions of nucBasd
electronst Allehl(1973)
Effective recombination coefficient to H22S:mm4)
Effective recombination coefficient to Hlezmr
(1989)
d%nd Hell recombination line emissivitiemer
)
He | recombination line emissivities: Benjamin et al. (1999)
Collision transition rates for H 22S - ?P:Mkmg.
page94)
Cooling due to free-free radiation from hydrogenic ionsi(&hd
He 11): Hummer [(1994)
dCﬁﬂing due to free-free radiation from HeHummer & Storey
)
Cooling due to recombination of hydrogenic ionsi(Bind Heir):
Hummer [1994)
Cooling due to He recombination: Hummer & Storey (1998)
Collision lonization of hydrogern: Drake & Ulrith (1980)
Charge exchange with hydrogen: Kingdon & Ferand (1996)
Fits to calculate rates of radiative recombination for H-
like, He-like, Li-like, Ne-like ions:[\Verner et Al (1996 Dther
ions of C, N, O, Ne:_Péquignot etlal. (1991). Ke/il-xXlil :
lArnaud & Raymond [(1992). Other ions of Mg, Si, S, Ar,
Ca, Fe, Ni:LShull & van Steenbérg _(1982). Other ions of Na,
Al: Landini & Monsignori Fossi [(1990). Other ions of F, P,

Cl, K, Ti, Cr, Mn, Co (excluding Ti Itn and Cr Il4v):
ILandini & Monsignori Fos5il(1991)

Dielectronic recombination coefficients:_Nussbaumer &&yo
(19831986, 1987)

Non relativistic free-free Gaunt factor for hydrogenic son
Hummekr (1988)

Fits to opacity project data for the photoionization cresstions
(outer shell)[\Verner et Al (1996)

Collision strengths, and transition probabilities to cddte colli-
sionally excited line strengths from ions:

C 1 Collision strengths frorn Péauignot & Aldrovandi (1978%-
3P from|Thomas & Nesbitl (1975). Transition probabilitiesrfro
INussbaumer & Rusch (1979).

C 1 Collision strengths from Hayes & Nussbaulrier (1984). Tran-
sition probabilities fronl Nussbaumer & Storey (1081).

Cin collision strengths and transition probabilities from
Keenan et a11(1992) and Fleming et al. (1996).

Civ collision strengths from_Gau & Henry (1977). Transition
probabilities fronl Wiese et Al (1566).

Mg 1 Collision Strengths from Saraph (1986) JAJOM calcula-
tions. Transition probabilities frol Mendd 83).
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Mg 11 collision strengths and transition probabilities from
[(1983).

Mg Iv Collision strengths from_Butler & Zeippen (1994). Tran-
sition probabilities from Mendoza & Zeipgen (1983).

Mg v Collision strengths frorh Butler & Zeippeh (1994). Transi-
tion probabilities fronmm 83).

Mg VI Collision strengths frorh_B.haILa.&_Madob_(J;‘)BO) Transi-
tion probabilities from_Eidelsberg etlal. (1981).

Mg vii Collision  strengths  from |_Aggarwal | (1984a)
and [Aggarwal [(1984b). Transition probabiliies from
INussbaumer & Rusch (1979).

Ne1 Collision strength froml_Bayes etlall _(1985). Transition
probabilities from_Mendoza & Zeippeh (1983).

Nel Collision strengths frorn Butler & Zeippen (1994). Transi-
tion probabilities from_Mendoza & Zeippen (1983).

Ne v Collision strengths fro@m&). Transition probabi
ities from n@Z).

Nev Collision strengths from_Lennon & Butke (1991). Transi-
tion probabilities from_Nussbaumer & Rus¢a (11979).

Nevi Collision strengths from Butler & Storey (unpublished).
Transition probabilities frorh Wiese etldl_(1566).

N1 Collision strengths from_Berrington etlal. (1981). Traiusit
probabilities fronl Zeippeér (1982).

N 11 Collision strengths from_Stafford etlal. (1994). Transitio
probabilities from_Nussbaumer & Rusca (1979).

N i Collision strengths from_Nussbaumer & Rusda (1979),
rescaled tol_Nussbaumer & Stdrely (1982), fine-structure serm
from Butler & Storey (unpublished). Transition probatéi from

1.1(1993).

N 1v Collision strengths froml_Mendoza & Zeipperi(1983).
Transition probabilities from_Nussbaumer & Rils¢a_(1979) an
IFleming et al.|(1995).

N v Collision strengths from|_Osterbrock & Wallace_(1977).
Transition probabilities frorh Wiese etldl_(1566).

O1 Collision strengths from|_Berrington etlal.l (1981) and

(1988). Transition probabilities frém BalufiaZeippeh
(1988).

O 11 Collision strengths frorh Pradan (1576). Transition proba
bilities from 1(1982).

O i Collision strengths frommw). Transition prob
abilities from Nussbhaumer & Stoley (1981).

OIv Collision strengths fronl_Zhang etlall (1994) and from

Hayves & Nussbaurier | (1984). Transition probabilities from
INussbaumer & Storzy (1982).

OV Collision strengths and transition probabilities from
Mendozh(1983).

OvI Collision strengths and transition probabilities from
Mendozhl(1983).

Sin Collision strengths from_Dufton & Kingstbn (1991). Tran-
sition probabilities from_Mendoza & Zeipgen (1983) and from
Dufton et al. [1991).

Siin Collision strengths from Dufton & Kingstbm (189). Tran-
sition probabilities from Mendoza & Zeipgen (1983)

Siv Collision strengths and transition probabilities from
Mendozh(1983).

Sivil Fine structure collision strengths from Butler (unpub-
lished). Transition probabilities frol Bhatia e .79

S Collision strengths from_Mendoza & Zeippen (1083). Tran-
sition probabilities froni Mendokza (1983).

Sin Collision strengths frorn_ Mendoza & Zeippen (1983). Tran-
sition probabilities fronh Mendoka (1983)
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Siv Collision strengths frorn_ Saraph & Starey (1996). Transitio
probabilities from Storey (unpublished)
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