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Abstract

In this paper we discuss the detection of CP and T -violation effects in the frame-
work of a neutrino factory. We introduce three quantities, which are good dis-
criminants for a non vanishing complex phase (δ) in the 3 × 3 neutrino mixing
matrix: ∆δ, ∆CP and ∆T . We find that these three discriminants (in vacuum) all
scale with L/Eν , where L is the baseline and Eν the neutrino energy. Matter ef-
fects modify the scaling, but these effects are large enough to spoil the sensitivity
only for baselines larger than 5000 km. So, in the hypothesis of constant neutrino
factory power (i.e. number of muons inversely proportional to muon energy), the
sensitivity on the δ-phase is independent of the baseline chosen. Specially inter-
esting is the direct measurement of T -violation from the “wrong-sign” electron
channel (i.e. the ∆T discriminant), which involves a comparison of the νe → νµ

and νµ → νe oscillation rates. However, the νµ → νe measurement requires
magnetic discrimination of the electron charge, experimentally very challenging
in a neutrino detector. Since the direction of the electron curvature has to be
estimated before the start of the electromagnetic shower, low-energy neutrino
beams and hence short baselines, are preferred. In this paper we show, as an
example, the exclusion regions in the ∆m2

12 − δ plane using the ∆CP and ∆T

discriminants for two concrete cases keeping the same L/Eν ratio (730 km/ 7.5
GeV and 2900 km/30 GeV). We obtain a similar excluded region provided that
the electron detection efficiency is ∼20% and the charge confusion 0.1%. The
∆m2

12 compatible with the LMA solar data can be tested with a flux of 5×1021

muons. We compare these results with the fit of the visible energy distributions.
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1 Introduction

The firmly established disappearance of muon neutrinos of cosmic ray origin [1] strongly
points toward the existence of neutrino oscillations [2].

The first generation long baseline (LBL) experiments — K2K [3], MINOS [4],
OPERA [5] and ICARUS [6, 7, 8] — will search for a conclusive and unambiguous
signature of the oscillation mechanism using artificial neutrino beams produced by the
“traditional” meson-decay method. They will provide the first precise measurements
of the parameters governing the main muon disappearance mechanism.

In contrast, a neutrino factory[9, 14] is understood as a machine where low energy
muons of a given charge are accelerated in a storage ring. Neutrino factories raised the
interest of the physics community, since they appear natural follow-ups to the current
experimental LBL program and could open the way to future muon colliders.

The real physics potential of a neutrino factory comes from its ability to test in a
very clean and high statistics environment all possible flavor oscillation transitions.
As many studies have shown [10], the physics potential of such facilities are very
vast. An entry-level neutrino factory could test the LSND signal in a background
free environment[11]. A neutrino factory source would be of sufficiently high intensity
to perform very long baseline (transcontinental) experiments.

The ability to measure all possible neutrino oscillations will provide very stringent
information on all the elements of the neutrino mixing matrix and on the mass pattern
of the neutrinos. In a 3×3-mixing scenario, the mixing matrix, which should be unitary,
is determined by three angles and a complex phase. As studies have shown [10], precise
determination of two angles and of the largest mass difference will be obtained. In
addition, a test of the unitarity of the matrix could be performed.

Apart from being able to measure very precisely all the magnitude of the elements
of the mixing matrix, the more challenging and most interesting goal of the neutrino
factory will be the search for effects related to the complex phase of the mixing matrix.
The complex phase will in general alter the neutrino flavor oscillation probabilities, and
will most strikingly introduce a difference of transition probabilities between neutrinos
and antineutrinos (so called CP -violation effects), and between time-reversed transi-
tions (so called T -violation effects)[20]. Neutrino factories should provide the intense
and well controlled beams needed to perform these studies.

Two fundamental experimental parameters for these studies are (1) the energy Eµ

of the stored muon beam which determines the neutrino energy Eν spectrum and (2)
the baseline L between the source and the detector. In earlier works, one has advocated
high energy neutrinos, with a consensus around Eµ ≃ 30 − 50 GeV coupled to long
baselines L ≃ 3000 km. In Ref.[21], a much lower muon energy in the range Eµ ≃ 1 GeV
coupled to short baselines L ≃ 100 km has been proposed. This apparent contradiction
was recently addressed by Lipari[16].
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In this paper, we expand our early work[17] on the detection of CP -violation at
a neutrino factory. In particular, we concentrate on the general strategies to detect
effects related to the complex phase of the neutrino mixing matrix. The complete
and comprehensive detection of the effect is very difficult for terrestrial experiments,
as it would require L/Eν values simultaneously in the range of solar and atmospheric
neutrinos. We concentrate on medium L/Eν and demonstrate that the relevant effects
scales as L/Eν and that there is an optimal choice for the ratio L/Eν , given by the
neutrino mass pattern. Hence this yields an priori large freedom for the choice of L and
Eν . We show however that for too large L, matter effects destroy the sensitivity to the
complex phase, so baselines smaller than L ≃ 5000 km are preferred. In addition, owing
to the linear rise of the neutrino cross-section with neutrino energy at high energy, the
statistical significance of the effect scales with Eν , and hence grows linearly with L, for
L/Eν constant.

The choice of baseline L is particularly critical, in the sense that at the time that
a neutrino factory would start running, there will be already existing experiments
at baselines from 730 km from FNAL and CERN: (1) at Soudan, MINOS with its
5.4 kton fiducial mass will have been fully operational, and similarly, (2) at GranSasso,
the OPERA experiment and a multi-kton ICARUS detector. In view of the existence
of such massive devices, it is worth considering if these detectors at their current
baselines could be reused or improved in the context of the neutrino factory. If new
sites have to be found in order to satisfy the requirements of longer baselines, major
new “investments” will be required.

As far as the neutrino energy is concerned, it is clear that the average neutrino
energy Eν scales linearly with the muon beam energy Eµ. A non-negligible aspect of
the neutrino factory is the need to accelerate quickly the muons to the desired energy,
and so, it is expected that higher energies will be more demanding that lower ones.
Eventually, cost arguments could determine the muon energy. It could therefore be
that lower energy, more intense neutrino factories could be more advantageous than
higher energy, less intense ones.

2 The effects related to δ in vacuum

In a three-family neutrino oscillation scenario, the flavor eigenstates να(α = e, µ, τ) are
related to the mass eigenstates ν ′

i(i = 1, 2, 3) by the mixing matrix U

να = Uαiν
′

i (1)

and it is customary to parameterize it as:

U(θ12, θ13, θ23, δ) =





c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12s13c23e
iδ −c12s23 − s12s13c23e

iδ c13c23



 (2)
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with sij = sin θij and cij = cos θij .

We adopt the usual neutrino mass assignment in which the smallest ∆m2
21 ≡

m2
2 − m2

1 is assigned to the solar neutrino deficit and the largest mass difference,
∆m2

31 ≈ ∆m2
32 is describing the atmospheric neutrino observations. We neglect ac-

cordingly the important results from LSND, awaiting further clarification from the
MiniBOONE experiment. We therefore consider the following indicative set of oscil-
lation parameters1, compatible with current experimental observations (neglecting the
LSND claim):

∆m2
32 = 3 × 10−3eV2, sin2 θ23 = 0.5 (3)

The value of the angle θ13 is currently not known, and the best experimental bound
comes from CHOOZ[12] which limits sin2 2θ13 . 0.1. We take:

sin2 2θ13 = 0.05 (4)

For the solar parameters, we assume values compatible with the LMA-solution,
which is known to yield optimal conditions for CP -violation studies (see Ref. [13]):

∆m2
21 = 1 × 10−4eV2, sin2 θ12 = 0.5 (5)

With this mass assignment and with the parameterization of the mixing matrix
described above, a neutrino factory can provide precise information on the largest
squared mass difference ∆m2

13 ≈ ∆m2
23 and on both angles θ23 and θ13.

In the case where neutrinos (or antineutrinos) propagate in vacuum, the probability
for flavor transition has a simple behavior. It can be written as

P (να  νβ; Eν , L) =
∑

jk

Jαβjke
−i∆m2

jk
L/2E (6)

where Eν is the neutrino energy and L the baseline between the source and the detector.
The Jarlskog factor is Jαβjk = UβjU

∗

βkU
∗

αjUαk. For antineutrinos, we must replace
U → U∗, i.e. Jαβjk → J∗

αβjk = Jαβkj = Jβαjk.

Since in general we have Jαβjk 6= J∗

αβjk, the probability for neutrinos P (να →
νβ; Eν , L) can be different from that for anti-neutrinos P (ν̄α → ν̄β; Eν , L), leading to
the CP-violating effects. Since Jαβjk = J∗

βαjk, there are also T-violating effects. From
the definition of J also follows that (CPT-invariance)

P (να  νβ; Eν , L) = P (ν̄β  ν̄α; Eν , L) (7)

1Note that in studies of effects related to δ, the signs of the ∆m2’s are important.
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The oscillation probability can be made more explicit by separating real and imag-
inary contributions of Jαβjk:

P (να  νβ ; Eν , L) =
∑

j

Jαβjj +
∑

j>k

(

Jαβjke
−i∆m2

jk
t/2E + J∗

αβjke
+i∆m2

jk
t/2E

)

(8)

= δαβ − 4
∑

j>k

ℜeJαβjk sin2 (∆jk) (9)

+4
∑

j>k

ℑmJαβjk sin (∆jk) cos (∆jk)

Here

∆jk ≡ ∆m2
jk

L

4Eν
(10)

and ∆12 +∆23 +∆31 = 0. For anti-neutrinos, we must replace ℑmJαβjk → −ℑmJαβjk.
Hence, the first two terms of P form a CP-even term, and the last one is a CP-odd
term.

In the rest of the paper, we concentrate on transitions between electron and muon
neutrinos. One can explicitly calculate the probabilities, inserting the elements of the
chosen mixing matrix parameterization:

P (νe → νµ) = P (ν̄µ → ν̄e) =

4c2
13

[

sin2 ∆23s
2
12s

2
13s

2
23 + c2

12

(

sin2 ∆13s
2
13s

2
23 + sin2 ∆12s

2
12

(

1 −
(

1 + s2
13

)

s2
23

))

]

−1

2
c2
13 sin(2θ12)s13 sin(2θ23) cos δ

[

cos 2∆13 − cos 2∆23 − 2 cos(2θ12) sin2 ∆12

]

+
1

2
c2
13 sin δ sin(2θ12)s13 sin(2θ23) [sin 2∆12 − sin 2∆13 + sin 2∆23] (11)

This expression has been split in a first part independent from the phase δ, and in
the two parts proportional respectively to cos δ and sin δ. To obtain the probabilities
for νµ → νe and ν̄e → ν̄µ, we must replace δ −→ −δ, with the effect of changing
sin δ −→ − sin δ and cos δ −→ cos δ. The term proportional to sin δ is the CP- or
T-violating term, while the cos δ term equally modifies the probability for both CP -
conjugate states.

The behavior in the range where the energy is too large or the baseline too short
to be sensitive to the smallest mass difference, i.e. |∆m2

12| ≪ Eν/L or |∆12| ≪ 1, is
found by ∆12 → 0 and ∆13 → ∆23. Both terms depending on cos δ and sin δ vanish,
and we recover the well known probability

P (νe → νµ) ≃ sin2(2θ13)s
2
23 sin2 (∆23) (12)

Going back to the general case, the νe → νµ oscillation probability can be simplified
by introducing values for θ12 and θ23 consistent with current experimental knowledge.

4



Indeed, for θ12 = θ23 = π/4, we find

P (νe → νµ) =
1

2
c2
13

{

c2
13 sin2 ∆12 + s13

[

2 sin ∆12 sin(∆13 + ∆23 − δ) + (13)

sin δ sin 2∆12 + 2s13

(

sin2 ∆13 + sin2 ∆23

)

]}

From this dependence, we see that a precise measurement of the νe → νµ oscillation
probability can yield information of the δ-phase provided that the other oscillation
parameters in the expression are known sufficiently accurately. We also note that the
phase δ changes the neutrino energy position of the maximum of the oscillation, because
of the term sin(∆13 + ∆23 − δ).

Clearly, the dependence of the parameter δ is a priori most “visible” in the energy-
baseline range such that |∆12| = |∆m2

21|L/4Eν ≃ 1 and |∆23| = |∆m2
23|L/4Eν ≃ 1.

This is the region where all terms in Eq. (13) contribute.

When |∆12| ≪ 1 and |∆23| ≃ 1, we obtain

P (νe → νµ) ≃ 1

2
c2
13

{

c2
13∆

2
12 + 2s2

13

(

sin2 ∆13 + sin2 ∆23

)

(14)

+2∆12s13

[

sin(∆13 + ∆23) cos δ + (1 − cos(∆13 + ∆23)) sin δ
]}

At even higher Eν or smaller L, we further have, when both |∆12| ≪ 1 and
|∆13|, |∆23| ≪ 1:

P (νe → νµ) ≃ 1

2
c2
13

{

c2
13∆

2
12 + 2s2

13

(

∆2
13 + ∆2

23

)

+ 2∆12s13(∆13 + ∆23) cos δ
}

(15)

and the dependence on the phase is only through cos δ. From this follows a degeneracy
under the change of sign of δ, as was pointed out in Ref. [16]. So, in this L and Eν

range, a precise determination of the oscillation probability can no longer determine
the sign of δ.

The behavior for the two baselines L = 730 km and 2900 km as a function of
neutrino energy Eν is explicitly shown in Figure 1. The probabilities are computed for
three values of the δ-phase: δ = 0 (line), δ = +π/2 (dashed), δ = −π/2 (dotted). The
other oscillation parameters are those described in Eqs. 3 and 5: ∆m2

32 = 3×10−3 eV2,
∆m2

21 = 1 × 10−4 eV2, sin2 θ23 = 0.5, sin2 θ12 = 0.5, and sin2 2θ13 = 0.05.

A region corresponding to the oscillation of the “first maximum” is clearly visible
on the curves. We define the energy of the “first maximum” as follows

∆32 =
π

2
−→ Emax

ν ≡ ∆m2
32

2π
L

−→ Emax
ν (GeV) ≃ ∆m2

32(eV
2)

(

2 × 1.27

π

)

L(km) (16)
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which yields Emax
ν ≃ 2 GeV at 730 km, Emax

ν ≃ 8 GeV at 2900 km and Emax
ν ≃ 20 GeV

at 7400 km for ∆m2
32 = 3×10−3 eV2. This energy corresponds to the point of maximum

oscillation induced by ∆m2
32 and coincides with the maximum when δ = 0. It will be

useful when we discuss the point of maximum sensitivity to the δ-phase.

A similar relation can also be defined in terms of L/Eν which is
(

L

Eν

)max

≡ 2π

∆m2
32

−→
(

L(km)

Eν(GeV)

)max

≃
(

π

2 × 1.27∆m2
32(eV

2)

)

(17)

which is approximately equal (L/Eν)
max ≃ 400 km/GeV for ∆m2

32 = 3 × 10−3 eV2.

The dependence at high energy is not easily understood from a plot of the prob-
abilities as a function of energy. In addition, while the effect is expected to be most
“visible” at low energies, experiments at low energy are a priori more difficult to per-
form than at high energy, because of the rising cross-section, easiness of detection and
neutrino flux considerations. In fact, what is more important is not the probability
behavior, but rather how will the number of events, observed in a given experiment
at a given baseline L within a certain neutrino energy range, depend on the phase δ,
relative to the total number of observed events in absence of δ phase effects. Hence, in
the following, we consider for definiteness the neutrino flux of a neutrino factory and
will in order to ease the comparison between various energies and baselines introduce
a “rescaled” probability.

3 The neutrino factory (NF)

The decay of the muon is a very well known process. Within the Standard Model and
to leading order, the neutrino energy distribution in the muon rest frame in µ− decays
is given by

d2Nνµ

dxdΩ
∝ 2x2

4π
[(3 − 2x) + (1 − 2x)Pµ cos θ] (18)

d2Nν̄e

dxdΩ
∝ 12x2

4π
[(1 − x) + (1 − x)Pµ cos θ] (19)

where Pµ is the average polarization of the muon beam, x ≡ 2Eν/mµ, and θ is the
angle between the momentum vector of the neutrino and the mean angle of the muon
polarization. The beam polarization can be carefully measured via the spectrum of the
electrons from muon decay; thus the spectra of the two components of the neutrino
beam can be known with good accuracy, and so the ratio of the fluxes reaching the far
detector.

Assuming perfect focusing, an unpolarized muon beam and for very relativistic
muons, the energy spectrum of neutrinos detected at small angles with respect to the
muon flight direction as in the case of long baseline experiment, is given by

φνµ
(z) ∝ 2z2(3 − 2z); φν̄e

(z) ∝ 12z2(1 − z) (20)
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where z = Eν/Eµ. A key point is that angular opening of the neutrino beam will shrink
due to the Lorentz boost as γ−2 = (Eµ/mµ)−2 and hence the total neutrino fluency at
a far detector will increase as E2

µ. This means that the flux can be expressed as

Φνµ
(Eµ, L, z) =

Eµ

L2
φνµ

(z); Φν̄e
(Eµ, L, z) =

Eµ

L2
φν̄e

(z) (21)

The scaling of the neutrino event rate can be expressed as

Nν =

∫ Eµ

0

Φνµ
(Eµ, L, Eν)σν(Eν)dEν (22)

=
E2

µ

L2

∫ 1

0

φν(z)σν(zEµ)dz (23)

since dEν = Eµdz. By approximating the neutrino cross-section as a linear function of
the neutrino energy, i.e. σν(zEµ) ≃ σ0

ν × Eν , where σ0
ν is a constant, we obtain

Nν ≃
E3

µ

L2
σ0

ν

∫ 1

0

φzzdz ∝
E3

µ

L2
(24)

The integral over z is independent of Eµ and we find the known rapid growth of neutrino
events with E3

µ, characteristic of the neutrino factory.

4 The rescaled probabilities

In order to compare effects at different energies and various baselines, we define a
“rescaled probability” parameter that allows a direct comparison of effects.

Since to a good approximation (when z . 0.6 for electron-neutrinos and always for
muon-neutrinos) the neutrino energy distribution behaves like E2

ν (see section 3) and
in addition, the neutrino flux scales like L−2 due to the beam divergence, we define the
“rescaled probability” parameter p(να  νβ; Eν , L) as

p(να  νβ; Eν , L) ≡ P (να  νβ; Eν , L) × E2
ν

L2
(25)

We note that

1. it approximately correctly “weighs” the probability by the neutrino energy spec-
trum E2

ν of the neutrino factory spectrum;

2. it can be directly compared at different baselines, since it contains the L−2 at-
tenuation of the neutrino flux with distance L;

3. p tends to a constant for Eν → ∞, hence the high energy behavior can be easily
studied.

7



We start by illustrating the behavior of the rescaled probability for νe → νµ oscil-
lations (see Eq. 15) in the case where both |∆12| ≪ 1 and |∆13|, |∆23| ≪ 1. We note
that the expression depends on the second power of the ∆jk’s. The resulting (L/Eν)

2

dependence is canceled in the rescaled probability:

p(νe → νµ) ≃ 1

2
c2
13

{

c2
13∆

2
12 + 2s2

13

(

∆2
13 + ∆2

23

)

+ 2∆12s13(∆13 + ∆23) cos δ
}

× E2
ν

L2

≃ 1

32
c2
13

{

c2
13(∆m2

12)
2 + 2s2

13

(

(∆m2
13)

2 + (∆m2
23)

2

)

+8∆m2
12s13(∆m2

13 + ∆m2
23) cos δ

}

(26)

As expected, the result is independent of the energy Eν and the baseline L, and the
rescaled probability “constant” is modified with a cos δ dependent term. The sign of
this term depends as expected on the sign of the ∆m2

jk’s.

Figure 2 shows the rescaled probability for νe → νµ oscillations in vacuum for three
baselines L = 730 km (line), 2900 km (dashed) and 7400 km (dotted) as a function of
neutrino energy Eν . In this case, we chose δ = 0 in order to illustrate the effect of the
rescaling. The interesting oscillations at low energy driven by the interference of the
∆12, ∆13 and ∆23 terms are largely “damped” by the rescaling, and the situation has
dramatically changed compared to Figure 1.

We also note that the asymptotic value reached at high energy is independent of
the distance L, reflecting the well-known result that the oscillated number of events
is independent of distance L at high energy, since the L2 growing of the oscillation
cancels the L−2 attenuation of the flux with distance.

The dependence on the phase δ is illustrated in Figure 3. For δ = ±π/2, the cos δ
term vanishes and the probability is reduced at high energy compared to the δ = 0
case. The asymptotic value reached in the high energy limit is obviously independent
of the baseline and is different than that reached for δ = 0. For δ = ±π/2, it converges
to the same values when the condition for |∆12| ≪ 1 and |∆13|, |∆23| ≪ 1 is true. This
depends on the baseline L considered. For L = 730(2900) km, the probabilities for
δ = ±π/2 are indistinguishable to within 10% for Eν & 20(80) GeV.

5 Propagation in matter

Since neutrino factories will be associated to long baseline, it is not possible to avoid
including effects associated to the neutrino propagation through the Earth matter. The
simplest way to take into account these effects is to maintain the formalism developed
for propagation in vacuum and to replace the mixing angles and the neutrino mass
differences by “effective” values.

The general exact and precise treatment of the effects induced by the propagation
through the Earth can be quite complicated, due to the a priori complexity of the

8



matter profile in the Earth. We will hence assume that the effects due to matter
can be parameterized by one parameter, i.e. the “average” density ρ, to reproduce
approximately the effect of traversing the Earth. This assumption was recently revisited
in Ref. [18], where it was concluded that for a baseline of 3000 km or less, the effect
of the matter profile is not important. For very long baselines like L ≈ 7400 km,
they conclude that the Earth profile is important. This however does not pose us a
problem, since, as we will show below, we will not consider that baseline in the context
of the searches for δ-phase-induced effects. We hence all along use the approximation
of constant density.

In the case of two-neutrino oscillation, in which the mixing is driven by a single
mixing angle θ, and propagating in matter of constant density ρ, it is rather easy to
understand the behavior of the oscillation probability for neutrinos or antineutrinos.
An important quantity for matter effects is D, defined as

D(Eν , ρ) ≡ 2
√

2GFneEν = 7.56 × 10−5eV 2(
ρ

gcm−3
)(

Eν

GeV
) ≡ −D(Eν̄ , ρ) (27)

where ne is the electron density and ρ the matter density. For antineutrinos, D is
replaced by −D.

In the case of three neutrino mixing, the situation is mathematically more complex.
Approximate oscillation probabilities have been considered by perturbative expansion
in the oscillation parameters[19, 20, 15]. Exact formulas have been derived[22, 23]
and we make use of this formalism as implemented in Ref. [17]. For completeness, we
reproduce here the expressions. The mass eigenvalues in matter M1, M2 and M3 are:

M2
1 = m2

1 +
A

3
− 1

3

√
A2 − 3BS −

√
3

3

√
A2 − 3B

√
1 − S2 (28)

M2
2 = m2

1 +
A

3
− 1

3

√
A2 − 3BS +

√
3

3

√
A2 − 3B

√
1 − S2 (29)

M2
3 = m2

1 +
A

3
+

2

3

√
A2 − 3BS (30)

where A, B and S are given in the Appendix of Ref. [17]. For the mixing angles in
matter the analytical expressions read:

sin2 θm
12 =

−(M4
2 − αM2

2 + β)∆M2
31

∆M2
32(M

4
1 − αM2

1 + β) − ∆M2
31(M

4
2 − αM2

2 + β)
(31)

sin2 θm
13 =

M4
3 − αM2

3 + β

∆M2
31∆M2

32

(32)

sin2 θm
23 =

G2s2
23 + F 2c2

23 + 2GFc23s23cδ

G2 + F 2
(33)

where α, β, G and F are found in the Appendix of Ref. [17], and also an expression
for the δ-phase in matter, i.e. δm.
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It can be shown that in the relevant situation in which |∆m2
21| ≪ |∆m2

31| ≈ |∆m2
32|,

matter effects in three-family mixing decouple to two independent two-family mix-
ing scenarios. This is essentially because matter effects become important when the
parameter D(Eν , ρ) is similar to one of the |∆m2|’s and hence the matter effects
driven by |∆m2

21| will occur for fixed density at a very different energy Eν than for
|∆m2

31| ≈ |∆m2
32|. The term |∆m2

21| (resp. |∆m2
31|) will produce a MSW resonance in

the θ12(resp. θ13) angle.

Given the energies and baselines considered, we illustrate analytically our arguments
for a two-family mixing matter effect in νe → νµ oscillations, in which we identify the
2-mixing angle θ with the 3-mixing θ13 and the mass difference squared as |∆m2

31| ≈
|∆m2

32|. In the case |∆12| ≪ |∆13| ≈ |∆23| ≈ 1 in matter, the effective mixing angles
θm
23, θm

12, θm
13 and δm will be approximately equal to (see e.g. Figure 1 of Ref. [17]) 2

sin2 θm
23(D) ≃ sin2 θ23

sin2 2θm
12(D) → ≈ 0

sin2 2θm
13(D) =

sin2 2θ13

sin2 2θ13 + ( D
∆m2

32

− cos 2θ13)2

≃ sin2 2θ13

sin2 2θ13 + M2

δm ≈ δ (34)

where M ≡ D/∆m2
32 − 1 and, for the second line, we assume θ13 small. This term

has the well-known MSW resonance behavior, which predicts that the effective angle
sin2 2θm

13(D) → 1 for D → ∆m2
32 (i.e. M → 0), no matter how small sin2 2θ13 is. The

effective mass squared difference becomes

∆M2
32 ≃ ∆m2

32

√

sin2 2θ13 + M2 (35)

which implies that the effective oscillation wavelength becomes very large (resp. small)
close to (resp. far from) the resonance energy.

The oscillation probability at small L/Eν (see Eq. 12) is in matter

P m(νe → νµ) ≃ sin2(2θm
13)s

2
23 sin2 (∆m

23)

≃ sin2 2θ13

sin2 2θ13 + M2
s2
23 sin2

(

∆m2
32

√

sin2 2θ13 + M2
L

4Eν

)

(36)

In the case where the neutrino energy is at the MSW resonance (i.e. M = 0 and
Eν = Eres cos 2θ13∆m2

32), the probability is approximately

P m(νe → νµ) ≃ s2
23 sin2

(

∆m2
32

√

sin2 2θ13

L

4Eres cos 2θ13∆m2
32

)

2In reality, the angles sin2 θm

12 and sin2 θm

23 tend to rise slightly for D > ∆m2
32, because the non-

vanishing ∆m2
21 splitting removes the degeneracy between muon and tau flavors (see Ref. [17]), but

we neglect this effect.
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≃ s2
23 sin2

(

tan 2θ13

4Eres
L

)

≃ s2
23

(

tan 2θ13

4Eres

)2

L2 (37)

where in the last line we assumed L < tan 2θ13/4Eres ≈ 14000 km. In this case, the
probability grows with L2, giving rise to the enhanced oscillation probability at large
distances through matter.

For neutrino energies Eν above the resonance energy Eres
ν , where one can approxi-

mate M2 > 1 ≫ sin2 2θ13, the probability is

P m(νe → νµ) ≃ sin2 2θ13

M2
s2
23 sin2

(

∆m2
32

√
M2

L

4Eν

)

(38)

and this expression will vanish for growing M since the sine function will not cancel
the M2 at the denominator. These behaviors will be rediscussed later in the context
of the δ-phase dependent terms.

To summarize, there will be two specific neutrino energies of interest when neutrinos
propagate through matter:

1. for D ≈ ∆m2
32, we reach for neutrinos the MSW resonance, in which the effective

mixing angle sin2(2θm
13) ≈ 1. In terms of neutrino energy, this implies

Eres
ν =

cos 2θ13∆m2
32

2
√

2GFne

= Eres cos 2θ13∆m2
32

≃ 1.32 × 104 cos 2θ13∆m2
32(eV

2)

ρ(g/cm3)
in GeV (39)

where Eres = (2
√

2GF ne)
−1. For density parameters ρ equal to 2.7, 3.2 and

3.7 g/cm3 one finds Eres
ν ≃ 14.1, 12.3 and 10.7 GeV for ∆m2

32 = 3 × 10−3 eV2.

2. for D > 2∆m2
32, the effective mixing angle for neutrinos is always smaller than

that in vacuum, i.e. sin2(2θm
13) < sin2(2θ13). In terms of neutrino energy, this is

equivalent to
Eν > 2Eres

ν (40)

3. these arguments are independent of the baseline L and depend only on the matter
density ρ.

In the rest of the paper, we will solve the equations numerically in order to properly
introduce exact matters effects into our oscillation probabilities.

The distortion of the oscillation probabilities introduced by the propagation through
matter are shown in Figures 4 and 5, where the probability for νe → νµ oscillations
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for two baselines L = 730 km and 2900 km are shown as a function of neutrino energy
Eν . For each baseline, the probabilities are computed for three values of the δ-phase:
δ = 0, δ = +π/2, δ = −π/2.

We further illustrate the behavior in matter in Figures 6, 7 and 8, where the rescaled
probability for νe → νµ oscillations for three baselines L = 730 km, 2900 km and
7400 km are shown as a function of neutrino energy Eν . For each baseline, the proba-
bilities are computed for neutrinos in matter, in vacuum (dotted line, same for neutrinos
and antineutrinos) and for antineutrinos in matter. A phase δ = 0 has been assumed.

The characteristic behavior in matter can be readily seen. At the shortest baseline,
L = 730 km, the effect of matter is small, i.e. the probabilities are very similar to that
in vacuum and the probability is simply slightly enhanced (suppressed) for neutrinos
(antineutrinos). Between approximately 1 < Eν < 10 GeV, the rescaled probability
rises; this corresponds to the oscillation at the “first maximum” (see equation 16),
which yields Emax

ν ≃ 2 GeV for 3 × 10−3 eV2. Above Eν ≃ 10 GeV, the rescaled
probability reaches a constant.

At the middle baseline L = 2900 km, the effect of propagation through matter
is quite visible. The resonance for neutrinos can be seen at Eres

ν (GeV ) ≃ 12 GeV,
which is quite close from the “first maximum”, which is now given the baseline at
Emax

ν ≃ 8 GeV (see equation 16). As expected, the probability in vacuum reaches at
higher energies the same constant as for the shortest baseline L = 730 km. However,
in matter for Eν & 2Eres, the probability becomes smaller than that in vacuum. For
antineutrinos, the probability tends to be suppressed by matter, but tends to the same
value as that of neutrinos at high energy.

For the longest baseline L = 7400 km, the effect of matter is quite strong. The “first
maximum” is now at Emax

ν ≃ 20 GeV (see equation 16), but this corresponds to an
energy very close to the condition for D > 2∆m2

32, in which the effective mixing angle
for neutrinos is smaller than that in vacuum. The probability at such large distances
is therefore quite “suppressed” by matter as opposed to what it would be in vacuum.

From these discussions, it is already clear that if one wants to study oscillations
in the region of the “first maximum”, one should not choose a too large baseline L,
otherwise, matter effects will suppress the oscillation probability. This will be further
discussed in the next section.

6 Detecting the δ phase at the NF and the L/Eν

scaling

We are now ready to investigate methods to optimally look for effects related to the
phase δ in neutrino oscillations. We consider that propagation of neutrinos will always
occur through matter and hence use the exact numerical calculations for three family
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mixing, without any approximation in the oscillation probabilities, nor in the treatment
of matter effects.

In order to further study the dependence of the δ-phase, we consider the following
three quantities which are good discriminators for a non-vanishing phase δ:

1. ∆δ ≡ P (νe → νµ, δ = +π/2) − P (νe → νµ, δ = 0)
The discriminant ∆δ can be used in an experiment where one is comparing the
measured νe → νµ oscillation probability as a function of the neutrino energy Eν

compared to a “Monte-Carlo prediction” of the spectrum in absence of δ-phase.

2. ∆CP (δ) ≡ P (νe → νµ, δ) − P (ν̄e → ν̄µ, δ)
The discriminant ∆CP can be used in an experiment by comparing the appearance
of νµ (resp. ν̄µ) in a beam of stored µ+ (resp. µ−) decays as a function of the
neutrino energy Eν .

3. ∆T (δ) ≡ P (νe → νµ, δ)−P (νµ → νe, δ) or ∆̄T (δ) ≡ P (ν̄e → ν̄µ, δ)−P (ν̄µ → ν̄e, δ)
The discriminant ∆T can be used in an experiment by comparing the appearance
of νµ (resp. ν̄µ) and ν̄e (resp. νe) and in a beam of stored µ+ (resp. µ−) decays
as a function of the neutrino energy Eν .

Each of these discriminants have their advantages and disadvantages.

The ∆δ-method consists in searching for distortions in the visible energy spectrum
of events produced by the δ-phase. While this method can in principle provide excellent
determination of the phase limited only by the statistics of accumulated events, in
practice, systematic effects will have to be carefully kept under control in order to look
for a small effect in a seen-data versus Monte-Carlo-expected comparison. In addition,
the precise knowledge of the other oscillation parameters will be important, and as
will be discussed below, there is a risk of degeneracy between solutions and a possible
strong correlation with the θ13 angle at high energy.

The ∆CP is quite straight-forward, since it involves comparing the appearance of
so-called wrong-sign muons for two polarities of the stored muon beam. It really takes
advantage from the fact that experimentally energetic muons are rather easy to detect
and identify due to their penetrating nature, and with the help of a magnetic field,
their charge can be easily measured, in order to suppress the non-oscillated background
from the beam. A non-vanishing ∆CP should in principle be a direct proof for a non-
vanishing δ-phase. This method suffers, however, from the inability to perform long-
baseline experiment through vacuum. Indeed, matter effects will largely “spoil” ∆CP

since it involves both neutrinos and antineutrinos, which will oscillate very differently
through matter. Hence, the ∆CP requires a good understanding of the effects related
to matter. In addition, it involves measuring neutrinos and antineutrinos. The matter
suppression of the antineutrinos will in practice determine the statistical accuracy with
which the discriminant can be measured.
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Finally, the ∆T is the theoretically cleanest method, since it does not suffer from the
problems of ∆δ and ∆CP . Indeed, a difference in oscillation probabilities between νe →
νµ and νµ → νe would be a direct proof for a non-vanishing δ-phase. In addition, matter
affects both probabilities in a same way, since it involves only neutrinos. Unfortunately,
it is experimentally very challenging to discriminate the electron charge produced in
the events, needed in order to suppress the background from the beam. However, one
can decide to measure only neutrinos, which are enhanced by matter effects, as opposed
to antineutrinos in the ∆CP which were matter suppressed, and hence the statistical
accuracy of the measurement will be determined by the efficiency to recognize the
electron charge, rather than by matter suppression.

6.1 The L/Eν scaling

Regardless of their advantages and disadvantages, there is one thing in common be-
tween the three discriminants ∆δ, ∆CP and ∆T : their behavior with respect to the
neutrino energy Eν and the baseline L. By explicit calculation, we find

∆δ = −1

2
c2
13 sin 2θ12s13 sin 2θ23 × (41)

[

cos 2∆13 − cos 2∆23 − 2 cos 2θ12 sin2 ∆12 + sin 2∆12 − sin 2∆13 + sin 2∆23

]

= −1

2
c2
13s13

[

cos 2∆13 − cos 2∆23 + sin 2∆12 − sin 2∆13 + sin 2∆23

]

where for the second line we assumed for simplicity θ12 = θ23 = π/4, and similarly,

∆CP = ∆T = c2
13s13 sin 2θ12 sin 2θ23 sin δ

[

sin 2∆12 − sin 2∆13 + sin 2∆23

]

= −c2
13s13 sin 2θ12 sin 2θ23 sin δ

[

sin ∆12 sin ∆13 sin ∆23

]

(42)

As expected, both expressions vanish in the limit ∆m2
12 → 0 where ∆m2

13 → ∆m2
23.

Also, as one reaches the higher energies, the terms ∆CP = ∆T vanish as

|∆CP | = |∆T | ≃ c2
13s13 sin 2θ12 sin 2θ23 sin δ∆m2

12

(

L

4Eν

)

sin2

(

∆m2
23

L

4Eν

)

≃ c2
13s13 sin 2θ12 sin 2θ23 sin δ∆m2

12(∆m2
23)

2

(

L

4Eν

)3

(43)

hence, in the very high energy limit at fixed baseline, the effects decrease as E−3
ν . That

the effects disappear at high energy is expected, since in this regime, the “oscillations”
of the various ∆jk’s wash out.

At high energy, we can also approximate cos 2∆13 ≈ cos 2∆23 ≈ 1, and find

|∆δ| ≃
1

2
∆CP (δ = π/2) =

1

2
∆T (δ = π/2) (44)
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so the CP- or T-conjugation is equivalent to a change of phase δ → −δ, i.e. δ =
+π/2 → δ = −π/2.

The important point is that all expressions depend upon some factors which contain
the various mixing angles, multiplied by oscillatory terms which always vary like sine
or cosine of ∆jk-terms (the terms in squared brackets in the expressions above).

Hence, we expect the various discriminants to scale like ∆jk ∝ L/Eν . The sensi-
tivity to the δ-phase will therefore follow the behavior of the oscillation probability,
and we therefore argue that the maximum of the effect will occur around the “first
maximum” of the oscillations, i.e. for Emax

ν ≡ ∆m2
32L/2π (see Eq. (16)).

Strictly speaking, the maximum of the δ-phase sensitivity does not lie exactly at
the “first maximum” as defined in Eq. (16). From Eq. (42), we expect the maximum
to be “shifted” to higher values of L/Eν , since it corresponds to the maximum of the
term

sin ∆12 sin ∆13 sin ∆23 ≃ ∆m2
12

L

4Eν
sin2

(

∆m2
23

L

4Eν

)

(45)

which has the functional form x sin2 x and, therefore, has its maximum shifted to
higher values of x compared to sin2 x. This small shift is smaller than the oscillation
wavelength itself, and does not cause a major problem, since experimentally we will
always have sufficient energy range to cover the full oscillation.

These considerations are strictly true only for propagation in vacuum. When neu-
trinos propagate through matter, matter effects will alter these conclusions. We will
however show that as long as the baseline is smaller than some distance such that the
corresponding “first maximum” Emax

ν lies below the MSW resonance neutrino energy
Eres

ν , the considerations related to the L/Eν scaling are still largely valid.

To illustrate this, we show in Figure 9 the rescaled probability for νe → νµ oscilla-
tions involving neutrinos and as a function of L/Eν , for three baselines L = 730 km,
2900 km, 7400 km and in vacuum (independent of baseline). We assume δ = 0. We
readily observe that for the shortest baseline L = 730 km the curve is very similar to
the one in vacuum. For the middle baseline L = 2900 km, the curve is modified with
respect to the vacuum case, in the sense that the probability around (L/Eν)

max ≃ 400
(see Eq.17) is enhanced, but for (L/Eν) . 130 the probability is smaller than that in
vacuum. For the longest baseline L = 7400 km, the curve is highly distorted by matter
and already for (L/Eν) . 400 is the probability smaller than that in vacuum.

In what way does the matter effect alter the ability to look for effects related to
the δ-phase? It is incorrect to believe that only the ∆CP discriminant will be affected
by propagation through matter, since it is the only one to a priori mix neutrinos and
antineutrinos. In reality, the “dangerous” effect of matter is to reduce the dependence
of the probability on the δ-phase, and this for any kind of discriminant.

In matter, we would for example write the ∆T discriminant as

|∆m
T | = (cm

13)
2sm

13 sin 2θm
12 sin 2θm

23 sin δm
[

sin ∆m
12 sin ∆m

13 sin ∆m
23

]
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≃ (cm
13)

2sm
13 sin 2θm

12 sin 2θ23 sin δ
[

sin ∆m
12 sin ∆m

13 sin ∆m
23

]

(46)

where because of our choice of ∆m2
jk’s, we have θm

23 ≈ θ23 and δm ≈ δ (see Eq. (34)).
This implies that the δ-phase discriminants have a different structure that the terms
that define the probability of the oscillation (i.e. the non δ-phase dependent terms).
The discriminants are the products of sines and cosines of all mixing angles and of the
∆jk’s (see Eqs. (41) and (42)). Because of this structure, their property in matter is
different.

The Jarlskog’s determinant can be shown to be “invariant” under matter effects[25]
in the sense that the product

J
(

∆m2
12∆m2

13∆m2
23

)

≡ c2
13s13 sin 2θ12 sin 2θ23 sin δ

(

∆m2
12∆m2

13∆m2
23

)

(47)

is independent from matter effects. This point was also discussed in Ref.[16], where it
was pointed out that this implies that the δ-phase terms will be independent from the
matter effects as long as we can approximate

sin ∆12 sin ∆13 sin ∆23 ≈ ∆12∆13∆23. (48)

This fact is not very revelant in the current context, since the best sensitivity to the
δ-phase is expected just when this approximation is not valid (i.e. |∆13| ≈ |∆23| ≈ 1),
otherwise the effects wash out. As a consequence, we expect that the CP-odd terms
do depend on matter effects in the relevant baseline and energy region.

The behavior for neutrino energies above the MSW resonance Eres
ν is determined

by the fact that in this energy regime, θm
13(E > Eres

ν ) → π/2 and therefore cm
13 → 0 and

sm
13 → 1. More explicitly, one can show that

(cm
13)

2sm
13 ∝ E−2

ν

sin 2θm
23 ≃ sin 2θ23 = const.

sin 2θm
12 → const.

∆M2
31 ≈ ∆M2

32 ∝ Eν

∆M2
21 ≈ ∆m2

32 = const (49)

Therefore,

|∆m
T | ∝ E−2

ν sin δ
[

sin

(

∆m2
32

L

4Eν

)

sin2

(

∆M2
13

L

4Eν

)

]

∝ E−3
ν (50)

and one recovers a neutrino energy dependence identical to that in vacuum (see Eq. (43)).
Note also that the argument of the sine function ∆M2

13L/4Eν is not small (i.e. the ap-
proximation sin x ≃ x is not valid). For our choice of oscillation parameters, the mass
difference is approximately equal to ∆M2

13(eV
2) ≃ 3× 10−4 ×Eν(GeV), and hence the

dependence on the baseline is

|∆m
T | ∝ E−2

ν sin δ
[

sin

(

1.27∆m2
32

L(km)

Eν(GeV)

)

sin2
(

3.8 × 10−4L(km)
)

]

(51)
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Hence, the discriminant will first be enhanced and then be suppressed by matter effects.
The maximum is found when the sine squared function reaches a maximum, or at
approximately 4000 km under the assumption of high energy neutrinos. We will verify
numerically that this is really the case in Section 8.

As anticipated, these discussions say that if one wants to study oscillations in the
region of the “first maximum”, one should not choose a too large baseline L, otherwise,
matter effects will suppress the oscillation probability. This is even more so true, as
it will be recalled below, that the magnitude of the effects related to the δ-phase are
suppressed more rapidly than the oscillation.

The simplest way to express the condition on the matter is to require that the
energy of the “first maximum” be smaller than the MSW resonance energy:

2
√

2GF neE
max
ν . ∆m2

32 cos 2θ13 (52)

and, by inserting the definition of Emax
ν ≡ ∆m2

32L/2π we get

Lmax .
π cos 2θ13√

2GF ne

≈ π cos 2θ13

2 × 1.27 × 7.56 × 10−5(eV2)ρ(g/cm3)

≈ 1.5 × 104(km)

ρ(g/cm3)
≈ 5000 km (53)

To summarize, we find that the discriminants of the δ-phase all scale with L/Eν .
The most favorable choice of neutrino energy Eν and baseline L is in the region of
the “first maximum” given by (L/Eν)

max ≃ 400 for |∆m2
32| = 3 × 10−3 eV2. This

leaves a great flexibility in the choice of the actual neutrino energy and the baseline,
since only their ratio L/Eν is determinant. Because of the rising neutrino cross-section
with energy, we will see below that it will more favorable to go to higher energies
if the neutrino fluency is constant.Keeping the L/Eν ratio constant, this implies an
optimization at longer baselines L. One will hence gain with the baseline L until we
reach Lmax ≈ 5000 km beyond which matter effects will spoil our sensitivity.

7 Detection of ∆δ at the NF

We begin the discussion with the detection of the δ-phase with the method of the
∆δ discriminant. We recall that this method implies the comparison of the measured
νe → νµ oscillation probability as a function of the neutrino energy Eν compared to a
“Monte-Carlo prediction” of the spectrum in absence of δ-phase.

We first illustrate that the discriminant really scales like L/Eν in Figure 10, where
the rescaled ∆δ discriminant is shown as a function of the L/Eν ratio. The plot is
computed for neutrinos propagating in matter at three different baselines L = 730 km,
2900 km and 7400 km, and for neutrinos propagating in vacuum. Indeed, for the
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shortest two baselines L = 730 km and 2900 km, the value of the discriminant is
very similar to that obtained in vacuum. For the longest baseline L = 7400 km, well
above Lmax (see Eq. (53)), the effect is highly suppressed by matter effect, since the
“first maximum” corresponds for the given baseline L to an energy Eν above the MSW
resonance energy Eres

ν .

From the figure, we clearly also see that the effect is largest around the “first
maximum”, in the region given by (L/Eν)

max ≃ 400.

Given the freedom in the energy Eν and baseline L, provided the ratio L/Eν is
appropriately chosen, and given the matter effects at distances beyond ≈ 5000 km, we
restrict our choices to the two baselines L = 730 km and 2900 km.

7.1 The correlation with θ13

When searching for effects related to the δ-phase by comparing the measured νe → νµ

oscillation probability as a function of the neutrino energy Eν to a “Monte-Carlo pre-
diction” of the spectrum in absence of δ-phase, requires necessarily a precise knowledge
of the other oscillation parameters entering in the oscillation probability expression.

In particular, the knowledge of the angle θ13 could be quite important. Indeed, the
νe → νµ oscillation is primarily driven by the θ13 angle and only thanks to a different
energy dependence of the terms proportional to δ than to those independent of δ can
one hope to determine θ13 and δ at the same time!

This is however not true at high energy, when both |∆12| ≪ 1 and |∆13|, |∆23| ≪ 1.
This can be explicitly shown for example for simplicity in the limit of small θ13. The
rescaled probability is in this case (see Eq. (26)) a constant:

p(νe → νµ) ≃ (∆m2
12)

2

32

{

1 + 2Ms2
13 + 8Ns13 cos δ

}

(54)

where M = ((∆m2
13)

2 + (∆m2
23)

2)/(∆m2
12)

2 and N = (∆m2
13 + ∆m2

23)/(∆m2
12). The

absence of “oscillations” at high energy implies that a change of θ13 can mimic a change
of δ.

To illustrate this effect in a concrete example, we show in Figures 11 and 12 the
rescaled probabilities for the two baselines L = 730 km and 2900 km as a function of
neutrino energy Eν . The probabilities are computed for neutrinos in matter (full line)
and in vacuum (dotted line), and for three values of the δ-phase: δ = 0, δ = +π/2,
δ = −π/2.

At the shortest baseline L = 730 km, this behavior can be clearly seen for Eν &

20 GeV. The two curves for δ = +π/2 and δ = −π/2 tend to a constant, which is
clearly different than the constant for δ = 0, but that cannot be distinguished from a
δ = 0 with a different θ13. In addition, we recall that the reason that both δ = +π/2
and δ = −π/2 tend to the same constant, is due to the fact that the probability at
high energy depends only on cos δ (see Eq. (26)).
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At the longer baseline L = 2900 km, the situation is improved since up to ≈
100 GeV, the rescaled probability is clearly not a constant, but rather still falling with
energy. We also point out that one can visually see that most of the sensitivity at
L = 2900 km is for neutrino energies around 10 GeV or so. This is an important
point to take into account when considering the muon detection threshold of a given
experimental setup.

8 Direct detection of T -violation at the NF

We now turn to the most challenging search for effects related to δ and consider the ∆T

discriminant. We recall here that the discriminant ∆T implies the comparison between
the appearance of νµ (resp. ν̄µ) and ν̄e (resp. νe) in a beam of stored µ+ (resp. µ−)
decays as a function of the neutrino energy Eν .

The ∆T method takes in advantage that deals with differences between neutrinos
(or anti-neutrinos) only, so matter effects give only a scale factor and no “CP-fake”
violation effects are expected for δ=0. So, the comparison of νµ → νe and νe → νµ

oscillation probabilities offers a direct way to highlight a complex component in the
mixing matrix, independent of matter and other oscillation parameters.

This is clearly visible in Figure 13, where the rescaled value of ∆T is shown for
three baselines and for vacuum. The magnitude of the T -violation effect is roughly
the same for vacuum, 730 km and 2900 km, while for very long baselines (7400 km)
the sensitivity is lost. As described in Section 6.1, all δ-phase discriminants scale with
L/Eν until L≈5000 km (see equation 53) and because of matter effects, beyond this
value the effect decreases dramatically.

The drop of the rescaled ∆T for very long baselines is also illustrated in Figure 14.
The rescaled ∆T discriminant is shown as a function of the baseline and of the neutrino
energy, for neutrinos in vacuum (top) and in matter (bottom) for δ = +π/2. In vacuum,
the same value of ∆T × E2/L2 is obtained keeping the L/Eν ratio constant, while in
matter this pattern is destroyed, loosing in sensitivity for long baselines. For instance,
for Eν ∼ 12 GeV, the discriminant starts dropping for baselines larger than 4000 km.

As already pointed out, the major difficulty of the ∆T method is that it requires the
measurement of the electron charge in order to discriminate the large νe background
from the beam. Both, the wrong-sign muon and the wrong-sign electron samples are
needed to build the magnitude.

9 Direct detection of CP -violation at the NF

We now continue our discussion and consider the ∆CP discriminant. We recall that the
∆CP is in principle quite straight-forward, since it involves comparing the appearance
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of νµ (resp. ν̄µ) in a beam of stored µ+ (resp. µ−) decays as a function of the neutrino
energy Eν . A non-vanishing ∆CP obtained from an observation of the two polarities of
the stored muon beam would be a direct proof for a non-vanishing δ-phase.

However, as already pointed out, this method suffers from the practical necessity
to traverse the Earth matter in order to perform long baseline experiments.

Since neutrinos and anti-neutrinos are affected by matter with an “opposite sign”,
the matter terms will not cancel in the ∆CP discriminant. As a result, the ∆CP will
not necessarily vanish when δ = 0 (having the so called “CP-fake” violation effects.
Hence, a direct detection of a non-vanishing ∆CP discriminant does not imply δ 6= 0.

We illustrate this situation in Figure 15, where the rescaled ∆CP discriminant is
plotted as a function of the neutrino energy Eν , computed for neutrinos propagating
in matter at three different baselines L = 730 km, 2900 km and 7400 km. Three sets
of curves are represented, corresponding to δ = +π/2, δ = −π/2 and δ = 0.

At the shortest baseline L = 730 km, we observe that the maximum of the effect
is indeed around the “first maximum” at about a neutrino energy of 2 GeV. For δ = 0
(thin curve), the discriminant does not vanish, due to matter. This effect is however
smaller than the “genuine” effect at |δ| = π/2 and we observe that for δ = +π/2 −→
−π/2 the discriminant changes sign.

For the medium baseline of L = 2900 km, the maximum of the effect is again
near the “first maximum” (Eν ≡ 8 GeV). The ∆CP × E2/L2 discriminant is larger (a
factor 2) than for L = 730 km in the case of δ = +π/2, but this includes the “CP-
fake” contribution coming from matter. In order to compare at both baselines the
“genuine” CP -violation effect (the one due to a non zero δ-phase) one has to compute
the difference between δ = +π/2 and δ = −π/2, resulting similar at both baselines.
Another interesting feature is that, at L = 2900 km the discriminant is already positive
for any value of δ.

At larger baselines (L = 7400 km) ∆CP is completely dominated by matter effects.
The three values of δ mix and the sensitivity on ∆CP to the “genuine” CP -violation
is lost.

Finally, we address the scaling of the effect with L/Eν . Figure 16 shows the same set
of curve displayed in Figure 15, but as a function of the L/Eν ratio. In addition to the
three different baselines, the case of neutrinos propagating in vacuum (independent of
baseline) is also shown for comparison. At 730 km and 2900 km the effect is maximum
for the same L/Eν ≃ 400 km/GeV (for ∆m2

32 = 3 × 10−3 eV2). In addition, the
difference between δ = +π/2 and −π/2 at the maximum is similar for both baselines.
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10 Behavior for small θ13 values

In the above sections, the possibility of detecting CP -violation, based on the compar-
ison of oscillations involving electron and muon (anti-)neutrinos has been discussed.
This transition is strongly dependent on the value of the mixing angle θ13, and it is
natural to ask how the sensitivity to CP -violation varies with the value of this angle.
It was stated ([26]) that, “as far as the ∆m2

21 effects in the CP-conserving part of
the oscillation probability can be neglected”, the sensitivity to CP -violation does not
depend on θ13.

We can check this hypothesis directly with the help of our Eq. 11. The probability
for oscillations depends on
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where we have neglected ∆12. The parts dependent on δ go like

− 1

2
c2
13 sin(2θ12)s13 sin(2θ23) cos δ

[

cos 2∆13 − cos 2∆23 − 2 cos(2θ12) sin2 ∆12

]

+
1

2
c2
13 sin δ sin(2θ12)s13 sin(2θ23) [sin 2∆12 − sin 2∆13 + sin 2∆23] (56)

As can be seen, the δ-dependent part of the probability depends on sin θ13, while
the leading term (and the total number of oscillated events) is proportional to sin2 θ13.

In the Gaussian approximation, the statistical error is proportional to the square
root of the number of events, so the significance of the δ-effects is independent of θ13.
The validity of this assumption will depend on the total number of muon decays and
on the total mass of the considered detector.

As far as the ∆m2
21 part is concerned, the approximation is valid if
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or

s13 &

√

sin2 ∆12

2 sin2 ∆13

≈ 0.02
∆m2

12

10−4(eV2)
(58)

and ∆m2
23 = 3 × 10−3eV 2. For smaller values of θ13, the oscillation probability is

dominated by the constant term, and the cancellation of the θ13 dependence no longer
applies.

11 Two concrete cases at 730 and 2900 km

In order to assess with concrete examples the use of the δ-phase discriminants, we
consider the two baselines, with corresponding muon beam energy and matter densities:
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Baseline Eµ Muon decays Matter density
732 km 7.5 GeV 1021 2.8 g/cm3

2900 km 30 GeV 2.5 × 1020 3.2 g/cm3

Both examples were chosen to have the same L/Eµ and include matter effects.
Because of the linear rise of the neutrino cross-section with Eν , the factor 4 in muon
energy between the 732 km and 2900 km case, is “compensated” by an increase of
intensity by the same factor in favor of the shorter baseline.

We compute the fluxes assuming unpolarized muons and disregarding muon beams
divergences within the storage ring. We consider that 50% of the stored muons decay
on the direction of the detector (“useful” muons). We integrate the expected event
rates using a neutrino-nucleon Monte-Carlo generator[27]. The total charged current
(CC) cross section is technically subdivided into three parts: the exclusive quasi-elastic
scattering channel σQE and the inelastic cross section σinelasic which includes all other
processes except charm production which is included separately. Event rates for the
two energy-baseline-flux combinations are shown in Tables 1 and 2 for a 10 kton fiducial
mass detector.

Our analyses are performed on samples of fully generated Monte-Carlo events[27],
which include proper kinematics of the events, full hadronization of the recoiling jet
and proper exclusive polarized tau decays when relevant. Nuclear effects, which are
taken into account by the FLUKA model, are included as they are important for a
proper estimation of the tau kinematical identification.

To have a proper account for the detector and background effects, the specific
detector model of a Liquid Argon TPC[6] has been assumed.

The detector response is included in our analyses using a fast simulation which
parameterizes the momentum and angular resolution of the emerging particles, using
essentially the following values: electromagnetic shower 3%/

√
E⊕1%, hadronic shower

≈ 20%/
√

E ⊕ 5%, and magnetic muon momentum measurement 20%.

11.1 Lepton charge identification

Muon identification, charge and momentum measurement provide discrimination be-
tween νµ and ν̄µ charged current (CC) events. Good νe CC versus ν NC discrimination
relies on the fine granularity of the target. Finally, the identification of ντ CC events
requires a precise measurement of all final state particles.
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Eµ = 7.5 GeV Eµ = 30 GeV
Process L = 732 km L = 2900 km

1021 µ− 2.5 × 1020 µ−

νµ CC 39572 35945
Non-oscillated νµ NC 10775 10688
rates ν̄e CC 14419 13911

ν̄e NC 4501 4830
Oscillated ν̄e  ν̄µ CC 85 42
events (δ = π/2) νµ  νe CC 248 238
Oscillated ν̄e  ν̄µ CC 134 72
events (δ = 0) νµ  νe CC 370 333
Oscillated ν̄e  ν̄µ CC 134 69
events (δ = −π/2) νµ  νe CC 360 323

Table 1: Event rates for a 10 kton detector. The oscillation parameters are: ∆m2
32 =

3 × 10−3 eV2, ∆m2
12 = 1 × 10−4 eV2, sin2 θ23 = 0.5, sin2 θ12 = 0.5 and sin2 2θ13 = 0.05.

Eµ = 7.5 GeV Eµ = 30 GeV
Process L = 732 km L = 2900 km

1021 µ+ 2.5 × 1020 µ+

ν̄µ CC 16472 16054
Non-oscillated ν̄µ NC 5319 5636
rates νe CC 35279 31399

νe NC 9268 9245
Oscillated νe  νµ CC 408 389
events (δ = π/2) ν̄µ  ν̄e CC 123 66
Oscillated νe  νµ CC 403 381
events (δ = 0) ν̄µ  ν̄e CC 128 71
Oscillated νe  νµ CC 266 273
events (δ = −π/2) ν̄µ  ν̄e CC 84 43

Table 2: Same as Table 1, but µ+ decays.
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µ− → e− νµ ν̄e

Right sign muons (µ−):
νµ CC
νµ  ντ CC (τ− → µ−)
ν̄e NC (π− → µ−)
νµ NC (π− → µ−)

Wrong sign muons (µ+):
ν̄e  ν̄µ CC
ν̄e  ν̄τ CC (τ+ → µ+)
ν̄e NC (π+ → µ+)
νµ NC (π+ → µ+)

Electrons:
ν̄e CC (ν̄e → e+)
νµ  νe CC (νe → e−)
νµ  ντ CC (τ− → e−)
ν̄e  ν̄τ CC (τ+ → e+)

Wrong sign electrons (e−):
ν̄e CC (ν̄e → e+) × pconf

νµ  νe CC (νe → e−) × (1 − pconf)
νµ  ντ CC (τ− → e−) × (1 − pconf)
ν̄e  ν̄τ CC (τ+ → e+) × pconf

Neutral Currents (no leptons):
νµ NC (hadrons)
νµ  ντ CC (τ− → hadrons)
ν̄e NC (hadrons)
ν̄e  ν̄τ CC (τ+ → hadrons)

Table 3: Event classes in case of µ− beam.

It is natural to classify the events in various classes depending on their final state
configuration[28]. We illustrate them for the case of µ− stored in the ring.

1. Right sign muons (rsµ): the leading muon has the same charge as those
circulating inside the ring. We include the non-oscillated νµ CC events, the νµ →
ντ oscillations charged current events followed by τ → µ and the background
from hadron decays in neutral currents induced by all neutrino flavors.

2. Wrong sign muons (wsµ): the leading muon has opposite charge to those
circulating inside the ring. Opposite-sign leading muons can only be produced
by neutrino oscillations, since there is no component in the beam that could
account for them. This includes ν̄e → ν̄µ oscillations and ν̄e → ν̄τ oscillations
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with τ+ → µ+ decays. We also include hadron decays in neutral currents induced
by all neutrino flavors.

3. Electrons (e): events with a prompt electron (both charges) and no primary
muon identified. Events with leading electron or positron are produced by the
charged-current interactions of the following neutrinos: non-oscillated ν̄e neu-
trinos, νµ → νe oscillations and ν̄e → ν̄τ or νµ → ντ oscillations with τ → e
decays

4. Wrong sign electrons (wse): the leading electron has an identified charge
which has the same sign as that of the muons circulating inside the ring. We
define

• the efficiency ǫe to identify the charge;

• the probability pconf for charge confusion.

Hence, the wrong sign electron sample is built from unoscillated ν̄e’s from the
beam with a weight P (ν̄e → ν̄e)× ǫe ×pconf and from muon neutrinos oscillations
with the weight P (νµ → νe) × ǫe × (1 − pconf).

5. No Lepton (0ℓ): events corresponding to NC interactions or ντ CC events
followed by a hadronic decay of the tau lepton. Events with no leading electrons
or muons will be used to study the νµ → ντ oscillations. These events can be
produced in neutral current processes or in ν̄e → ν̄τ or νµ → ντ oscillations with
τ → hadrons decays.

Table 3 summarizes the different processes that contribute to the five event classes.
pconf is the electron charge confusion probability.

For electron or muon charged current events, the visible event energy reconstructs
the incoming neutrino energy and is therefore a very important variable to study the
energy dependence of the oscillations.

The last three classes can only be cleanly studied in a fine granularity detector.

The energy loss of a minimum ionizing particle in liquid Argon is about 200 MeV/m,
while the nuclear interaction length is 84 cm. That means that a muon with a mo-
mentum of 0.5 GeV will travel about 2.5 meters before being absorbed, corresponding
to about 3 nuclear interaction lengths. The probability that a pion will travel so long
without interacting is small, and also detailed simulations show that at this level of
background rejection pions do not represent a problem.

Based on preliminary estimates[29], we assume that for electrons with energy less
than 7.5 GeV, the charge identification efficiency is 20% with a charge confusion prob-
ability of 0.1%, unless otherwise noted.
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11.2 Direct extraction of the oscillation probabilities

From the visible energy distributions of the events, one can extract the oscillation
probabilities. The visible energy of the events are plotted into histograms with 10 bins
in energy. The νe → νµ oscillation probability in each energy bin i can be computed as

Pi(νe → νµ) =
Ni(wsµ) − N0

i (wsµ)

ǫi(pµ > pcut
µ )N0

i (e)
[µ+ decays] (59)

where Ni(wsµ) is the number of wrong-sign muon events in the i-th bin of energy,
N0

i (wsµ) are the background events in the i-th bin of energy, ǫi(pµ > pcut
µ ) is the ef-

ficiency of the muon threshold cut in that bin, and N0
i (e) is the number of electron

events in the i-th bin of energy in absence of oscillations. The number of events corre-
sponds to the statistics obtained from µ+ decays. A similar quantity for antineutrinos
Pi(ν̄e → ν̄µ) will be computed with events coming from µ− decays.

Similarly, the νµ → νe oscillation probability in each energy bin i can be computed
as

Pi(νµ → νe) =
Ni(wse) − N0

i (wse)

ǫe(1 − pconf)N
0
i (rsµ)

[µ− decays] (60)

where Ni(wse) is the number of wrong-sign electron events in the i-th bin of energy, ǫe

is the efficiency for charge discrimination, pconf the charge confusion, and N0
i (rsµ) is

the number of right sign muon events in the i-th bin of energy in absence of oscillations.
The number of events corresponds to the statistics obtained from µ− decays. A similar
quantity for antineutrinos Pi(ν̄µ → ν̄e) will be computed with events coming from µ+

decays.

These binned probabilities could be combined in an actual experiment in order to
perform direct searches of the effects induced by the δ-phase.

11.3 Direct search for T-asymmetry

For measurements involving the discrimination of the electron charge, we limit ourselves
to the lowest energy and baseline configuration (Eµ = 7.5 GeV and L = 732 km), since
we expect the discrimination of the electron charge to be practically possible only at
these lowest energies.

The binned ∆T (i) discriminant for neutrinos is defined as

∆T (i) = Pi(νµ → νe) − Pi(νe → νµ) (61)

and a similar discrimant ∆̄T (i) can be computed for antineutrinos.

These quantities are plotted for neutrinos and antineutrinos for three values of the
δ-phase (δ = +π/2, δ = 0 and δ = −π/2) in Figure 18. The errors are statistical and
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correspond to a normalization of 1021 muon decays and a baseline of L = 732 km. A
20% electron efficiency with a charge confusion probability of 0.1% has been assumed.
The full curve corresponds to the theoretical probability difference.

A nice feature of these measurements is the change of sign of the effect with re-
spect of the change δ → −δ and also with respect to the substitution of neutrinos by
antineutrinos. These changes of sign are clearly visible and would provide a direct,
model-independent, proof for T -violation in neutrino oscillations.

In order to cross-check the matter behavior, one can also contemplate the CPT -
discriminants defined as

∆CPT (i) = Pi(νµ → νe) − Pi(ν̄e → ν̄µ)

∆̄CPT (i) = Pi(νe → νµ) − Pi(ν̄µ → ν̄e) (62)

These quantities are plotted in Figure 19, with the same assumptions as in Figure 18.
The full curve corresponds to the theoretical probability difference. As expected, these
quantities are independent from the δ-phase and probe only the matter effects. The
change of sign of the effect with respect to the substitution of neutrinos by antineutrinos
is clearly visible.

It should be however noted that in the case of the CPT discriminant, the statisti-
cal power is rather low, since this measurement combines the appearance of electrons
(driven by the efficiency for detecting the electron charge) and involves antineutri-
nos, which are suppressed by matter effects. Hence, the statistical power is reduced
compared to the T -discriminant.

11.4 Direct search for CP-asymmetry

In the direct search for the CP-asymmetry, we rely only on the appearance of wrong-
sign muons. We compare in this case the two energy and baselines options.

The binned ∆CP (i) discriminant for the shortest baseline L = 732 km, Eµ =
7.5 GeV and longest baseline L = 2900 km, Eµ = 30 GeV (lower plots) for three values
of the δ-phase (δ = +π/2, δ = 0 and δ = −π/2) are shown in Figure 20. The errors are
statistical and correspond to a normalization of 1021(2.5×1020) for L = 732(2900) km.
The full curve corresponds to the theoretical probability difference. The dotted curve
is the theoretical curve for δ = 0 and represents the effect of propagation in matter.

As was already pointed out, the ∆CP does not vanish even in the case δ = 0,
since matter introduces an asymmetry. At the shortest baseline (L = 732 km), these
effects are rather small, as illustrated in Figure 11. This has the advantage that the
observed asymmetry would be positive for δ > 0, but would still change sign in the
case δ ≈ −π/2. In the fortunate case in which Nature has chosen such a value for
the δ-phase, the observation of the negative asymmetry would be a striking sign for
CP -violation, since matter could never produce such an effect.
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For other values of the δ-phase, the effect is positive. It is also always positive at
the largest baseline L = 2900 km, since at those distances the effect induced by the
δ-phase is smaller than the asymmetry introduced by the matter.

11.5 Comparison of two methods

The binned ∆T (i) and ∆CP (i) discriminant can be used to calculate the χ2 significance
of the effect, given the statistical error on each bin. We compute the following χ2’s:

χ2
T =

∑

i

(∆T (i, δ) − ∆T (i, δ = 0))2

σ(∆T (i, δ))2
+

(

∆̄T (i, δ) − ∆̄T (i, δ = 0)
)2

σ(∆̄T (i, δ))2
(63)

where σ(∆T (i, δ)) is the statistical error in the bin. Since ∆T (δ) and ∆̄T (δ) use inde-
pendent sets of data, the global χ2

T can be computed in this way, as linear sum of both
contributions.

Similarly, the χ2 of the CP-asymmetry is

χ2
CP =

∑

i

(∆CP (i, δ) − ∆CP (i, δ = 0))2

σ(∆CP (i, δ))2
(64)

We study the significance of the effect as a function of the solar mass difference
∆m2

21, since the effect associated to the δ-phase will decrease with decreasing ∆m2
21

values. We consider the range compatible with solar neutrino experiments, 10−5 .

∆m2
21 . 10−4 eV2.

The exclusion regions obtained at the 90%C.L. (defined as ∆χ2 = +1.96) in the
δ-phase vs ∆m2

21 plane are shown in Figure 21. The rest of parameters are fixed to
the reference values (∆m2

32 = 3 × 10−3 eV2, ∆m2
21 = 1 × 10−4 eV2, sin2 θ23 = 0.5,

sin2 θ12 = 0.5, and sin2 2θ13 = 0.05). An electron charge confusion probability of 0.1%
and an electron detection efficiency of 20% has been assumed. The normalizations
assumed are 1021 and 5× 1021 muon decays with energy Eµ = 7.5 GeV and a baseline
of L = 732 km.

The results are very encouraging. With 1021 muon decays, the region ∆m2
21 &

4×10−5 eV2 is covered. For 5×1021 muons, this region extends down to 2×10−5 eV2. If
we consider that the value of ∆m2

21 is known and that it has a value of ∆m2
21 = 10−4 eV2,

one can constrain the values of the δ-phase within the range |δ| . 0.57 or |δ| & 2.6 for
1021 muons and |δ| . 0.12 and |δ| & 3.0 for 5 × 1021 muon decays at the 90%C.L.

Figure 22 shows the same exclusion plot but comparing the two considered L/Eν

values. For L = 730 km, the normalizations are 1021 and 5 × 1021 muons, while for
L = 2900 km the considered fluxes are four times smaller. Contrary to what happens
at short baselines, where a nice symmetry between +δ and −δ is observed, at L =
2900 km matter effects introduce a clear asymmetry between the two excluded regions.
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We conclude that an exhaustive direct, model-independent exploration of the δ-
phase, within the full range 10−5 . ∆m2

21 . 10−4 eV2 requires an intensity of 5× 1021

muon decays of each sign.

As explained in Section 11.2, the value of the νµ → νe oscillation probability (and
hence the χ2

T discriminant) depends on both the electron detection efficiency, ǫe, and
the electron charge confusion, pconf (see equation 60). In Figure 23 we show the iso-
curves at 1σ, 2σ and 3σ levels of significance3 that can be obtained for δ = +π/2
and −π/2. For instance, in the case of (ǫe, pconf)=(20%,1%) one could exclude both
δ = ±π/2 at 2σ level. Looking at the shape of the iso curves we can conclude that,
even if the result depends on both parameters, it is much more sensitive to the value
of the charge confusion, which should be smaller than ∼0.1% for efficiencies of ∼20%
to have an exclusion power above 3σ.

11.6 Comparison with the fit of the visible energy distribu-
tions

The most effective way to fit the oscillation parameters is to study the visible energy
distribution of the four classes of events4, since assuming the unoscillated spectra are
known, they contain direct information on the oscillation probabilities.

Of course, for electron or muon charged current events, the visible energy recon-
structs the incoming neutrino energy. In the case of neutral currents or the charged
current of tau neutrinos, the visible energy is less than the visible energy because of
undetected neutrinos in the final state. The information is in this case degraded but
can still be used.

In case no CP -violation is observed, the result of the fit in terms of 2-dimensional
90% C.L. contours in the ∆m2

12 − δ plane is shown in Figure 24. The Y axis spans the
∆m2

12 range allowed by LMA solar neutrinos, and the whole range −π < δ < π has
been consider. For each pair of values (∆m2

12,δ), the fit to the reference distributions5

was performed fixing all parameters (lower curves) and leaving θ13 free (upper curves).
The result for the two considered baselines and energies are shown.

As expected, this method is clearly more powerful than the direct search for CP -
asymmetry discussed in Section 11.4. The comparison between both results reveals
that the non-excluded zones near the extremes (|δ| ∼ π) in Figure 21 are now covered
and can be explored with this second method (Figure 24). However, even if higher
exclusive, the fit of the visible energy distributions requires a good knowledge of the
oscillation parameters, while the direct search for CP -asymmetry is essentially model

3The nσ region is reached when
√

χ2
∆T

+ χ2

∆T̄
≥ n.

4In this case, we do not use the information coming from the electron charge.
5The reference values are ∆m2

32 = 3× 10−3 eV2, sin2 θ23 = 0.5, sin2 θ12 = 0.5, sin2 2θ13 = 0.05 and
δ = 0.
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independent. Nevertheless, even assuming that the value of θ13 is not known precisely
(upper curves in Figure 24) the excluded regions extend beyond the limits set by the
first method for |δ| ∼ π.

The result obtained with the full simulation fully supports all the above phenomeno-
logical considerations: for baselines such that the maximum of the interesting effect lies
well below the MSW resonance, the destructive effect of matter almost does not play
any role, and for a given machine power, if L/Eµ is kept constant, the same sensitivity
is reached.

12 Summary and Conclusions

In this document, we have discussed general strategies to detect CP -violation effects
related to the complex phase δ of the neutrino mixing matrix, in the framework of a
neutrino factory. Here is the summary and conclusions:

• In order to directly compare effects at different energies and baselines, we have

defined the “rescaled probability”: P (να  νβ ; Eν , L) × E2
ν

L2 . It approximately weighs
the probability by the neutrino energy spectrum of the neutrino factory and by the
attenuation of the neutrino flux with the distance (Section 4).

• In vacuum, the region of the “first maximum” on the νµ → νe oscillation proba-
bility yields Emax

ν ≃ 2 GeV at 730 km, ≃ 8 GeV at 2900 km and ≃ 20 GeV at 7400 km
for ∆m2

32 = 3 × 10−3 eV2. For neutrinos propagating through matter, the oscillation
probabilities are distorted and the resonant energy is Eres

ν ≃ 14.1, 12.3 and 10.7 GeV
for ∆m2

32 = 3 × 10−3 eV2 and ρ equal to 2.7, 3.2 and 3.7 g/cm3 respectively.

• The most favorable choice of neutrino energy Eν and baseline L is in the region of
the “first maximum” given by (L/Eν)

max ≃ 400 km/GeV for |∆m2
32| = 3 × 10−3 eV2.

As discussed in Section 6.1, if one wants to study oscillations in this region one has to
require that the energy of the “first-maximum” be smaller than the MSW resonance
energy: 2

√
2GFneE

max
ν . ∆m2

32 cos 2θ13. This fixes a limit on the baseline Lmax ≈5000
km beyond which matter effects spoil the sensitivity.

This implies that we concentrate on medium L/Eν .

• We have considered three quantities which are good discriminators for a non-
vanishing δ-phase (Section 6): ∆δ, ∆CP and ∆T .

∆δ can provide excellent determination of the phase, limited only by statistics, but
needs a precise knowledge of the other oscillation parameters and possible correlations
with the θ13 at high energy can appear.

∆CP has the advantage that involves the appearance of wrong-sign muons only,
experimentally easy to detect, but the disadvantage of involving both, neutrinos and
antineutrinos, which requires a good understanding of the effects related to matter.
Matter effects will largely spoil ∆CP at long distances.
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∆T is not affected by matter effects because it involves only neutrinos, but it requires
to discriminate the electron charge, which is experimentally very challenging. A non-
vanishing ∆T would be a direct proof for a non-vanishing δ-phase.

We have demonstrated that the discriminants of the δ-phase in vacuum scale with
L/Eν (in matter, this scaling remains valid for L smaller than ∼5000 km).

• In one hand, because of the linear rise of the neutrino cross-section with neutrino
energy at high energy, the statistical significance of the effect scales with Eν , so it
grows linearly with L (for L/Eν constant).

On the other, the study of ∆T requires the electron charge identification. For a
constant (L/Eν) ratio, the need of low energy electrons points towards lower-energy
beams and shorter distances.

• As an example, we have considered two concrete cases keeping the same L/Eµ

ratio: (L = 730 km, Eµ = 7.5 GeV) and (L = 2900 km, Eµ = 30 GeV). We have
classified the events in five classes (right and wrong sign muons, right and wrong sign
electrons and no leptons) assuming a 10 kT Liquid Argon detector with an electron
charge confusion of 0.1% . We have computed the exclusion regions in the ∆m2

12 −
δ plane using the ∆CP and ∆T discriminants, obtaining a similar excluded region
provided that the electron detection efficiency is ∼20%. The ∆m2

12 compatible with
the LMA solar data can be tested with a flux of 5×1021 muons.

• Finally, we have computed the exclusion regions in the ∆m2
12 − δ plane fitting

the visible energy distributions. This method, more powerful than the previous one
but not model independent, extends the excluded regions up to values of |δ| close to
π, even when θ13 is left free.
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Figure 1: Probability for νe → νµ oscillations in vacuum for two baselines L = 730 km
and 2900 km as a function of neutrino energy Eν . The probabilities are computed for
three values of the δ-phase: δ = 0 (line), δ = +π/2 (dashed), δ = −π/2 (dotted).
The other oscillation parameters are ∆m2

32 = 3 × 10−3 eV2, ∆m2
21 = 1 × 10−4 eV2,

sin2 θ23 = 0.5, sin2 θ12 = 0.5, and sin2 2θ13 = 0.05.
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vacuum propagation
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Figure 2: Rescaled probability (see text) for νe → νµ oscillations in vacuum for three
baselines L = 730 km (line), 2900 km (dashed) and 7400 km (dotted) as a function of
neutrino energy Eν . The oscillation parameters are ∆m2

32 = 3 × 10−3 eV2, ∆m2
21 =

1 × 10−4 eV2, sin2 θ23 = 0.5, sin2 θ12 = 0.5, sin2 2θ13 = 0.05 and δ = 0.
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Figure 3: Rescaled probability (see text) for νe → νµ oscillations in vacuum for three
baselines L = 730 km (line), 2900 km (dashed) and 7400 km (dotted) as a function
of neutrino energy Eν . For each baseline, the probabilities are computed for three
values of the δ-phase: δ = 0 (upper), δ = +π/2 (middle), δ = −π/2 (lower). The
oscillation parameters are ∆m2

32 = 3× 10−3 eV2, ∆m2
21 = 1× 10−4 eV2, sin2 θ23 = 0.5,

sin2 θ12 = 0.5, sin2 2θ13 = 0.05.
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L=730 km, ρ=2.8 g/cm3
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Figure 4: Oscillation probability for νe → νµ oscillations for a baseline L = 730 km
as a function of neutrino energy Eν . The probabilities are computed for neutrinos
in matter (full line) and in vacuum (dotted line) and for three values of the δ-phase:
δ = 0, δ = +π/2 and δ = −π/2. The oscillation parameters are ∆m2

32 = 3× 10−3 eV2,
∆m2

21 = 1 × 10−4 eV2, sin2 θ23 = 0.5, sin2 θ12 = 0.5, sin2 2θ13 = 0.05.

37



L=2900 km, ρ=3.2 g/cm3
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Figure 5: Same as Figure 4 but for a baseline L = 2900 km.
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Figure 6: Rescaled probability (see text) for νe → νµ oscillations for a baseline
L = 730 km as a function of neutrino energy Eν . The probabilities are computed
for neutrinos in matter, in vacuum (dotted line, same for neutrinos and antineutrinos)
and for antineutrinos in matter. The oscillation parameters are ∆m2

32 = 3× 10−3 eV2,
∆m2

21 = 1 × 10−4 eV2, sin2 θ23 = 0.5, sin2 θ12 = 0.5, sin2 2θ13 = 0.05 and δ = 0.
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L=2900 km, ρ=3.2 g/cm3
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Figure 7: Same as Figure 6 but for a baseline L = 2900 km.
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L=7400 km, ρ=3.7 g/cm3
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Figure 8: Same as Figure 6 but for a baseline L = 7400 km.
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Figure 9: Same as plots in Figure 6 but only for neutrinos and as a function of L/Eν

for three baselines L = 730 km, 2900 km, 7400 km and in vacuum (dashed line,
independent of baseline). The oscillation parameters are ∆m2

32 = 3×10−3 eV2, ∆m2
21 =

1 × 10−4 eV2, sin2 θ23 = 0.5, sin2 θ12 = 0.5, sin2 2θ13 = 0.05 and δ = 0.
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Figure 10: The rescaled ∆δ discriminant (see text for definition) as a function of the
L/Eν ratio, computed for neutrinos propagating in matter at three different baselines
L = 730 km, 2900 km and 7400 km (full lines), and for neutrinos propagating in
vacuum (dashed line).
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Figure 11: Rescaled probability (see text) for νe → νµ oscillations for a baseline
L = 730 km as a function of neutrino energy Eν . The probabilities are computed
for neutrinos in matter (full line) and in vacuum (dotted line), and for three val-
ues of the δ-phase: δ = 0, δ = +π/2, δ = −π/2. The other oscillation parameters
are ∆m2

32 = 3 × 10−3 eV2, ∆m2
21 = 1 × 10−4 eV2, sin2 θ23 = 0.5, sin2 θ12 = 0.5,

sin2 2θ13 = 0.05.
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L=2900 km, ρ=3.2 g/cm3
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Figure 12: Same as Figure 11 but for a baseline L = 2900 km.
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T-violation
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Figure 13: The rescaled ∆T discriminant (see text for definition) as a function of the
L/Eν ratio, computed for neutrinos propagating in matter at three different baselines
L = 730 km, 2900 km and 7400 km, and also for propagation vacuum (independent of
baseline). Two sets of curves are represented, corresponding to δ = +π/2 (upper ones)
and δ = −π/2 (lower ones). The other oscillation parameters are ∆m2

32 = 3×10−3 eV2,
∆m2

21 = 1 × 10−4 eV2, sin2 θ23 = 0.5, sin2 θ12 = 0.5 and sin2 2θ13 = 0.05.
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Figure 14: The rescaled ∆T discriminant (see text for definition) as a function of
the L and Eν , computed for neutrinos propagating in vacuum (upper) and in matter
(lower) for δ = π/2. The other oscillation parameters are ∆m2

32 = 3 × 10−3 eV2,
∆m2

21 = 1 × 10−4 eV2, sin2 θ23 = 0.5, sin2 θ12 = 0.5 and sin2 2θ13 = 0.05.
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Figure 15: The rescaled ∆CP discriminant (see text for definition) as a function of the
neutrino energy Eν , computed for neutrinos propagating in matter at three different
baselines L = 730 km, 2900 km and 7400 km. Three sets of curves are represented,
corresponding to δ = +π/2 (thick lines), δ = −π/2 (thin lines) and δ = 0. The other
oscillation parameters are ∆m2

32 = 3× 10−3 eV2, ∆m2
21 = 1× 10−4 eV2, sin2 θ23 = 0.5,

sin2 θ12 = 0.5 and sin2 2θ13 = 0.05.
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Figure 16: Same as Figure 15 but as a function of the L/Eν ratio. In addition to the
three different baselines, the case of neutrinos propagating in vacuum (independent of
baseline) is also shown for comparison.
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Wrong Sign mu osc data (evis)

Charge confusion = 0.1 % , Electron efficiency = 20 %
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Figure 17: Visible energy distribution for wrong-sign muons (left) and wrong-sign
electrons (right) normalized to 1021 muon decays. The electron efficiency ǫe is assumed
to be 20% and charge confusion probability is set to 0.1%. Three sets of curves are
represented, corresponding to δ = +π/2 (dashed line), δ = 0 (full line) and δ = −π/2
(dotted line). The background contribution from tau decays is also shown. The other
oscillation parameters are ∆m2

32 = 3× 10−3 eV2, ∆m2
21 = 1× 10−4 eV2, sin2 θ23 = 0.5,

sin2 θ12 = 0.5 and sin2 2θ13 = 0.05.
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1021 muons for L = 732 km
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Figure 18: Direct T -violation: Binned ∆T (i) discriminant for neutrinos (upper plots)
and antineutrinos (lower plots) for three values of the δ-phase: δ = +π/2, δ = 0 and
δ = −π/2. The errors are statistical and correspond to a normalization of 1021 muon
decays and a baseline of L = 732 km. A 20% electron efficiency with a charge confusion
probability of 0.1% has been assumed. The change of sign of the effect with respect of
the change δ → −δ and the substitution of neutrinos by antineutrinos is clearly visible.
The full curve corresponds to the theoretical probability difference.
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1021 muons for L = 732 km
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Figure 19: Direct CPT -violation: Binned ∆CPT (i) (upper plots) and ∆̄CPT (i) (lower
plots) for three values of the δ-phase: δ = +π/2, δ = 0 and δ = −π/2. The errors
are statistical and correspond to a normalization of 1021 muon decays and a baseline
of L = 732 km. A 20% electron efficiency with a charge confusion probability of 0.1%
has been assumed. The change of sign of the effect with respect to the substitution
of neutrinos by antineutrinos is clearly visible. The full curve corresponds to the
theoretical probability difference.
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1021 muons for L=732 km  and   2.5 1020 muons for L=2900 km
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Figure 20: Direct CP -violation: Binned ∆CP (i) discriminant for the shortest baseline
L = 732 km, Eµ = 7.5 GeV (upper plots) and longest baseline L = 2900 km, Eµ =
30 GeV (lower plots) for three values of the δ-phase: δ = +π/2, δ = 0 and δ = −π/2.
The errors are statistical and correspond to a normalization of 1021(2.5×1020) for L =
732(2900) km. The full curve corresponds to the theoretical probability difference. The
dotted curve is the theoretical curve for δ = 0 and represents the effect of propagation
in matter.
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Figure 21: Exclusion region at the 90%C.L. (χ2 > χ2
min +1.96) in the δ-phase vs ∆m2

21

plane. Two regions obtained with the ∆CP and the sum of ∆T and ∆̄T discriminants
are shown. A charge confusion probability of 0.1% and an electron efficiency of 20%
has been assumed. The result is shown for two normalizations, 1021 and 5×1021 muon
decays of each type with energy Eµ = 7.5 GeV and a baseline of L = 732 km. The
reference oscillation parameters are ∆m2

32 = 3× 10−3 eV2, sin2 θ23 = 0.5, sin2 θ12 = 0.5
and sin2 2θ13 = 0.05.
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Figure 22: Exclusion region at the 90%C.L. (χ2 > χ2
min + 1.96) in the δ-phase vs

∆m2
21 from the ∆CP discriminant. The result is shown for two baselines and two

normalizations: (L = 732 km, Eµ = 7.5 GeV, φ0 = 1021µ flux) and (L = 2900 km,
Eµ = 30 GeV, φ0 = 2.5×1020µ flux). The reference oscillation parameters are ∆m2

32 =
3 × 10−3 eV2, sin2 θ23 = 0.5, sin2 θ12 = 0.5 and sin2 2θ13 = 0.05.
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Figure 23: The 1σ, 2σ and 3σ χ2 contours of the combined ∆T and ∆̄T discriminants
as a function of the electron efficiency and the probability for charge confusion. The
result is shown for δ = +π/2 and δ = −π/2. The other oscillation parameters are
∆m2

32 = 3 × 10−3 eV2, ∆m2
21 = 1 × 10−4 eV2, sin2 θ23 = 0.5, sin2 θ12 = 0.5 and

sin2 2θ13 = 0.05.
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Figure 24: 90% C.L. sensitivity on the CP -phase δ as a function of ∆m2
21 for the two

considered baselines. The reference oscillation parameters are ∆m2
32 = 3 × 10−3 eV2,

sin2 θ23 = 0.5, sin2 θ12 = 0.5, sin2 2θ13 = 0.05 and δ = 0. The lower curves are made
fixing all parameters to the reference values while for the upper curves θ13 is free.
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