A Fine-grained Process Modelling Experiment
at British Airways”

Jim Arlow Sergio Bandinelli Wolfgang Emmerich Luigi Lavazza
British Airways Plc ESI City University Politecnico di Milano
TBE (E124) Parque Tecnolégico, 204 Computer Science and CEFRIEL
Viscount Way 48170 Bilbao Northampton Square Via Emanueli 15
Hounslow, UK Bizkaia, Spain London EC1V 0HB, UK 20126 Milano, Italy
Jim.Arlow@btinternet.com Sergio.BandinelliQesi.es we@city.ac.uk lavazza@mailer.cefriel.it
Abstract

We report on the experimental application of process technology that we did at British
Airways (BA) as part of the GOODSTEP project. The goal of GOODSTEP was to en-
hance and improve the functionality of an object database management system (ODBMS)
to yield a platform suited to the construction of process-centred software engineering envi-
ronments (PSEEs). These enhancements were exploited and validated by the construction
of the GOODSTEP framework for PSEE construction, which includes the SPADE software
process toolset. We used the process modeling language SLANG to model BA’s C++ class
library management process, and we constructed an experimental PSEE based on SPADE.
BA required processes to be automated at a finer degree of granularity than that of tool
invocation. We have demonstrated that SLANG and SPADE offer the basic mechanisms
for modelling these fine-grained processes. We have also shown that it is feasible to gen-
erate tools for dedicated processes and integrate them within a SLANG model so as to
facilitate fine-grained process automation. However, our experience highlighted some open
problems. For instance, SLANG process models are tuned to efficient enactment, thus
containing very detailed process fragments. These are not the most appropriate represen-
tations for humans trying to understand the process model. Although the airline did not
deploy the PSEE in its production environment, the experiment proved beneficial for BA
because the modelling activity itself uncovered serious flaws in the existing process.

Keywords

Software Process Modelling Experiment, Process-centred Software Engineering Environment

1 Introduction

During the past decade, a great deal of research has been devoted to process technology. Pro-
cess modelling languages have been defined in order to specify software processes on a formal

*This work has been partly funded by the CEC within ESPRIT-III project 6115 (GOODSTEP). The work
was done while W. Emmerich was with University of Dortmund (Germany), S. Bandinelli was with CEFRIEL

(Ttaly).

basis. Examples of these languages are extensions to programming languages (e.g. extensions
of Ada [Sutton et al., 1990] and Prolog [Peuschel et al., 1992]), Petri net based approaches
(FUNSOFT [Emmerich and Gruhn, 1991] and SLANG [Bandinelli et al., 1993b]) and multi-
paradigm approaches integrating several high-level descriptions (ESCAPE [Junkermann, 1995]
and SOCCA [Engels and Groenewegen, 1994]). Process modelling environments have been
constructed for these languages so as to edit, simulate, analyse, enact and evolve process mod-
els. Examples include Merlin [Peuschel and Schéfer, 1992], SPADE [Bandinelli et al., 1993a],
Melmac [Deiters and Gruhn, 1990] and Marvel [Barghouti and Kaiser, 1990]. A central com-
ponent of these environments is a process engine that interprets a process model. A number
of attempts have been made to build environments that, in addition to process modelling
components, include tools for the actual software development. These tools are integrated
with the process engine so as to provide services for process automation and to inform the
engine about process-relevant events that they have captured. Such environments are known
as process-centred software engineering environments (PSEEs).

While development of process technology has attracted a vast amount of effort, only a small
amount of attention has been paid so far to the industrial application of the facilities developed.
A notable exception is [Dinkhoff et al., 1994] where FUNSOFT nets have been applied to large-
scale business processes in the area of real estate management. The nature of these business
processes, however, is considerably simpler than those of software processes.

The contribution of this paper is an account of the experience that we gained when we applied
the SLANG process modelling formalism and the SPADE environment to the modelling and
enactment of a software process in an industrial setting, namely at British Airways (BA). BA
is a large software developer in the UK, with some 2,000 IT staff. To increase productivity
and quality, BA have founded a group called Infrastructure who is in charge of maintaining
the design, implementation and documentation of reusable C++ class libraries. SLANG was
used to capture, model and improve the class library development and maintenance process.

The process was not only modelled, but also supported with a customised PSEE, the British
Airways SEE. This PSEE integrates the SPADE process engine with tools for the development
of Booch class diagrams, C++ class interface definitions, C++ class implementations and
class documentations. These tools were generated with the GENESIS tool construction tool-
set [Emmerich et al., 1997a]. The integration of tools and process model was done in a way
that facilitates process guidance at a finer level of granularity than tool invocation.

SPADE and GENESIS were developed in the GOODSTEP project [GOODSTEP Team, 1994].
The experiment reported here was also carried out within that project so as to validate the
GOODSTEP tools. Section 2 briefly describes the GOODSTEP project. Section 3 outlines
the goals of our process modelling experiment. It is followed by a discussion of the baseline
of the experiment, i.e. the existing process at British Airways, the BA SEE tools that have
been generated and the SLANG process modelling language. Section 5 presents the way the
process modelling experiment was conducted and the results specific to the problems of British
Airways. Section 6 discusses the implications of the lessons we learned for process modelling
and process-centred environments in general. Finally, we indicate in Section 7 open research
problems highlighted by our experience and indicate how our current work contributes to the
problems identified.

2 The GOODSTEP Project

GOODSTEP [GOODSTEP Team, 1994] brought together European expertise in the areas of
databases and software engineering. GOODSTEP started in September 1992 and was success-
fully completed in November 1995. The project delivered an advanced database management
system and a development framework for the construction and customisation of PSEEs.

The baseline of the project was an existing Kuropean object-oriented database product:
O [Bancilhon et al., 1992]. Rather than developing a new system from scratch, GOODSTEP
enhanced and improved Oy. The choice of an object-oriented database management system
as a starting point for the project derives from the inadequacy of relational database systems
for engineering applications, which has been recognised for some time [Maier, 1989].

We have shown in [Emmerich et al., 1993a] that the O, product was well adapted to meeting
the requirements [Emmerich et al., 1993b] for storing process and product data of a PSEE.
O2’s schema definition language supported the fine-grained definition of documents and rela-
tionships among them; Os provided a query language and a meta schema that are necessary
primitives for the implementation of process reflexivity [Bandinelli et al., 1993a]; O also sup-
ported the transactions that are required for the preservation of integrity of documents and
process information in the face of hardware or software failure and for low-level concurrency
control. Finally, Oy’s client/server architecture provided limited support for distribution.

09, however, did not fulfill all requirements for the construction of PSEEs. In order to accom-
plish the construction of SPADE on top of Os, it had to be extended with facilities for schema
updates, primitives for version management, and concurrency control based on objects rather
than disk pages, that were used as secondary storage unit.

The implementation of reflexive capabilities in a process modelling language with a static
type system requires the ability to create new types in the database schema as well as to
change existing types during the enactment of the process, possibly migrating the existing
instances to the new type definitions, or compiling at run-time newly created or changed
methods. Schema update facilities that address these requirements [Ferrandina et al., 1994,
Ferrandina et al., 1995] were introduced in Oy by GOODSTEP and are now part of the O,
product.

The early phases of GOODSTEP have also extended the Oy ODBMS with basic primitives
for version management of composite objects [Delobel and Madec, 1993]. This feature, which
is also available in the current Oy product version, makes process modelling easier and more
effective.

Originally, not only client/server communication, but also concurrency control, which im-
plements ACID transactions, were page-based since the server was not aware of the objects
that resided on the pages it was managing. Situations occurred with small objects where
the page-level concurrency control revealed conflicts even though the concurrent transactions
were accessing disjoint sets of objects, just because they resided by chance on the same page.
Conflicts caused transaction abortions and even deadlocks, causing loss of efficiency and re-
quiring specific code to manage spurious deadlocks. To avoid such conflicts, Oy was extended
with object-level concurrency control. Concurrency control is, by default, still based on page
locks. As soon as a conflict occurs, however, the concurrency control switches to object-level
locking. The features of the extended version of Oy delivered by GOODSTEP were extensively
exploited in the construction of SPADE, as described in [Bandinelli et al., 1995a].

SPADE Software GENESIS Tool
Process Tool set Construction Tool set

uses uses

02 Additional functionalities

02 Kerndl 02 Database
Enhancements Management System

Figure 1: Components developed in GOODSTEP

These ODBMS extensions were then exploited for the development of a framework for the
construction of PSEEs of which a coarse-grained overview is displayed in Figure 1. That
framework consists of two components, the SPADE software process toolset with the process
modelling language SLANG and the GENESIS tool construction toolset. GENESIS includes
a compiler for the GOODSTEP Tool Specification Language (GTSL). SPADE exploits the
extended ODBMS for storing process models and process states. GENESIS generates ODBMS
schemas and applications that are used to create and modify software documents.

3 Goals of the Experiment

The goals for this experiment were manifold and can be considered from the points of view of
technology providers and technology users.

The motivation of the technology providers in this experiment was to evaluate process tech-
nology in an industrial setting. The goals of the experiment are reflected in the following
questions:

Feasibility: Is it feasible with the language primitives available in SLANG and GTSL (the
GOODSTEP Tool Specification Language) to lower the level of granularity of process
models, in order to improve process automation?

Scalability: Is SLANG sufficiently scalable to handle complex processes such as those that
occur in industrial practice? Are the resulting process models of any use for supporting
communication among the developers involved?

User Acceptance: Does the resulting process model provide developers with sufficient free-
dom to express their creativity, or does it impose strict constraints that could make the
development harder and less productive?

Performance: Is the enactment of a fine-grained process fast enough, or does it slow down
users more than it helps?

The main motivation of technology users was to understand what process technology can do
for them. They were interested in:

Process Understanding: The Infrastructure Group wanted to check whether, after having
worked for two years on the maintenance of class libraries, it had reached a common (i.e.
consistent) understanding of the process.

Process Improvement: The group knew the flaws in their process and wanted to remove
them. They were curious to see how formal process modelling could help.

Process Automation: Several tasks of the group were done manually and the group was
fascinated by the idea that an environment customised to their particular needs might
automate a relevant part of the work.

4 Baseline of the Experiment

In the first part of this section we discuss the problem space, i.e. the library development
process to be modelled and automated. We then discuss the technology available for solving
the problem. In the second subsection, we discuss the GENESIS tool generation facility
that has been developed in GOODSTEP and in the third subsection we discuss the facilities
available in SPADE for process modelling and enactment.

4.1 Existing Library Development Process at BA

The Infrastructure Group has created a process handbook entitled Standard Development and
Release Procedures. 1t elaborates on the process to be used for class library development and
maintenance. The handbook suggests, in a rather informal manner, the various actions to be
taken for class library development and maintenance. It identifies a number of document types,
including Booch class diagrams, C++ class interface definitions, C++ class implementations,
class documentation, Makefiles, configurations for dynamic linkage and the like.

Different developers in Infrastructure have different roles. Some developers are programmers
responsible for implementing and documenting classes in particular libraries. To date, one
developer is a QA engineer, who is in charge of approving new or changed libraries. A librarian
administers the different versions contained in library configurations.

Infrastructure identified two main problems with their approach to process management. The
first problem is that their informal definition of the process easily leads to misunderstandings.
Two Infrastructure developers, who have worked in the same office for two years, discovered a
serious misunderstanding of a key concept defined in the handbook when we discussed their
process in a meeting. It turned out that they did not have a shared understanding of the
semantics of a library configuration in beta test as opposed to development mode. The second
problem is mentioned in the following quote from Infrastructure members:

“Within Infrastructure, we have had to apply an excessive amount of effort to es-
tablish change control procedures, but these procedures are only partially effective
as they are not enforceable by our current toolset. As BA’s stock of reusable com-
ponents grows, the problems of effective change control will become more and more
pronounced.” [Arlow et al., 199/]

An obvious approach to enforcing change control procedures is to model them with a process
modelling language and to guide the process by subsequently enacting the model constructed.
This requires development tools to be integrated into the process environment in such a way
that tools cannot be abused in order to circumvent the modelled process. Moreover, the

integration of tools and process has to be fine-grained, at least partially, so that the process
model can react to the execution of individual tool commands, rather than complete tool
sessions. The reason for this is that document contents defined in earlier stages determine
documents to be produced in later stages. In the BA process, a class icon included in a
Booch design requires creation of documents for a C++ class interface definition, a C++
method implementation and class documentation. As documents are generally considered as
first class process modelling concepts, the process model should at least be notified about
document creation, if not be responsible for the creation itself. Therefore, a tool command
for the creation of a component of one document, for which an inter-document consistency
constraint requires the creation of another document, might have to be integrated with the
process model.

We modelled the BA class library development and maintenance process with SLANG. Then
a dedicated set of tools tailored towards the particular needs of Infrastructure was generated.
This toolset was integrated with the SLANG process model to enforce the process and to
support process automation at the required levels of granularity.

4.2 Tool Specification and Generation using GENESIS

The need for rapid tool construction through a tool generator is motivated by the observation
given above that enforcement of process definitions, such as change control procedures, require
process sensitive tools to be used. Process sensitive tools interact with a process model through
a joint communication protocol, and thus contribute to the implementation of a process model.

A flexible tool construction mechanism is required to develop tools for use with particular
process models. GTSL was defined as a high-level language to accomplish rapid tool customi-
sation and construction. Tools for the BA SEE have been generated from GTSL specifica-
tions [Emmerich et al., 1997a].

4.2.1 Specification of Tools in GTSL

GTSL specifications of environments use the object-oriented paradigm to define the tools and
documents. The use of object-oriented concepts is motivated by the fact that tool specifications
can become considerably complex and need to be properly structured to keep such complexity
manageable. Moreover, a number of properties re-occur in different parts of tool specifications.
Using object-oriented principles, these properties can be specified in abstract specification
components and are then inherited by more concrete components.

Due to the heterogeneity of the different static and behavioural concerns of tools, it is im-
possible to find a unique formalism that expresses these concerns at an appropriate level
of abstraction. Instead, we separate the different concerns and offer the most appropriate
formalism for each of them. We integrate these different formalisms into a domain-specific
multi-paradigm language that uses rule-based, object-oriented and imperative concepts.

A GTSL environment specification is structured into a number of tool configurations. Each
of these configurations consists of a number of classes that define the different node types
occurring in project-wide abstract syntax graphs [Emmerich et al., 1993b]. Different sections
are provided to define properties of a class such as attributes, abstract syntax and semantic
relationships. Static semantics and inter-document consistency constraints of documents are

specified in a semantic rule section. The available operations to modify graph nodes are
defined in a method section. The invocation of operations from commands and the availability
of commands are specified as patterns in interaction sections. Multiple inheritance enables
properties from superclasses to be reused in subclasses.

4.2.2 Integration Facilities in GTSL

Tools generated from GTSL specifications can not only be used through a user interface.
They also offer services to their environment. These services can be used for tool integration
purposes and, in particular, for the integration of tools with a process model. We distinguish
between generic and tool-specific services. GTSL defines about 20 generic services, examples
of which are the creation of a document of a particular type, opening a particular version of a
document or the computation of a printable representation of a document. Generic services are
supported by any tool generated from a GTSL specification and are implemented by the GTSL
run-time system. Tool-specific services are specified by the tool builder. They are declared in
tool configurations [Emmerich, 1996b] and specified in the same style as tool commands.

Events allow the tool to inform the environment about certain incidents. An event can either
be a request or a notification. A request is sent to the process engine, which either grants the
request or rejects it. Requests are used in interactions of BA SEE tools to ask the process
engine for the permission necessary to perform certain activities. A notification informs the
receiver about a certain action, but does not await its response.

As examples, consider the service and event declarations from the Booch and INT tool con-
figurations given below. The first declaration is a request that asks the process engine for
permission to create a new library. The request is used in a condition in the interaction that
implements the tool command for creating a new library. The second declaration is a specific
service of the class interface editor for the creation of an inheritance relationship between two
C++ class interface definitions. It is invoked from the Booch editor as soon as a user creates
an inheritance relationship in the diagram and then the relationship will also be reflected in
the affected C++ class interface definitions.

TOOL CONFIGURATION Booch;
EVENT CrLibraryRequest (name:STRING) :ERROR;

END CONFIGURATION Booch.

TOOL CONFIGURATION INT; ...
SERVICE CrInheritance(inh_from : STRING;
visibility : STRING;
virtual: BOOLEAN) :ERROR;

END CONFIGURATION INT.

The GTSL language and, in particular, its events and services are therefore powerful facilities
for specifying tools that are customised for use with particular process models. They accom-
plish process automation at a much finer degree of granularity than the tool envelopes suggested
by [Valetto and Kaiser, 1995], because multiple events and services can be exchanged during
the execution of a tool. Tool envelopes only initiate the startup of a tool and obtain the result
of its execution.

4.2.3 Architecture of Tools

The GTSL compiler GENESIS generates tools that store the documents they work upon as
composite objects in the Oy ODBMS. Therefore the GTSL compiler translates GTSL specifi-
cations into O schemas that implement the structure and the operations available for objects
representing abstract syntax graph nodes. A high-level overview of the tool architecture is
displayed in Figure 2. Rectangles represent processes and arrows denote inter-process commu-
nication.

.. <~—=ToolTalk Display
| i
Y \i
Tool 1 Tool n
02 Schema| |02 Schema

N/

02 Database Server

Figure 2: Architecture of Tools generated by GENESIS

Tools generated by GENESIS are integrated in several dimensions. They all store their doc-
uments in one central database server. The database is exploited for data integration, con-
currency control and version management. Tools also communicate with a Display Server to
implement group editing facilities so that users see modifications that concurrent users perform
with a shared document version. Finally, tool services are invoked via the ToolTalk message
server. Likewise tools communicate events that they have detected to the external world using
that message server.

4.3 SLANG and SPADE

SPADE (Software Process Analysis, Design and Enactment) is a project that was carried out
at CEFRIEL and Politecnico di Milano for the purpose of developing a process modelling lan-
guage — i.e. a language to describe software processes — and a computer-based environment
supporting the execution of processes according to their models. Two major results of this
project were the SLANG (SPADE LANGuage) process modelling language and the SPADE-1
PSEE.

4.3.1 Specification of Process Models in SLANG

We restrict ourselves to a rather concise description of SLANG, as the main purpose of this
paper is to describe the experience of using SLANG. A more detailed account of SLANG is
provided in [Bandinelli et al., 1993a, Bandinelli et al., 1993b, Bandinelli et al., 1994].

SLANG is a high-level Petri net language that has been adapted for software process modelling.

Transitions (represented as rectangles) model elementary process actions. Places (represented
as circles) record the process state by storing tokens. Tokens are distinguishable and have a
type that is defined by an class contained in the SLANG type hierarchy (see Figure 3). Arcs
connecting places with transitions and transitions with places determine the consumption and
production of tokens when transitions fire. The overall SLANG net defining a process model is
hierarchically structured into activities. At the top of the hierarchy there is a starting activity
called root activity, an example of which is shown in Figure 5

Transitions: The execution of a transition is atomic, in the sense that no intermediate state
of the transition execution is visible outside the transition. Each transition is associated with
a guard and an action. The guard is a predicate indicating whether the transition is enabled
to fire. The action specifies how output tokens are computed.

Places: A place defines a template for a persistent repository of tokens. Each place has a
name, which is a unique identifier within the activity, and a type (which has to be a subtype
of the predefined class Token). A place can only contain tokens of its class type (or of any of
its subclasses).

Arcs: SLANG offers different kinds of arcs, with intuitive semantics: normal arcs, repre-
sented by solid lines, read-only arcs represented by dashed lines, and overwrite arcs, repre-
sented by lines with double headed arrows. Arcs can be labelled by a weight, indicating the
number of tokens flowing along the arc at each transition firing. An asterisk, “*”, indicates
that as many tokens as possible flow through the arc when the transition fires.

Tokens: Process data are represented by objects, instances of subclasses of Token. There-
fore, each token is typed and carries structured information that can be accessed through
the methods defined in the corresponding class. Tokens represent different kinds of process
data in the process model, including process products and by-products (source code, exe-
cutable code, design documents, specifications, etc.), resources and organisational process
aspects, (such as roles, skills, human resources, computing resources, etc.), and process model
and state (for example, activity definitions, activity instances, class definitions etc.). The
latter feature allows SLANG to provide computational reflection, and therefore offers the
means to build meta-models, i.e. to model the manipulation and evolution of the model itself
[Bandinelli et al., 1993a].

SLANG type hierarchy: The SLANG class hierarchy contains a set of predefined, process-
independent classes that are part of the language definition and cannot be modified. The
classes that are part of a specific process model are represented by a subgraph of the gen-
eralisation hierarchy whose root is ModelType (see Figure 3). Since SPADE is built on the
object-oriented database management system O, [Deux, 1991], it was a natural choice to define
the SLANG type system after that provided by Os.

An example class used in the BA model is class Library displayed in Figure 4. It has a name
and contains a design document (BDiag) in the form of a Booch diagram. As different library
configurations have to be managed Library inherits from CMItem, which provides attributes

P ocessType \

AN

Hace Token Arc Trasition > SLANG

IR :

Message Activity ActiveCopy MetaType Mdel Type

J

////////j;?‘)

Request Answer \ersion Id CMtem g Nodel - speci i ¢
types

Request TOAC Answer Fr omAC Lbraay -/

Figure 3: SLANG type hierarchy

and operations for manipulating configuration items, including revision and version numbers
and methods to derive new revisions and versions.

class CMItem inherit ModelType
public type tuple (
version: integer,
revision: integer,
.2
end
method body Derive_Version in class CItem {
self->version +=1;
self->revision = 0;
I
method body Derive_Revision in class CItem {
self->revision +=1;

};

class Library inherit CMItem
public type tuple (
name: string,
BDiag: BoochDiagr,
.2

end;

Figure 4: Example Type Definition

SLANG activities: Activities are the modularisation units provided by SLANG. An ex-
ample showing activities is provided in Figures 5. According to the principles of information
hiding, an activity definition has an interface and an implementation part. The activity inter-
acts with other activities through its interface, while the implementation part remains hidden.
An activity interface contains:

e A set of interface transitions, including starting events and ending events. Activity
execution starts when any of the starting transitions fires and terminates with the firing

10

of one of the ending transitions.

e A set of interface places, including input places, which play the role of arguments of
an activity, output places, which contain the activity results, and shared places, whose
contents can be used to exchange data with the calling activity.

e A set of interface arcs, connecting interface places and interface transitions.

Activity invocation is represented graphically by embedding an activity interface in a SLANG
net. For instance, Figure 5 (showing the root activity of the BA model) includes invoca-
tions of activities SessionManager, AccessControl, ConfManagement, and VersionManager.
When a starting transition fires, a new instance of the activity (called active copy) is created.
Active copies are executed in parallel. For instance, two tokens in place LoginMsg would
cause the starting transition of activity Session Manager to fire twice, thus creating two in-
stances of that activity. These active copies are executed in parallel with the root activity.
When an ending transition fires, it deposits the resulting tokens into some output places (e.g.,
SessionManEnd), belonging to the calling activity, then the terminated active copy is deleted
(together with the tokens still contained, if any).

’ Start

— lnit
EnactCounter
Save UserPlace StartEnact /
Enable RestoreEnable o Q R
) ConfigSCl = Count
% — VersionRep Restart CountResult

Version
O
EnableShutdown
EndedVM N ‘ . First

s

‘ AccessControl Start LoginMsg .
ACRequest CMAnNsver

* AccessControlEnd SessionMankEnd ~()EndCM

Figure 5: SLANG Net showing Root Activity of BA Process Model

11

4.3.2 Integration Facilities in SLANG

Besides normal places, SLANG includes user places. The contents of a normal place can
change only because of a transition firing. User places, instead, change their contents as a
consequence of events occurring in the user environment. When a process relevant event is
generated (e.g., through a tool), the event is captured and a token with the information about
the occurred event is inserted in the user place(s) associated with that event. Normal places
are graphically represented by a single circle, user places are represented by double circles.

Events having effects only in the process model execution are modelled by means of regular
(or white) transitions (represented by white rectangles). Events involving also effects in the
user environment (e.g., launch a tool or change a tool state) are called black transitions and
are represented as filled rectangles.

A black transition action contains the invocation of an external action (typically a tool service
request). The action body is actually split in two distinct parts called prologue and epilogue.
The prologue sets up the conditions for invoking the external action. In particular, the prede-
fined variable extAction has to be given a string value, which indicates the external program
to be executed, or specifies the service to be requested. If required, object parameters for the
external action may be specified in the predefined variable parList. The epilogue contains
the code to be executed after the external action termination. A predefined variable called
extResult contains the results of the external action and together with the input values may
be used to determine the transition output.

The execution of a black transition is not atomic: the prologue and the epilogue are executed
in different moments, separated by the time necessary for the external action to complete. In
the meanwhile, other transitions can fire.

4.3.3 Architecture of SPADE

This subsection provides an overview of the architecture of SPADE-1, the first full-fledged
implementation of the SPADE PSEE. SPADE-1 is structured as indicated by Figure 6:

e The process enactment environment (PEE) contains the process engine and the object-
oriented repository of the process-centred environment. The process engine is responsible
for the execution of the SLANG process model.

e The user interaction environment (UIE) is composed of external tools contained in the de-
velopment environment. The users (or process agents) interact with the process through
the tools in the user environment.

e The SPADE communication interface (SCI) behaves as a communication bus, connecting
SLANG interpreters in the PEE and tools in the UIE. The SCI also provides facilities
for converting the communication protocol defined for the PEE into a specific protocol
comprehensible by a given tool in the UIE.

12

QR bridge

Ue IneadicnBviramat UE

> SPADE
Noni t or

(S_ANBInterpreter>\
<

(S_AI\GInterpreter

Process BEngi ne

Raoess Hectart Bviramat HEE
. (S_AI\GInterpreter)\

Repository

Figure 6: SPADE Architecture

Process Enactment Environment

The Process Enactment Environment is the run-time support that drives the execution of
the process model. It is composed of a multi-threaded process engine and an Oy object
database [Deux, 1991]. O has a client-server architecture where the server manages persistent
storage (page management, concurrency control, etc.) and clients are in charge of computations
(method execution, class or code compilation etc.). Process data (tokens) are stored in the Os
data base, thus the SPADE process engine is an Oy client, which uses the O run-time system
as the backbone for the execution of the SLANG interpreters. During process execution, each
process engine executes one or more SLANG interpreter threads, each managing a set of active
copies.

User Interaction Environment

The user interaction environment is composed of the tools used by process agents to perform
their work. SPADE-1 provides a general mechanism to integrate these tools in the process
environment. The level of integration that can be achieved depends essentially on the charac-
teristics of the tool; tool generation facilities allow the construction of custom tools achieving
the required degree of integration.

Tools are seen by the SPADE-1 environment as service-providers that can possibly share data
with the process engine; a tool exhibits a control interface indicating the offered services and a
data interface specifying the structure of used data. The differences among tools are basically
given by the granularity of the offered services (the control integration dimension) and the
level of agreement on the view of shared data (the data integration dimension).

With respect to the control dimension, tools can be classified into two broad classes: black-
box tools and service-based tools. Black-box tools offer a single service that takes an input
and produces some output. The action can be performed with or without user interven-
tion, however there is no way to control the execution of the tool (there is only one service
which can be requested, and the only event recognised by the process environment is the ter-
mination of the tool). Examples of black-box tools are UNIX programs such as vi and cc.
Service-based tools provide several services, which can be requested individually. Integration
of service-based tools can be obtained easily through the mechanism of message passing: tools
send messages to a message server that forwards them to the recipient tools according to a
given criterion. This mechanism, originally proposed by Reiss for the FIELD environment
[Reiss, 1990] is becoming very popular and has been used in several commercial products (in-
cluding DEC FUSE [Digital Equipment Corporation, 1992], HP SoftBench [Gerety, 1990], and
SUN ToolTalk [Sun Microsystems, 1991]).

With respect to data integration, we also distinguish two broad classes: file-system based tools
and DB-system based tools. File-system based tools are only able to exchange data with other
tools in the form of files in the file-system. KEach tool reads and writes data on files and is
responsible for parsing and unparsing the data contained in the files. DB-system based tools
use structured data stored in the database used by the process enactment environment. They
are database clients and they share data definitions contained in the DB schema. In SPADE-
1, DB-system based tools share class definitions in the O database schema and are able to
exchange database objects of arbitrary complexity and granularity.

SPADE Communication Interface

The SPADE Communication Interface is responsible for the communication between the user
interaction environment and the process enactment environment. The global architecture of
SPADE-1 is represented in Figure 6. The SCI acts as a communication server used by two
kinds of clients:

e PEFE clients: they are SLANG Interpreters that use the SCI as a means to communicate
and interact with the “outside world”, i.e., the UIE.

e UIFE clients: they are tools in the UIE which provide services and notifications of relevant
events to the SCI and (through the SCI) to the PEE.

14

Communication between the SCI, the tools and the process enactment environment is based
on the message passing paradigm [Reiss, 1990] and follows the SCI Protocol. This protocol
defines a connection procedure, an addressing mechanism and a message format. During the
connection procedure SCI clients declare their type (UIE client or PEE client) and receive their
address. Tools that are able to communicate through the SCI protocol are directly connected
to the SCI, while other tools can be connected to the SCI through a sort of gateway (that we
call bridge). The former tools are given an address consisting of a unique integer identifier,
the latter are identified by a pair of integers: the first indicating the bridge, and the second
indicating a tool in the set of tools connected to that bridge.

The message format defines different message types (requests, replies, notifications). Messages
can contain only unstructured data. The SCI message format is modelled after those proposed
by the commercial message-based tool environments'.

PEE clients can request two kinds of services from the SCI: configuration and integrated service-
based tool invocation. The configuration service allows SLANG interpreters to modify the
behaviour of the SCI at enactment-time. For instance, a client can declare the kinds of
messages that it is willing to receive; it has to specify a pattern (composed of a tool address
and a message name) and will then receive the matching messages, as tokens, in a user place
of the activity that issued the configuration request.

PEE clients can also ask for the invocation of an integrated service-based tool. The invoking
SLANG interpreter provides the command to be executed (a command uniquely identifies a
tool and a service) and the name of the host computer on which the tool must be executed.
When the SCI receives an invocation request message from a SLANG Interpreter, it invokes
the tool on the specified host and, in case of successful invocation, returns the tool identifier
in the message reply, thus enabling further direct reference to the same tool.

A typical communication fragment is the following:

1. A process interpreter PI sends a configuration message to the SCI, indicating that it is
willing to receive “SaveFile” messages arriving from tool with identifier T'.

2. The user issues a SaveFile command through the editor T. The editor does not im-
mediately execute the command: instead, it sends a message to the SCI indicating the
request (“SaveFile”) with its identity 7'

3. The SCI uses its internal configuration tables to decide which process interpreter is
interested in the request, then forwards the message to that interpreter. In this case the
message is sent to interpreter P, and stored in a place whose name is “SaveFile”.

4. The process environment processes the request (for example it checks the user’s permis-
sion to modify the involved file). Then a message is sent to tool 7' containing the request
to save the file or a warning to be displayed explaining why the file cannot be saved.
Other messages can be sent through the SCI to people and tools interested in the file
update.

! Actually, an open specification defining abstract, framework-neutral message interfaces for CASE tools was
defined by Sunsoft, DEC, SGI and HP, and was submitted as a joint draft to ANSI X3H6 (recently renamed
NCITS) and approved on January 21, 1997 with the name of CASE Tool Integration Messages. The SCI
protocol was not designed to be compliant with the X3H6 proposal, however it would be relatively easy to make
it compliant with the standard or to develop a X3H6 bridge.

15

5 The Experiment

The BA experiment is the first case study where the SPADE environment was used to model
and enact an industrial-scale process model with the purpose of becoming the ‘heart’ of a
PSEE. The experiment had a total duration of nine months starting in November 1994. Three
parties participated: CEFRIEL, where the process model was developed, University of Dort-
mund, where development tools were generated and integrated into the BA SEE and BA’s
Infrastructure Group, from whom the process was elicited.

It is worthwhile noting that the skills of BA Infrastructure engineers were not sufficient to
exploit SLANG nets for process modelling. The development effort was, therefore, mainly
carried out full time by two Master students at CEFRIEL and University of Dortmund, who
were supervised by experts in process modelling. When the development started, the students
and their supervisors had a sufficient degree of knowledge of the languages to be used.

In this section, we discuss the experiment we conducted at British Airways from different
perspectives. The first subsection discusses the elicitation and modelling of an enactable
process model. The process model identifies a number of document types. The tools to be
generated, therefore, have to include tools for the production of these document types. The
generation of tools is discussed in the second subsection. The third subsection discusses the
integration of processes and tools. In each subsection we explain the approach taken during
the experiment and the results obtained.

5.1 Process Elicitation and Modelling
5.1.1 Approach

The starting point for process modelling was the BA process handbook. It provided an ap-
propriate scenario from which other information regarding roles, responsibilities and library
structure could be elicited during the first (kick-off) meeting. From there, process elicitation
and modelling proceeded in a parallel and incremental way.

We started the formalisation of the process in the kick-off meeting using state transition
diagrams, a notation Infrastructure members were familiar with. The result of this discussion
is shown in Figure 7. It was during the development of this state transition diagram that
the two participating Infrastructure members discovered the misunderstanding mentioned in
Section 4.

The modelling activity continued by enriching the state chart with other context information
regarding roles, library attributes, access restrictions etc. The state transition diagram was
then formalised in a complete process program written in SLANG and in a protocol specifica-
tion for the messages exchanged with tools through the SCI.

An important result that evolved from the development of this state transition diagram was
the requirement that one developer should be responsible for a complete library and that
only one developer at a time should work on a library. This implied that the granularity of
documents considered by the process model had to be at the level of libraries rather than
individual classes.

16

Unlock Editing

(locked)

Storelib

Gotoedit

Derive M Testing

(locked)

Storelib

Release
Readyto \— =~
release
(locked) I?gckea;?j
CRep
ReleaseRep

Figure 7: State Transitions during Library Management

5.1.2 Results

The whole process model developed for the experiment consists of five activities, the root
activity (displayed in Figure 5), plus four other activities invoked by the root.

One of the activities invoked by the root activity is SessionManager, whose definition is dis-
played as the net shown in Figure 8. Whenever a user starts the Booch editor, the editor will
notify a start-up event to the process model, which will appear as a token on place LoginMsg.
This token enables StartSM, which will eventually fire, thus creating a new active copy of
activity SessionManager. A component of the token identifies the user who has logged into
the environment and this component is fired on place Owner. From there on, the activity
awaits messages from the user interaction environment. These will appear as tokens on places
MsgFromSS or MsgFromBE. After the net has done some consistency checks on the message and
approved the message, the message tokens will appear on place UserMsg. Consequently, tran-
sitions are in conflict over these tokens and guards are used to determine the transition that
fires. DispatchToCl, for instance, fires if the guard identifies the message as a configuration
management message and transfers it to the place CMRequest from where it is consumed by
the ConfManagement activity.

The SLANG net modelling the BA process is structured into five activities, containing in all 50
places and 65 transitions. The graphical net topology covers five pages in printed form. The
size of the textual representation that includes the code for all token types and the different
messages is about 4 KLOC.

Although the size of the model is fairly small it took a Master student, who had undergone
training on the notation and its use for process modelling before he started, four months to
complete the model. This effort might seem high at first glance. It has to be noted, however,
that the effort was needed for process elicitation, formalisation of a logical process model,
transformation of that logical model into a process program that integrates tools at a fine
granularity, and the testing of the integrated environment.

17

9Logi nMsg
StartSM

ConfigSSLogin:
. CM Request

. Configured

BEK:ill

BEKiII

StartSS

SessionManEnd

O

Figure 8: Refinement of Activity SessionManager (Figure 5)

We doubt that the effort would be considerably smaller with any other process programming
language. Hence, the lesson to be learned is that coding enactable process programs that
integrate tools at a fine level of granularity is expensive and that the cost effectiveness of fine
grained process modelling whose aim is to derive an enactable process program has yet to be
proved.

5.2 Tool Specification
5.2.1 Approach

The process elicitation exercises revealed that integrated tools for one graphical document
type (Booch diagrams) and three textual document types (C++ class interface definitions,
C++ class implementations and class documentations) would be needed. These tools were
engineered in a syntax-driven way using GTSL. We started the specification of each tool by
defining the context-free syntax. Extended and normalised BNFs (ENBNFs) were used for
the languages supported by the textual tools.

18

An initial GTSL class hierarchy was derived from these syntax specifications. For each of the
textual tools, the ENBNF syntax definition was translated into a hierarchy of GTSL classes
using a similar strategy as in the interpreter design pattern discussed in [Gamma et al., 1993].
This translation was automated by an ENBNF compiler we generated for that purpose.

The generated GTSL classes were then elaborated further in order to specify the relevant
static semantics rules and inter-document consistency constraints. These were expressed in a
rule-based formalism from which the GTSL compiler created an incremental rule interpreter
in a way discussed in [Emmerich et al., 1995].

We then added tool commands to each class for editing, analysing and browsing through doc-
uments. Editing commands were specified for the expansion of non-terminal placeholders into
templates containing concrete lexemes and nested placeholders and the expansion of terminal
placeholders into identifiers. In addition, editing commands for free textual input were speci-
fied. Analysis commands allow users to find usages of any declaration in order to allow change
impact analysis. Browsing commands support users to open and locate documents based on
semantic relationships between identifiers.

5.2.2 Results

The user interface of the BA SEE provides four types of windows (shown in Figure 9). These
windows are for the four different tools of the SEE: the Booch class diagram editor (upper
left), the C++ class interface editor (upper right), the C++ method implementation editor
(lower right) and the class documentation editor (lower left).

The Booch class diagram editor enables users to decompose libraries hierarchically into cate-
gories and classes. A category is a set of related classes and/or nested categories. Top-level
categories represent libraries. Different types of relationships are supported to facilitate inher-
itance, aggregation and reference relations between classes. The Booch editor was specified
using 20 classes.

The C++ class interface editor supports syntax-directed editing of C++ class definitions. The
editor includes structure-oriented and free textual editing facilities that enforce syntactic cor-
rectness of class definitions. Moreover, the editor checks for correctness of the C++ static
semantics while the user edits and visualises errors by underlining. Checking is done incre-
mentally and transparently to the user. The C++ class interface editor has been specified in
a way that it is integrated with the Booch editor so that, for instance, the creation of a new
relationship in the Booch class diagram is reflected automatically in the C++ class interface
definition. The class interface tool is specified using 75 GTSL classes.

The C++ method implementation editor supports programming of methods, which have been
identified during the C++ class interface design. This editor is integrated with the C++
class interface editor in a way that any changes to, for instance, a method signature are
automatically reflected in the implementation. We needed 130 GTSL classes to specify the
C++ method implementation tool.

The class documentation editor implements the British Airways documentation standard,
which requires a description for any method within a class together with an example of its
application. The editor is also integrated with the C++ class interface editor, so that stubs
are generated for each method identified in the class interface and users only have to complete

19

| File || Edit || Modes| BAString, Vers, 0, Wodus: Edit, Actual Increment: Parameterldentifier

T3 |Com

BABazeString BAPrintable BAString! const char #% initial_text_value }:
/¢ Miztakingly pazsing a HULL ptr will cause a TRAP-D,
AfIn future it will generate an exception,

class BAString : public BABaseString
i

publicy

Inheritance Inheritance

BAStringt const BAString & initial_walue)3

BAString{ int len 3
/¢ creates a space padded buffer of length len

Q |— Has @ virtual “BAStringil:

int operator > { const BAString & arg » :

BAString BALog int operator == { const BAString & arg) :

BAString, Wers, 0, Modus: Edit, Actual Increment: Destd BAString, Yers, O, Modus: Edit, fctual Increment: Mothing

Copy | int operator > ¢ const BAString & arg) ¢
Description: BAString: s“BAString!}
This operator uzes the stromp(} function to
Cut. compare the two strings, It returnz non delete plnst:

zero if the first string iz greater than
. the second string,
Paste Example:
BAString =1{"Hello world"}:
BAString =2{"Hello"}:
if {sl > =2}

int BAString:iioperator > { const BAString & arg
i

. returnistrompiplnst, arg.plnsti>0i:
Export T

" int BAString:ioperator == { const BAString & arg 3
Close int operator == { conzt BAString & arg £

Description:
This operator uzes the stromp(} function to
compare the two strings, It returnz non

returnt{ztrempiplnet, arg,plnsti==0):

Figure 9: User Interface of BA SEE Tools

these stubs. OS/2 IPF hypertexts and HTML files are generated from class documentations
without requiring further actions of the developer. These two representations enable users
of a class library to access documentation as on-line help facilities with standard browsers,
i.e. without having to use the BA SEE. The documentation tool was easiest to specify and it
needed only six GTSL classes.

A research assistant exclusively working on the project needed four months altogether to
specify the classes of the four tools. The average size of a class specification was approximately
170 LOC and we extensively used inheritance to avoid duplication of properties.

5.3 Integration of Tools and Process
5.3.1 Approach

Specification of the integration Process-sensitive events, such as the creation of a new
library, are captured by tools and the process model needs to be informed about them. This
means that, from a modelling perspective, GTSL events are associated with SLANG user input
places. Likewise, the invocation of tool services of a particular tool has to be expressed in the
process model. During modelling this means that some of the black transitions are associated
with GTSL services.

From an architectural point of view, the SCI has been successfully employed for implementing

20

the association of GTSL events with user input places as well as for implementing black
transition occurrences that invoke GTSL services. An event declared in the Booch editor
specification is transformed into a Sun ToolTalk message, which is then sent via the ToolTalk
bridge to the SCI. The SCI transforms the message into tokens, which include the message
data, and user input places are marked with these tokens. Vice versa, a black transition causes
the SCI to create a message that is then translated into a Sun Tooltalk message created by
the ToolTalk bridge. Receipt of the message by the Booch editor causes the GTSL run-time
system to invoke the service that is associated with the message.

The tools and the process model have to agree on some common message protocol. This
involves syntactic and semantic concerns. From a syntactic point of view, tools and process
model have to agree on the messages and their parameters. From a semantic point of view the
meaning of messages and their parameters must be defined as well as the actions that they
cause.

Architecture of the integration We considered different architectures for the integration
of SPADE’s PEE with the UIE. In particular, the decisions we had to make are:

e Whether to exploit the SCI as a software bus for the exchange of messages among tools,
or to use another bus (e.g., ToolTalk).

e Whether to integrate the PEE with all the tools or with just a subset of them, leaving
the integration of the others to be done “outside” the process.

In the case of the BA experiment these possible choices determined three different architectural
alternatives.

The first alternative, which we refer to as the “Star” architecture, was to link all tools to the
SCI, as shown in Figure 10. This choice means that the design relies on the SCI as the software
bus supporting message exchange among the four BA tools.

The star architecture was rejected because it unnecessarily complicated the process model. In
fact the criteria to be used in handling messages should have been coded in the process model.
This is not a problem in general, since the PEE has to know messages that represent events
in the UIE in order to react properly. In our specific case, however, the PEE is interested
only in messages concerning the management of whole libraries, not data (like class inter-
faces) at a finer granularity. In other words, the interface, implementation and documentation
editor could be integrated in a static way among themselves, without involving the process
environment.

We refer to the second alternative as the “mediated architecture”. This architecture exploits an
observation we made during the initial process elicitation, i.e. that the granularity of respon-
sibility at British Airways are class libraries rather than individual classes. As class libraries
are defined in the Booch Editor, there is no need for integrating the editors for the other three
document types with the process model. We, therefore, initially integrated the Booch editor
directly with the SCI. The interface editor, implementation editor and documentation editor
were locally integrated with the Booch editor through a ToolTalk based message server, as
shown in Figure 11.

After the ToolTalk bridge was released the final “bridged architecture” was established, as
shown in Figure 12. In this case, all the messages flowing among the tools are observed by the

21

Booch Editor Ineface | npl enent at i on Docunent at i on
Eitor Hitor Eitor
A

SLANG
Inerpeter
SLANG
Inepeer
SLANG
Inepeter

\4
nE>
P ocess Engi ne Mobni t or

Figure 10: “Star” architecture

bridge — which is itself a ToolTalk tool — but only those important to the process are forwarded
through the SCI to the PEE. Note that in this last case the design of the tools is cleaner, since
they do not need to take into consideration the interaction with the SCI. In fact, they are not
even aware of its existence. This is obviously obtained at the expense of building the bridge,
which is however independent from the specific tools and process, and can therefore be reused
as it is in other applications.

The last task in the definition of the model was to develop an appropriate communication
protocol between the process engine and the Booch editor. A first version of this protocol took
into account only services for session management and access control. Then the protocol was
extended to capture the semantics of class library management at BA and the first enactable
process model prototype was demonstrated in a meeting with BA Infrastructure members.
The availability of an enactable prototype at this meeting proved very useful and triggered
valuable feedback from Infrastructure members.

5.3.2 Results

For the British Airways process model, an informal protocol specification has been defined
that includes 22 different messages.

An example is the create message in Figure 13. Messages like this are sent from the Booch
class diagram editor via the ToolTalk bridge to the SCI and then appear as tokens on user
input places. Likewise SLANG black transitions send messages to the Booch editor to invoke
services.

22

-

4P SPADE
Moni t or

SLANG
Inerpeer

R ocess Bgi ne

Figure 11: Mediated Architecture initially adopted in the BA Experiment
6 Lessons Learned

This section summarises the lessons learned from the perspective of both the technology
provider and the technology user.

6.1 Experience of Technology Provider

The technology provider’s concern was to assess the process modelling and automation capa-
bilities of both SLANG and its support environment SPADE.

Modelling communication with tools. The process modelling language was deliberately de-
signed to have two very simple and powerful means for modelling communication between
process and tools: black transitions and user places. These two basic mechanism made it
feasible to model virtually any interaction policy, provided an appropriate message protocol
had previously been agreed.

23

Docunent at i on
Eitor

s

SPADE
Noni t or

SLANG
Inepee

R ocess Bg ne

Figure 12: SPADE Architecture

Syntax: create(lib_name:string)
Parameters: lib_name is the name of the library
to be created
Return: 0K: library <lib_name> created
ERROR: library <lib_name> already
exists
ERROR: agent is not a librarian

Figure 13: Example Message Definition

Managing complex policies. The BA experiment showed that process policies can reach high
levels of complexity in industry. Policy implementation has an impact on tools, on the commu-
nication protocol between tools and on the process model fragment managing that protocol.
To avoid dealing with this additional complexity at the process level, higher level commu-
nication primitives should be introduced in the process modelling language. The trade-off,
however, might be that the introduction of new communication primitives could complicate
the current simple communication mechanism.

Abstraction mechanisms and activity interfaces. SLANG provides abstraction mechanisms
that facilitate the hiding of complexity at lower levels of the process model. The activity
SessionManager (see Figure 8), for instance, is completely independent from the access policy,
which is hidden in the AccessControl activity (see Figure 5) and in the definition of owner
data. In other circumstances, however, relevant behavioural information remains hidden in
the activity implementation, too. The next transition that will fire in SessionManager af-
ter DispatchToAC has occurred will either be LoginAccepted, or Registered, Unregistered or
LoggedOut. This, however, is not evident from just reviewing the SessionManager activity or
the root activity. To resolve this problem, activity interfaces should not only be defined from
a structural viewpoint, but should also provide a behavioural perspective. Such a perspective
would have to show, at the activity invocation level, that marking ACRequest leads to a token
at ACAnswer and that marking CMRequest produces a token on CMAnswer.

People who were not involved in the process modelling experiment did not find the enactable
process model easy to understand. During process elicitation it was necessary to use simple
state transition diagrams (like the one shown in Figure 7) to communicate with process stake-
holders. Actually, this did not surprise us, since SLANG was initially conceived to support
process enactment. The BA experience showed, however, that it is important to provide dif-
ferent views, which may require different levels of abstraction, different ways of structuring the
process model and different formalisms to express them. This evidence supports the claims
of [Deiters, 1993, Junkermann, 1995]. However, there are no satisfactory answers as yet to the
problem of maintaining consistency of views during both modelling and enactment.

Performance issues. The enactment experience has shown that, during process model execu-
tion, the process engine is idle for most of the time. The engine works as a reactive system,
which wakes up whenever a process-relevant event occurs. This observation seems to support
the argument that performance issues are not relevant in process engines. However, fine-
grained tool integration implies that the process engine becomes active during interactions
of users with tools. To avoid low user acceptance of such an environment, response times
less than a second have to be achieved. Being a pre-commercial prototype, the BA SEE has
very reasonable performance characteristics with response times between 0.5 and 2 seconds
on a SparcStation-20. However, the environment would need to be re-engineered to be used
as a commercial development environment in industrial applications. Much of the overhead
introduced in the process engine execution is due to the evolution mechanisms provided by
the SPADE environment.

6.2 Experience of Technology Users

Process understanding. Much process understanding was gained through the process mod-
elling process. The use of a formal process modelling language has lead to the removal of
inconsistencies in the “Official Process”, represented by Infrastructure’s process handbook,
and in the “Observed Process” [Bandinelli et al., 1995b], represented by what process agents
thought the actual process was. In addition, the modelling activity had to be very detailed
in order to obtain an enactable process representation. This facilitated discussions on solid
grounds and prompted the removal of ambiguities in the process model.

Process Improvement. The process modelling activity highlighted flaws in the process, thus
offering an opportunity to improve the process. In some cases, the introduction of process
technology naturally leads to changing the process during modelling. To a certain degree, this

25

process improvement was achieved by the BA experiment. However, to reduce the inherent
risk it is advisable to apply process technology to already stable and well understood processes.

Process Automation. Although process automation has initially been perceived as a fascinating
idea, not all processes are amenable to complete automation. Automated processes are less
adaptable to unforeseen situations and, as pointed out above, their execution may introduce
some performance overhead. Thus, while established administrative processes are better suited
to process automation, less clearly defined creative processes can only be supported by, for
example, providing guidelines or help information on demand.

Reference for future procurements. The British Airways Infrastructure Group has gained
insights from this process elicitation and modelling exercise into the state-of-the art in process
technology and software engineering environments. These insights have led them to adopt the
BA SEE as a reference point for functionality expected from off-the-shelf software engineering
tools.

7 Future work

The BA experiment highlighted several issues that are currently the subject of several research
initiatives. This section describes these issues, and relates them to our current and future work.

7.1 The Industrial Context of the Experiment

The industrial context plays a fundamental role in the level of success that can be achieved in
an experiment such as the one reported in this paper. In order to highlight the relevance of the
industrial context, we briefly compare this experiment with a previous process improvement
experiment in which the same process modelling language (SLANG) was used. The previous
experiment was carried out at the Business Unit Telecommunications for Defense (BUTD)
of Ttaltel, a large Italian telecommunication company [Bandinelli et al., 1995b]. Here are the
main differences:

o The experiment objectives. The main objective of the Italtel experiment was to enhance
the level of process understanding by reconciling the process agents’ view of the process
and the official process definition, represented by the Quality Manual. The British Air-
ways experiment was focused on providing process support and, where possible, process
automation. In this latter case, an improved process understanding was also obtained
as a side effect.

e The scope of the experiment. Consistently with the experiment objectives, at Italtel
BUTD only the process model was developed. Although it was a formal model, it did
not include details, which are necessary for process enactment, such as integration with
development tools. The formal SLANG process model served to call attention to some
deficiencies in the process definition. At BA Infrastructure the SLANG process definition
needed to be enriched with the appropriate code for tool integration so that the model
could be enacted by the process engine.

e The organisations’ process maturity. Being in the defence domain, Italtel BUTD must
comply with security and quality control procedures. It is periodically assessed for

26

compliance with international standards, such as NATO AQAP-13, MIL-STD 2167A,
and ISO 9000-3. Thus, there was a pre-existing process quality culture in BUTD. The
Infrastructure Group at BA did not have this process culture and processes were only
documented in brief before the experiment.

e Integration of the experiment in a broader process improvement action. The improvement
of the Quality Manual of Italtel BUTD was part of a continuous improvement action
and the results of the experiment served as a feedback to actually improve Italtel’s
Quality Manual. The experiment at BA Infrastructure did not have a direct link to any
internal improvement action and although the experiment served to raise the level of
understanding of some development processes and the environment was installed, it was
not used in actual development.

This comparison shows that the industrial context in which a process improvement experiment
is carried out is a decisive factor for its success. Specifically, the definition, development,
tailoring and introduction of process technology cannot be addressed in isolation from a broader
process improvement programme, having the necessary management commitment.

During recent years process improvement models (such as CMM [Humphrey, 1989], ISO-15504
(also known as SPICE) [ISO/IEC, 1997b], Boostrap [Kuvaja et al., 1994], etc.) and process
technology have developed in independent ways. They address complementary aspects of
process improvement and need each other support integrated process improvement. Process
technology needs to become more mature to be able to support highly mature software organ-
isations and improvement models need to rely on process technology in order to make process
improvement more efficient and effective. Synergy between these two approaches is not fully
explored yet and deserves further research and experimentation.

7.2 Process Life Cycle

The life cycle of a process resembles a software development cycle. The first step, as for any
other software, should be to develop the process requirements. A specific process requirement
language could be used to elicit process information from the various process agents in order
to detect inconsistencies and misunderstandings among them at an early state. Languages
that are simple and easy to understand, such as state charts, might be used during this phase.
It might also be necessary to reconcile different process perspectives elicited from different
process stake holders. That reconciliation should then determine a consistent logical model of
the software process.

The transition from the logical software process model to a process program that is used for
enacting development is not fully understood. We believe that the logical model and the
process program are quite different entities. The process program has to address issues, such
as tool integration and distributed execution, which should not be taken into account during
process analysis. The result of the initial process programming stage should be a process
architecture of the enacted process. It has to identify the main building blocks of the process
program, the tools involved and the primitives and protocols used for integrating process and
tools.

The stage of the software process development process that has gained most attention is process
programming. Most process languages explicitly support the definition of executable process

27

models. Process support environments are centred around interpreters for these languages and
support their development, enactment and evolution.

It is very likely that different formalisms are used for identifying these different perspectives
of requirements, architecture and coding. In order to provide an incremental and intertwined
perspective on the meta process and allow for traceability decisions taken during process
analysis, process architecture and process programming it is important that these formalisms
be integrated. Hence the problems are similar to those in the software process itself. It needs
to be investigated, however, whether solutions that have been developed for products can also
be applied to the process modelling itself.

7.3 Support for Process Deviations

One of the lessons that we have learned is that software engineers are reluctant to have them-
selves strait-jacketed by a strict process model indicating what they should do, and how and
when they should do it. This has led us to believe that strict enforcement of prescribed
processes is too restrictive and will not be accepted in industry. This problem leads to two
separate considerations. Firstly, the process support style can be pro-active or reactive, the
latter allowing more freedom in the development process and being, therefore, more easily
accepted. Secondly, it might be appropriate to allow deviations from the ideal reference model
of the process.

SLANG and SPADE can support the pro-active and reactive styles equally well. The de-
gree to which SPADE process programs can react to events, however, is limited by the abil-
ity of the UIE to capture those events that should trigger process reactions. For instance,
some integrated development environments (such as DEC FUSE) do not always request per-
mission to perform an action, or they do not notify some events. In these cases, the pro-
cess environment has limited visibility to the user environment and cannot always react to
events occurring in the user environment. A solution to this problem has been attempted in
Provence [Barghouti and Krishnamurthy, 1995]. Provence is built on top of a patched operat-
ing system that generates event data from operating system calls. As soon as a certain pattern
of UNIX system calls is recognised the Marvel process engine is notified of an event. While
this approach seems promising for environments that rely on the UNIX file system, it almost
certainly fails for tools that are built on database systems, which might not use the operating
system for secondary storage management.

In any kind of process, inconsistencies within documents are generally tolerated by the tools.
Developers either explicitly perform checks to find inconsistencies or tools implicitly check
and visualise inconsistencies. At specified points in time, for instance before baselining or
translating a document, developers remove inconsistencies. Similar considerations might be
applicable to the software process itself.

Process technology should, therefore, contribute techniques and tools that inform engineers
how they are performing with respect to a prescribed process rather than restricting them
to only those activities that are in-line with the process defined. Currently, we see two dif-
ferent approaches to tolerate inconsistencies on the process level. The modelling of allowable
deviations and compliance checks.

The SENTINEL PSEE [Cugola et al., 1996] tolerates deviations during process enactment.
SENTINEL process descriptions are composed of a behavioural and an intentional part. SEN-

28

TINEL supports process enactment according to its behavioural description, but it allows
humans to deviate from that description, provided that the process is still in the boundaries
established by the intentional description. During deviations the system keeps track of the
progress of the process, registering all the state changes and the operations that are performed.
When a reconciliation is needed, information on all the data that have been potentially “pol-
luted” by the deviation — and that might need to be repaired — are calculated by reasoning on
the deviation history.

In [Emmerich et al., 1997b] a process actually performed is said to be compliant if it conforms
to the modelled process. An approach for checking compliance to process through inconsis-
tency analysis between documents is suggested. The suggestion is based on the observation
that standards for software processes, such as ISO-12207 [ISO/IEC, 1995] or the forthcom-
ing ISO-15288 [ISO/IEC, 1997a], require relevant process information to be documented in
management reports, minutes, progress reports and the like. Hence, compliance rules can be
expressed in terms of relationships that must hold between these process state documents and
the product documents. Object-oriented techniques to specify the document type structure
and event-condition-action languages for the definition of compliance rules are being explored.

The problem of process deviation has been tackled by several researchers, who proposed dif-
ferent techniques to manage inconsistency. Wolf and Cook proposed compliance checks based
on event trace comparison [Cook and Wolf, 1995], while in APPL/A [Sutton et al., 1994] ex-
ception handling is used to deal with exceptional situations.

7.4 Interoperability and Distribution in PSEE Architectures

In our experiment development of the message protocol for the integration of process model
with tools took a very considerable amount of time. The most important reason for this was
the absence of a high-level protocol specification against which the implementation in both
the process model and the tools could be checked in an automated manner.

In general, the integration between tools and process engines faces problems that are common
to a number of distributed systems. For instance, communication between tools and process
synchronisation of messages has to be considered; concurrent messages might be arriving at
the process engine from several tools; tools processes might not be available and may have
to be launched; communication can be disturbed by slow or unavailable networks; and tools
and process engine might be running on different platforms requiring heterogeneity in data
representation to be resolved.

These problems are not new. They have been addressed in a number of distributed system
infrastructures, for instance the Common Object Request Broker Architecture (CORBA) de-
fined by the Object Management Group. Use of this architecture might be advantageous for
the implementation of events and services that are used for communication between process
and tools. Using CORBA, events and services can be implemented as parameterised syn-
chronous, or deferred synchronous, or asynchronous operation execution requests, rather than
as messages that are exchanged. The signatures of these operations are defined in an Interface
Definition Language (IDL) rather than in untyped messages. Compliance of both processes
and tools to the interfaces can be checked statically at compile time or dynamically at run-
time. The different activation strategies included in the CORBA standard define how tools
or process engine should respond to multiple concurrent communication requests. CORBA
has been explicitly designed to support heterogeneous environments where components are

29

implemented in different programming languages and can be running on different hardware
and operating system platforms, hence resolving all the heterogeneity problems.

While CORBA seems to provide better support than message based systems for the integration
of tools with process engines, a number of questions remain open. CORBA defines the lower
level primitives for distributed operation invocation that we have sketched above; In addition
the CORBAservices and CORBAfacilities specification also standardise solutions to higher-
level problems that commonly occur in distributed systems. The problems addressed in these
specifications include naming and trading, security, licensing, concurrency control, transaction
management and event notification. It is interesting to identify those CORBAservices that
are needed in a distributed PSEE architecture and to see whether the specified services are
sufficient for PSEEs. It is quite likely that they are not sufficient and that they will have to
be adapted to PSEE architectures. [Emmerich, 1996a, Emmerich, 1997] report on the results
of initial investigations concerning the size of the gap between what higher-level services are
needed in a PSEE architecture and the features that are actually defined in the CORBAservices
and CORBAfacilities specifications.

7.5 Removing Barriers for Acceptance in Industry

Process technology has little popularity in the software industry. Among the causes of this
limited acceptance are:

e Limited empirical evidence of the costs and benefits provided by the process-centred
approach to software development, since precise, quantitative cost/benefit evaluations
are still missing.

e Perceived risk of adoption, since process technology is relatively new and sophisticated.

As far as SLANG and SPADE are concerned, past industrial applications at the Italian tele-
phone operator Italtel [Bandinelli et al., 1995b] and at BA were just experiments carried out
with the objective of testing the technical features of the process modelling language and of the
PSEE. What we need now is a small set of industrial trial applications concentrating on the
definition of a path to process-centred development, including process modelling, deployment
and usage.

This is exactly the objective of the ESPRIT Project 23768 DOOR (Developing Object Oriented
applications Rapidly), which is currently in its initial phase?. DOOR aims at demonstrating
the suitability and cost effectiveness of GOODSTEP technology to build industrial software
applications. In particular, DOOR will use SLANG and SPADE in two different industrial
contexts: the software production environment for automation systems of Mannesmann Daten-
verarbeitung, and the power system environment of ENEL (the major Italian utility company).

DOOR will define a process for modelling, deploying and using the GOODSTEP process
technology. The technology will have to be integrated within the existing technical, managerial,
organisational and cultural environment. This clearly implies the identification of possible
risks and the corresponding risk management actions. Special attention will be devoted to the
deployment plans, whose objectives will be:

DOOR is carried out by a consortium including three organisations formerly belonging to the the GOOD-
STEP consortium, namely Engineering, the University of Frankfurt, and CEFRIEL.

30

e to define the scope of the experiment, i.e. to decide which parts of the process to model
and enact first;

e to carry out a suitable training program because, for the first time, SLANG and SPADE
will be used in an industrial environment by teams lacking any SLANG/SPADE expert,
and initial training will be of crucial importance.

The cost of setting-up and running a process-centred software development environment will
be measured, and the resulting benefits will be carefully assessed, at least on a qualitative
basis.

8 Summary

We have reported on the experimental application of process technology at British Airways
(BA). We used SLANG to model BA’s C++ class library management process, and we con-
structed an experimental process-centred software engineering environment based on SPADE
and incorporating tools specified in GTSL and developed by means of GENESIS.

In this experiment, SPADE was used for the first time to enact part of an industrial process.
The experiment was successful, since it demonstrated that SPADE can actually support a real
industrial process and as the environment is used for a reference point in future procurements
at BA. Nevertheless, some issues were also highlighted that are not satisfactorily dealt with
by PSEEs and therefore deserve additional research.

The existence of a process life-cycle was recognised. The process needs support in all its phases,
which are much like those of software development. SPADE proved suitable for supporting
the low-level design and coding phases, but the enactable process model was too detailed in
itself to improve process understanding by the BA personnel.

Moreover, we recognised the need to support process deviations as engineers might have to
deviate from the model if a situation arises that was unforeseen in the process model. Adapting
the process model in these occasions is not really an alternative to deviations, given the effort
it takes to implement and test a change.

Finally, from an architectural perspective the need was recognised for an investigation of
how the integration of tools and process engines in a PSEE can be specified and coded at
appropriate levels of abstraction. The message based approach chosen in this experiement was
inappropriate.

Acknowledgements

We are indebted to a number of people. Alfonso Fuggetta, Carlo Ghezzi, Wilhelm Schéafer
and Roberto Zicari provided the support within GOODSTEP to undertake the experiment
we reported about. Alain Ainsworth pointed us to the problems of the BA Infrastructure
Group. Mark Phoenix provided us with valuable insights into daily development practice at
British Airways. Antonio Carzaniga and Giovanni Vigna made fundamental contributions to
the implementation of SPADE-1. Riccardo Rodriguez refined the BA process with SLANG
to a degree that it could be enacted. Jorg Brunsmann designed and implemented most of

31

the integration between the Booch tool and the process model. Elisabetta Di Nitto, Anthony
Finkelstein and Carlo Montangero explained the importance of deviations to us. Finally,
Stephen Morris helped us to improve the presentation of this paper.

References

[Arlow et al., 1994] Arlow, J., Phoenix, M., and Pryce, B. (1994). The British Airways Ap-
plication Scenario for GOODSTEP. Deliverable ESPRIT Project GOODSTEP 26P, Com-
mission of the European Union, DG III.

[Bancilhon et al., 1992] Bancilhon, F., Delobel, C., and Kanellakis, P. (1992). Building an
Object-Oriented Database System: the Story of Oy. Morgan Kaufmann.

[Bandinelli et al., 1995a] Bandinelli, S., Baresi, L., Fuggetta, A., and Lavazza, L. (1995a).
Experiences in Implementation of a Process-centered Software Engineering Environment
using Object-Oriented Technologies. Theory and Practice of Object Systems (TAPOS),
1(2):115-131.

[Bandinelli et al., 1993a] Bandinelli, S., Fuggetta, A., and Ghezzi, C. (1993a). Process Model
Evolution in the SPADE Environment. [IEEE Transactions on Software Engineering,
19(12):1128-1144.

[Bandinelli et al., 1994] Bandinelli, S., Fuggetta, A., Ghezzi, C., and Lavazza, L. (1994).
SPADE: An Environment for Software Process Analysis, Design and Enactment. In Finkel-
stein, A., Kramer, J., and Nuseibeh, B., editors, Advances in Software Process Technology,
pages 223-247. Research Study Press Limited.

[Bandinelli et al., 1993b] Bandinelli, S., Fuggetta, A., and Grigolli, S. (1993b). Process
Modeling-in-the-large with SLANG. In Proc. of the 2" Int. Conf. on the Software Pro-
cess, Berlin, Germany, pages 75-83. IEEE Computer Society Press.

[Bandinelli et al., 1995b] Bandinelli, S., Fuggetta, A., Lavazza, L., Loi, M., and Picco, G. P.
(1995b). Modeling and Improving an Industrial Software Process. IEEE Transactions on
Software Engineering, 21(5):440-454.

[Barghouti and Kaiser, 1990] Barghouti, N. S. and Kaiser, G. E. (1990). Multi-Agent Rule-
Based Software Development Environments. In Proc. of the 5" Annual Knowledge-Based
Software Assistant Conference, pages 375-387.

[Barghouti and Krishnamurthy, 1995] Barghouti, N. S. and Krishnamurthy, B. (1995). Using
Event Contexts and Matching Constraints to Monitor Software Processes. In Proc. of the
17" Int. Conf. on Software Engineering, Seattle, Washington, pages 83-92. IEEE Computer
Society Press.

[Cook and Wolf, 1995] Cook, J. E. and Wolf, A. L. (1995). Automating Process Discovery
through Event-Data Analysis. In Proc. of the 17" Int. Conf. on Software Engineering,
Seattle, Washington, pages 73-92. ACM Press.

[Cugola et al., 1996] Cugola, G. P., Di Nitto, E., Fuggetta, A., and Ghezzi, C. (1996). A
Framework for Formalizing Inconsistencies in Human-Centred Systems. ACM Transactions
on Software Engineering and Methodology, 5(3).

32

[Deiters, 1993] Deiters, W. (1993). A View-based Approach to Software Process Management.
PhD thesis, University of Dortmund, Dept. of Computer Science.

[Deiters and Gruhn, 1990] Deiters, W. and Gruhn, V. (1990). Managing Software Processes
in MELMAC. ACM SIGSOFT Software Engineering Notes, 15(6):193-205. Proc. of the 4"
ACM SIGSOFT Symposium on Software Development Environments, Irvine, Cal.

[Delobel and Madec, 1993] Delobel, C. and Madec, J. (1993). Version Management in Os.
Technical report, Os-Technology.

[Deux, 1991] Deux, O. (1991). The Oz System. Communications of the ACM, 34(10).

[Digital Equipment Corporation, 1992] Digital Equipment Corporation (1992). DEC-FUSE
manual.

[Dinkhoff et al., 1994] Dinkhoff, G., Gruhn, V., Saalmann, A., and Zielonka, M. (1994). Busi-
ness Process Modeling in the Workflow Management Environment LEU. In Loucopoulos,
P., editor, Proc. of the 13" Entity-Relationship Approach, number 881 in Lecture Notes in
Computer Science, pages 46—63. Springer.

[Emmerich, 1996a] Emmerich, W. (1996a). An Architecture for Viewpoint Environments
based on OMG/CORBA. In Vidal, L., Finkelstein, A., Spanoudakis, G., and Wolf, A,
editors, Joint Proceedings of the SIGSOFT ’96 Workshops, pages 207-211. ACM Press.

[Emmerich, 1996b] Emmerich, W. (1996b). Tool Specification with GTSL. In Proc. of the 8t
Int. Workshop on Software Specification and Design, Schloss Velen, Germany, pages 26—35.
IEEE Computer Society Press.

[Emmerich, 1997] Emmerich, W. (1997). CORBA and ODBMSs in Viewpoint Development
Environment Architectures. In Orlowska, M., editor, Proc. of 4"* Int. Conf. on Object-
Oriented Information Systems, Brisbane, Australia. Springer. To appear.

[Emmerich et al., 1997a] Emmerich, W., Arlow, J., Madec, J., and Phoenix, M. (1997a). Tool
Construction for the British Airways SEE with the O ODBMS. Theory and Practice of
Object Systems. To appear.

[Emmerich et al., 1997b] Emmerich, W., Finkelstein, A., Montangero, C., and Stevens, R.
(1997b). Standards Compliant Software Development. In ICSE Workshop on Living with
Inconsistency, Boston.

[Emmerich and Gruhn, 1991] Emmerich, W. and Gruhn, V. (1991). FUNSOFT Nets: A Petri-
Net based Software Process Modeling Language. In Proc. of the 6! Int. Workshop on
Software Specification and Design, Como, Italy, pages 175-184. IEEE Computer Society
Press.

[Emmerich et al., 1995] Emmerich, W., Jahnke, J.-H., and Schifer, W. (1995). Ob-
ject Oriented Specification and Incremental Evaluation of Static Semantic Constraints.
Technical Report 24, ESPRIT-IIT Project GOODSTEP, http://www.dbis.informatik.uni-
frankfurt.de/REPORTS/GOODSTEP /GoodStepReport024.ps.gz.

[Emmerich et al., 1993a] Emmerich, W., Kroha, P., and Schéfer, W. (1993a). Object-oriented
Database Management Systems for Construction of CASE Environments. In Majiik, V.,
Lazanksy, J., and Wagner, R. R., editors, Database and FEzxpert Systems Applications —
Proc. of the 4" Int. Conf. DEXA 93, Prague, Czech Republic, volume 720 of Lecture Notes
in Computer Science, pages 631-642. Springer.

33

[Emmerich et al., 1993b] Emmerich, W., Schifer, W., and Welsh, J. (1993b). Databases for
Software Engineering Environments — The Goal has not yet been attained. In Sommerville,
I. and Paul, M., editors, Software Engineering ESEC ’93 — Proc. of the 4" European Soft-
ware Engineering Conference, Garmisch-Partenkirchen, Germany, volume 717 of Lecture
Notes in Computer Science, pages 145-162. Springer.

[Engels and Groenewegen, 1994] Engels, G. and Groenewegen, L. (1994). SOCCA: Specifi-
cations of Coordinated and Cooperative Activities. In Finkelstein, A., Kramer, J., and
Nuseibeh, B., editors, Software Process Modelling and Technology, pages 71-102. Research
Studies Press, Tanton, UK.

[Ferrandina et al., 1994] Ferrandina, F., Meyer, T., and Zicari, R. (1994). Implementing Lazy
Database Updates for an Object Database System. In Proc. of the 20" Int. Conference on
Very Large Databases, Santiago, Chile, pages 261-272.

[Ferrandina et al., 1995] Ferrandina, F., Meyer, T., Zicari, R., Ferran, G., and Madec, J.
(1995). Schema and Database Evolution in the Oy Object Database System. In Proc. of the
21" Int. Conference on Very Large Databases, Zirich, Switzerland, pages 170-181.

[Gamma et al., 1993] Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1993). Design Pat-
terns: Abstraction and Reuse of Object-Oriented Design. In Nierstrasz, O., editor, ECOOP
93 — Proc. of the 7" European Conf. on Object-Oriented Programming, Kaiserslautern,
Germany, volume 707 of Lecture Notes in Computer Science, pages 406-431. Springer.

[Gerety, 1990] Gerety, C. (1990). HP SoftBench: a new generation of Software Development
Tools. HP journal.

[GOODSTEP Team, 1994] GOODSTEP Team (1994). The GOODSTEP Project: General
Object-Oriented Database for Software Engineering Processes. In Ohmaki, K., editor, Proc.
of the Asia-Pacific Software Engineering Conference, Tokyo, Japan, pages 410-420. TEEE
Computer Society Press.

[Humphrey, 1989] Humphrey, W. (1989). Managing the Software Process. Addison Wesley.

[ISO/IEC, 1995] ISO/IEC (1995). International Standard, Information Technology Software
Life Cycle Process. ISO 12207.

[ISO/IEC, 1997a] ISO/IEC (1997a). Draft Systems Engineering Standard. ISO 15288. To
appear.

[ISO/IEC, 1997b] ISO/IEC (1997b). Software Process Improvement and Capability dEtermi-
nation. International Standardisation Organisation. To appear.

[Junkermann, 1995] Junkermann, G. (1995). A Dedicated Process Design Language based on
EER-Models, Statecharts and Tables. In Proc. of the 7" Int. Conf. on Software Engineer-
ing and Knowledge Engineering, Rockville, Maryland, pages 487-496. Knowledge Systems
Institute.

[Kuvaja et al., 1994] Kuvaja, P. J., Simila, J., Krzanik, L., Bicego, A., Saukkonen, S., and
Koch, G. (1994). Software Process Assessment and Improvement — The Bootstrap Approach.
Blackwell, Oxford, United Kingdom.

[Maier, 1989] Maier, D. (1989). Making Database Systems Fast Enough for CAD Applica-
tions. In Kim, W. and Lochovsky, F. H., editors, Object-Oriented Concepts, Databases and
Applications, pages 573-582. Addison Wesley.

34

[Peuschel and Schifer, 1992] Peuschel, B. and Schéifer, W. (1992). Concepts and Implementa-
tion of a Rule-based Process Engine. In Proc. of the 14" Int. Conf. on Software Engineering,
Melbourne, Australia, pages 262-279. IEEE Computer Society Press.

[Peuschel et al., 1992] Peuschel, B., Schifer, W., and Wolf, S. (1992). A Knowledge-based
Software Development Environment Supporting Cooperative Work. International Journal
for Software Engineering and Knowledge Engineering, 2(1):79-106.

[Reiss, 1990] Reiss, S. (1990). Connecting Tools using Message Passing in the FIELD Program
Development Environment. IEEE Software, pages 57-67.

[Sun Microsystems, 1991] Sun Microsystems (1991). Solaris/Moracsa Open Windows: The
ToolTalk Service. Sun MicroSystems, Inc.

[Sutton et al., 1994] Sutton, S., Heimbigner, D., and Osterweil, L. (1994). APPL/A: A Lan-
guage for Software Process Programming. ACM Transactions on Software Engineering and
Methodology, 4(3):221-286.

[Sutton et al., 1990] Sutton, S. M., Heimbigner, D., and Osterweil, L. (1990). Language Con-
structs for Managing Change in Process-Centred Environments. ACM SIGSOFT Software
Engineering Notes, 15(6):206-217. Proc. of the 4 ACM SIGSOFT Symposium on Software
Development Environments, Irvine, Cal.

[Valetto and Kaiser, 1995] Valetto, G. and Kaiser, G. (1995). Enveloping ”Persistent” Tools
for a Process-Centred Environment. In Schéfer, W., editor, Proc. of the 4th FEuropean
Workshop on Software Process Technology, Nordwijkerhout, The Netherlands, volume 913
of Lecture Notes in Computer Science, pages 200-204. Springer.

35

