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A versatile semiclassical approximation for intense laser-atom processes is presented. This uniform approxi-
mation is no more complicated than the frequently-used multi-dimensional saddle-point approximation and far
superior, since it applies for all energies, both close to aswell as away from classical cutoffs. In the latter case, it
reduces to the standard saddle-point approximation. The uniform approximation agrees accurately with numeri-
cal evaluations for potentials, for which these are feasible, and constitutes a practicable method of calculation in
general. The method is applied to the calculation of high-order above-threshold ionization spectra with various
binding potentials: Coulomb, Yukawa, and shell potentialswhich may model C60 molecules or clusters. The
shell potentials generate high-order ATI spectra that are more structured and may feature an apparently higher
cutoff.

I. INTRODUCTION

Sufficiently intense laser fields ionize atoms or molecules
by the quantum-mechanical process of tunneling [1]. Both
the tunneling process and the ensuing motion of the electron
in the continuum are well accessible to semiclassical meth-
ods. Tunneling generates a wave packet whose center follows
a classical trajectory while the wave packet is spreading. It
may or may not return to within the range of the ionic bind-
ing potential. If it does, the well-known recollision-induced
processes, such as high-order harmonic generation (HHG) or
high-order above-threshold ionization (ATI), take place [2, 3].

In the tunneling regime, the quantum-mechanical transition
amplitude can be analyzed, computed, and interpreted via the
saddle-point approximation [4, 5]. Typically, the transition
amplitude is represented by a multi-dimensional integral over
the timet′ at which the electron enters the continuum by tun-
neling, the later timet at which it revisits the ion, and one
or all components of the drift momentumk along its orbit
in between those two times. For a specified final state, e.g.,
for given final momentum of the electron after the recollision
or for given frequency of high-order harmonic emission, the
saddle-point approximation selects those particular “quantum
orbits” that contribute to this final state. These orbits arechar-
acterized by particular values of the parameterst, t′ andk,
which are complex numbers because of the tunneling nature
of these orbits. For a specified final state, there are, in general,
several contributing quantum orbits. Their contributionshave
to be added coherently, and this yields an interference pattern,
which may appear very intricate, even though its physical ori-
gin is simple [6, 7].

Within the context of atoms in strong fields, the contribut-
ing quantum orbits typically come in pairs. This may be best
known from the Lewenstein model of HHG: For specified
harmonic order within the “plateau”, there are two quantum
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orbits whose contributions dominate the harmonic yield, the
“long orbit” and the “short orbit”. An electron on the long
orbit starts earlier (by ionization) and returns later (forrecom-
bination) than an electron on the short orbit [4]. This is a very
general feature of intense-laser–atom processes and holdsalso
for the more complicated orbits, which bypass the ion once
or several times before the recombination process takes place
[6]. For fixed laser intensity, the maximal HHG frequency
or the maximal energy of an ATI electron obey classical lim-
its [2, 8], which are related to the maximal kinetic energy of
the electron returning to the ion. For parameters approaching
such classical limits, the two quantum orbits become more and
more identical. If it were not for the fact that their parameters
are complex, reflecting the birth of the electron by tunneling,
the two orbits of a pair would coalesce at the classical cutoff
[6].

The near coalescence of the orbits of a pair near a cutoff
constitutes two problems for the saddle-point approximation:
(i) treating the two saddle points as independent becomes an
increasingly inaccurate approximation if they approach each
other closely [9, 10]; should they actually merge into one,
the standard saddle-point approximation diverges and hence
is completely inapplicable; (ii) beyond the cutoff, in the clas-
sically forbidden regime, both (complex) saddle points con-
tinue to exist as formal solutions of the saddle-point condi-
tions. One, however, has to be dropped from the transition
amplitude, which is frequently, but not always, indicated by
an exponentially exploding contribution. A rigorous analysis
establishes that, actually, it is not possible to deform thecon-
tour of integration through such a saddle point by the method
of steepest descent. In the framework of the theory of asymp-
totic expansions, the global bifurcation of the steepest-descent
contour from two visited saddles to a single visited saddle is
known as the Stokes transition [11, 12]. In previous work,
these problems were not treated in a systematic fashion. In
this paper, we invoke a specific uniform approximation to
solve both problems [13]. This turns out to be no more com-
plicated than the standard procedure of treating the two saddle
points as independent, because it uses exactly the same infor-
mation as the standard procedure, namely, the values of the
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action and its second derivative at the saddle points. Problem
(i) is solved because the uniform approximation regularizes
the saddle-point integrals close to the classical cutoff, while
it reduces to the saddle-point approximation far away from
the cutoff. Problem (ii) is solved by imposing the simple re-
quirement of continuity on the transition amplitude, which
automatically selects the appropriate branch of the multival-
ued solution that does not contain the contribution of the un-
physical saddle point beyond the classical cutoff. For a zero-
range binding potential, the benefit of the saddle-point ap-
proximation lies in the insight gained by the introduction of
a few quantum orbits, which allow one to visualize the physi-
cal mechanism behind recollision-induced processes. For the
mere purpose of computation, the transition amplitude can be
calculated as well, if not more easily, via a simple quadrature.
We will use the zero-range potential as a test case, and find ex-
cellent agreement for the uniform approximation, even where
the usual saddle-point approximation fails.

The zero-range potential is a valid model for the descrip-
tion of a negatively charged ion in an intense laser field
[14, 15, 16]. To what extent it can also be employed to
model an atom in an intense laser field or, in other words,
just how important the long range of the Coulomb potential
is in this situation, has been the object of some debate. Sur-
prisingly, it has turned out that at least for the qualitative ex-
planation of most intense-field effects the Coulomb tail is not
instrumental [4, 5, 17]. Still more surprisingly, even the sub-
tle quantum-mechanical enhancements of the ATI plateau at
certain sharply defined intensities [18] are not specific to the
Coulomb potential. In fact, a zero-range potential yields vir-
tually the same enhancements, though at slightly differentin-
tensities [19].

From this point of view, being able to compare ATI spectra
from zero-range and non-zero-range potentials is important.
However, for non-zero-range potentials, a direct computation
of the transition amplitude requires one to carry out a cumber-
some multidimensional integral, and the uniform saddle-point
approximation is the only viable approach.

The purpose of this paper then is twofold. First, we deter-
mine the specific uniform approximation that applies to the
pairs of quantum orbits that appear in laser-induced rescatter-
ing processes. Second, we use this uniform approximation to
investigate the influence of the form of the binding potential
on ATI.

The plan of the paper is as follows: In Sec. II, we sum-
marize the improved Keldysh approximation for the transition
amplitude. In Sec. III, we discuss the saddle points that feature
in the saddle-point approximation as well as in the uniform
approximation, and review the saddle-point approximationas
well as its problems close to classical cutoffs. In Sec. IV, we
determine the uniform approximation that overcomes these
problems and describe its conceptual relation to the saddle-
point approximation. In Sec. V we compare the ATI spec-
tra obtained by these approximations to the numerical results
for the zero-range binding potential. The uniform approxima-
tion is then used in Sec. VI to address the effect of a general
(non-zero-range) binding potential on the ATI spectrum, us-
ing Coulomb, Yukawa, and shell potentials as examples. A

summary of the results and conclusions can be found in Sec.
VII.

We use atomic units (a.u.) throughout this paper.

II. TRANSITION AMPLITUDE FOR RESCATTERING
PROCESSES

Strong-field phenomena, such as above-threshold ioniza-
tion (ATI), are successfully described by transition amplitudes
derived within a framework known as the strong-field approx-
imation. This approximation neglects the binding potential in
the propagation of the electron in the continuum, and the laser
field when the electron is bound, which corresponds to treat-
ing the process of rescattering in the first-order Born approx-
imation on the background of the laser field. (The first-order
Born approximation yields the exact differential cross section
in the absence of the field both for the Coulomb potential as
well as for the zero-range potential.) The ATI transition am-
plitude for the direct electrons – electrons that leave the vicin-
ity of the ion right after they have tunneled into the continuum
– is the well-known Keldysh-Faisal-Reiss (KFR) amplitude
[20]

Mdir = −i
∫ ∞

−∞

dt′ 〈ψ(V )
p (t′)|V |ψ0(t

′)〉. (1)

The generalized transition amplitude, which includes one sin-
gle act of rescattering, is given by [21]

Mresc = −
∫ ∞

−∞

dt

∫ t

−∞

dt′ 〈ψ(V )
p (t)|V U (V )(t, t′)V |ψ0(t

′)〉.

(2)

In both equations,V denotes the atomic binding potential,
the final state is the Volkov state describing a charged parti-
cle with asymptotic momentump in the presence of a field
with vector potentialA(t),

〈r|ψ(V )
p (t)〉 = exp

(

− i

2

∫ ∞

t

dτ [p + A(τ)]2
)

ei[p+A(t)]·r,

(3)

andU (V )(t, t′) is the Volkov time-evolution operator, which
describes the evolution of the electron in the presence of only
the laser field. In Eq. (1), the electron, initially in the ground
state|ψ0(t

′)〉, is ionized into its final state at the timet′. In
Eq. (2), an additional rescattering off the binding potential at
the timet is accounted for. The amplitude (2) incorporates
the amplitude (1) for direct ionization in the limit wheret′ →
t. Hence, the two amplitudes must not be added [21]. The
amplitude (2) or closely related versions thereof have been
used by several authors [9, 10, 22, 23].

If we insert the expansion of the Volkov propagator in terms
of Volkov states,

U (V )(t, t′) =

∫

d3k |ψ(V )
k (t)〉〈ψ(V )

k (t′)|, (4)
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into Eqs. (1) and (2), the transition amplitudes can be rewritten
as

Mdir = −i
∫ ∞

−∞

dt′ exp[iSp(t′)]Vp0, (5)

and

Mresc = −
∫ ∞

−∞

dt

∫ t

−∞

dt′
∫

d3k eiSp(t,t′,k)VpkVk0, (6)

where the corresponding actions are given by

Sp(t′) = −1

2

∫ ∞

t′
dτ [p + A(τ)]

2
+ |E0|t (7)

and

Sp(t, t′,k) = −1

2

∫ ∞

t

dτ [p + A(τ)]
2

− 1

2

∫ t

t′
dτ [k + A(τ)]

2
+ |E0|t′. (8)

The quantity|E0| denotes the ionization potential of the atom.
In this paper, we address the case of a linearly polarized
monochromatic field,

A(t) = A0ex cosωt, (9)

with the ponderomotive energyUP = 〈A2(t)〉t/2 = A2
0/4.

The representations (5) and (6) are particularly useful if the
form factors

Vpk = 〈p + A(t)| V |k + A(t)〉

=
1

(2π)3

∫

d3r exp[−i(p− k) · r]V (r) (10)

and

Vk0 = 〈k + A(t′)| V |0〉

=
1

(2π)3/2

∫

d3r exp[−i(k + A(t′)) · r]V (r)ψ0(r)

(11)

can be calculated in analytical form. Within the strong-field
approximation, the influence of the binding potential is en-
tirely contained in these two matrix elements. For a zero-
range potential, the form factors are constants. In this case,
the five-dimensional integral (6) can be reduced to a one-
dimensional integral over a series of Bessel functions, which
can be readily computed numerically [21, 24]. In Sec. V, we
will refer to the outcome of this procedure as the “exact re-
sult”. In general, however, a correspondingly “exact” evalua-
tion of the matrix element (2) has to deal with a multidimen-
sional integral.

III. SADDLE-POINT ANALYSIS

For sufficiently high intensity of the laser field, correspond-
ing to small Keldysh parameterγ =

√

|E0|/2UP , ionization

can be envisioned to proceed via the quasistatic process of
tunneling [25]. The transition amplitudes (5) and (6) are then
conveniently computed via the method of steepest descent.
Both the standard saddle-point approximation as well as the
uniform approximation rest on this method, which approxi-
mates the entire integral by the contributions from the vicinity
of those points on the integration contour where the action
is stationary, i.e., where the partial derivatives of the action
with respect to the integration variables vanish. These points
correspond to maxima of the integrand after a deformation of
the original integration manifold, which is constructed such
that the integrand decreases roughly like a Gaussian when one
moves away from the vicinity of the saddles [11].

In the current section, we first write down the equations that
determine the saddle points, then describe the general proce-
dure of identifying therelevantsaddles, and finally discuss the
saddle-point approximation. All these items are prerequisites
for the discussion of the uniform approximation in Sec. IV.

A. Saddle-point equations

For the rescattering amplitude (6), the saddle-point equa-
tions are

[k + A(t′)]
2

= −2|E0|, (12)

[p + A(t)]
2

= [k + A(t)]
2
, (13)

∫ t

t′
dτ [k + A(τ)] = 0. (14)

Their solutions determine the ionization timet′, the rescatter-
ing timet, and the drift momentumk of the electronic orbit in
between those two times, such that the electron acquires the
asymptotic momentump. Equations (12) and (13) are related
to energy conservation at the ionization time and the rescat-
tering time, respectively, and Eq. (14) determines the interme-
diate electron momentum. For the direct amplitude (5), only
the ionization timet′ need be determined, and the resulting
equation is like Eq. (12) withk replaced by the asymptotic
momentump.

Evidently, Eq. (12) has no real solutionst′ as long as
E0 6= 0, and in consequencet, t′ andk are complex. Phys-
ically, the fact thatt′ is complex means that ionization takes
place through a tunneling process. The solutions(t, t′) of the
saddle-point equations for the linearly polarized monochro-
matic field (9) have been computed in Ref. [6]. They only
depend on the ionization energyE0 and the photoelectron
momentump, but not on the shape of the binding potential,
which enters the transition amplitude only via the form factors
(10) and (11).

A very important feature of the solutions is that they come
in pairs. Let us denote the “travel time” byτ ≡ t − t′. Then,
for given asymptotic momentump and for thenth travel-time
time intervalnT/2 ≤ Reτ ≤ (n + 1)T/2 (n = 1, 2, . . . ),
there are two solutions having slightly different travel times.
The parameters of two typical pairs of quantum orbits are dis-
played in Fig. 1.
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B. Classical cutoffs and Stokes transitions

The original contour of integration in the amplitudes (5) or
(6) is along the real axes, while the solutions of the saddle-
point equations (12)–(14) are located off the real axes in the
complex plane. A central question in the method of steepest
descent then is, which of the various saddle points are vis-
ited by the steepest-descent integration manifold. We shall
call those therelevant saddle points. The steepest-descent
manifold consists of pieces with a constant real part of the
action. These pieces are glued together at zeros of the inte-
grand, at which the phase of the action is not well defined.
Usually, each piece visits only a single saddle point, which
also determines the constant real part of the action. Only such
pieces that are needed to connect the integration boundaries
give contributions to the transition amplitude. The numberof
these pieces can change in a so-called Stokes transition, when
two pieces merge at a certain value of a parameter (here we
consider the photoelectron momentump). On either side of
the Stokes transition, the manifolds of the saddles of interest
are glued together in different ways: on one side, both pieces
are needed to connect the integration boundaries (plus, pos-
sibly, other pieces related to different pairs of saddle points),
while only one of the pieces is needed on the other. Note
that in the latter case, too, there are still two solutions ofthe
saddle-point equations, but only one of them is visited by the
steepest-descent deformation of the original integrationman-
ifold [26].

Merging of steepest-descent manifolds requires that the real
parts of the actions of two quantum orbits become identical at
a specific value ofp,

ReSp(ti, t
′

i,ki) = ReSp(tj , t
′

j ,kj), (15)

wherei andj denote the saddle points of the given pair, and
the timests andt′s (s = i, j) depend onp. It follows from
the physical mechanism behind high-order ATI that both sad-
dles of each pair are relevant provided the asymptotic mo-
mentum is classically accessible. For the pair of orbits hav-
ing the shortest travel times(n = 1), this is the case if
p2/2 ≤ 10.007UP [27]. The other pairs of orbits have smaller
cutoff energies.

The relevant saddle beyond the classical cutoff is the one
that has the smaller imaginary part of the action at the Stokes
transition [28]. In the following we reserve the indexi for
this saddle. Saddlej only maintains a residual contribution to
the transition amplitude after the Stokes transition, until it be-
comes completely irrelevant in the so-called anti-Stokes tran-
sition

ImSp(ti, t
′

i,ki) = ImSp(tj , t
′

j ,kj). (16)

The anti-Stokes transition coincides with the Stokes transition
if both saddles actually coalesce. Otherwise, it frequently oc-
curs very shortly after the Stokes transition.

Exactly how the transition amplitude behaves close to the
classical cutoff can only be described when the interplay of
both saddles is taken into account in a systematic way, which
is achieved by the uniform approximation. Before we turn to

this approximation, we now discuss the standard saddle-point
approximation.

C. Saddle-point approximation

Within the saddle-point approximation, the amplitudes (5)
and (6) are approximated by

M
(SPA)
dir =

∑

s

√

2πi

∂2Sp/∂t2s
Vp0 exp[iSp(ts)] (17)

and

M (SPA)
resc =

∑

s

As exp(iSs), (18a)

Ss = Sp(ts, t
′

s,ks), (18b)

As = (2πi)5/2 Vpks
Vks0

√

detS′′
p(t, t′,k)|s

, (18c)

respectively, where the indexs runs over the relevant saddle
points, andS′′

p(t, t′,k)|s is the five-dimensional matrix of the
second derivatives of the action (8) evaluated at the solutions
of the saddle-point equations (12)-(14).

In explicit calculations, we will proceed slightly differently:
First, we employ the saddle-point approximation to evaluate
the three-dimensional integral over the intermediate momen-
tum k in Eq. (6), which enters the action (8) only quadrati-
cally. This results in

Mresc = −
∫ ∞

−∞

dt

∫ t

−∞

dt′eiSp(t,t′)Vpk(t,t′)Vk(t,t′)0, (19)

where

k(t, t′) = − 1

t− t′

∫ t

t′
dτA(τ) (20)

and Sp(t, t′) ≡ Sp(t, t′,k(t, t′)). Then, we again make
use of the saddle-point approximation to compute the two-
dimensional integral overt andt′ in Eq. (19), which again re-
sults in the amplitude (18), where the actions and amplitudes
are now computed by

Ss = Sp(ts, t
′

s), (21a)

As = (2πi)5/2
Vpk(ts,t′

s
)Vk(ts,t′

s
)0

√

(t′s − ts)3 detS′′
p(t, t′)|s

. (21b)

The corresponding saddle-point equations are Eqs. (12) and
(13) withk replaced byk(t, t′). Note that the valuesSs,As of
each saddle point are not changed, they are just obtained from
a different set of relations in this more practical procedure.

Upon approach to the classical cutoff, the two solutions that
make up one pair come very close to each other. For an exam-
ple, this is illustrated in Fig. 1. The saddle-point approxima-
tion (18), however, treats different saddle points as indepen-
dent. As mentioned in previous papers [9] and in the intro-
duction, this leads to a quantitative and qualitative breakdown
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of the standard saddle-point approximation near the cutoffof
any pair of solutions, for two reasons: (i) This approximation
can overestimate the contribution to the transition amplitude
by several orders of magnitude (it actually diverges if both
saddles coalesce). (ii) In previous papers, the spurious sad-
dle has been dropped after the classical cutoff by requiringa
minimal discontinuity of the transition amplitude. Still,the
discontinuity remains finite and noticeable.

A smooth suppression of the spurious saddle can be
achieved if both quantum orbits are well separated at the
Stokes transition (which is, however, not the case for physi-
cally accessible parameters in ATI), by a regularization that
has been derived in the general framework of asymptotic ex-
pansions [12]. Thereby, the contribution of the spurious sad-
dle is suppressed by multiplication with the error function

erfc(−ν) =
2√
π

∫ ν

−∞

dτ exp(−τ2), (22)

with the argument given by

ν =
Re [Sp(ti, t

′
i) − Sp(tj , t

′
j)]

√

2|Im [Sp(ti, t′i) − Sp(tj , t′j)]|
. (23)

The argumentν vanishes at the Stokes transition (15) and di-
verges at the anti-Stokes transition (16), after which the spuri-
ous saddle drops out completely. Note that this automatically
prevents an exponential growth of the amplitude of the spu-
rious saddle in the approximation (18), because the saddle is
dropped while the imaginary part of the action is still positive
(namely, equal to the imaginary part of a physical saddle).

This regularization procedure is not accurate enough in
the present problem because the Stokes transitions take place
while the saddles are not sufficiently separated (cf. Sec. V).
On the other hand, the Stokes transitions are already built into
the uniform approximation, to which we turn now.

IV. THE UNIFORM APPROXIMATION

The saddle-point approximations (17) and (18) are obtained
by expanding the action functionSp to second order in the
integration variables about each saddle point, and then do-
ing the ensuing Gaussian integrals. These approximations are
valid if the expansion of the action holds until the integrand
has become much smaller than it was at the saddle point, so
that the integration can be extended to infinity. The saddle-
point approximation breaks down when the difference of ac-
tions|Si −Sj| of two quantum orbits with similar coordinates
becomes of order unity, such that the expansion about saddle
point i becomes inaccurate close to the saddle pointj, and
vice versa. For the quantum orbits in ATI this happens when
the energy approaches the classical cutoff. The remedy of-
fered by the theory of asymptotic expansions is to improve
the expansion of the action function in the neighborhood of
saddlesi andj by including higher orders in the coordinate
dependence and to take the resulting approximate integral as
a collective contribution of both saddle points.

What is often not observed is that the resulting uniform ap-
proximation can be written in such a form that no additional
information on the quantum orbits is needed, i.e., the cumber-
some expansion in the coordinate dependence actually can be
circumvented. The derivation proceeds in two steps. First,we
write down the so-called diffraction integral which describes a
pair of orbits which might be close to each other or well sepa-
rated. Then, we determine the parameters of the formal expan-
sion in terms of the quantities that enter the standard saddle-
point approximation, from the observation that the conven-
tional saddle-point approximation (18) has to be recoveredin
the limit where the saddle points are sufficiently well sepa-
rated.

For the first step, we observe that it is precisely two quan-
tum orbits that closely approach each other near each cutoff.
According to the splitting lemma of catastrophe theory [29],
the parametrization of the integration domain can be rectified
such that the orbits approach each other along one of the (ap-
propriately chosen) coordinate axes (denoted byx in the fol-
lowing). This is the only direction where higher orders in the
coordinate expansion of the action have to be included, while
the expansion in the other coordinates can be restricted to sec-
ond order such that these can be integrated out by the usual
saddle point approximation [this is similar to integratingout
k in the transition from Eq. (18) to Eq. (21)]. Hence the con-
tribution of the pair of quantum orbits (denoted byi and j)
to the transition amplitude can be reduced, in principle, toa
one-dimensional diffraction integral of the general form

Mi+j =

∫ cu

cl

dx g(x) exp[iS(x)], (24)

where the action accounts for these two saddle points and
the integration boundariescu, cl in (complex) infinity are as-
sumed such that the integrand decays to zero and the inte-
gral converges. Moreover, an expression that reduces to the
conventional saddle-point approximation when the quantum
orbits are well separated will be obtained if we allow for a
linear coordinate dependence in the functiong(x). This moti-
vates the use of the normal forms (for a derivation in another
semiclassical context, see Ref. [13])

S(x) = S̄ + εx− ax3, g(x) = g0 + g1x. (25)

Here we have chosen the origin of the coordinate system ex-
actly in the middle between the two saddles, which have co-
ordinatesxi,j = ±

√

ε/3a and coalesce whenε = 0.
The uniform approximation that we introduce here differs

from an earlier regularization method [9, 10], where the action
was expanded to cubic order about the stationary point corre-
sponding to the classical cutoff. This led to the absence of the
linear term in the functiong(x) in Eq. (25). It is precisely this
term whose presence allows us to match the standard saddle-
point approximation both near the cutoff and away from it.
Thus, the method of Ref. [9] coincides with the uniform ap-
proximation near the classical boundary, but deviates fromit
and from the exact solution farther away from the cutoff re-
gion.
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FIG. 1: Saddle points as a function of energy for a Keldysh parameter ofγ = 0.975 and scattering angleθ = 0. The first, second and third
column give the start time, the return time, and the intermediate drift momentum, respectively. The panels present the paths in the complex
plane that are followed by the saddle points as a function of the final energy, which is indicated by the numbers, which are in multiples ofUP .
The upper row gives the saddle points for the pair of orbits with the shortest two travel times(1 + 2), the lower row for(9 + 10), which is one
of the pairs with the longest times considered in this paper.The figure shows how the saddle points of a pair approach each other most closely
near the classical cutoff. In each case, the contribution ofthe orbit that is drawn dashed is dropped after the cutoff.

With expansion (25) inserted into the original integral (24),
the amplitudeMi+j reduces to a sum of Bessel functions,

Mi+j =
√

2π∆S/3 exp(iS̄ + iπ/4)

×
{

Ā[J1/3(∆S) + J−1/3(∆S)]

+ ∆A[J2/3(∆S) − J−2/3(∆S)]
}

,

∆S = (Si − Sj)/2, S̄ = (Si + Sj)/2,

∆A = (Ai − iAj)/2, Ā = (iAi − Aj)/2,

(26)

where the four independent parameters̄S, ∆S =
2ε3/2(27a)−1/2, Ā = g0(−2πi)1/2a1/4(3ε)−1/4, and∆A =
g1(2πi)

1/2ε1/4(3a)−3/4 have been expressed by the ampli-
tudes and actions that result from the saddle-point approxima-
tion of the diffraction integral (24).

The uniform approximation is defined by inserting into Eq.
(26) the actions and amplitudes (18) of the respective pair of
quantum orbits (which we denoted byi andj). We wish to
stress that it is not necessary to obtain the expansion param-
etersS̄, ε, a, g0, andg1 by explicitly carrying out the expan-
sion (25). Indeed, knowledge of the explicit dependence on
these parameters is not even desired because it can be ma-

nipulated by a coordinate transformation, while the original
integral is invariant under smooth changes of the coordinate
system. For the saddle-point approximation (18), invariance
with respect to coordinate transformations is ensured trivially
for the actionsSs, while the amplitudesAs are invariant be-
cause the Jacobian of a transformation contributes a factorto
g which is cancelled by the determinant of second derivatives
of the action, see Eqs. (18c) and (21b). This is the reason
why we express the expansion coefficients in Eq. (25) by the
coordinate-transformation invariant quantitiesAi,j , Si,j of the
saddle points. Indeed, it is a simple exercise to verify withthe
help of the asymptotic behavior

J±ν(z) ∼
(

2

πz

)1/2

cos(z ∓ νπ/2 − π/4) (27)

of the Bessel functions for largez that the saddle-point ap-
proximation (18) is recovered from the uniform approxima-
tion (26) in the limit of large∆S.

Finally, let us demonstrate that the uniform approximation
is also capable of describing the Stokes transition, in which
one of the two saddles is rendered irrelevant. The Bessel func-
tions in (26) assume complex arguments and are multi-valued
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functions, depending on the integration contour taken in their
integral representation. The functional branches can be dis-
tinguished by the number of saddles which are visited by a
steepest-descent deformation of the contour, in complete anal-
ogy with the procedure for the original integral (6). Hence,
when the condition (15) is fulfilled one not only observes a
Stokes transition in the original integral, but also encounters
a Stokes transition in the defining integral of the Bessel func-
tions. The proper branch of the function will automatically
be selected by requiring a smooth functional behavior. The
choice of branches beyond the Stokes transition corresponds
to replacing the BesselJ functions by BesselK functions,

Mi+j =
√

2i∆S/π exp(iS̄)

×
[

ĀK1/3(−i∆S) + i∆AK2/3(−i∆S)
]

. (28)

From the usual asymptotics

Kν(z) ∼
( π

2z

)1/2

exp(−z) (29)

of the BesselK function for largez one verifies that in this
case only saddlei contributes to the saddle-point approxima-
tion.

In summary, in the uniform approximation the sum of
saddle-point amplitudes (18) of each pair of quantum orbits
is simply replaced by the collective amplitude (26). The uni-
form approximation improves the saddle-point approximation
such that it works even when two quantum orbits approach
each other so closely that one cannot locally expand about ei-
ther one, as is the case close to their classical cutoff. It also
works well far away from classical cutoffs, because it includes
the saddle-point approximation as a special case which is re-
covered for|∆S| >∼ 1. This can happen in two ways: (i)
when the saddle points become well separated as a system pa-
rameter (such asp) is varied, or (ii) in the strict semiclassical
limit when for fixed system parameter the Keldysh parameter
is decreased (given∆S 6= 0). Also, the Stokes transition at
the classical cutoff is automatically built into the uniform ap-
proximation. Most notably, the uniform approximation is of
the same practical simplicity as the saddle-point approxima-
tion since it involves the same amplitudesAs and actionsSs

defined in Eqs. (18).

V. COMPARING THE VARIOUS APPROXIMATIONS

In this section, for the zero-range potential we compare the
approximations discussed in the previous sections with theex-
act integration of Eq. (6). First, let us consider ATI spectra in
the direction of the electric field of the laser. Such a spectrum
is composed of the contributions of direct and of rescattered
electrons. The former quickly decrease after their classical
cutoff at 2UP . The latter form an extended plateau with its
classical cutoff at10UP , whose yield is below that of the di-
rect electrons by several orders of magnitude. The cutoff at
10UP is related to the pair of orbits with the shortest travel
times. The other pairs of trajectories, which have longer travel
times, have cutoff energies below this value (see, e.g., Ref. [6]

FIG. 2: Photoelectron spectra for a zero-range binding potential and
UP /ω = 3.58, ω = 0.073 a.u., and a ground-state energy of
E0 = −0.5 a.u. The spectrum is in the direction of the electric
field of the laser,θ = 0. Part (a) shows spectra computed using the
saddle-point and uniform approximations, compared with the pho-
toelectron yield obtained by computing the integral (6) exactly. We
take into account the two direct trajectories and five pairs of rescat-
tered trajectories. The approximate energy positions of the Stokes
transitions, which coincide with the respective classicalcutoffs, are
indicated by arrows. Part (b) displays spectra computed by means of
the uniform approximation, for direct, rescattered, and both types of
electrons, and compares these with the exact integration.

for a more complete discussion). In the figures that follow, we
consider up to 5 pairs of electron trajectories, those with the
shortest travel times. To each trajectory, we associate a pos-
itive integer number which increases with the corresponding
travel time.

The outcome of this comparison is displayed in Fig. 2(a).
In general, there is a good qualitative agreement between the
saddle-point approximation and the exact solution (note, how-
ever, that the scale is logarithmic in this figure.) Quantita-
tively, however, there are marked discrepancies, which occur
in those energy regions where the saddle points that consti-
tute a particular pair approach each other and can no longer
be treated as independent.

In previous work [6], the unphysical contribution of one
of the saddle points was eliminated by hand as soon as the
energy crossed the Stokes line (15). This causes the cusps
in the spectra, which can also be seen in Fig. 2(a). This is
not very satisfactory, since the discrepancies in the ATI signal
may amount to almost one order of magnitude. This problem
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FIG. 3: Angular distributions of photoelectrons for the zero-range
potential case, computed with the saddle-point and uniformapprox-
imations, compared to the exact yield. The field parameters are
UP /ω = 35.8, ω = 0.0584 a.u., the ground-state energy is chosen
asE0 = −0.9 a.u., and the photoelectron energy isǫ = 8.01UP .
The angles of Stokes transitions are marked with arrows.

is particularly critical if the intensity of the driving field is not
so high. In this case, the various cutoff energies are relatively
close to each other, so that the artifacts affect a broad energy
region. Thus, a more accurate approximation is desirable and
even necessary, in case the integral (6) cannot be carried out
exactly, as is the case for any potential other than the zero-
range potential.

One possibility to eliminate such effects, shown in Fig. 2(a),
is the Stokes regularization, Eq. (22). This smoothes out the
cusps, without, however, eliminating them completely.

Far superior results are obtained by the uniform approxi-
mation, given by Eqs. (26) and (28), respectively. The spec-
trum computed in this way almost perfectly agrees with the
exact result. The remaining differences between the uniform
approximation and the exact integration occur near the inter-
ference minima and are due to the contributions of pairs of tra-
jectories with longer travel times that have not been included.
This is indicated by the minor differences in the spectra com-
puted with the uniform approximation using 3 and 5 pairs of
trajectories, cf. Fig. 2(b).

Figure 2(b) shows that the exact spectrum is well repro-
duced by the uniform approximation for all energies. The
figure also separately displays the contribution of the direct
electrons [30]. One observes that interference between the
rescattered and direct electron trajectories is only important
within a small energy region, between4UP and 6UP [31].
Above and below this energy range, either the rescattered or
the direct electrons completely dominate the spectrum, so that
interference only leads to minor effects.

The superiority of the uniform approximation over the
saddle-point approximation becomes particularly impressive
if spectra are displayed on a linear scale. This is done in
Fig. 3 for an angular distribution at fixed energy. Both with
the saddle-point approximation and the uniform approxima-
tion, the 10 shortest trajectories are considered. The uniform
approximation, again, yields excellent agreement with theex-
act result. Minor differences, for small scattering angles, are

caused by the trajectories with still longer travel times that
have not been included. Those do not contribute for larger an-
gles. The saddle-point approximation, on the other hand, ex-
hibits large discrepancies with the exact results near the clas-
sical cutoffs. For the chosen photoelectron energy of8.01UP ,
there are only three relevant cutoffs, corresponding to thepairs
of trajectories 1+2, 5+6, and 9+10. The remaining pairs of tra-
jectories do not contribute, since their cutoffs are significantly
below8.01UP .

VI. INFLUENCE OF THE POTENTIAL ON
RESCATTERING PROCESSES

The preceding section has shown that the uniform approx-
imation is a very dependable method, yielding results very
close to those obtained from the exact integration. The lat-
ter, however, is only feasible for a binding potential of zero
range. Therefore, we will rely on the uniform approximation
to investigate how the form of the binding potential affects
the photoelectron spectrum. The transition amplitude (2) was
derived in the context of one electron bound by the potential
V (r). In order to simulate a many-electron atom, it can be
reasonable to use in the transition amplitude (2) differentpo-
tentialsV (r) for the electron when it tunnels out and when it
rescatters [10]. In Refs. [10, 23], the effect of the rescattering
potential on the general shape of the high-order spectrum and
the ratio of direct over rescattered electrons were investigated
as a function of the applied field, for the pair of the two short-
est orbits. In particular, the dependence on the atomic species
was modeled by a Thomas-Fermi potential. Here, for various
model potentials, making use of the additional power afforded
by the uniform approximation, we will concentrate on the de-
tailed shape of the angular-resolved energy spectrum and on
the contributions of the orbits with longer travel times.

Throughout, we shall use the results for the zero-range po-
tential

V (r) =
2π

√

2|E0|
δ(r)

∂

∂r
r (30)

as a benchmark. Its form factors (10) and (11) are constants,

Vpk =
1

(2π)2
√

2|E0|
(31)

and

Vk0 = − (2|E0|)1/4

2π
. (32)

A. Influence of the Coulomb tail

In this subsection, we investigate the influence of the long-
range Coulomb potential on above-threshold ionization. This
is particularly interesting since for hydrogen ATI spectrahave
been extracted from a high-precision numerical solution ofthe
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time-dependent Schrödinger equation (TDSE) [32], so thatwe
can compare the strong-field approximation with an exact so-
lution.

The form factors of the Yukawa potentialV (r) =
−Z exp(−αr)/r are

Vpk = − Z

2π2

1

(p − k)2 + α2
(33)

and

Vk0 = −
√

2

π

Z5/2

(Z + α)2 + [k + A(t′)]2

= −
√

2

π

Z5/2

(Z + α)2 − 2|E0|
, (34)

where the saddle-point equation (12) has been used in the last
line. Hence, in the saddle-point approximation,Vk0 acts as
a constant; indeed, this is the case for any spherically sym-
metric potential. This constant determines the total ionization
rate, but has no effect on the shape of the spectrum. Another
consequence is that the spectrum of the direct electrons, de-
scribed by the amplitude (5), is independent of the form of the
binding potential because it only depends onVk0, in contrast
to the spectrum of the rescattered electrons.

The Coulomb form factors can be retrieved from Eqs. (33)
and (34) in the limitα → 0. Since in this caseE0 = −Z2/2,
this leads to the well-known divergence of the Coulomb form
factor (34) [4]. This has no effect on the shape of the spec-
trum, and theabsolutescale can be reestablished, too [33].

In Fig. 4, we compare ATI spectra for the zero-range, the
Yukawa, and the Coulomb potential. In view of the Coulomb
divergence ofVk0 we used the zero-range form factor (32) for
all potentials [34]. As expected from Eq. (33), there is a sup-
pression of the photoelectron yield for the higher energiesin
the Coulomb and Yukawa cases. This effect is present for all
pairs of trajectories. For the Coulomb potential, there is an
additional enhancement of the rescattered yield for low ener-
gies, which does not occur in the zero-range or short-range
cases. This enhancement is due to the functional form ofVpk.
Clearly, if the screening parameter is small enough, this ef-
fect is also present for the Yukawa potential. Furthermore,for
these latter potentials, there is a reduction in the plateauin-
tensity as the screening parameter is increased. Evidently, the
form factor (33) for the Coulomb potential always exceeds the
one for the Yukawa potential.

The parameters of Figs. 2 and 4 correspond to those cho-
sen in Ref. [32], where the results of a numerical solution
of the three-dimensional time-dependent Schrödinger equa-
tion for hydrogen are reported and ATI spectra are extracted
from the former. The agreement between the Coulomb result
of Fig. 2 (a) and Fig. 2 of Ref. [32] is good and even quantita-
tive. We notice that the pronounced dip in the spectrum near
8UP , which is due to destructive interference of the contribu-
tions of the shortest two orbits [cf. Fig. 4 (b)], is almost at
the same position in both calculations. The next destructive-
interference minimum from these two orbits occurs just below
6UP . The contributions of the longer orbits [cf. Fig. 4 (c) and

FIG. 4: Photoelectron spectra for the zero-range potential, compared
with those for the Coulomb and Yukawa potential, for the samefield
and atomic parameters as in Fig. 2. Panel (a) shows total spectra,
while panels (b) to (d) exhibit the contributions of individual pairs of
rescattered orbits.

(d)] partially fill in this minimum, leaving only a shoulder in
the total spectrum (a). The exact calculation [32] featuresa
slightly more pronounced minimum at the same position. Re-
markably, the two interference minima in the total spectrum
at low energy near0.5UP and2UP , which are due to the di-
rect electrons and the amplitude (5), are also clearly reflected
in the exact calculation [32] at about the same positions. The
overall drop of the spectrum from the direct electrons to the
final maximum of the rescattered electrons preceding the cut-
off is more pronounced in the exact calculation by about half
an order of magnitude [35].

In Fig. 5, we investigate the ATI spectra for several screen-
ing parametersα of the Yukawa potential. In this figure, we
also address the question of how the form factorVk0 affects
the photoelectron yield. The figure clearly shows a global
shift in the photoelectron signal, which increases for decreas-
ingα. In this sense, our results are in agreement with those in
Ref. [22]. It is, however, not expected that this yield increases
indefinitely. In fact, its limit forα→ 0 should be given by the
TDSE results [32]. Because of the singularity for hydrogen
in Vk0 for vanishing screening parameters, such a comparison
is beyond the scope of the strong-field approximation. Addi-
tionally, there is an enhancement of the photoelectron yield
at lower energies, similar to those occurring in the Coulomb
case, which disappears asα is increased, which is in agree-
ment with the previous figure.
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FIG. 5: Photoelectron spectra for the Yukawa potential, thesame
field and atomic parameters as in the previous figure, and several
screening parametersα. Part (a) shows the resulting spectra for
the direct electrons and the five shortest pairs of rescattered orbits,
whereas part (b) shows the contributions from the shortest pair of
rescattered trajectories.

B. Shell potentials

Spherical shell potentials have been used for modeling clus-
ters or molecules such as C60. Recently, ATI has been ob-
served experimentally for C60 in the direct-electron energy re-
gion [36]. Therefore, in this section we investigate how such
potentials affect the ATI spectra in the direct and rescattered
regions. Let us first consider a sphericalδ-shell,

V (r) = −V0δ(r − r0), (35)

with

V0 =

√

2|E0|
1 − exp[−2

√

2|E0|r0]
, (36)

whereE0 again denotes the binding energy of the ground
state. Ionization from such a potential was investigated inthe
past [37], for weaker laser fields. The corresponding form
factors (10) and (11) are

Vpk = − V0r0

2π2
√

(p − k)2
sin[

√

(p − k)2r0] (37)

FIG. 6: Photoelectron spectra for the shell potential (35),compared
with the zero-range case. The ionization potential was taken as
|E0| = 0.274 a.u. and the cluster radius asr0 = 6.7 a.u. The
field parameters areI0 = 6.5 × 1013W/cm2, andω = 0.057 a.u.
This yields an excursion amplitude ofa0 = 13.2 a.u. and a Keldysh
parameterγ = 0.9805. In part (a) we take into account the five short-
est pairs of trajectories, whereas in part (b) only the shortest pair is
considered.

and

Vk0 = − V0C

π
√

|E0|r0
sinh(

√

2|E0|r0), (38)

respectively, with

C =

[

√

2|E0|
exp(2

√

2|E0|r0) − 1 − 2
√

2|E0|r0

]1/2

. (39)

For theδ-shell potential,Vpk is an oscillating function, and
Vk0 is a constant as always. Thus, in the following, we con-
centrate on the influence ofVpk on the resulting spectra. We
consider typical C60 parameters, taken from Ref. [36]. The
external field is chosen such that its intensity is still below the
C60 fragmentation threshold, but the electron excursion am-
plitude [38] is roughly twice as large asr0. Furthermore, the
Keldysh parameter is about unity. Thus, the rescattering pic-
ture is still expected to be applicable.

In Fig. 6, we compare the photoelectron spectrum for the
δ-shell and for the zero-range potential, within the uniform
approximation. In order to assess the efficiency of rescatter-
ing, in either case we used forVk0 the zero-range result (32).
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The figure shows that theδ-shell potential rescatters more ef-
ficiently than the zero-range potential by about one order of
magnitude. If the form factor (38) is taken into account, an
additional global increase in the yield occurs. However, in
theδ-shell case, the rescattering plateau on the average has a
downward slope, in contrast to the zero-range case where the
slope goes up.

The most interesting feature, however, is that the rescattered
spectrum of theδ-shell potential is much more structured than
it is for the zero-range potential, with several additionaloscil-
lations. Such oscillations are due to the form factor (37), and
are already present for the contributions of the shortest pair of
trajectories, as shown in Fig. 6(b). An unexpected side effect
of these oscillations is the effective increase of the plateau cut-
off energy by about two units ofUP for the shell versus the
zero-range potential, which can be observed in Fig. 6. Since
the laser intensity is the same in both cases, the rescattering
cutoff would be expected at the same energy, too. However,
the shell form factor has a zero around the energy of9.5UP ,
where the zero-range spectrum features its final maximum.
This moves the final maximum of the shell-potential spectrum
up to a higher energy.

In order to investigate these oscillations in more detail, in
the following we will look at contributions ofindividual tra-
jectories to the photoelectron yield for theδ-shell, in compari-
son to the zero-range potential. Since the uniform approxima-
tion requires pairs of trajectories, we will use the saddle-point
approximation for that purpose. Whenever dealing with apair
of trajectories, we will consider the uniform approximation.

Figure 7 displays these results, for several rescattered tra-
jectories. In caseVpk is constant, as is the case for the zero-
range potential, all oscillations present in the spectra come
from interference terms. The contributions of individual tra-
jectories are nearly constant in the classically allowed regime
and do not produce any substructure. For theδ-shell, however,
Vpk is oscillatory and produces its own maxima and minima
in the spectrum. However, comparing Fig. 6(a) and (b) we
observe that the contributions of the longer orbits tend to re-
store the minima of the shell-potential spectrum to those ofthe
zero-range. Only the highest-energy minimum near9.5UP is
left unaffected, since the longer orbits do not contribute to this
energy.

In particular, the minima are given by Re
√

(p− k)2 =
nπ/r0, wheren is an integer. To a first approximation, the
drift momentumk can be neglected with respect to the mo-
mentump, so that the energy positions of the minima, in units
of the ponderomotive energy, are roughly given by

p2

2UP
=
n2π2

r20UP
. (40)

This expression is expected to work better for longer excur-
sion times, since, according to Eq. (14),k ∝ 1/(t− t′) . This
can already be seen in Fig. 1, where the saddle points as func-
tions of the energy are depicted. For a pair of trajectories with
short travel times, the start and the return times, as well asthe
intermediate momentumk, vary considerably with the pho-
toelectron energy. For a long travel time, on the other hand,
these quantities are nearly constant, in the classically allowed

FIG. 7: Contribution from individual trajectories to the rescattered
photoelectron spectrum for the shell potential, in comparison to the
zero-range case. We consider the same parameters as in the previous
figure. The labelsi andj refer, in part (a), to the third-shortest pair,
denoted by (5+6), and in part (b) to the eighth-shortest pair, denoted
by (15+16). For the terms|i + j|2 we applied the uniform approxi-
mation. For the terms|i|2+|j|2, we applied the Stokes regularization
(22) to the diverging trajectory. The dashed vertical linesin the fig-
ure separate the classically allowed and forbidden energy regions for
the respective orbits. The dotted and dashed gray lines in part (a)
denote the individual contributions of 5 and 6, respectively, for the
zero-range case.

region. Furthermore, the return time, as well as the intermedi-
ate momentum, are almost real andk is very small.

Clearly, there exist deviations from Eq. (40) due to the fact
thatk is non-vanishing and complex,t andt′ are complex, and
due to the time dependence of the intermediate momentum.
For instance, a feature that is not explained by Eq. (40) is a
shift in the oscillations of the longer trajectory, with respect
to those of the short one. This feature occurs for all pairs
of trajectories, and decreases as the travel times get longer.
A qualitative estimate of these deviations can be obtained by
considering

√

(p − k)2 up to first order in
√

k2, and the pair
(t1, t

′
1) and (t2, t

′
2) = (t1 − ε, t′1 + ε′) up to first order in

ε, ε′. This gives a shift in the minima, which is proportional to
ε/(t− t′), confirming the results presented in Fig. 7.

Now we turn to other shell potentials. Similar results are
obtained for a more realistic square well, of the formV (r) =
−V0 for r1 < r < r2, and zero otherwise. Since, in nature, the
sharp edges present for aδ-shell or a square well are smoothed
out, it is of interest to investigate whether the additionaloscil-
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FIG. 8: Contribution from the shortest pair of trajectoriesto the
photoelectron spectrum for the Gaussian potential (41), compared to
the δ-shell case, for several widthsσ and the same parameters as
in the previous figure. Parts (a) and (b) depict|1 + 2|2 and |2|2,
respectively. The prefactorV0, for |E0| = 0.274, was computed by
solving the time-independent Schrödinger equation numerically.

lations are also present for smooth potentials that approximate
Eq. (35). One such example is the Gaussian potential

V (r) = −V0 exp[−(r − r0)
2/σ2]. (41)

For vanishing width, we recover Eq. (35). For this potential,
the form factorVpk is given by a rather complicated expres-
sion, which will not be reproduced here. Important featuresof
Vpk are the presence of minima and a decrease with increasing
asymptotic momentum. This decrease dampens the oscilla-
tions, such thatVpk, in comparison to theδ-shell form factor,
decays much more rapidly for largep. This effect becomes
more pronounced as the width of the potential increases.

In Fig. 8(a), the contribution of the two shortest trajecto-
ries to the ATI spectra is displayed for the Gaussian potential
(41), in comparison to theδ-shell potential. We considered
the zero-range-potential form factorVk0 [Eq. (32)]. As in
the previous figure, there exist additional oscillations, which
come fromVpk. In Fig. 8(b), this is clearly shown, for the
contributions from the second shortest trajectory. For small
width, as expected, theδ-shell oscillation pattern is practically
recovered. For the parameter range considered in the figure,
this holds forσ <∼ 0.5. Major differences are present only for
σ > 1.5. As the width gets larger, there is a displacement in
the minima of the form factor and a suppression of the pho-

toelectron yield. This suppression is due to the decay of the
form factorVpk. Therefore, even when the shell potentials
are smoothed out, the oscillations survive. Thus, the possibil-
ity that they are artificially caused by the sharp edges of the
δ-shell potential can be ruled out.

VII. CONCLUSIONS

We investigate the influence of the binding potential in
above-threshold ionization (ATI) for linearly polarized laser
fields, in terms of quantum orbits, using the uniform approx-
imation [Eqs. (26) and (28)]. In this method, the transition
amplitude is expanded in terms of the collective contribution
of pairs of orbits rather than individual orbits. No information
is required beyond the conventional saddle-point approxima-
tion. This is made possible and, indeed, necessitated by the
fact that for laser-induced rescattering phenomena the orbits
naturally come in pairs that nearly coalesce at the classical
cutoffs, thus rendering the conventional saddle-point approxi-
mation inapplicable in this energy region. Moreover, the uni-
form approximation remains valid beyond the classical cutoff
in the classically forbidden region, where it automatically in-
corporates the fading out of unphysical saddles beyond the
cutoff energy. If the two saddles of a pair are sufficiently far
apart, the standard saddle-point approximation is recovered.

The fact that the uniform approximation is valid in the
whole energy range, both away from as well as near the cut-
offs, allows one to obtain quantitative predictions for ATI
spectra. Indeed, in this paper this approximation has been
tested for the zero-range potential against the numerical com-
putation of the SFA transition amplitudes. The photoelec-
tron spectra, as well as the angular distributions obtainedin
both ways turned out to be practically identical. With the
conventional saddle-point approximation, quantitative predic-
tions are not possible in certain energy regions, which for low
laser intensity can span the better part of the ATI plateau.

The excellent quality of the uniform approximation for the
zero-range potential also suggests that the uniform approxi-
mation is reliable enough for computing ATI spectra for other
binding potentials, such as Coulomb, Yukawa, or shell po-
tentials. Within the framework of this paper, the influence of
the binding potential is contained in two form factors, which
either characterize the transition from the ground state toan
intermediate momentum state, or the transition from the inter-
mediate state to an asymptotic momentum state. Throughout
the paper, these form factors are calledVk0 andVpk, respec-
tively.

As a first application, we investigated the role of
the Coulomb tail by computing photoelectron spectra for
Coulomb and Yukawa potentials. As a main feature, we
observe a suppression of the photoelectron yield for the
ATI plateau, in comparison to the zero-range case, for both
Yukawa and Coulomb cases. This is due to the functional
forms ofVpk, which are inversely proportional to the photo-
electron momentum. Additionally, for the Coulomb poten-
tial this form factor causes an increase in the low-energy ATI
peaks. These results are in agreement with the fully numeri-
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cal solution of the time-dependent Schrödinger equation [32].
Furthermore, for the Yukawa potentials, we observed an in-
crease in the yield for decreasing screening parameter. Similar
features have been obtained in [22], from the numerical solu-
tion of the strong-field approximation transition amplitudes.

Another class of potentials that we investigated are shell
potentials, which are commonly used as an approximation for
clusters. In comparison to the zero-range case, the photoelec-
tron spectra computed for such potentials exhibit additional
structure, which comes from the oscillating form ofVpk. This
is an extreme case of how the form factorVpk influences the
photoelectron yield. Such oscillations are also present when
the potentials are smoothed out, and therefore are not an arti-
fact of the shell models.

An alternative for performing such investigations is the nu-
merical solution of the three-dimensional Schrödinger equa-
tion. This would require considerable numerical effort, and,
for elliptical polarization, it would take one close to the
limit of today’s computational resources. Another possibility
would be the numerical solution of the strong-field approxi-
mation amplitudes (1) and (2). From the numerical viewpoint,
this is not an easy task either, since one must deal with mul-
tiple integrals of highly oscillating functions. Thus, theuni-
form approximation considerably simplifies the computations
involved. Furthermore, using this approximation, one is able
to gain additional physical insight into the interference pro-

cesses between the quantum orbits, and how such processes
are affected by the binding potential.

Summarizing, the uniform approximation is a very pow-
erful method for investigating laser-assisted rescattering pro-
cesses, being applicable in all energy regions of the spec-
tra. This approximation allows one to compute photoelec-
tron spectra for binding potentials other than the zero-range
with minimal numerical effort. Application of the methods
developed in this paper to other high-intensity laser-induced
or laser-assisted phenomena, such as non-sequential double
ionization, or to elliptically polarized fields is, in principle,
straightforward.
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117, 895 (2000) [JETP90, 778 (2000)];

[11] N. Bleistein and R. A. Handelsman,Asymptotic Expansions of
Integrals(Dover, New York, 1986).

[12] M. V. Berry, Proc. R. Soc. Lond. A422, 7 (1989).
[13] H. Schomerus and M. Sieber, J. Phys. A30, 4537 (1997).
[14] I. J. Berson, J. Phys. B8, 3078 (1975); N. L. Manakov and L.

P. Rapoport, Zh.́Eksp. Teor. Fiz. 69, 842 (1975) [Sov. Phys.
JETP42, 430 (1976)]; F. H. M. Faisal, P. Filipowicz, and K.
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