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A versatile semiclassical approximation for intense lagem processes is presented. This uniform approxi-
mation is no more complicated than the frequently-usedirdirttensional saddle-point approximation and far
superior, since it applies for all energies, both close wwelbas away from classical cutoffs. In the latter case, it
reduces to the standard saddle-point approximation. THieromapproximation agrees accurately with numeri-
cal evaluations for potentials, for which these are feasifhd constitutes a practicable method of calculation in
general. The method is applied to the calculation of higleoabove-threshold ionization spectra with various
binding potentials: Coulomb, Yukawa, and shell potentiefisch may model G molecules or clusters. The
shell potentials generate high-order ATI spectra that aseeratructured and may feature an apparently higher
cutoff.

I. INTRODUCTION orbits whose contributions dominate the harmonic yielé, th
“long orbit” and the “short orbit”. An electron on the long

orbit starts earlier (by ionization) and returns later ¢Erom-

Sufficiently intense laser fields ionize atoms or moleculesoination) than an electron on the short orﬂt [4]. This is eyve
by the quantum-mechanical process of tunnelﬂg [1]. Bot?’a :

; i : eneral feature of intense-laser—atom processes anddistds
the tunneling process and the ensuing motion of the electro,

in th i I ble t iclassical meth r the more complicated orbits, which bypass the ion once
In the continuum are well accessibie to semiclassical Metg, go\arq) times before the recombination process takes pla
ods. Tunneling generates a wave packet whose center follo

. - ; . . VYE]. For fixed laser intensity, the maximal HHG frequency
a classical trajectory while .th‘? wave packet is spregdlm_g. Ior the maximal energy of an ATI electron obey classical lim-
may or may not return to within the range of the ionic bind- j; [@. 8], which are related to the maximal kinetic energy of
ing potential. If it does, the well-known recollision-inced the electron returning to the ion. For parameters approgchi

processes, such as high-order harmonic generation (HHG) Qlch classical limits. the two .
. S , guantum orbits become mode an
high-order above-threshold ionization (ATI), take plaﬁgﬂ]. more identical. If it were not for the fact that their parasrst

In the tunneling regime, the quantum-mechanical tramsitio are complex, reflecting the birth of the electron by tunreglin
amplitude can be analyzed, computed, and interpreted eia ththe two orbits of a pair would coalesce at the classical ¢utof
saddle-point approximatioti][4] 5]. Typically, the traiwit  [f].
amplitude is represented by a multi-dimensional integvalo
the timet’ at which the electron enters the continuum by tun- The near coalescence of the orbits of a pair near a cutoff
neling, the later time at which it revisits the ion, and one constitutes two problems for the saddle-point approxiomati
or all components of the drift momentukialong its orbit (i) treating the two saddle points as independent becomes an
in between those two times. For a specified final state, e.gincreasingly inaccurate approximation if they approaathea
for given final momentum of the electron after the recollisio other closely [0, 10]; should they actually merge into one,
or for given frequency of high-order harmonic emission, thethe standard saddle-point approximation diverges andehenc
saddle-point approximation selects those particularfiua  is completely inapplicable; (ii) beyond the cutoff, in tHas:
orbits” that contribute to this final state. These orbitsdrar-  sically forbidden regime, both (complex) saddle points-con
acterized by particular values of the parametet§ andk, tinue to exist as formal solutions of the saddle-point cendi
which are complex numbers because of the tunneling naturédons. One, however, has to be dropped from the transition
of these orbits. For a specified final state, there are, inrgéne amplitude, which is frequently, but not always, indicatgd b
several contributing quantum orbits. Their contributibase  an exponentially exploding contribution. A rigorous arsidy
to be added coherently, and this yields an interferencenpatt establishes that, actually, it is not possible to deformcibre
which may appear very intricate, even though its physidal or tour of integration through such a saddle point by the method
gin is simple [6[]7]. of steepest descent. In the framework of the theory of asymp-

Within the context of atoms in strong fields, the contribut- totic €xpansions, the global bifurcation of the steepeseent
ing quantum orbits typically come in pairs. This may be bescontour from two visited saddles to a single V|S|teq sadslle i
known from the Lewenstein model of HHG: For specified Known as the Stokes transitiop J1f1] 12]. In previous work,

harmonic order within the “plateau’, there are two quantumth€Se problems were not treated in a systematic fashion. In
this paper, we invoke a specific uniform approximation to

solve both problemgT]L3]. This turns out to be no more com-
plicated than the standard procedure of treating the twdlsad

*also at Center for Advanced Studies, Department of Physit#@atronomy, poin_ts as independent, because it uses exactly the sane info
University of New Mexico, Albuquerque, NM 87131 mation as the standard procedure, namely, the values of the
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action and its second derivative at the saddle points. Bnobl summary of the results and conclusions can be found in Sec.

(i) is solved because the uniform approximation regularize

the saddle-point integrals close to the classical cutofffilev We use atomic units (a.u.) throughout this paper.

it reduces to the saddle-point approximation far away from

the cutoff. Problem (ii) is solved by imposing the simple re-

quirement of continuity on the transition amplitude, which ||, TRANSITION AMPLITUDE FOR RESCATTERING

automatically selects the appropriate branch of the nalitiv PROCESSES

ued solution that does not contain the contribution of the un

physical saddle point beyond the classical cutoff. For azer  girong-field phenomena, such as above-threshold ioniza-

range binding potential, the benefit of the saddle-point apyjon (ATI), are successfully described by transition aryales

proximation lies in the insight gained by the introductidn 0 derived within a framework known as the strong-field approx-

a few quantum orbits, which allow one to visualize the physi-imation. This approximation neglects the binding potéritia

cal mechanism behind recollision-induced processes.Heor t the propagation of the electron in the continuum, and therlas

mere purpose of computation, the transition amplitude @n bfje|d when the electron is bound, which corresponds to treat-

calculated as well, if not more easily, via a simple quadBtu ing the process of rescattering in the first-order Born appro

We will use the zero-range potential as a test case, and find &jnation on the background of the laser field. (The first-order

cellent agreement for the uniform approximation, even wher gorn approximation yields the exact differential crosstisec

the usual saddle-point approximation fails. in the absence of the field both for the Coulomb potential as
The zero-range potential is a valid model for the descripwell as for the zero-range potential.) The ATI transition-am

tion of a negatively charged ion in an intense laser fieldplitude for the direct electrons — electrons that leave thigv

[L4, L5, [1p]. To what extent it can also be employed tojty of the ion right after they have tunneled into the continu

model an atom in an intense laser field or, in other words,- is the well-known Keldysh-Faisal-Reiss (KFR) amplitude

just how important the long range of the Coulomb potential[@]

is in this situation, has been the object of some debate. Sur-

prisingly, it has turned out that at least for the qualitamx- Mo — —i

planation of most intense-field effects the Coulomb tailas n dir = Z/

instrumental [[4[]5[ 37]. Still more surprisingly, even thibs

tle quantum-mechanical enhancements of the ATI plateau &the generalized transition amplitude, which includes dne s

certain sharply defined intensiti18] are not specifihto t gle act of rescattering, is given @21]

Coulomb potential. In fact, a zero-range potential yielats v

T MOV ). @)

— 00

tually the same enhancements, though at slightly diffarent °° ¢
tens?fcies [Zp1. ’ o Mrese = _/_Oo dt /_OO dt' (W3 OV UY (&, )V eo(t')).
From this point of view, being able to compare ATI spectra (2)

from zero-range and non-zero-range potentials is impbrtan
However, for non-zero-range potentials, a direct compriat In both equations)’ denotes the atomic binding potential,
of the transition amplitude requires one to carry out a cumbe the final state is the Volkov state describing a charged-parti
some multidimensional integral, and the uniform saddle¥po cle with asymptotic momentum in the presence of a field
approximation is the only viable approach. with vector potentialA (¢),

The purpose of this paper then is twofold. First, we deter-

mi_ne the specific un?form approxim_ation that applies to the<rlw§,‘/)(t)> ~exp (_3‘ /00 i p+ A(T)]g) cilPHAD) T
pairs of quantum orbits that appear in laser-induced reeat 2/,

ing processes. Second, we use this uniform approximation to 3
investigate the influence of the form of the binding potdntia
on ATI. andU()(t,t') is the Volkov time-evolution operator, which

The plan of the paper is as follows: In Sec. I, we sum-describes the evolution of the electron in the presencelgf on
marize the improved Keldysh approximation for the transiti  the laser field. In Eq.[[1), the electron, initially in the gral
amplitude. In Seq. |, we discuss the saddle points thatfea  state[y,(t')), is ionized into its final state at the tinté In
in the saddle-point approximation as well as in the uniformEQ. (2), an additional rescattering off the binding potairdit
approximation, and review the saddle-point approximagion the timet is accounted for. The amplitudE (2) incorporates
well as its problems close to classical cutoffs. In s’@: I'¢, w the amplitude|]1) for direct ionization in the limit whet'e—
determine the uniform approximation that overcomes thesé. Hence, the two amplitudes must not be addedl [21]. The
problems and describe its conceptual relation to the saddl@mplitude [R) or closely related versions thereof have been
point approximation. In Se¢.]V we compare the ATI spec-used by several authorfg 9] 0] 23].
tra obtained by these approximations to the numericaltesul If we insert the expansion of the Volkov propagator in terms
for the zero-range binding potential. The uniform approexim of Volkov states,
tion is then used in SeE[VI to address the effect of a general
(non-zero-range) binding potential on the ATI spectrum, us 950) (t,t') = /d3k |¢1(<V)(t)><7/’1((‘/)(tl)|a (4)
ing Coulomb, Yukawa, and shell potentials as examples. A



into Egs. [[1) and{2), the transition amplitudes can be tésvri
as

Myiy = —i/ dt' expliSp(t")] Vpo, (5)

and
[e%e} t ) ,
Miese = — / dt / dt’ / d*k eV Vo, (6)
where the corresponding actions are given by
Sp(t/) =

—%/t dr [p+ A7) + |Eolt 7)

and
_%/too dr [p+ A(T)]2

t
_ %/t dr [k + A0 + |Eolt'.  (8)

The quantity| | denotes the ionization potential of the atom.
In this paper, we address the case of a linearly polarized

monochromatic field,

A(t) = Apey coswt, (9)
with the ponderomotive enerdyr = (A%(t)),/2 = A3 /4.
The representationf] (5) arfdl (6) are particularly usefinef t
form factors
Vok = (P+A@R)|V|k+ A1)

(2;)3 /dgr exp[—i(p — k) -r]V(r) (10)

and

Vio = (k+A(t)[V]0)

= e [ eplitor AM) RV ()

)
(11)

can be calculated in analytical form. Within the strongefiel

3

can be envisioned to proceed via the quasistatic process of
tunneling ]. The transition amplitudeB (5) alﬂi (6) arerth
conveniently computed via the method of steepest descent.
Both the standard saddle-point approximation as well as the
uniform approximation rest on this method, which approxi-
mates the entire integral by the contributions from thenitgi

of those points on the integration contour where the action
is stationary, i.e., where the partial derivatives of théasc
with respect to the integration variables vanish. Thesatpoi
correspond to maxima of the integrand after a deformation of
the original integration manifold, which is constructealisu
that the integrand decreases roughly like a Gaussian wheen on
moves away from the vicinity of the saddl[ll].

In the current section, we first write down the equations that
determine the saddle points, then describe the generag¢proc
dure of identifying theelevantsaddles, and finally discuss the
saddle-point approximation. All these items are preratpss
for the discussion of the uniform approximation in SI@ V.

A. Saddle-point equations

For the rescattering ampIitudE (6), the saddle-point equa-
tions are

k+ At = —2|E, (12)
P+AM) = [k+A), (13)
// dr [k + A(r)] = 0. (14)

Their solutions determine the ionization tirtiethe rescatter-
ing timet, and the drift momenturk of the electronic orbit in
between those two times, such that the electron acquires the
asymptotic momenturp. EquationsZ) an3) are related
to energy conservation at the ionization time and the rescat
tering time, respectively, and EcE[14) determines theinés
diate electron momentum. For the direct amplituﬂe (5), only
the ionization timet’ need be determined, and the resulting
equation is like Eq.m2) wittk replaced by the asymptotic
momentunp.

Evidently, Eq. ) has no real solutiors as long as

approximation, the influence of the binding potential is en-E, £ 0, and in consequendet’ andk are complex. Phys-
tirely contained in these two matrix elements. For a zeroically, the fact that’ is complex means that ionization takes
range potential, the form factors are constants. In thig,cas place through a tunneling process. The soluti@ng) of the
the five-dimensional integra(](6) can be reduced to a onesaddle-point equations for the linearly polarized monoehr
dimensional integral over a series of Bessel functionsctwhi matic field @) have been computed in Reﬂ. [6]. They only
can be readily computed numerically [£1] 24]. In dc. V, wedepend on the ionization enerdy, and the photoelectron
will refer to the outcome of this procedure as the “exact remomentump, but not on the shape of the binding potential,
sult”. In general, however, a correspondingly “exact” eaal  which enters the transition amplitude only via the form dast
tion of the matrix elemen{}2) has to deal with a multidimen- ({L9) and [(T}t).

sional integral. A very important feature of the solutions is that they come
in pairs. Let us denote the “travel time” by=t — ¢’. Then,

for given asymptotic momentumand for thenth travel-time
time intervalnT/2 < Rer < (n+ 1)T/2 (n = 1,2,...),
there are two solutions having slightly different travehés.
The parameters of two typical pairs of quantum orbits are dis

played in Fig[]L.

Ill. SADDLE-POINT ANALYSIS

For sufficiently high intensity of the laser field, corresgen
ing to small Keldysh parameter= /| Ey|/2Up, ionization
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B. Classical cutoffs and Stokes transitions this approximation, we now discuss the standard saddletpoi
approximation.

The original contour of integration in the amplitudﬂs (5) or
(E) is along the real axes, while the solutions of the saddle- ) o
point equations[(} 2)E(L4) are located off the real axesén th C. Saddle-point approximation
complex plane. A central question in the method of steepest
descent then is, which of the various saddle points are vis- Within the saddle-point approximation, the amplitudgs (5)
ited by the steepest-descent integration manifold. Wel shagnd (b) are approximated by
call those therelevantsaddle points. The steepest-descent
manifold consists of pieces with a constant real part of the MSPA)
action. These pieces are glued together at zeros of the inte- dir ™
grand, at which the phase of the action is not well defined.
Usually, each piece visits only a single saddle point, whichand
also determines the constant real part of the action. Omlly su

211 .
Z 928, /0t Vpo expliSp (ts)] (17)
s P s

. . . _ SPA .
pieces that are needed to connect the integration bousdarie MY = 3" A expl(iSs), (18a)
give contributions to the transition amplitude. The numider s
these pieces can change in a so-called Stokes transiti@m wh Ss = Sp(ts,ts, k), (18b)
two pieces merge at a certain value of a parameter (here we A = (9ng)3/2 Vok. Vk.0 18
consider the photoelectron momentg On either side of s = (2m) J (18¢)

the Stokes transition, the manifolds of the saddles of aster det Sg(t, ' K)ls

are glued together in different ways: on one side, both giece . :
are needed to connect the integration boundaries (plus, poges.pectwely,nwhe/re thg '”de“'f“”s over the relevan_t saddle
sibly, other pieces related to different pairs of saddlengyj  POINts andSp (2., k)| is the five-dimensional matrix of the
while only one of the pieces is needed on the other. NotéeconOI derlvat|v_es of the_ act|0ﬂ 8) evaluated at the solati

that in the latter case, too, there are still two solutionghef ~ Of the saddle-point equatiorfs [1£){(14).

saddle-point equations, but only one of them is visited lgy th _ In explicit ca}lculerl]tlonsa\évle W|Il_proceed s_hght!y d|ffemd3;
steepest-descent deformation of the original integratian- First, we employ the saddle-point approximation to evaiuat
ifold [E]- the three-dimensional integral over the intermediate moeme

Merging of steepest-descent manifolds requires that tide relumk in_Eq. @)’ WhiCh enters the actioﬂ (8) only quadrati-
cally. This results in

parts of the actions of two quantum orbits become identical a

a specific value op, 0o t _ )
Mrcsc = _/ dt/ dtlelsp(t’t )Vpk(t,t’)Vk(t,t’)Ov (19)
ReS’p(ti,t;7ki) = ReSp(tj,t37kj), (15) —00 —o0

wherei andj denote the saddle points of the given pair, andvhere

the timest, andt/, (s = 4,j) depend orp. It follows from 1 t

the physical mechanism behind high-order ATI that both sad- k(t,t') = ~ =7 / drA(r) (20)
dles of each pair are relevant provided the asymptotic mo- v

mentum is classically accessible. For the pair of orbits-havand S, (¢,#') = Sp(t,t',k(¢,¢')). Then, we again make

ing the shortest travel time§& = 1), this is the case if use of the saddle-point approximation to compute the two-

p?/2 < 10.007U [R7]. The other pairs of orbits have smaller dimensional integral overandt’ in Eq. (I9), which again re-

cutoff energies. sults in the amplitude[(]8), where the actions and amplitude
The relevant saddle beyond the classical cutoff is the onare now computed by

that has the smaller imaginary part of the action at the Stoke

transition [2B]. In the following we reserve the indéxor Ss = Sp(ts,ty), (21a)
this saddle. Saddlgonly maintains a residual contribution to 52 Vok(te,t7) Vie(t.,42)0

the transition amplitude after the Stokes transition, ltiiritie- As = (2mi) = = . (21b)
comes completely irrelevant in the so-called anti-Stokas-t \/(t/s — t5)* det SY(t, )]s

sition

The corresponding saddle-point equations are @ (12) and
Im Sp(t;, ), ki) = Im Sp (t;, ¢, k;). (16) ({3) withk replaced by (t, '). Note that the values;, A of

each saddle point are not changed, they are just obtained fro
The anti-Stokes transition coincides with the Stokes ftems  a different set of relations in this more practical procedur
if both saddles actually coalesce. Otherwise, it frequeot} Upon approach to the classical cutoff, the two solutions tha
curs very shortly after the Stokes transition. make up one pair come very close to each other. For an exam-

Exactly how the transition amplitude behaves close to thele, this is illustrated in Fig[l 1. The saddle-point approai

classical cutoff can only be described when the interplay ofion @), however, treats different saddle points as ietdep
both saddles is taken into account in a systematic way, whictdent. As mentioned in previous papeﬂs [9] and in the intro-
is achieved by the uniform approximation. Before we turn toduction, this leads to a quantitative and qualitative bdeakn
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of the standard saddle-point approximation near the cofoff ~ What is often not observed is that the resulting uniform ap-
any pair of solutions, for two reasons: (i) This approxiroati proximation can be written in such a form that no additional
can overestimate the contribution to the transition amg@ét information on the quantum orbits is needed, i.e., the cumbe
by several orders of magnitude (it actually diverges if bothsome expansion in the coordinate dependence actually can be
saddles coalesce). (ii) In previous papers, the spuriots sacircumvented. The derivation proceeds in two steps. Rirst,
dle has been dropped after the classical cutoff by requaing write down the so-called diffraction integral which debes a
minimal discontinuity of the transition amplitude. Stithe  pair of orbits which might be close to each other or well sepa-
discontinuity remains finite and noticeable. rated. Then, we determine the parameters of the formal expan
A smooth suppression of the spurious saddle can bsion in terms of the quantities that enter the standard saddl|
achieved if both quantum orbits are well separated at th@oint approximation, from the observation that the conven-
Stokes transition (which is, however, not the case for physitional saddle-point approximatioE[lS) has to be recovared
cally accessible parameters in ATI), by a regularizaticat th the limit where the saddle points are sufficiently well sepa-
has been derived in the general framework of asymptotic exrated.
pansions[[42]. Thereby, the contribution of the spuriows sa  For the first step, we observe that it is precisely two quan-
dle is suppressed by multiplication with the error function  tum orbits that closely approach each other near each cutoff
. According to the splitting lemma of catastrophe the@ [29]
erfe(—v) = 2 / dr exp(—72), (22) the parametrization of the integration domain can be redtifi
NZ such that the orbits approach each other along one of the (ap-
_ ) propriately chosen) coordinate axes (denoted: lay the fol-
with the argument given by lowing). This is the only direction where higher orders ie th
Re [Sp(ti, 1) — So(ts, )] coordinate gxpansion of the actipn have to be inclgded,eNhiI
U= LA LASCAR | ) (23)  the expansion in the other coordinates can be restricteztto s
\/2|1m [Sp(tiyt)) — Sp(t;, t;-)]| ond order such that these can be integrated out by the usual
saddle point approximation [this is similar to integratiogt

The argument vanishes at the Stokes transiti¢n](15) and di-X in the transition from Eq[(18) to Eq] (21)]. Hence the con-

verges at the anti-Stokes transitipn| (16), after which fheis ~ tribution of the pair of quantum orbits (denoted bgnd ;)

ous saddle drops out completely. Note that this automatical © the transition amplitude can be reduced, in principlea to

prevents an exponential growth of the amplitude of the Spugne-dlmensmnal diffraction integral of the general form

rious saddle in the approximatioE[18), because the saddle i .

dropped while the imaginary part of the action is still pivsit My, = / ) dz g(z) exp[iS(z)], (24)

(namely, equal to the imaginary part of a physical saddle). a

This regularization procedure is not accurate enough in

the present problem because the Stokes transitions tase plawhere the action accounts for these two saddle points and

while the saddles are not sufficiently separated (cf. Bec. V)the integration boundaries, ¢; in (complex) infinity are as-

On the other hand, the Stokes transitions are already htolti sumed such that the integrand decays to zero and the inte-

the uniform approximation, to which we turn now. gral converges. Moreover, an expression that reduces to the
conventional saddle-point approximation when the quantum
orbits are well separated will be obtained if we allow for a

IV. THE UNIFORM APPROXIMATION linear coordinate dependence in the functjdm). This moti-

vates the use of the normal forms (for a derivation in another

The saddle-point approximatiofs(17) apd (18) are obtaine§émiclassical context, see RefJ[13])
by expanding the action functiofi, to second order in the _ 5
integration variables about each saddle point, and then do- S(z) =5 + ez — aa”, 9(x) = go + g1 (25)
ing the ensuing Gaussian integrals. These approximatiens a
valid if the expansion of the action holds until the integtan Here we have chosen the origin of the coordinate system ex-
has become much smaller than it was at the saddle point, &ftly in the middle between the two saddles, which have co-
that the integration can be extended to infinity. The saddleordinatesr; ; = ++/¢/3a and coalesce when= 0.
point approximation breaks down when the difference of ac- The uniform approximation that we introduce here differs
tions|S; — S;| of two quantum orbits with similar coordinates from an earlier regularization methdd [9] 10], where théoact
becomes of order unity, such that the expansion about saddieas expanded to cubic order about the stationary point<orre
point i becomes inaccurate close to the saddle ppirdnd  sponding to the classical cutoff. This led to the absencbef t
vice versa. For the quantum orbits in ATI this happens wherinear term in the functiog(x) in Eq. ). Itis precisely this
the energy approaches the classical cutoff. The remedy oferm whose presence allows us to match the standard saddle-
fered by the theory of asymptotic expansions is to improvepoint approximation both near the cutoff and away from it.
the expansion of the action function in the neighborhood ofThus, the method of Ref[|[9] coincides with the uniform ap-
saddles andj by including higher orders in the coordinate proximation near the classical boundary, but deviates fitom
dependence and to take the resulting approximate integral and from the exact solution farther away from the cutoff re-
a collective contribution of both saddle points. gion.
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FIG. 1: Saddle points as a function of energy for a Keldystapeter ofy = 0.975 and scattering angke = 0. The first, second and third
column give the start time, the return time, and the inteiiateddrift momentum, respectively. The panels present #ibspin the complex
plane that are followed by the saddle points as a functiohefihal energy, which is indicated by the numbers, which mraultiples ofUp.
The upper row gives the saddle points for the pair of orbith tie shortest two travel timgs + 2), the lower row for(9 + 10), which is one
of the pairs with the longest times considered in this papee figure shows how the saddle points of a pair approach ehehmost closely
near the classical cutoff. In each case, the contributich@brbit that is drawn dashed is dropped after the cutoff.

With expansion@S) inserted into the original integ@)(24 nipulated by a coordinate transformation, while the omdjin
the amplitudel/; , ; reduces to a sum of Bessel functions,  integral is invariant under smooth changes of the coordinat
system. For the saddle-point approximatiE (18), invar@an

Miy; = /2rAS/3exp(iS + in/4) with respect to coordinate transformations is ensuredhtiyv
x {A[J1/3(AS) + J_1/3(AS)] for the actionsS,, while the amplitudesi, are invariant be-
cause the Jacobian of a transformation contributes a fawtor
+ AA[3(AS) = T a5 (AS)]} g which is cancelled by the determinant of second derivatives
AS = (5,—5;)/2, S=(S;+8S;)/2, of the action, see Eqsl. (18c) arffd (R1b). This is the reason
AA = (A —i4))/2, A= (iAi— 4;)/2, why we express the expansion coefficients in [Ed. (25) by the

coordinate-transformation invariant quantiti¢s;, S; ; of the
saddle points. Indeed, it is a simple exercise to verify \with
help of the asymptotic behavior

(26)

where the four independent parametefs AS
2e3/2(27a)~1/%, A = go(—2mi)/2a/4(3¢)~ /4, andAA =
g1(2mi)1/2e1/4(3a)~3/* have been expressed by the ampli-
tudes and actions that result from the saddle-point appraxi
tion of the diffraction integral@4).

The uniform approximation is defined by inserting into Eq. of the Bessel functions for large that the saddle-point ap-
([£8) the actions and amplitudds](18) of the respective gair oproximation [1B) is recovered from the uniform approxima-
guantum orbits (which we denoted byandj). We wish to  tion (28) in the limit of largeAS.
stress that it is not necessary to obtain the expansion param Finally, let us demonstrate that the uniform approximation
etersS, ¢, a, go, andg; by explicitly carrying out the expan- is also capable of describing the Stokes transition, in Wwhic
sion ). Indeed, knowledge of the explicit dependence omne of the two saddles is rendered irrelevant. The Bessel fun
these parameters is not even desired because it can be ntans in ) assume complex arguments and are multi-valued

Tz

1/2
Jip(z) ~ ( ) cos(z Fum/2 —m/4) (27)



functions, depending on the integration contour taken éirth -8
integral representation. The functional branches can &e di
tinguished by the number of saddles which are visited by a
steepest-descent deformation of the contour, in comphete a
ogy with the procedure for the original integrﬂ (6). Hence,
when the conditionm5) is fulfilled one not only observes a
Stokes transition in the original integral, but also endetm

a Stokes transition in the defining integral of the Bessetfun
tions. The proper branch of the function will automatically
be selected by requiring a smooth functional behavior. The
choice of branches beyond the Stokes transition correspond
to replacing the Bessél functions by Bessel functions,

M ; = +/2iAS/mexp(iS)

x [AK, 5(—iAS) +iAAK, j5(—iAS)] . (28)

L
o

saddle-point approximation
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uniform approximation
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From the usual asymptotics

log ,, Photoelectron Yield (arb. units)

™

Koo~ (3) " exp(—2) 29) 10

of the BesselK function for largez one verifies that in this
case only saddlécontributes to the saddle-point approxima- 40 ) 4 5 s 10 12
tion.

In summary, in the uniform approximation the sum of
saddle-point ampIitudeﬂlS) of each pair of quantum orbits
is simply replaced by the collective amplitu@(ZG). The-uni

form apprQX|mat|on improves the saddle-pomtap_proxmmtl Up/w = 3.58, w — 0.073 a.u., and a ground-state energy of
such that it works even when two quantum orbits approacty, “~ 5 " “the spectrum is in the direction of the electric

each other so closely that one cannot locally expand about eI'i(af)ld of the laserf = 0. Part (a) shows spectra computed using the
ther one, as is the case close to their classical cutoff.stt al saddle-point and uniform approximations, compared with gho-
works well far away from classical cutoffs, because itiniels  toelectron yield obtained by computing the integﬂal (6)atlya We
the saddle-point approximation as a special case which is reake into account the two direct trajectories and five pdinescat-
covered for]AS| 2 1. This can happen in two ways: (i) tered trajectories. The approximate energy positions @fStokes
when the saddle points become well separated as a system p@.nsitions, which coincide with the respective classaabffs, are
rameter (such ap) is varied, or (i) in the strict semiclassical indicated by arrows. Part (b) displays spectra computed égns of
limit when for fixed system parameter the Keldysh parametef® uniform approximation, for direct, rescattered, anthlgpes of

is decreased (giveAS + 0). Also, the Stokes transition at electrons, and compares these with the exact integration.

the classical cutoff is automatically built into the unifoap-

proximation. Most notably, the uniform approximation is of

the same practical simplicity as the saddle-point appraxim for a more complete discussion). In the figures that folloe/, w
tion since it involves the same amplitudds and actionsS,  consider up to 5 pairs of electron trajectories, those ith t

Photoelectron energy (units of U )

FIG. 2: Photoelectron spectra for a zero-range bindingrpiateand

defined in Eqs.m8). shortest travel times. To each trajectory, we associatesa po
itive integer number which increases with the correspogdin

travel time.
V. COMPARING THE VARIOUS APPROXIMATIONS The outcome of this comparison is displayed in Fig. 2(a).

In general, there is a good qualitative agreement between th

In this section, for the zero-range potential we compare th&addle-point approximation and the exact solution (nates-h
approximations discussed in the previous sections witethe ever, that the scale is logarithmic in this figure.) Quantita
act integration of Eq.[[6). First, let us consider ATl spadtr  tively, however, there are marked discrepancies, whichiocc
the direction of the electric field of the laser. Such a speotr  in those energy regions where the saddle points that consti-
is composed of the contributions of direct and of rescatteretute a particular pair approach each other and can no longer
electrons. The former quickly decrease after their classic be treated as independent.
cutoff at2Up. The latter form an extended plateau with its  In previous work [b], the unphysical contribution of one
classical cutoff al 0Up, whose yield is below that of the di- of the saddle points was eliminated by hand as soon as the
rect electrons by several orders of magnitude. The cutoff a¢nergy crossed the Stokes Iir@(lS). This causes the cusps
10Up is related to the pair of orbits with the shortest travelin the spectra, which can also be seen in Fﬁb 2(a). Thisis
times. The other pairs of trajectories, which have longarl  not very satisfactory, since the discrepancies in the AJnai
times, have cutoff energies below this value (see, e.g.,[ﬁ]ef may amount to almost one order of magnitude. This problem
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caused by the trajectories with still longer travel timeatth

=8.01U . .
18] e l ] have not been included. Those do not contribute for larger an

er —— exact f ] gles. The saddle-point approximation, on the other hand, ex
1ar uniform approximation ; ] hibits large discrepancies with the exact results nearlte c

- - - - saddle-point approximation " X
12r ] sical cutoffs. For the chosen photoelectron energ.@fUp,

] there are only three relevant cutoffs, corresponding tp#ues
1 of trajectories 1+2, 5+6, and 9+10. The remaining pairsaf tr
1 jectories do not contribute, since their cutoffs are sigaiitly

Photoelectron Yield (arb. units)

] below8.01Up.
40
0 (degrees) VI. INFLUENCE OF THE POTENTIAL ON
RESCATTERING PROCESSES
FIG. 3: Angular distributions of photoelectrons for the @eange The preceding section has shown that the uniform approx-

potential case, computed with the saddle-point and unifapprox-

imations, compared to the exact yield. The field parametsgs a imation is a very dependable method, yielding results very

Up/w = 35.8, w = 0.0584 a.u., the ground-state energy is chosen Closﬁ to those_- Obt?mfd f_rglm fthe eggcé_lntegratlon.l Tfhe lat-
asF, = —0.9 a.u., and the photoelectron energyds= 8.01Up.  t€f» NOwever, is only feasible for a binding potential ofaer

The angles of Stokes transitions are marked with arrows. range. Therefore, we will rely on the uniform approximation
to investigate how the form of the binding potential affects

the photoelectron spectrum. The transition amplittﬂje @w
is particularly critical if the intensity of the driving fidlis not ~ derived in the context of one electron bound by the potential
so high. In this case, the various cutoff energies are velgti ¥ (¥)- In order to simulate a many-electron atom, it can be
close to each other, so that the artifacts affect a broadygner 'é@sonable to use in the transition amplitude (2) diffepent
region. Thus, a more accurate approximation is desiraltle arfentialsV’(r) for the electron when it tunnels out and when it
even necessary, in case the integfhl (6) cannot be carrted offScatterd[10]. In Refs| [LD,]23], the effect of the reswary

exactly, as is the case for any potential other than the zerd20tential on the general shape of the high-order spectrum an
range potential. the ratio of direct over rescattered electrons were ingattd

One possibility to eliminate such effects, shown in Fﬂg)Z(a as a function of the applied field, for the pair of the two short

is the Stokes regularization, E{.}22). This smoothes it th€St Orbits. In particular, the dependence on the atomidepec
cusps, without, however, eliminating them completely. was modeled by a Thomas-Fermi potential. Here, for various

Far superior results are obtained by the uniform approxi-mOdeI potentials, making use of the additional power aérd

mation, given by Eqs[(p6) anfl {28), respectively. The specpy the uniform approximation, we will concentrate on the de-

trum computed in this way almost perfectly agrees with thetalled shape of the angular-resolved energy spectrum and on

exact result. The remaining differences between the umifor the contributions of the orbits with longer travel times.
approximation and the exact integration occur near the-inte T_hroughout, we shall use the results for the zero-range po-
ference minima and are due to the contributions of pairseef tr tential

jectories with longer travel times that have not been inetud

This is indicated by the minor differences in the spectra-<com 2r 0
puted with the uniform approximation using 3 and 5 pairs of Vi) = 2 Fo| 5(r)5r (30)

trajectories, cf. Fig[]2(b).
Figure [2(b) shows that the exact spectrum is well reproas a benchmark. Its form factofs10) afhd (11) are constants,
duced by the uniform approximation for all energies. The

figure also separately displays the contribution of theatlire 1

electrons BO]. One observes that interference between the Vok = ———F— (31)
rescattered and direct electron trajectories is only ingwar (2m)2\/2| Eol

within a small energy region, betwedd/p and6Up [@].

Above and below this energy range, either the rescattered or

the direct electrons completely dominate the spectrunhabo t (2| Eo|) /4

interference only leads to minor effects. Vio = T o (32)

The superiority of the uniform approximation over the
saddle-point approximation becomes particularly impwvess
if spectra are displayed on a linear scale. This is done in A. Influence of the Coulomb tail
Fig. B for an angular distribution at fixed energy. Both with
the saddle-point approximation and the uniform approxima- In this subsection, we investigate the influence of the long-
tion, the 10 shortest trajectories are considered. Thewnif range Coulomb potential on above-threshold ionizatioris Th
approximation, again, yields excellent agreement withethe  is particularly interesting since for hydrogen AT spedtesve
act result. Minor differences, for small scattering anglese  been extracted from a high-precision numerical soluticthef



time-dependent Schrodinger equation (TDSE) [32], soleat
can compare the strong-field approximation with an exact so-
lution.

The form factors of the Yukawa potentidt(r) =
—Z exp(—ar)/r are

0
5
A 1 .
Vok = —5— 33 £
pk 212 (p — k)2 4 o2 (33) 8
o
[}
and 2
v \/5 75/2 § 6 ' ' I b -Izero-rang:e 1
Mo T o0kt AW 8 o} (C) [3+4]* —covoms 1
2 75/2 S -10f7==2) P -}77~\\—‘—‘Yukawa(rx2=2up)p'
= V2 ; (34) S NG .
T (Z +a)? = 2|E P B N
where the saddle-point equatiqn](12) has been used in the las & - - - - - -

line. Hence, in the saddle-point approximatidfyy acts as

a constant; indeed, this is the case for any spherically sym-
metric potential. This constant determines the total iathdn

rate, but has no effect on the shape of the spectrum. Another .
consequence is that the spectrum of the direct electrons, de i 2 4 6 8 10 12
scribed by the ampIitudﬂ(S), is independent of the form ef th
binding potential because it only dependslag, in contrast
to the spectrum of the rescattered electrons.

The C(_)ulomp fqrm factorg Can.be r.etrleved from EQE (33)FIG. 4: Photoelectron spectra for the zero-range potectahpared
and ) in the limitor — 0. S|n.ce in this casé = —27/2, with those for the Coulomb and Yukawa potential, for the séield
this leads to the well-known divergence of the Coulomb formang atomic parameters as in Fiy. 2. Panel (a) shows totatrapec
factor (34) [@1. This has no effect on the shape of the specwhile panels (b) to (d) exhibit the contributions of indiial pairs of
trum, and theabsolutescale can be reestablished, tpd [33].  rescattered orbits.

In Fig. H we compare ATI spectra for the zero-range, the
Yukawa, and the Coulomb potential. In view of the Coulomb
divergence oo we used the zero-range form fact(32) for (d)] partially fill in this minimum, leaving only a shoulden i
all potentials[3¢]. As expected from EJ- [33), there is a-supthe total spectrum (a). The exact calculatipr [32] featares
pression of the photoelectron yield for the higher enerijies slightly more pronounced minimum at the same position. Re-
the Coulomb and Yukawa cases. This effect is present for alinarkably, the two interference minima in the total spectrum
pairs of trajectories. For the Coulomb potential, thereris a at low energy nead.5Up and2Up, which are due to the di-
additional enhancement of the rescattered yield for low-ene rect electrons and the amplitucﬂz (5), are also clearly teftec
gies, which does not occur in the zero-range or short-rangi the exact calculatior] [32] at about the same position Th
cases. This enhancementis due to the functional forig,f ~ overall drop of the spectrum from the direct electrons to the
Clearly, if the screening parameter is small enough, this effinal maximum of the rescattered electrons preceding the cut
fect is also present for the Yukawa potential. Furthermimre, off is more pronounced in the exact calculation by about half
these latter potentials, there is a reduction in the plateau an order of magnitud@S].

Photoelectron energy (units of U))

tensity as the screening parameter is increased. Evidémly In Fig. B we investigate the ATI spectra for several screen-
form factor ) for the Coulomb potential always exceeds th ing parameters: of the Yukawa potential. In this figure, we
one for the Yukawa potential. also address the question of how the form fadtpy affects

The parameters of Figﬂ. 2 aﬁd 4 correspond to those chdhe photoelectron yield. The figure clearly shows a global
sen in Ref. 2], where the results of a numerical solutionshift in the photoelectron signal, which increases for dasf
of the three-dimensional time-dependent Schrodingerequ ing a. In this sense, our results are in agreement with those in
tion for hydrogen are reported and ATI spectra are extracte®ef. [@]. Itis, however, not expected that this yield irases
from the former. The agreement between the Coulomb resulhdefinitely. In fact, its limit fora — 0 should be given by the
of Fig. (a) and Fig. 2 of Ref[__HBZ] is good and even quantita-TDSE results |E2]. Because of the singularity for hydrogen
tive. We notice that the pronounced dip in the spectrum neain Vi for vanishing screening parameters, such a comparison
8Up, which is due to destructive interference of the contribu-is beyond the scope of the strong-field approximation. Addi-
tions of the shortest two orbits [cf. Fi. 4 (b)], is almost at tionally, there is an enhancement of the photoelectrordyiel
the same position in both calculations. The next destrectiv at lower energies, similar to those occurring in the Coulomb
interference minimum from these two orbits occurs justWelo case, which disappears asis increased, which is in agree-
6Up. The contributions of the longer orbits [cf. F@. 4 (c) and ment with the previous figure.
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FIG. 5. Photoelectron spectra for the Yukawa potential, shme
field and atomic parameters as in the previous figure, andaeve
screening parameters. Part (a) shows the resulting spectra for
the direct electrons and the five shortest pairs of reseatterbits,
whereas part (b) shows the contributions from the shortaistqf
rescattered trajectories.

B. Shell potentials
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FIG. 6: Photoelectron spectra for the shell potenEI (8Bmpared
with the zero-range case. The ionization potential wasrtae
|Eo| = 0.274 a.u. and the cluster radius as = 6.7 a.u. The
field parameters arg) = 6.5 x 10"*W/cm?, andw = 0.057 a.u.
This yields an excursion amplitude @ = 13.2 a.u. and a Keldysh
parametety = 0.9805. In part (a) we take into account the five short-
est pairs of trajectories, whereas in part (b) only the sisppair is
considered.

Spherical shell potentials have been used for modeling clusand

ters or molecules such ag{C Recently, ATl has been ob-

served experimentally fordg in the direct-electron energy re-
gion ]. Therefore, in this section we investigate howhsuc
potentials affect the ATI spectra in the direct and rescadte

regions. Let us first consider a spherigedhell,

V(r) = =Voo(r —ro), (35)
with
Ve V2| Eo (36)

1 —exp|—2/2|Eo|ro]’

where Ey again denotes the binding energy of the ground

state. lonization from such a potential was investigatetién
past ], for weaker laser fields. The corresponding for

factors [1p) and[(31) are

Voro
2r%/(p — k)?

Vok sin[v/(p — k)2r¢] (37)

WwC .
Viko = ——————sinh(y/2|Ep|ro), (38)
/| Eo|ro
respectively, with
1/2
v 2|E
exp(2+/2|Eo|ro) — 1 — 24/2|Eo|ro

For thed-shell potential Vi is an oscillating function, and
Vo IS a constant as always. Thus, in the following, we con-
centrate on the influence &,k on the resulting spectra. We
consider typical gy parameters, taken from Ref. [36]. The
external field is chosen such that its intensity is still betbe

Cso fragmentation threshold, but the electron excursion am-
plitude ] is roughly twice as large ag. Furthermore, the
Keldysh parameter is about unity. Thus, the rescattering pi

Mure is still expected to be applicable.

In Fig. , we compare the photoelectron spectrum for the
o-shell and for the zero-range potential, within the uniform
approximation. In order to assess the efficiency of reseatte
ing, in either case we used bt the zero-range resuﬂSZ).
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The figure shows that thieshell potential rescatters more ef- -4
ficiently than the zero-range potential by about one order of -5
magnitude. If the form factol (B8) is taken into account, an 6

additional global increase in the yield occurs. However, in 7
the é-shell case, the rescattering plateau on the average has a
downward slope, in contrast to the zero-range case where the
slope goes up.

The mostinteresting feature, however, is that the reseatte
spectrum of thé-shell potential is much more structured than
it is for the zero-range potential, with several additioosdil-
lations. Such oscillations are due to the form fac@' (3mY a
are already present for the contributions of the shortasppa

1 1
—_
- O

trajectories, as shown in Fi@ 6(b). An unexpected sideceffe li+jf', ~ &shell
of these oscillations is the effective increase of the plateut- T HZ Zs:e::
off energy by about two units df for the shell versus the ol s shel

zero-range potential, which can be observed in Eig. 6. Since
the laser intensity is the same in both cases, the rescugteri
cutoff would be expected at the same energy, too. However,
the shell form factor has a zero around the energy.8t/p,
where the zero-range spectrum features its final maximum.

li+j’, zero-range

log,, Photoelectron Yield (arb. units)

AN

—

T
‘gi.f______

This moves the final maximum of the shell-potential spectrum -12F [ '.'I .
up to a higher energy. -13 L L . ! ! i

In order to investigate these oscillations in more detail, i 0 2 4 6 8 10 12
the following we will look at contributions oindividual tra- Photolectron energy (units of U )

jectories to the photoelectron yield for theshell, in compari-
son to the zero-range potential. Since the uniform appraxim

tion requires pairs of trajectories, we will use the sadi&t £ 7. contribution from individual trajectories to thesoattered
approximation for that purpose. Whenever dealing witl&.  photoelectron spectrum for the shell potential, in congearito the
of trajectories, we will consider the uniform approximatio  zero-range case. We consider the same parameters as i@vpsr
Figure[’y displays these results, for several rescatteaed trfigure. The labels andj refer, in part (a), to the third-shortest pair,
jectories. In cas&p is constant, as is the case for the zero-denoted by (5+6), and in part (b) to the eighth-shortest painoted
range potential, all oscillations present in the spectrmeo by (15+16). For the terms + j|* we applied the uniform approxi-
from interference terms. The contributions of individuakt —mation. For the termg|*+|;|*, we applied the Stokes regularization
jectories are nearly constant in the classically allowegiine (B3 to the diverging trajectory. The dashed vertical liirethe fig-
and do not produce any substructure. Forifsiell, however, ure separate the classically allowed and forbidden enegjpmns for

Vpk is oscillatory and produces its own maxima and minimathe respective orbits. The dotted and dashed gray linesrin(@a

in the spectrum. However, comparing Fﬂ; 6(a) and (b) Wégpocitrzrggi Ln;i;\él.dual contributions of 5 and 6, respecivear the
observe that the contributions of the longer orbits tenceto r

store the minima of the shell-potential spectrum to thosb®f
zero-range. Only the highest-energy minimum rieat/p is
left unaffected, since the longer orbits do not contribattaits ;o momentum, are almost real daé very small.

energy. . , Clearly, there exist deviations from Eg. [40) due to the fact
In particular, the minima are given by Re(p —k)? = thatk is non-vanishing and complwandﬂre complex, and
nm/ro, wheren is an integer. To a first approximation, the e o the time dependence of the intermediate momentum.
drift momentumk can be neglected with respect to the mo- g jnstance, a feature that is not explained by Ed. (40) is a
mentump, so that the energy positions of the minima, in unitSghif; in the oscillations of the longer trajectory, with pest
of the ponderomotive energy, are roughly given by to those of the short one. This feature occurs for all pairs
»? 22 of trajectories, and decreases as the travel times getidonge
s = U (40) A qgualitative estimate of these deviations can be obtaiyed b
P To¥P considering,/(p — k)2 up to first order inv'k2, and the pair
This expression is expected to work better for longer excur{t1,t}) and(t2,t5) = (t1 — &,¢; + €’) up to first order in
sion times, since, according to Efj.|(1#)x 1/(t —¢') . This  &,&’. This gives a shift in the minima, which is proportional to
can already be seenin Fﬂ. 1, where the saddle points as fune/(¢t — '), confirming the results presented in Fﬁb 7.
tions of the energy are depicted. For a pair of trajectorils w ~ Now we turn to other shell potentials. Similar results are
short travel times, the start and the return times, as weli@s obtained for a more realistic square well, of the fdrifr) =
intermediate momenturk, vary considerably with the pho- —V;forr, < r < rq, and zero otherwise. Since, in nature, the
toelectron energy. For a long travel time, on the other handsharp edges present fof-@hell or a square well are smoothed
these quantities are nearly constant, in the classicdyall  out, it is of interest to investigate whether the additiorsil-

region. Furthermore, the return time, as well as the intdime
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-4 . . . . ; ; toelectron yield. This suppression is due to the decay of the
2 &-shell form factor V,x. Therefore, even when the shell potentials
sk (a)  11+2| ——0-05 P = S . e
: are smoothed out, the oscillations survive. Thus, the pissi

ity that they are artificially caused by the sharp edges of the
0-shell potential can be ruled out.

VIl. CONCLUSIONS

0
5 40 t . N
g “' R We investigate the influence of the binding potential in
5! ' ' ' ' ' — above-threshold ionization (ATI) for linearly polarizeaskr
o 4 . . . . . . fields, in terms of quantum orbits, using the uniform approx-
>,_Z 5 imation [Egs. ) and@S)]. In this method, the transition
S , amplitude is expanded in terms of the collective contritnuti
8 6 of pairs of orbits rather than individual orbits. No infortizen
§ -7 is required beyond the conventional saddle-point appraxim
2 3 tion. This is made possible and, indeed, necessitated by the
o, 9 fact that for laser-induced rescattering phenomena thitgsorb
8 naturally come in pairs that nearly coalesce at the classica
-10 cutoffs, thus rendering the conventional saddle-pointaxip
-11 mation inapplicable in this energy region. Moreover, the un
12 form approximation remains valid beyond the classical futo
0 2 4 6 8 10 12 in the classically forbidden region, where it automatigat-
Photoelectron energy (units of U p) corporates the fading out of unphysical saddles beyond the

cutoff energy. If the two saddles of a pair are sufficiently fa
apart, the standard saddle-point approximation is reealer
FIG. 8: Contribution from the shortest pair of trajectortesthe The fact that the uniform approximation is valid in the
photoelectron spectrum for the Gaussian potel (4mpeoedto  whole energy range, both away from as well as near the cut-
the &-shell case, for several widths and the same parameters as offs, allows one to obtain quantitative predictions for ATI
in the previous figure. Parts (a) and (b) deict+ 2> and |2,  spectra. Indeed, in this paper this approximation has been
respectively. The prefactdr, for |Eo| = 0.274, was computed by  tested for the zero-range potential against the numerizat
solving the time-independent Schrodinger equation nigaky. putation of the SFA transition amplitudes. The photoelec-
tron spectra, as well as the angular distributions obtained
both ways turned out to be practically identical. With the
conventional saddle-point approximation, quantitaticesdic-
tions are not possible in certain energy regions, whichder |
V(r) = —Vpexp|—(r — To)z/az]. (41) laser intensity can span the bette_r part of the _ATI plateau.
The excellent quality of the uniform approximation for the
For vanishing width, we recover ECD35). For this potential zero-range potential also suggests that the uniform approx
the form factorVpx is given by a rather complicated expres- mation is reliable enough for computing ATI spectra for othe
sion, which will not be reproduced here. Important featafes binding potentials, such as Coulomb, Yukawa, or shell po-
Vpk are the presence of minima and a decrease with increasirigntials. Within the framework of this paper, the influenée o
asymptotic momentum. This decrease dampens the oscill#he binding potential is contained in two form factors, whic
tions, such that}k, in comparison to thé-shell form factor, ~ either characterize the transition from the ground statanto
decays much more rapidly for large This effect becomes intermediate momentum state, or the transition from therint
more pronounced as the width of the potential increases.  mediate state to an asymptotic momentum state. Throughout
In Fig. (a), the contribution of the two shortest trajecto-the paper, these form factors are calle@d and Vk, respec-
ries to the ATI spectra is displayed for the Gaussian paénti tively.
@), in comparison to thé-shell potential. We considered As a first application, we investigated the role of
the zero-range-potential form factdio [EQ. @)]. As in  the Coulomb tail by computing photoelectron spectra for
the previous figure, there exist additional oscillationkjc  Coulomb and Yukawa potentials. As a main feature, we
come fromVpk. In Fig. B(b), this is clearly shown, for the observe a suppression of the photoelectron yield for the
contributions from the second shortest trajectory. ForlkmaATI plateau, in comparison to the zero-range case, for both
width, as expected, thieshell oscillation pattern is practically Yukawa and Coulomb cases. This is due to the functional
recovered. For the parameter range considered in the figurlarms of Vi, which are inversely proportional to the photo-
this holds foro < 0.5. Major differences are present only for electron momentum. Additionally, for the Coulomb poten-
o > 1.5. As the width gets larger, there is a displacement intial this form factor causes an increase in the low-energly AT
the minima of the form factor and a suppression of the phopeaks. These results are in agreement with the fully numeri-

lations are also present for smooth potentials that apprate
Eq. (3%). One such example is the Gaussian potential
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cal solution of the time-dependent Schrodinger equa@ﬂl[ cesses between the quantum orbits, and how such processes
Furthermore, for the Yukawa potentials, we observed an inare affected by the binding potential.

crease in the yield for decreasing screening parameteila®im Summarizing, the uniform approximation is a very pow-
features have been obtained(in|[22], from the numericaksolugrfyl method for investigating laser-assisted rescaigepio-
tion of the strong-field approximation transition ampliésd cesses, being applicable in all energy regions of the spec-
Another class of potentials that we investigated are shellig  This approximation allows one to compute photoelec-
potentials, which are commonly used as an approximation fofron spectra for binding potentials other than the zergean
clusters. In comparison to the zero-range case, the pleatoel \yith minimal numerical effort. Application of the methods
tron spectra computed for such potentials exhibit addétion geveloped in this paper to other high-intensity laser-getl
structure, which comes from the oscillating formigfc. This  or |aser-assisted phenomena, such as non-sequentiakedoubl

is an extreme case of how the form faciqyi. influences the jonjzation, or to elliptically polarized fields is, in priipge,
photoelectron yield. Such oscillations are also presernwh girajghtforward.

the potentials are smoothed out, and therefore are notian art
fact of the shell models.

An alternative for performing such investigations is the nu
merical solution of the three-dimensional Schrodingaraeq
tion. This would require considerable numerical effortdan
for elliptical polarization, it would take one close to the
limit of today’s computational resources. Another podgibi This work was supported in part by the Deutsche
would be the numerical solution of the strong-field approxi-Forschungsgemeinschaft. We are gratefulto S. P. Gordslavs
mation amplitudes[[l) an(2). From the numerical viewpointand S. V. Popruzhenko for useful discussions, to S. V.
this is not an easy task either, since one must deal with mulPopruzhenko for the critical reading of the manuscript, to M
tiple integrals of highly oscillating functions. Thus, thai- E. Madjet for providing references on clusters, to R. Kopold
form approximation considerably simplifies the computadio for giving us his code for computing the exact results, and to
involved. Furthermore, using this approximation, one ikab A. N. Salgueiro for her collaboration in the early stage @ th
to gain additional physical insight into the interference-p  project.
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